1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_X64
6
7 #include "src/crankshaft/x64/lithium-codegen-x64.h"
8
9 #include "src/base/bits.h"
10 #include "src/code-factory.h"
11 #include "src/code-stubs.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15
16 namespace v8 {
17 namespace internal {
18
19
20 // When invoking builtins, we need to record the safepoint in the middle of
21 // the invoke instruction sequence generated by the macro assembler.
22 class SafepointGenerator final : public CallWrapper {
23 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)24 SafepointGenerator(LCodeGen* codegen,
25 LPointerMap* pointers,
26 Safepoint::DeoptMode mode)
27 : codegen_(codegen),
28 pointers_(pointers),
29 deopt_mode_(mode) { }
~SafepointGenerator()30 virtual ~SafepointGenerator() {}
31
BeforeCall(int call_size) const32 void BeforeCall(int call_size) const override {}
33
AfterCall() const34 void AfterCall() const override {
35 codegen_->RecordSafepoint(pointers_, deopt_mode_);
36 }
37
38 private:
39 LCodeGen* codegen_;
40 LPointerMap* pointers_;
41 Safepoint::DeoptMode deopt_mode_;
42 };
43
44
45 #define __ masm()->
46
GenerateCode()47 bool LCodeGen::GenerateCode() {
48 LPhase phase("Z_Code generation", chunk());
49 DCHECK(is_unused());
50 status_ = GENERATING;
51
52 // Open a frame scope to indicate that there is a frame on the stack. The
53 // MANUAL indicates that the scope shouldn't actually generate code to set up
54 // the frame (that is done in GeneratePrologue).
55 FrameScope frame_scope(masm_, StackFrame::MANUAL);
56
57 return GeneratePrologue() &&
58 GenerateBody() &&
59 GenerateDeferredCode() &&
60 GenerateJumpTable() &&
61 GenerateSafepointTable();
62 }
63
64
FinishCode(Handle<Code> code)65 void LCodeGen::FinishCode(Handle<Code> code) {
66 DCHECK(is_done());
67 code->set_stack_slots(GetTotalFrameSlotCount());
68 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
69 PopulateDeoptimizationData(code);
70 }
71
72
73 #ifdef _MSC_VER
MakeSureStackPagesMapped(int offset)74 void LCodeGen::MakeSureStackPagesMapped(int offset) {
75 const int kPageSize = 4 * KB;
76 for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
77 __ movp(Operand(rsp, offset), rax);
78 }
79 }
80 #endif
81
82
SaveCallerDoubles()83 void LCodeGen::SaveCallerDoubles() {
84 DCHECK(info()->saves_caller_doubles());
85 DCHECK(NeedsEagerFrame());
86 Comment(";;; Save clobbered callee double registers");
87 int count = 0;
88 BitVector* doubles = chunk()->allocated_double_registers();
89 BitVector::Iterator save_iterator(doubles);
90 while (!save_iterator.Done()) {
91 __ Movsd(MemOperand(rsp, count * kDoubleSize),
92 XMMRegister::from_code(save_iterator.Current()));
93 save_iterator.Advance();
94 count++;
95 }
96 }
97
98
RestoreCallerDoubles()99 void LCodeGen::RestoreCallerDoubles() {
100 DCHECK(info()->saves_caller_doubles());
101 DCHECK(NeedsEagerFrame());
102 Comment(";;; Restore clobbered callee double registers");
103 BitVector* doubles = chunk()->allocated_double_registers();
104 BitVector::Iterator save_iterator(doubles);
105 int count = 0;
106 while (!save_iterator.Done()) {
107 __ Movsd(XMMRegister::from_code(save_iterator.Current()),
108 MemOperand(rsp, count * kDoubleSize));
109 save_iterator.Advance();
110 count++;
111 }
112 }
113
114
GeneratePrologue()115 bool LCodeGen::GeneratePrologue() {
116 DCHECK(is_generating());
117
118 if (info()->IsOptimizing()) {
119 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
120 }
121
122 info()->set_prologue_offset(masm_->pc_offset());
123 if (NeedsEagerFrame()) {
124 DCHECK(!frame_is_built_);
125 frame_is_built_ = true;
126 if (info()->IsStub()) {
127 __ StubPrologue(StackFrame::STUB);
128 } else {
129 __ Prologue(info()->GeneratePreagedPrologue());
130 }
131 }
132
133 // Reserve space for the stack slots needed by the code.
134 int slots = GetStackSlotCount();
135 if (slots > 0) {
136 if (FLAG_debug_code) {
137 __ subp(rsp, Immediate(slots * kPointerSize));
138 #ifdef _MSC_VER
139 MakeSureStackPagesMapped(slots * kPointerSize);
140 #endif
141 __ Push(rax);
142 __ Set(rax, slots);
143 __ Set(kScratchRegister, kSlotsZapValue);
144 Label loop;
145 __ bind(&loop);
146 __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
147 kScratchRegister);
148 __ decl(rax);
149 __ j(not_zero, &loop);
150 __ Pop(rax);
151 } else {
152 __ subp(rsp, Immediate(slots * kPointerSize));
153 #ifdef _MSC_VER
154 MakeSureStackPagesMapped(slots * kPointerSize);
155 #endif
156 }
157
158 if (info()->saves_caller_doubles()) {
159 SaveCallerDoubles();
160 }
161 }
162 return !is_aborted();
163 }
164
165
DoPrologue(LPrologue * instr)166 void LCodeGen::DoPrologue(LPrologue* instr) {
167 Comment(";;; Prologue begin");
168
169 // Possibly allocate a local context.
170 if (info_->scope()->NeedsContext()) {
171 Comment(";;; Allocate local context");
172 bool need_write_barrier = true;
173 // Argument to NewContext is the function, which is still in rdi.
174 int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
175 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
176 if (info()->scope()->is_script_scope()) {
177 __ Push(rdi);
178 __ Push(info()->scope()->scope_info());
179 __ CallRuntime(Runtime::kNewScriptContext);
180 deopt_mode = Safepoint::kLazyDeopt;
181 } else {
182 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
183 FastNewFunctionContextStub stub(isolate());
184 __ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
185 __ CallStub(&stub);
186 // Result of FastNewFunctionContextStub is always in new space.
187 need_write_barrier = false;
188 } else {
189 __ Push(rdi);
190 __ CallRuntime(Runtime::kNewFunctionContext);
191 }
192 }
193 RecordSafepoint(deopt_mode);
194
195 // Context is returned in rax. It replaces the context passed to us.
196 // It's saved in the stack and kept live in rsi.
197 __ movp(rsi, rax);
198 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
199
200 // Copy any necessary parameters into the context.
201 int num_parameters = info()->scope()->num_parameters();
202 int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
203 for (int i = first_parameter; i < num_parameters; i++) {
204 Variable* var = (i == -1) ? info()->scope()->receiver()
205 : info()->scope()->parameter(i);
206 if (var->IsContextSlot()) {
207 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
208 (num_parameters - 1 - i) * kPointerSize;
209 // Load parameter from stack.
210 __ movp(rax, Operand(rbp, parameter_offset));
211 // Store it in the context.
212 int context_offset = Context::SlotOffset(var->index());
213 __ movp(Operand(rsi, context_offset), rax);
214 // Update the write barrier. This clobbers rax and rbx.
215 if (need_write_barrier) {
216 __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
217 } else if (FLAG_debug_code) {
218 Label done;
219 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
220 __ Abort(kExpectedNewSpaceObject);
221 __ bind(&done);
222 }
223 }
224 }
225 Comment(";;; End allocate local context");
226 }
227
228 Comment(";;; Prologue end");
229 }
230
231
GenerateOsrPrologue()232 void LCodeGen::GenerateOsrPrologue() {
233 // Generate the OSR entry prologue at the first unknown OSR value, or if there
234 // are none, at the OSR entrypoint instruction.
235 if (osr_pc_offset_ >= 0) return;
236
237 osr_pc_offset_ = masm()->pc_offset();
238
239 // Adjust the frame size, subsuming the unoptimized frame into the
240 // optimized frame.
241 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
242 DCHECK(slots >= 0);
243 __ subp(rsp, Immediate(slots * kPointerSize));
244 }
245
246
GenerateBodyInstructionPre(LInstruction * instr)247 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
248 if (instr->IsCall()) {
249 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
250 }
251 if (!instr->IsLazyBailout() && !instr->IsGap()) {
252 safepoints_.BumpLastLazySafepointIndex();
253 }
254 }
255
256
GenerateBodyInstructionPost(LInstruction * instr)257 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
258 if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
259 instr->hydrogen_value()->representation().IsInteger32() &&
260 instr->result()->IsRegister()) {
261 __ AssertZeroExtended(ToRegister(instr->result()));
262 }
263
264 if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
265 // We sign extend the dehoisted key at the definition point when the pointer
266 // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
267 // points and MustSignExtendResult is always false. We can't use
268 // STATIC_ASSERT here as the pointer size is 32-bit for x32.
269 DCHECK(kPointerSize == kInt64Size);
270 if (instr->result()->IsRegister()) {
271 Register result_reg = ToRegister(instr->result());
272 __ movsxlq(result_reg, result_reg);
273 } else {
274 // Sign extend the 32bit result in the stack slots.
275 DCHECK(instr->result()->IsStackSlot());
276 Operand src = ToOperand(instr->result());
277 __ movsxlq(kScratchRegister, src);
278 __ movq(src, kScratchRegister);
279 }
280 }
281 }
282
283
GenerateJumpTable()284 bool LCodeGen::GenerateJumpTable() {
285 if (jump_table_.length() == 0) return !is_aborted();
286
287 Label needs_frame;
288 Comment(";;; -------------------- Jump table --------------------");
289 for (int i = 0; i < jump_table_.length(); i++) {
290 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
291 __ bind(&table_entry->label);
292 Address entry = table_entry->address;
293 DeoptComment(table_entry->deopt_info);
294 if (table_entry->needs_frame) {
295 DCHECK(!info()->saves_caller_doubles());
296 __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
297 __ call(&needs_frame);
298 } else {
299 if (info()->saves_caller_doubles()) {
300 DCHECK(info()->IsStub());
301 RestoreCallerDoubles();
302 }
303 __ call(entry, RelocInfo::RUNTIME_ENTRY);
304 }
305 }
306
307 if (needs_frame.is_linked()) {
308 __ bind(&needs_frame);
309 /* stack layout
310 3: return address <-- rsp
311 2: garbage
312 1: garbage
313 0: garbage
314 */
315 // Reserve space for stub marker.
316 __ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize));
317 __ Push(MemOperand(
318 rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address.
319 __ Push(kScratchRegister);
320
321 /* stack layout
322 3: return address
323 2: garbage
324 1: return address
325 0: entry address <-- rsp
326 */
327
328 // Create a stack frame.
329 __ movp(MemOperand(rsp, 3 * kPointerSize), rbp);
330 __ leap(rbp, MemOperand(rsp, 3 * kPointerSize));
331
332 // This variant of deopt can only be used with stubs. Since we don't
333 // have a function pointer to install in the stack frame that we're
334 // building, install a special marker there instead.
335 DCHECK(info()->IsStub());
336 __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
337
338 /* stack layout
339 3: old rbp
340 2: stub marker
341 1: return address
342 0: entry address <-- rsp
343 */
344 __ ret(0);
345 }
346
347 return !is_aborted();
348 }
349
350
GenerateDeferredCode()351 bool LCodeGen::GenerateDeferredCode() {
352 DCHECK(is_generating());
353 if (deferred_.length() > 0) {
354 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
355 LDeferredCode* code = deferred_[i];
356
357 HValue* value =
358 instructions_->at(code->instruction_index())->hydrogen_value();
359 RecordAndWritePosition(value->position());
360
361 Comment(";;; <@%d,#%d> "
362 "-------------------- Deferred %s --------------------",
363 code->instruction_index(),
364 code->instr()->hydrogen_value()->id(),
365 code->instr()->Mnemonic());
366 __ bind(code->entry());
367 if (NeedsDeferredFrame()) {
368 Comment(";;; Build frame");
369 DCHECK(!frame_is_built_);
370 DCHECK(info()->IsStub());
371 frame_is_built_ = true;
372 // Build the frame in such a way that esi isn't trashed.
373 __ pushq(rbp); // Caller's frame pointer.
374 __ Push(Smi::FromInt(StackFrame::STUB));
375 __ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp));
376 Comment(";;; Deferred code");
377 }
378 code->Generate();
379 if (NeedsDeferredFrame()) {
380 __ bind(code->done());
381 Comment(";;; Destroy frame");
382 DCHECK(frame_is_built_);
383 frame_is_built_ = false;
384 __ movp(rsp, rbp);
385 __ popq(rbp);
386 }
387 __ jmp(code->exit());
388 }
389 }
390
391 // Deferred code is the last part of the instruction sequence. Mark
392 // the generated code as done unless we bailed out.
393 if (!is_aborted()) status_ = DONE;
394 return !is_aborted();
395 }
396
397
GenerateSafepointTable()398 bool LCodeGen::GenerateSafepointTable() {
399 DCHECK(is_done());
400 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
401 return !is_aborted();
402 }
403
404
ToRegister(int index) const405 Register LCodeGen::ToRegister(int index) const {
406 return Register::from_code(index);
407 }
408
409
ToDoubleRegister(int index) const410 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
411 return XMMRegister::from_code(index);
412 }
413
414
ToRegister(LOperand * op) const415 Register LCodeGen::ToRegister(LOperand* op) const {
416 DCHECK(op->IsRegister());
417 return ToRegister(op->index());
418 }
419
420
ToDoubleRegister(LOperand * op) const421 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
422 DCHECK(op->IsDoubleRegister());
423 return ToDoubleRegister(op->index());
424 }
425
426
IsInteger32Constant(LConstantOperand * op) const427 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
428 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
429 }
430
431
IsExternalConstant(LConstantOperand * op) const432 bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
433 return chunk_->LookupLiteralRepresentation(op).IsExternal();
434 }
435
436
IsDehoistedKeyConstant(LConstantOperand * op) const437 bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
438 return op->IsConstantOperand() &&
439 chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
440 }
441
442
IsSmiConstant(LConstantOperand * op) const443 bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
444 return chunk_->LookupLiteralRepresentation(op).IsSmi();
445 }
446
447
ToInteger32(LConstantOperand * op) const448 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
449 return ToRepresentation(op, Representation::Integer32());
450 }
451
452
ToRepresentation(LConstantOperand * op,const Representation & r) const453 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
454 const Representation& r) const {
455 HConstant* constant = chunk_->LookupConstant(op);
456 int32_t value = constant->Integer32Value();
457 if (r.IsInteger32()) return value;
458 DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
459 return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
460 }
461
462
ToSmi(LConstantOperand * op) const463 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
464 HConstant* constant = chunk_->LookupConstant(op);
465 return Smi::FromInt(constant->Integer32Value());
466 }
467
468
ToDouble(LConstantOperand * op) const469 double LCodeGen::ToDouble(LConstantOperand* op) const {
470 HConstant* constant = chunk_->LookupConstant(op);
471 DCHECK(constant->HasDoubleValue());
472 return constant->DoubleValue();
473 }
474
475
ToExternalReference(LConstantOperand * op) const476 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
477 HConstant* constant = chunk_->LookupConstant(op);
478 DCHECK(constant->HasExternalReferenceValue());
479 return constant->ExternalReferenceValue();
480 }
481
482
ToHandle(LConstantOperand * op) const483 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
484 HConstant* constant = chunk_->LookupConstant(op);
485 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
486 return constant->handle(isolate());
487 }
488
489
ArgumentsOffsetWithoutFrame(int index)490 static int ArgumentsOffsetWithoutFrame(int index) {
491 DCHECK(index < 0);
492 return -(index + 1) * kPointerSize + kPCOnStackSize;
493 }
494
495
ToOperand(LOperand * op) const496 Operand LCodeGen::ToOperand(LOperand* op) const {
497 // Does not handle registers. In X64 assembler, plain registers are not
498 // representable as an Operand.
499 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
500 if (NeedsEagerFrame()) {
501 return Operand(rbp, FrameSlotToFPOffset(op->index()));
502 } else {
503 // Retrieve parameter without eager stack-frame relative to the
504 // stack-pointer.
505 return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
506 }
507 }
508
509
WriteTranslation(LEnvironment * environment,Translation * translation)510 void LCodeGen::WriteTranslation(LEnvironment* environment,
511 Translation* translation) {
512 if (environment == NULL) return;
513
514 // The translation includes one command per value in the environment.
515 int translation_size = environment->translation_size();
516
517 WriteTranslation(environment->outer(), translation);
518 WriteTranslationFrame(environment, translation);
519
520 int object_index = 0;
521 int dematerialized_index = 0;
522 for (int i = 0; i < translation_size; ++i) {
523 LOperand* value = environment->values()->at(i);
524 AddToTranslation(
525 environment, translation, value, environment->HasTaggedValueAt(i),
526 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
527 }
528 }
529
530
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)531 void LCodeGen::AddToTranslation(LEnvironment* environment,
532 Translation* translation,
533 LOperand* op,
534 bool is_tagged,
535 bool is_uint32,
536 int* object_index_pointer,
537 int* dematerialized_index_pointer) {
538 if (op == LEnvironment::materialization_marker()) {
539 int object_index = (*object_index_pointer)++;
540 if (environment->ObjectIsDuplicateAt(object_index)) {
541 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
542 translation->DuplicateObject(dupe_of);
543 return;
544 }
545 int object_length = environment->ObjectLengthAt(object_index);
546 if (environment->ObjectIsArgumentsAt(object_index)) {
547 translation->BeginArgumentsObject(object_length);
548 } else {
549 translation->BeginCapturedObject(object_length);
550 }
551 int dematerialized_index = *dematerialized_index_pointer;
552 int env_offset = environment->translation_size() + dematerialized_index;
553 *dematerialized_index_pointer += object_length;
554 for (int i = 0; i < object_length; ++i) {
555 LOperand* value = environment->values()->at(env_offset + i);
556 AddToTranslation(environment,
557 translation,
558 value,
559 environment->HasTaggedValueAt(env_offset + i),
560 environment->HasUint32ValueAt(env_offset + i),
561 object_index_pointer,
562 dematerialized_index_pointer);
563 }
564 return;
565 }
566
567 if (op->IsStackSlot()) {
568 int index = op->index();
569 if (is_tagged) {
570 translation->StoreStackSlot(index);
571 } else if (is_uint32) {
572 translation->StoreUint32StackSlot(index);
573 } else {
574 translation->StoreInt32StackSlot(index);
575 }
576 } else if (op->IsDoubleStackSlot()) {
577 int index = op->index();
578 translation->StoreDoubleStackSlot(index);
579 } else if (op->IsRegister()) {
580 Register reg = ToRegister(op);
581 if (is_tagged) {
582 translation->StoreRegister(reg);
583 } else if (is_uint32) {
584 translation->StoreUint32Register(reg);
585 } else {
586 translation->StoreInt32Register(reg);
587 }
588 } else if (op->IsDoubleRegister()) {
589 XMMRegister reg = ToDoubleRegister(op);
590 translation->StoreDoubleRegister(reg);
591 } else if (op->IsConstantOperand()) {
592 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
593 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
594 translation->StoreLiteral(src_index);
595 } else {
596 UNREACHABLE();
597 }
598 }
599
600
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,int argc)601 void LCodeGen::CallCodeGeneric(Handle<Code> code,
602 RelocInfo::Mode mode,
603 LInstruction* instr,
604 SafepointMode safepoint_mode,
605 int argc) {
606 DCHECK(instr != NULL);
607 __ call(code, mode);
608 RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
609
610 // Signal that we don't inline smi code before these stubs in the
611 // optimizing code generator.
612 if (code->kind() == Code::BINARY_OP_IC ||
613 code->kind() == Code::COMPARE_IC) {
614 __ nop();
615 }
616 }
617
618
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)619 void LCodeGen::CallCode(Handle<Code> code,
620 RelocInfo::Mode mode,
621 LInstruction* instr) {
622 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
623 }
624
625
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)626 void LCodeGen::CallRuntime(const Runtime::Function* function,
627 int num_arguments,
628 LInstruction* instr,
629 SaveFPRegsMode save_doubles) {
630 DCHECK(instr != NULL);
631 DCHECK(instr->HasPointerMap());
632
633 __ CallRuntime(function, num_arguments, save_doubles);
634
635 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
636 }
637
638
LoadContextFromDeferred(LOperand * context)639 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
640 if (context->IsRegister()) {
641 if (!ToRegister(context).is(rsi)) {
642 __ movp(rsi, ToRegister(context));
643 }
644 } else if (context->IsStackSlot()) {
645 __ movp(rsi, ToOperand(context));
646 } else if (context->IsConstantOperand()) {
647 HConstant* constant =
648 chunk_->LookupConstant(LConstantOperand::cast(context));
649 __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
650 } else {
651 UNREACHABLE();
652 }
653 }
654
655
656
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)657 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
658 int argc,
659 LInstruction* instr,
660 LOperand* context) {
661 LoadContextFromDeferred(context);
662
663 __ CallRuntimeSaveDoubles(id);
664 RecordSafepointWithRegisters(
665 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
666 }
667
668
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)669 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
670 Safepoint::DeoptMode mode) {
671 environment->set_has_been_used();
672 if (!environment->HasBeenRegistered()) {
673 // Physical stack frame layout:
674 // -x ............. -4 0 ..................................... y
675 // [incoming arguments] [spill slots] [pushed outgoing arguments]
676
677 // Layout of the environment:
678 // 0 ..................................................... size-1
679 // [parameters] [locals] [expression stack including arguments]
680
681 // Layout of the translation:
682 // 0 ........................................................ size - 1 + 4
683 // [expression stack including arguments] [locals] [4 words] [parameters]
684 // |>------------ translation_size ------------<|
685
686 int frame_count = 0;
687 int jsframe_count = 0;
688 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
689 ++frame_count;
690 if (e->frame_type() == JS_FUNCTION) {
691 ++jsframe_count;
692 }
693 }
694 Translation translation(&translations_, frame_count, jsframe_count, zone());
695 WriteTranslation(environment, &translation);
696 int deoptimization_index = deoptimizations_.length();
697 int pc_offset = masm()->pc_offset();
698 environment->Register(deoptimization_index,
699 translation.index(),
700 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
701 deoptimizations_.Add(environment, environment->zone());
702 }
703 }
704
DeoptimizeIf(Condition cc,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type)705 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
706 DeoptimizeReason deopt_reason,
707 Deoptimizer::BailoutType bailout_type) {
708 LEnvironment* environment = instr->environment();
709 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
710 DCHECK(environment->HasBeenRegistered());
711 int id = environment->deoptimization_index();
712 Address entry =
713 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
714 if (entry == NULL) {
715 Abort(kBailoutWasNotPrepared);
716 return;
717 }
718
719 if (DeoptEveryNTimes()) {
720 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
721 Label no_deopt;
722 __ pushfq();
723 __ pushq(rax);
724 Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
725 __ movl(rax, count_operand);
726 __ subl(rax, Immediate(1));
727 __ j(not_zero, &no_deopt, Label::kNear);
728 if (FLAG_trap_on_deopt) __ int3();
729 __ movl(rax, Immediate(FLAG_deopt_every_n_times));
730 __ movl(count_operand, rax);
731 __ popq(rax);
732 __ popfq();
733 DCHECK(frame_is_built_);
734 __ call(entry, RelocInfo::RUNTIME_ENTRY);
735 __ bind(&no_deopt);
736 __ movl(count_operand, rax);
737 __ popq(rax);
738 __ popfq();
739 }
740
741 if (info()->ShouldTrapOnDeopt()) {
742 Label done;
743 if (cc != no_condition) {
744 __ j(NegateCondition(cc), &done, Label::kNear);
745 }
746 __ int3();
747 __ bind(&done);
748 }
749
750 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
751
752 DCHECK(info()->IsStub() || frame_is_built_);
753 // Go through jump table if we need to handle condition, build frame, or
754 // restore caller doubles.
755 if (cc == no_condition && frame_is_built_ &&
756 !info()->saves_caller_doubles()) {
757 DeoptComment(deopt_info);
758 __ call(entry, RelocInfo::RUNTIME_ENTRY);
759 } else {
760 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
761 !frame_is_built_);
762 // We often have several deopts to the same entry, reuse the last
763 // jump entry if this is the case.
764 if (FLAG_trace_deopt || isolate()->is_profiling() ||
765 jump_table_.is_empty() ||
766 !table_entry.IsEquivalentTo(jump_table_.last())) {
767 jump_table_.Add(table_entry, zone());
768 }
769 if (cc == no_condition) {
770 __ jmp(&jump_table_.last().label);
771 } else {
772 __ j(cc, &jump_table_.last().label);
773 }
774 }
775 }
776
DeoptimizeIf(Condition cc,LInstruction * instr,DeoptimizeReason deopt_reason)777 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
778 DeoptimizeReason deopt_reason) {
779 Deoptimizer::BailoutType bailout_type = info()->IsStub()
780 ? Deoptimizer::LAZY
781 : Deoptimizer::EAGER;
782 DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
783 }
784
785
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode,int argc)786 void LCodeGen::RecordSafepointWithLazyDeopt(
787 LInstruction* instr, SafepointMode safepoint_mode, int argc) {
788 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
789 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
790 } else {
791 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
792 RecordSafepointWithRegisters(
793 instr->pointer_map(), argc, Safepoint::kLazyDeopt);
794 }
795 }
796
797
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)798 void LCodeGen::RecordSafepoint(
799 LPointerMap* pointers,
800 Safepoint::Kind kind,
801 int arguments,
802 Safepoint::DeoptMode deopt_mode) {
803 DCHECK(kind == expected_safepoint_kind_);
804
805 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
806
807 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
808 kind, arguments, deopt_mode);
809 for (int i = 0; i < operands->length(); i++) {
810 LOperand* pointer = operands->at(i);
811 if (pointer->IsStackSlot()) {
812 safepoint.DefinePointerSlot(pointer->index(), zone());
813 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
814 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
815 }
816 }
817 }
818
819
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)820 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
821 Safepoint::DeoptMode deopt_mode) {
822 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
823 }
824
825
RecordSafepoint(Safepoint::DeoptMode deopt_mode)826 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
827 LPointerMap empty_pointers(zone());
828 RecordSafepoint(&empty_pointers, deopt_mode);
829 }
830
831
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)832 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
833 int arguments,
834 Safepoint::DeoptMode deopt_mode) {
835 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
836 }
837
838
LabelType(LLabel * label)839 static const char* LabelType(LLabel* label) {
840 if (label->is_loop_header()) return " (loop header)";
841 if (label->is_osr_entry()) return " (OSR entry)";
842 return "";
843 }
844
845
DoLabel(LLabel * label)846 void LCodeGen::DoLabel(LLabel* label) {
847 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
848 current_instruction_,
849 label->hydrogen_value()->id(),
850 label->block_id(),
851 LabelType(label));
852 __ bind(label->label());
853 current_block_ = label->block_id();
854 DoGap(label);
855 }
856
857
DoParallelMove(LParallelMove * move)858 void LCodeGen::DoParallelMove(LParallelMove* move) {
859 resolver_.Resolve(move);
860 }
861
862
DoGap(LGap * gap)863 void LCodeGen::DoGap(LGap* gap) {
864 for (int i = LGap::FIRST_INNER_POSITION;
865 i <= LGap::LAST_INNER_POSITION;
866 i++) {
867 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
868 LParallelMove* move = gap->GetParallelMove(inner_pos);
869 if (move != NULL) DoParallelMove(move);
870 }
871 }
872
873
DoInstructionGap(LInstructionGap * instr)874 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
875 DoGap(instr);
876 }
877
878
DoParameter(LParameter * instr)879 void LCodeGen::DoParameter(LParameter* instr) {
880 // Nothing to do.
881 }
882
883
DoUnknownOSRValue(LUnknownOSRValue * instr)884 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
885 GenerateOsrPrologue();
886 }
887
888
DoModByPowerOf2I(LModByPowerOf2I * instr)889 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
890 Register dividend = ToRegister(instr->dividend());
891 int32_t divisor = instr->divisor();
892 DCHECK(dividend.is(ToRegister(instr->result())));
893
894 // Theoretically, a variation of the branch-free code for integer division by
895 // a power of 2 (calculating the remainder via an additional multiplication
896 // (which gets simplified to an 'and') and subtraction) should be faster, and
897 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
898 // indicate that positive dividends are heavily favored, so the branching
899 // version performs better.
900 HMod* hmod = instr->hydrogen();
901 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
902 Label dividend_is_not_negative, done;
903 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
904 __ testl(dividend, dividend);
905 __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
906 // Note that this is correct even for kMinInt operands.
907 __ negl(dividend);
908 __ andl(dividend, Immediate(mask));
909 __ negl(dividend);
910 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
911 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
912 }
913 __ jmp(&done, Label::kNear);
914 }
915
916 __ bind(÷nd_is_not_negative);
917 __ andl(dividend, Immediate(mask));
918 __ bind(&done);
919 }
920
921
DoModByConstI(LModByConstI * instr)922 void LCodeGen::DoModByConstI(LModByConstI* instr) {
923 Register dividend = ToRegister(instr->dividend());
924 int32_t divisor = instr->divisor();
925 DCHECK(ToRegister(instr->result()).is(rax));
926
927 if (divisor == 0) {
928 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
929 return;
930 }
931
932 __ TruncatingDiv(dividend, Abs(divisor));
933 __ imull(rdx, rdx, Immediate(Abs(divisor)));
934 __ movl(rax, dividend);
935 __ subl(rax, rdx);
936
937 // Check for negative zero.
938 HMod* hmod = instr->hydrogen();
939 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
940 Label remainder_not_zero;
941 __ j(not_zero, &remainder_not_zero, Label::kNear);
942 __ cmpl(dividend, Immediate(0));
943 DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
944 __ bind(&remainder_not_zero);
945 }
946 }
947
948
DoModI(LModI * instr)949 void LCodeGen::DoModI(LModI* instr) {
950 HMod* hmod = instr->hydrogen();
951
952 Register left_reg = ToRegister(instr->left());
953 DCHECK(left_reg.is(rax));
954 Register right_reg = ToRegister(instr->right());
955 DCHECK(!right_reg.is(rax));
956 DCHECK(!right_reg.is(rdx));
957 Register result_reg = ToRegister(instr->result());
958 DCHECK(result_reg.is(rdx));
959
960 Label done;
961 // Check for x % 0, idiv would signal a divide error. We have to
962 // deopt in this case because we can't return a NaN.
963 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
964 __ testl(right_reg, right_reg);
965 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
966 }
967
968 // Check for kMinInt % -1, idiv would signal a divide error. We
969 // have to deopt if we care about -0, because we can't return that.
970 if (hmod->CheckFlag(HValue::kCanOverflow)) {
971 Label no_overflow_possible;
972 __ cmpl(left_reg, Immediate(kMinInt));
973 __ j(not_zero, &no_overflow_possible, Label::kNear);
974 __ cmpl(right_reg, Immediate(-1));
975 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
976 DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero);
977 } else {
978 __ j(not_equal, &no_overflow_possible, Label::kNear);
979 __ Set(result_reg, 0);
980 __ jmp(&done, Label::kNear);
981 }
982 __ bind(&no_overflow_possible);
983 }
984
985 // Sign extend dividend in eax into edx:eax, since we are using only the low
986 // 32 bits of the values.
987 __ cdq();
988
989 // If we care about -0, test if the dividend is <0 and the result is 0.
990 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
991 Label positive_left;
992 __ testl(left_reg, left_reg);
993 __ j(not_sign, &positive_left, Label::kNear);
994 __ idivl(right_reg);
995 __ testl(result_reg, result_reg);
996 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
997 __ jmp(&done, Label::kNear);
998 __ bind(&positive_left);
999 }
1000 __ idivl(right_reg);
1001 __ bind(&done);
1002 }
1003
1004
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1005 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1006 Register dividend = ToRegister(instr->dividend());
1007 int32_t divisor = instr->divisor();
1008 DCHECK(dividend.is(ToRegister(instr->result())));
1009
1010 // If the divisor is positive, things are easy: There can be no deopts and we
1011 // can simply do an arithmetic right shift.
1012 if (divisor == 1) return;
1013 int32_t shift = WhichPowerOf2Abs(divisor);
1014 if (divisor > 1) {
1015 __ sarl(dividend, Immediate(shift));
1016 return;
1017 }
1018
1019 // If the divisor is negative, we have to negate and handle edge cases.
1020 __ negl(dividend);
1021 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1022 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1023 }
1024
1025 // Dividing by -1 is basically negation, unless we overflow.
1026 if (divisor == -1) {
1027 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1028 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1029 }
1030 return;
1031 }
1032
1033 // If the negation could not overflow, simply shifting is OK.
1034 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1035 __ sarl(dividend, Immediate(shift));
1036 return;
1037 }
1038
1039 Label not_kmin_int, done;
1040 __ j(no_overflow, ¬_kmin_int, Label::kNear);
1041 __ movl(dividend, Immediate(kMinInt / divisor));
1042 __ jmp(&done, Label::kNear);
1043 __ bind(¬_kmin_int);
1044 __ sarl(dividend, Immediate(shift));
1045 __ bind(&done);
1046 }
1047
1048
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1049 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1050 Register dividend = ToRegister(instr->dividend());
1051 int32_t divisor = instr->divisor();
1052 DCHECK(ToRegister(instr->result()).is(rdx));
1053
1054 if (divisor == 0) {
1055 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
1056 return;
1057 }
1058
1059 // Check for (0 / -x) that will produce negative zero.
1060 HMathFloorOfDiv* hdiv = instr->hydrogen();
1061 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1062 __ testl(dividend, dividend);
1063 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1064 }
1065
1066 // Easy case: We need no dynamic check for the dividend and the flooring
1067 // division is the same as the truncating division.
1068 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1069 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1070 __ TruncatingDiv(dividend, Abs(divisor));
1071 if (divisor < 0) __ negl(rdx);
1072 return;
1073 }
1074
1075 // In the general case we may need to adjust before and after the truncating
1076 // division to get a flooring division.
1077 Register temp = ToRegister(instr->temp3());
1078 DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
1079 Label needs_adjustment, done;
1080 __ cmpl(dividend, Immediate(0));
1081 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1082 __ TruncatingDiv(dividend, Abs(divisor));
1083 if (divisor < 0) __ negl(rdx);
1084 __ jmp(&done, Label::kNear);
1085 __ bind(&needs_adjustment);
1086 __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1087 __ TruncatingDiv(temp, Abs(divisor));
1088 if (divisor < 0) __ negl(rdx);
1089 __ decl(rdx);
1090 __ bind(&done);
1091 }
1092
1093
1094 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1095 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1096 HBinaryOperation* hdiv = instr->hydrogen();
1097 Register dividend = ToRegister(instr->dividend());
1098 Register divisor = ToRegister(instr->divisor());
1099 Register remainder = ToRegister(instr->temp());
1100 Register result = ToRegister(instr->result());
1101 DCHECK(dividend.is(rax));
1102 DCHECK(remainder.is(rdx));
1103 DCHECK(result.is(rax));
1104 DCHECK(!divisor.is(rax));
1105 DCHECK(!divisor.is(rdx));
1106
1107 // Check for x / 0.
1108 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1109 __ testl(divisor, divisor);
1110 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
1111 }
1112
1113 // Check for (0 / -x) that will produce negative zero.
1114 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1115 Label dividend_not_zero;
1116 __ testl(dividend, dividend);
1117 __ j(not_zero, ÷nd_not_zero, Label::kNear);
1118 __ testl(divisor, divisor);
1119 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1120 __ bind(÷nd_not_zero);
1121 }
1122
1123 // Check for (kMinInt / -1).
1124 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1125 Label dividend_not_min_int;
1126 __ cmpl(dividend, Immediate(kMinInt));
1127 __ j(not_zero, ÷nd_not_min_int, Label::kNear);
1128 __ cmpl(divisor, Immediate(-1));
1129 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1130 __ bind(÷nd_not_min_int);
1131 }
1132
1133 // Sign extend to rdx (= remainder).
1134 __ cdq();
1135 __ idivl(divisor);
1136
1137 Label done;
1138 __ testl(remainder, remainder);
1139 __ j(zero, &done, Label::kNear);
1140 __ xorl(remainder, divisor);
1141 __ sarl(remainder, Immediate(31));
1142 __ addl(result, remainder);
1143 __ bind(&done);
1144 }
1145
1146
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1147 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1148 Register dividend = ToRegister(instr->dividend());
1149 int32_t divisor = instr->divisor();
1150 Register result = ToRegister(instr->result());
1151 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1152 DCHECK(!result.is(dividend));
1153
1154 // Check for (0 / -x) that will produce negative zero.
1155 HDiv* hdiv = instr->hydrogen();
1156 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1157 __ testl(dividend, dividend);
1158 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1159 }
1160 // Check for (kMinInt / -1).
1161 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1162 __ cmpl(dividend, Immediate(kMinInt));
1163 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1164 }
1165 // Deoptimize if remainder will not be 0.
1166 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1167 divisor != 1 && divisor != -1) {
1168 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1169 __ testl(dividend, Immediate(mask));
1170 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
1171 }
1172 __ Move(result, dividend);
1173 int32_t shift = WhichPowerOf2Abs(divisor);
1174 if (shift > 0) {
1175 // The arithmetic shift is always OK, the 'if' is an optimization only.
1176 if (shift > 1) __ sarl(result, Immediate(31));
1177 __ shrl(result, Immediate(32 - shift));
1178 __ addl(result, dividend);
1179 __ sarl(result, Immediate(shift));
1180 }
1181 if (divisor < 0) __ negl(result);
1182 }
1183
1184
DoDivByConstI(LDivByConstI * instr)1185 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1186 Register dividend = ToRegister(instr->dividend());
1187 int32_t divisor = instr->divisor();
1188 DCHECK(ToRegister(instr->result()).is(rdx));
1189
1190 if (divisor == 0) {
1191 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
1192 return;
1193 }
1194
1195 // Check for (0 / -x) that will produce negative zero.
1196 HDiv* hdiv = instr->hydrogen();
1197 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1198 __ testl(dividend, dividend);
1199 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1200 }
1201
1202 __ TruncatingDiv(dividend, Abs(divisor));
1203 if (divisor < 0) __ negl(rdx);
1204
1205 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1206 __ movl(rax, rdx);
1207 __ imull(rax, rax, Immediate(divisor));
1208 __ subl(rax, dividend);
1209 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
1210 }
1211 }
1212
1213
1214 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1215 void LCodeGen::DoDivI(LDivI* instr) {
1216 HBinaryOperation* hdiv = instr->hydrogen();
1217 Register dividend = ToRegister(instr->dividend());
1218 Register divisor = ToRegister(instr->divisor());
1219 Register remainder = ToRegister(instr->temp());
1220 DCHECK(dividend.is(rax));
1221 DCHECK(remainder.is(rdx));
1222 DCHECK(ToRegister(instr->result()).is(rax));
1223 DCHECK(!divisor.is(rax));
1224 DCHECK(!divisor.is(rdx));
1225
1226 // Check for x / 0.
1227 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1228 __ testl(divisor, divisor);
1229 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
1230 }
1231
1232 // Check for (0 / -x) that will produce negative zero.
1233 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1234 Label dividend_not_zero;
1235 __ testl(dividend, dividend);
1236 __ j(not_zero, ÷nd_not_zero, Label::kNear);
1237 __ testl(divisor, divisor);
1238 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1239 __ bind(÷nd_not_zero);
1240 }
1241
1242 // Check for (kMinInt / -1).
1243 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1244 Label dividend_not_min_int;
1245 __ cmpl(dividend, Immediate(kMinInt));
1246 __ j(not_zero, ÷nd_not_min_int, Label::kNear);
1247 __ cmpl(divisor, Immediate(-1));
1248 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1249 __ bind(÷nd_not_min_int);
1250 }
1251
1252 // Sign extend to rdx (= remainder).
1253 __ cdq();
1254 __ idivl(divisor);
1255
1256 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1257 // Deoptimize if remainder is not 0.
1258 __ testl(remainder, remainder);
1259 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
1260 }
1261 }
1262
1263
DoMulI(LMulI * instr)1264 void LCodeGen::DoMulI(LMulI* instr) {
1265 Register left = ToRegister(instr->left());
1266 LOperand* right = instr->right();
1267
1268 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1269 if (instr->hydrogen_value()->representation().IsSmi()) {
1270 __ movp(kScratchRegister, left);
1271 } else {
1272 __ movl(kScratchRegister, left);
1273 }
1274 }
1275
1276 bool can_overflow =
1277 instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1278 if (right->IsConstantOperand()) {
1279 int32_t right_value = ToInteger32(LConstantOperand::cast(right));
1280 if (right_value == -1) {
1281 __ negl(left);
1282 } else if (right_value == 0) {
1283 __ xorl(left, left);
1284 } else if (right_value == 2) {
1285 __ addl(left, left);
1286 } else if (!can_overflow) {
1287 // If the multiplication is known to not overflow, we
1288 // can use operations that don't set the overflow flag
1289 // correctly.
1290 switch (right_value) {
1291 case 1:
1292 // Do nothing.
1293 break;
1294 case 3:
1295 __ leal(left, Operand(left, left, times_2, 0));
1296 break;
1297 case 4:
1298 __ shll(left, Immediate(2));
1299 break;
1300 case 5:
1301 __ leal(left, Operand(left, left, times_4, 0));
1302 break;
1303 case 8:
1304 __ shll(left, Immediate(3));
1305 break;
1306 case 9:
1307 __ leal(left, Operand(left, left, times_8, 0));
1308 break;
1309 case 16:
1310 __ shll(left, Immediate(4));
1311 break;
1312 default:
1313 __ imull(left, left, Immediate(right_value));
1314 break;
1315 }
1316 } else {
1317 __ imull(left, left, Immediate(right_value));
1318 }
1319 } else if (right->IsStackSlot()) {
1320 if (instr->hydrogen_value()->representation().IsSmi()) {
1321 __ SmiToInteger64(left, left);
1322 __ imulp(left, ToOperand(right));
1323 } else {
1324 __ imull(left, ToOperand(right));
1325 }
1326 } else {
1327 if (instr->hydrogen_value()->representation().IsSmi()) {
1328 __ SmiToInteger64(left, left);
1329 __ imulp(left, ToRegister(right));
1330 } else {
1331 __ imull(left, ToRegister(right));
1332 }
1333 }
1334
1335 if (can_overflow) {
1336 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1337 }
1338
1339 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1340 // Bail out if the result is supposed to be negative zero.
1341 Label done;
1342 if (instr->hydrogen_value()->representation().IsSmi()) {
1343 __ testp(left, left);
1344 } else {
1345 __ testl(left, left);
1346 }
1347 __ j(not_zero, &done, Label::kNear);
1348 if (right->IsConstantOperand()) {
1349 // Constant can't be represented as 32-bit Smi due to immediate size
1350 // limit.
1351 DCHECK(SmiValuesAre32Bits()
1352 ? !instr->hydrogen_value()->representation().IsSmi()
1353 : SmiValuesAre31Bits());
1354 if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1355 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
1356 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1357 __ cmpl(kScratchRegister, Immediate(0));
1358 DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
1359 }
1360 } else if (right->IsStackSlot()) {
1361 if (instr->hydrogen_value()->representation().IsSmi()) {
1362 __ orp(kScratchRegister, ToOperand(right));
1363 } else {
1364 __ orl(kScratchRegister, ToOperand(right));
1365 }
1366 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1367 } else {
1368 // Test the non-zero operand for negative sign.
1369 if (instr->hydrogen_value()->representation().IsSmi()) {
1370 __ orp(kScratchRegister, ToRegister(right));
1371 } else {
1372 __ orl(kScratchRegister, ToRegister(right));
1373 }
1374 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1375 }
1376 __ bind(&done);
1377 }
1378 }
1379
1380
DoBitI(LBitI * instr)1381 void LCodeGen::DoBitI(LBitI* instr) {
1382 LOperand* left = instr->left();
1383 LOperand* right = instr->right();
1384 DCHECK(left->Equals(instr->result()));
1385 DCHECK(left->IsRegister());
1386
1387 if (right->IsConstantOperand()) {
1388 int32_t right_operand =
1389 ToRepresentation(LConstantOperand::cast(right),
1390 instr->hydrogen()->right()->representation());
1391 switch (instr->op()) {
1392 case Token::BIT_AND:
1393 __ andl(ToRegister(left), Immediate(right_operand));
1394 break;
1395 case Token::BIT_OR:
1396 __ orl(ToRegister(left), Immediate(right_operand));
1397 break;
1398 case Token::BIT_XOR:
1399 if (right_operand == int32_t(~0)) {
1400 __ notl(ToRegister(left));
1401 } else {
1402 __ xorl(ToRegister(left), Immediate(right_operand));
1403 }
1404 break;
1405 default:
1406 UNREACHABLE();
1407 break;
1408 }
1409 } else if (right->IsStackSlot()) {
1410 switch (instr->op()) {
1411 case Token::BIT_AND:
1412 if (instr->IsInteger32()) {
1413 __ andl(ToRegister(left), ToOperand(right));
1414 } else {
1415 __ andp(ToRegister(left), ToOperand(right));
1416 }
1417 break;
1418 case Token::BIT_OR:
1419 if (instr->IsInteger32()) {
1420 __ orl(ToRegister(left), ToOperand(right));
1421 } else {
1422 __ orp(ToRegister(left), ToOperand(right));
1423 }
1424 break;
1425 case Token::BIT_XOR:
1426 if (instr->IsInteger32()) {
1427 __ xorl(ToRegister(left), ToOperand(right));
1428 } else {
1429 __ xorp(ToRegister(left), ToOperand(right));
1430 }
1431 break;
1432 default:
1433 UNREACHABLE();
1434 break;
1435 }
1436 } else {
1437 DCHECK(right->IsRegister());
1438 switch (instr->op()) {
1439 case Token::BIT_AND:
1440 if (instr->IsInteger32()) {
1441 __ andl(ToRegister(left), ToRegister(right));
1442 } else {
1443 __ andp(ToRegister(left), ToRegister(right));
1444 }
1445 break;
1446 case Token::BIT_OR:
1447 if (instr->IsInteger32()) {
1448 __ orl(ToRegister(left), ToRegister(right));
1449 } else {
1450 __ orp(ToRegister(left), ToRegister(right));
1451 }
1452 break;
1453 case Token::BIT_XOR:
1454 if (instr->IsInteger32()) {
1455 __ xorl(ToRegister(left), ToRegister(right));
1456 } else {
1457 __ xorp(ToRegister(left), ToRegister(right));
1458 }
1459 break;
1460 default:
1461 UNREACHABLE();
1462 break;
1463 }
1464 }
1465 }
1466
1467
DoShiftI(LShiftI * instr)1468 void LCodeGen::DoShiftI(LShiftI* instr) {
1469 LOperand* left = instr->left();
1470 LOperand* right = instr->right();
1471 DCHECK(left->Equals(instr->result()));
1472 DCHECK(left->IsRegister());
1473 if (right->IsRegister()) {
1474 DCHECK(ToRegister(right).is(rcx));
1475
1476 switch (instr->op()) {
1477 case Token::ROR:
1478 __ rorl_cl(ToRegister(left));
1479 break;
1480 case Token::SAR:
1481 __ sarl_cl(ToRegister(left));
1482 break;
1483 case Token::SHR:
1484 __ shrl_cl(ToRegister(left));
1485 if (instr->can_deopt()) {
1486 __ testl(ToRegister(left), ToRegister(left));
1487 DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
1488 }
1489 break;
1490 case Token::SHL:
1491 __ shll_cl(ToRegister(left));
1492 break;
1493 default:
1494 UNREACHABLE();
1495 break;
1496 }
1497 } else {
1498 int32_t value = ToInteger32(LConstantOperand::cast(right));
1499 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1500 switch (instr->op()) {
1501 case Token::ROR:
1502 if (shift_count != 0) {
1503 __ rorl(ToRegister(left), Immediate(shift_count));
1504 }
1505 break;
1506 case Token::SAR:
1507 if (shift_count != 0) {
1508 __ sarl(ToRegister(left), Immediate(shift_count));
1509 }
1510 break;
1511 case Token::SHR:
1512 if (shift_count != 0) {
1513 __ shrl(ToRegister(left), Immediate(shift_count));
1514 } else if (instr->can_deopt()) {
1515 __ testl(ToRegister(left), ToRegister(left));
1516 DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
1517 }
1518 break;
1519 case Token::SHL:
1520 if (shift_count != 0) {
1521 if (instr->hydrogen_value()->representation().IsSmi()) {
1522 if (SmiValuesAre32Bits()) {
1523 __ shlp(ToRegister(left), Immediate(shift_count));
1524 } else {
1525 DCHECK(SmiValuesAre31Bits());
1526 if (instr->can_deopt()) {
1527 if (shift_count != 1) {
1528 __ shll(ToRegister(left), Immediate(shift_count - 1));
1529 }
1530 __ Integer32ToSmi(ToRegister(left), ToRegister(left));
1531 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1532 } else {
1533 __ shll(ToRegister(left), Immediate(shift_count));
1534 }
1535 }
1536 } else {
1537 __ shll(ToRegister(left), Immediate(shift_count));
1538 }
1539 }
1540 break;
1541 default:
1542 UNREACHABLE();
1543 break;
1544 }
1545 }
1546 }
1547
1548
DoSubI(LSubI * instr)1549 void LCodeGen::DoSubI(LSubI* instr) {
1550 LOperand* left = instr->left();
1551 LOperand* right = instr->right();
1552 DCHECK(left->Equals(instr->result()));
1553
1554 if (right->IsConstantOperand()) {
1555 int32_t right_operand =
1556 ToRepresentation(LConstantOperand::cast(right),
1557 instr->hydrogen()->right()->representation());
1558 __ subl(ToRegister(left), Immediate(right_operand));
1559 } else if (right->IsRegister()) {
1560 if (instr->hydrogen_value()->representation().IsSmi()) {
1561 __ subp(ToRegister(left), ToRegister(right));
1562 } else {
1563 __ subl(ToRegister(left), ToRegister(right));
1564 }
1565 } else {
1566 if (instr->hydrogen_value()->representation().IsSmi()) {
1567 __ subp(ToRegister(left), ToOperand(right));
1568 } else {
1569 __ subl(ToRegister(left), ToOperand(right));
1570 }
1571 }
1572
1573 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1574 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1575 }
1576 }
1577
1578
DoConstantI(LConstantI * instr)1579 void LCodeGen::DoConstantI(LConstantI* instr) {
1580 Register dst = ToRegister(instr->result());
1581 if (instr->value() == 0) {
1582 __ xorl(dst, dst);
1583 } else {
1584 __ movl(dst, Immediate(instr->value()));
1585 }
1586 }
1587
1588
DoConstantS(LConstantS * instr)1589 void LCodeGen::DoConstantS(LConstantS* instr) {
1590 __ Move(ToRegister(instr->result()), instr->value());
1591 }
1592
1593
DoConstantD(LConstantD * instr)1594 void LCodeGen::DoConstantD(LConstantD* instr) {
1595 __ Move(ToDoubleRegister(instr->result()), instr->bits());
1596 }
1597
1598
DoConstantE(LConstantE * instr)1599 void LCodeGen::DoConstantE(LConstantE* instr) {
1600 __ LoadAddress(ToRegister(instr->result()), instr->value());
1601 }
1602
1603
DoConstantT(LConstantT * instr)1604 void LCodeGen::DoConstantT(LConstantT* instr) {
1605 Handle<Object> object = instr->value(isolate());
1606 AllowDeferredHandleDereference smi_check;
1607 __ Move(ToRegister(instr->result()), object);
1608 }
1609
1610
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1611 Operand LCodeGen::BuildSeqStringOperand(Register string,
1612 LOperand* index,
1613 String::Encoding encoding) {
1614 if (index->IsConstantOperand()) {
1615 int offset = ToInteger32(LConstantOperand::cast(index));
1616 if (encoding == String::TWO_BYTE_ENCODING) {
1617 offset *= kUC16Size;
1618 }
1619 STATIC_ASSERT(kCharSize == 1);
1620 return FieldOperand(string, SeqString::kHeaderSize + offset);
1621 }
1622 return FieldOperand(
1623 string, ToRegister(index),
1624 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1625 SeqString::kHeaderSize);
1626 }
1627
1628
DoSeqStringGetChar(LSeqStringGetChar * instr)1629 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1630 String::Encoding encoding = instr->hydrogen()->encoding();
1631 Register result = ToRegister(instr->result());
1632 Register string = ToRegister(instr->string());
1633
1634 if (FLAG_debug_code) {
1635 __ Push(string);
1636 __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
1637 __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
1638
1639 __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1640 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1641 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1642 __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1643 ? one_byte_seq_type : two_byte_seq_type));
1644 __ Check(equal, kUnexpectedStringType);
1645 __ Pop(string);
1646 }
1647
1648 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1649 if (encoding == String::ONE_BYTE_ENCODING) {
1650 __ movzxbl(result, operand);
1651 } else {
1652 __ movzxwl(result, operand);
1653 }
1654 }
1655
1656
DoSeqStringSetChar(LSeqStringSetChar * instr)1657 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1658 String::Encoding encoding = instr->hydrogen()->encoding();
1659 Register string = ToRegister(instr->string());
1660
1661 if (FLAG_debug_code) {
1662 Register value = ToRegister(instr->value());
1663 Register index = ToRegister(instr->index());
1664 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1665 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1666 int encoding_mask =
1667 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1668 ? one_byte_seq_type : two_byte_seq_type;
1669 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1670 }
1671
1672 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1673 if (instr->value()->IsConstantOperand()) {
1674 int value = ToInteger32(LConstantOperand::cast(instr->value()));
1675 DCHECK_LE(0, value);
1676 if (encoding == String::ONE_BYTE_ENCODING) {
1677 DCHECK_LE(value, String::kMaxOneByteCharCode);
1678 __ movb(operand, Immediate(value));
1679 } else {
1680 DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1681 __ movw(operand, Immediate(value));
1682 }
1683 } else {
1684 Register value = ToRegister(instr->value());
1685 if (encoding == String::ONE_BYTE_ENCODING) {
1686 __ movb(operand, value);
1687 } else {
1688 __ movw(operand, value);
1689 }
1690 }
1691 }
1692
1693
DoAddI(LAddI * instr)1694 void LCodeGen::DoAddI(LAddI* instr) {
1695 LOperand* left = instr->left();
1696 LOperand* right = instr->right();
1697
1698 Representation target_rep = instr->hydrogen()->representation();
1699 bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
1700
1701 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1702 if (right->IsConstantOperand()) {
1703 // No support for smi-immediates for 32-bit SMI.
1704 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1705 int32_t offset =
1706 ToRepresentation(LConstantOperand::cast(right),
1707 instr->hydrogen()->right()->representation());
1708 if (is_p) {
1709 __ leap(ToRegister(instr->result()),
1710 MemOperand(ToRegister(left), offset));
1711 } else {
1712 __ leal(ToRegister(instr->result()),
1713 MemOperand(ToRegister(left), offset));
1714 }
1715 } else {
1716 Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1717 if (is_p) {
1718 __ leap(ToRegister(instr->result()), address);
1719 } else {
1720 __ leal(ToRegister(instr->result()), address);
1721 }
1722 }
1723 } else {
1724 if (right->IsConstantOperand()) {
1725 // No support for smi-immediates for 32-bit SMI.
1726 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1727 int32_t right_operand =
1728 ToRepresentation(LConstantOperand::cast(right),
1729 instr->hydrogen()->right()->representation());
1730 if (is_p) {
1731 __ addp(ToRegister(left), Immediate(right_operand));
1732 } else {
1733 __ addl(ToRegister(left), Immediate(right_operand));
1734 }
1735 } else if (right->IsRegister()) {
1736 if (is_p) {
1737 __ addp(ToRegister(left), ToRegister(right));
1738 } else {
1739 __ addl(ToRegister(left), ToRegister(right));
1740 }
1741 } else {
1742 if (is_p) {
1743 __ addp(ToRegister(left), ToOperand(right));
1744 } else {
1745 __ addl(ToRegister(left), ToOperand(right));
1746 }
1747 }
1748 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1749 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1750 }
1751 }
1752 }
1753
1754
DoMathMinMax(LMathMinMax * instr)1755 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1756 LOperand* left = instr->left();
1757 LOperand* right = instr->right();
1758 DCHECK(left->Equals(instr->result()));
1759 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1760 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1761 Label return_left;
1762 Condition condition = (operation == HMathMinMax::kMathMin)
1763 ? less_equal
1764 : greater_equal;
1765 Register left_reg = ToRegister(left);
1766 if (right->IsConstantOperand()) {
1767 Immediate right_imm = Immediate(
1768 ToRepresentation(LConstantOperand::cast(right),
1769 instr->hydrogen()->right()->representation()));
1770 DCHECK(SmiValuesAre32Bits()
1771 ? !instr->hydrogen()->representation().IsSmi()
1772 : SmiValuesAre31Bits());
1773 __ cmpl(left_reg, right_imm);
1774 __ j(condition, &return_left, Label::kNear);
1775 __ movl(left_reg, right_imm);
1776 } else if (right->IsRegister()) {
1777 Register right_reg = ToRegister(right);
1778 if (instr->hydrogen_value()->representation().IsSmi()) {
1779 __ cmpp(left_reg, right_reg);
1780 } else {
1781 __ cmpl(left_reg, right_reg);
1782 }
1783 __ j(condition, &return_left, Label::kNear);
1784 __ movp(left_reg, right_reg);
1785 } else {
1786 Operand right_op = ToOperand(right);
1787 if (instr->hydrogen_value()->representation().IsSmi()) {
1788 __ cmpp(left_reg, right_op);
1789 } else {
1790 __ cmpl(left_reg, right_op);
1791 }
1792 __ j(condition, &return_left, Label::kNear);
1793 __ movp(left_reg, right_op);
1794 }
1795 __ bind(&return_left);
1796 } else {
1797 DCHECK(instr->hydrogen()->representation().IsDouble());
1798 Label not_nan, distinct, return_left, return_right;
1799 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1800 XMMRegister left_reg = ToDoubleRegister(left);
1801 XMMRegister right_reg = ToDoubleRegister(right);
1802 __ Ucomisd(left_reg, right_reg);
1803 __ j(parity_odd, ¬_nan, Label::kNear); // Both are not NaN.
1804
1805 // One of the numbers is NaN. Find which one and return it.
1806 __ Ucomisd(left_reg, left_reg);
1807 __ j(parity_even, &return_left, Label::kNear); // left is NaN.
1808 __ jmp(&return_right, Label::kNear); // right is NaN.
1809
1810 __ bind(¬_nan);
1811 __ j(not_equal, &distinct, Label::kNear); // left != right.
1812
1813 // left == right
1814 XMMRegister xmm_scratch = double_scratch0();
1815 __ Xorpd(xmm_scratch, xmm_scratch);
1816 __ Ucomisd(left_reg, xmm_scratch);
1817 __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
1818
1819 // At this point, both left and right are either +0 or -0.
1820 if (operation == HMathMinMax::kMathMin) {
1821 __ Orpd(left_reg, right_reg);
1822 } else {
1823 __ Andpd(left_reg, right_reg);
1824 }
1825 __ jmp(&return_left, Label::kNear);
1826
1827 __ bind(&distinct);
1828 __ j(condition, &return_left, Label::kNear);
1829
1830 __ bind(&return_right);
1831 __ Movapd(left_reg, right_reg);
1832
1833 __ bind(&return_left);
1834 }
1835 }
1836
1837
DoArithmeticD(LArithmeticD * instr)1838 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1839 XMMRegister left = ToDoubleRegister(instr->left());
1840 XMMRegister right = ToDoubleRegister(instr->right());
1841 XMMRegister result = ToDoubleRegister(instr->result());
1842 switch (instr->op()) {
1843 case Token::ADD:
1844 if (CpuFeatures::IsSupported(AVX)) {
1845 CpuFeatureScope scope(masm(), AVX);
1846 __ vaddsd(result, left, right);
1847 } else {
1848 DCHECK(result.is(left));
1849 __ addsd(left, right);
1850 }
1851 break;
1852 case Token::SUB:
1853 if (CpuFeatures::IsSupported(AVX)) {
1854 CpuFeatureScope scope(masm(), AVX);
1855 __ vsubsd(result, left, right);
1856 } else {
1857 DCHECK(result.is(left));
1858 __ subsd(left, right);
1859 }
1860 break;
1861 case Token::MUL:
1862 if (CpuFeatures::IsSupported(AVX)) {
1863 CpuFeatureScope scope(masm(), AVX);
1864 __ vmulsd(result, left, right);
1865 } else {
1866 DCHECK(result.is(left));
1867 __ mulsd(left, right);
1868 }
1869 break;
1870 case Token::DIV:
1871 if (CpuFeatures::IsSupported(AVX)) {
1872 CpuFeatureScope scope(masm(), AVX);
1873 __ vdivsd(result, left, right);
1874 } else {
1875 DCHECK(result.is(left));
1876 __ divsd(left, right);
1877 }
1878 // Don't delete this mov. It may improve performance on some CPUs,
1879 // when there is a (v)mulsd depending on the result
1880 __ Movapd(result, result);
1881 break;
1882 case Token::MOD: {
1883 DCHECK(left.is(xmm0));
1884 DCHECK(right.is(xmm1));
1885 DCHECK(result.is(xmm0));
1886 __ PrepareCallCFunction(2);
1887 __ CallCFunction(
1888 ExternalReference::mod_two_doubles_operation(isolate()), 2);
1889 break;
1890 }
1891 default:
1892 UNREACHABLE();
1893 break;
1894 }
1895 }
1896
1897
DoArithmeticT(LArithmeticT * instr)1898 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1899 DCHECK(ToRegister(instr->context()).is(rsi));
1900 DCHECK(ToRegister(instr->left()).is(rdx));
1901 DCHECK(ToRegister(instr->right()).is(rax));
1902 DCHECK(ToRegister(instr->result()).is(rax));
1903
1904 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1905 CallCode(code, RelocInfo::CODE_TARGET, instr);
1906 }
1907
1908
1909 template<class InstrType>
EmitBranch(InstrType instr,Condition cc)1910 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
1911 int left_block = instr->TrueDestination(chunk_);
1912 int right_block = instr->FalseDestination(chunk_);
1913
1914 int next_block = GetNextEmittedBlock();
1915
1916 if (right_block == left_block || cc == no_condition) {
1917 EmitGoto(left_block);
1918 } else if (left_block == next_block) {
1919 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1920 } else if (right_block == next_block) {
1921 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1922 } else {
1923 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1924 if (cc != always) {
1925 __ jmp(chunk_->GetAssemblyLabel(right_block));
1926 }
1927 }
1928 }
1929
1930
1931 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition cc)1932 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
1933 int true_block = instr->TrueDestination(chunk_);
1934 __ j(cc, chunk_->GetAssemblyLabel(true_block));
1935 }
1936
1937
1938 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition cc)1939 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
1940 int false_block = instr->FalseDestination(chunk_);
1941 __ j(cc, chunk_->GetAssemblyLabel(false_block));
1942 }
1943
1944
DoDebugBreak(LDebugBreak * instr)1945 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
1946 __ int3();
1947 }
1948
1949
DoBranch(LBranch * instr)1950 void LCodeGen::DoBranch(LBranch* instr) {
1951 Representation r = instr->hydrogen()->value()->representation();
1952 if (r.IsInteger32()) {
1953 DCHECK(!info()->IsStub());
1954 Register reg = ToRegister(instr->value());
1955 __ testl(reg, reg);
1956 EmitBranch(instr, not_zero);
1957 } else if (r.IsSmi()) {
1958 DCHECK(!info()->IsStub());
1959 Register reg = ToRegister(instr->value());
1960 __ testp(reg, reg);
1961 EmitBranch(instr, not_zero);
1962 } else if (r.IsDouble()) {
1963 DCHECK(!info()->IsStub());
1964 XMMRegister reg = ToDoubleRegister(instr->value());
1965 XMMRegister xmm_scratch = double_scratch0();
1966 __ Xorpd(xmm_scratch, xmm_scratch);
1967 __ Ucomisd(reg, xmm_scratch);
1968 EmitBranch(instr, not_equal);
1969 } else {
1970 DCHECK(r.IsTagged());
1971 Register reg = ToRegister(instr->value());
1972 HType type = instr->hydrogen()->value()->type();
1973 if (type.IsBoolean()) {
1974 DCHECK(!info()->IsStub());
1975 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1976 EmitBranch(instr, equal);
1977 } else if (type.IsSmi()) {
1978 DCHECK(!info()->IsStub());
1979 __ SmiCompare(reg, Smi::kZero);
1980 EmitBranch(instr, not_equal);
1981 } else if (type.IsJSArray()) {
1982 DCHECK(!info()->IsStub());
1983 EmitBranch(instr, no_condition);
1984 } else if (type.IsHeapNumber()) {
1985 DCHECK(!info()->IsStub());
1986 XMMRegister xmm_scratch = double_scratch0();
1987 __ Xorpd(xmm_scratch, xmm_scratch);
1988 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
1989 EmitBranch(instr, not_equal);
1990 } else if (type.IsString()) {
1991 DCHECK(!info()->IsStub());
1992 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
1993 EmitBranch(instr, not_equal);
1994 } else {
1995 ToBooleanHints expected = instr->hydrogen()->expected_input_types();
1996 // Avoid deopts in the case where we've never executed this path before.
1997 if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
1998
1999 if (expected & ToBooleanHint::kUndefined) {
2000 // undefined -> false.
2001 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2002 __ j(equal, instr->FalseLabel(chunk_));
2003 }
2004 if (expected & ToBooleanHint::kBoolean) {
2005 // true -> true.
2006 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2007 __ j(equal, instr->TrueLabel(chunk_));
2008 // false -> false.
2009 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2010 __ j(equal, instr->FalseLabel(chunk_));
2011 }
2012 if (expected & ToBooleanHint::kNull) {
2013 // 'null' -> false.
2014 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2015 __ j(equal, instr->FalseLabel(chunk_));
2016 }
2017
2018 if (expected & ToBooleanHint::kSmallInteger) {
2019 // Smis: 0 -> false, all other -> true.
2020 __ Cmp(reg, Smi::kZero);
2021 __ j(equal, instr->FalseLabel(chunk_));
2022 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2023 } else if (expected & ToBooleanHint::kNeedsMap) {
2024 // If we need a map later and have a Smi -> deopt.
2025 __ testb(reg, Immediate(kSmiTagMask));
2026 DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
2027 }
2028
2029 const Register map = kScratchRegister;
2030 if (expected & ToBooleanHint::kNeedsMap) {
2031 __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
2032
2033 if (expected & ToBooleanHint::kCanBeUndetectable) {
2034 // Undetectable -> false.
2035 __ testb(FieldOperand(map, Map::kBitFieldOffset),
2036 Immediate(1 << Map::kIsUndetectable));
2037 __ j(not_zero, instr->FalseLabel(chunk_));
2038 }
2039 }
2040
2041 if (expected & ToBooleanHint::kReceiver) {
2042 // spec object -> true.
2043 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
2044 __ j(above_equal, instr->TrueLabel(chunk_));
2045 }
2046
2047 if (expected & ToBooleanHint::kString) {
2048 // String value -> false iff empty.
2049 Label not_string;
2050 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2051 __ j(above_equal, ¬_string, Label::kNear);
2052 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2053 __ j(not_zero, instr->TrueLabel(chunk_));
2054 __ jmp(instr->FalseLabel(chunk_));
2055 __ bind(¬_string);
2056 }
2057
2058 if (expected & ToBooleanHint::kSymbol) {
2059 // Symbol value -> true.
2060 __ CmpInstanceType(map, SYMBOL_TYPE);
2061 __ j(equal, instr->TrueLabel(chunk_));
2062 }
2063
2064 if (expected & ToBooleanHint::kSimdValue) {
2065 // SIMD value -> true.
2066 __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
2067 __ j(equal, instr->TrueLabel(chunk_));
2068 }
2069
2070 if (expected & ToBooleanHint::kHeapNumber) {
2071 // heap number -> false iff +0, -0, or NaN.
2072 Label not_heap_number;
2073 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2074 __ j(not_equal, ¬_heap_number, Label::kNear);
2075 XMMRegister xmm_scratch = double_scratch0();
2076 __ Xorpd(xmm_scratch, xmm_scratch);
2077 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2078 __ j(zero, instr->FalseLabel(chunk_));
2079 __ jmp(instr->TrueLabel(chunk_));
2080 __ bind(¬_heap_number);
2081 }
2082
2083 if (expected != ToBooleanHint::kAny) {
2084 // We've seen something for the first time -> deopt.
2085 // This can only happen if we are not generic already.
2086 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject);
2087 }
2088 }
2089 }
2090 }
2091
2092
EmitGoto(int block)2093 void LCodeGen::EmitGoto(int block) {
2094 if (!IsNextEmittedBlock(block)) {
2095 __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
2096 }
2097 }
2098
2099
DoGoto(LGoto * instr)2100 void LCodeGen::DoGoto(LGoto* instr) {
2101 EmitGoto(instr->block_id());
2102 }
2103
2104
TokenToCondition(Token::Value op,bool is_unsigned)2105 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2106 Condition cond = no_condition;
2107 switch (op) {
2108 case Token::EQ:
2109 case Token::EQ_STRICT:
2110 cond = equal;
2111 break;
2112 case Token::NE:
2113 case Token::NE_STRICT:
2114 cond = not_equal;
2115 break;
2116 case Token::LT:
2117 cond = is_unsigned ? below : less;
2118 break;
2119 case Token::GT:
2120 cond = is_unsigned ? above : greater;
2121 break;
2122 case Token::LTE:
2123 cond = is_unsigned ? below_equal : less_equal;
2124 break;
2125 case Token::GTE:
2126 cond = is_unsigned ? above_equal : greater_equal;
2127 break;
2128 case Token::IN:
2129 case Token::INSTANCEOF:
2130 default:
2131 UNREACHABLE();
2132 }
2133 return cond;
2134 }
2135
2136
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2137 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2138 LOperand* left = instr->left();
2139 LOperand* right = instr->right();
2140 bool is_unsigned =
2141 instr->is_double() ||
2142 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2143 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2144 Condition cc = TokenToCondition(instr->op(), is_unsigned);
2145
2146 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2147 // We can statically evaluate the comparison.
2148 double left_val = ToDouble(LConstantOperand::cast(left));
2149 double right_val = ToDouble(LConstantOperand::cast(right));
2150 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2151 ? instr->TrueDestination(chunk_)
2152 : instr->FalseDestination(chunk_);
2153 EmitGoto(next_block);
2154 } else {
2155 if (instr->is_double()) {
2156 // Don't base result on EFLAGS when a NaN is involved. Instead
2157 // jump to the false block.
2158 __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
2159 __ j(parity_even, instr->FalseLabel(chunk_));
2160 } else {
2161 int32_t value;
2162 if (right->IsConstantOperand()) {
2163 value = ToInteger32(LConstantOperand::cast(right));
2164 if (instr->hydrogen_value()->representation().IsSmi()) {
2165 __ Cmp(ToRegister(left), Smi::FromInt(value));
2166 } else {
2167 __ cmpl(ToRegister(left), Immediate(value));
2168 }
2169 } else if (left->IsConstantOperand()) {
2170 value = ToInteger32(LConstantOperand::cast(left));
2171 if (instr->hydrogen_value()->representation().IsSmi()) {
2172 if (right->IsRegister()) {
2173 __ Cmp(ToRegister(right), Smi::FromInt(value));
2174 } else {
2175 __ Cmp(ToOperand(right), Smi::FromInt(value));
2176 }
2177 } else if (right->IsRegister()) {
2178 __ cmpl(ToRegister(right), Immediate(value));
2179 } else {
2180 __ cmpl(ToOperand(right), Immediate(value));
2181 }
2182 // We commuted the operands, so commute the condition.
2183 cc = CommuteCondition(cc);
2184 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2185 if (right->IsRegister()) {
2186 __ cmpp(ToRegister(left), ToRegister(right));
2187 } else {
2188 __ cmpp(ToRegister(left), ToOperand(right));
2189 }
2190 } else {
2191 if (right->IsRegister()) {
2192 __ cmpl(ToRegister(left), ToRegister(right));
2193 } else {
2194 __ cmpl(ToRegister(left), ToOperand(right));
2195 }
2196 }
2197 }
2198 EmitBranch(instr, cc);
2199 }
2200 }
2201
2202
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2203 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2204 Register left = ToRegister(instr->left());
2205
2206 if (instr->right()->IsConstantOperand()) {
2207 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2208 __ Cmp(left, right);
2209 } else {
2210 Register right = ToRegister(instr->right());
2211 __ cmpp(left, right);
2212 }
2213 EmitBranch(instr, equal);
2214 }
2215
2216
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2217 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2218 if (instr->hydrogen()->representation().IsTagged()) {
2219 Register input_reg = ToRegister(instr->object());
2220 __ Cmp(input_reg, factory()->the_hole_value());
2221 EmitBranch(instr, equal);
2222 return;
2223 }
2224
2225 XMMRegister input_reg = ToDoubleRegister(instr->object());
2226 __ Ucomisd(input_reg, input_reg);
2227 EmitFalseBranch(instr, parity_odd);
2228
2229 __ subp(rsp, Immediate(kDoubleSize));
2230 __ Movsd(MemOperand(rsp, 0), input_reg);
2231 __ addp(rsp, Immediate(kDoubleSize));
2232
2233 int offset = sizeof(kHoleNanUpper32);
2234 __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
2235 EmitBranch(instr, equal);
2236 }
2237
2238
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2239 Condition LCodeGen::EmitIsString(Register input,
2240 Register temp1,
2241 Label* is_not_string,
2242 SmiCheck check_needed = INLINE_SMI_CHECK) {
2243 if (check_needed == INLINE_SMI_CHECK) {
2244 __ JumpIfSmi(input, is_not_string);
2245 }
2246
2247 Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2248
2249 return cond;
2250 }
2251
2252
DoIsStringAndBranch(LIsStringAndBranch * instr)2253 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2254 Register reg = ToRegister(instr->value());
2255 Register temp = ToRegister(instr->temp());
2256
2257 SmiCheck check_needed =
2258 instr->hydrogen()->value()->type().IsHeapObject()
2259 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2260
2261 Condition true_cond = EmitIsString(
2262 reg, temp, instr->FalseLabel(chunk_), check_needed);
2263
2264 EmitBranch(instr, true_cond);
2265 }
2266
2267
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2268 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2269 Condition is_smi;
2270 if (instr->value()->IsRegister()) {
2271 Register input = ToRegister(instr->value());
2272 is_smi = masm()->CheckSmi(input);
2273 } else {
2274 Operand input = ToOperand(instr->value());
2275 is_smi = masm()->CheckSmi(input);
2276 }
2277 EmitBranch(instr, is_smi);
2278 }
2279
2280
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2281 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2282 Register input = ToRegister(instr->value());
2283 Register temp = ToRegister(instr->temp());
2284
2285 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2286 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2287 }
2288 __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
2289 __ testb(FieldOperand(temp, Map::kBitFieldOffset),
2290 Immediate(1 << Map::kIsUndetectable));
2291 EmitBranch(instr, not_zero);
2292 }
2293
2294
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2295 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2296 DCHECK(ToRegister(instr->context()).is(rsi));
2297 DCHECK(ToRegister(instr->left()).is(rdx));
2298 DCHECK(ToRegister(instr->right()).is(rax));
2299
2300 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2301 CallCode(code, RelocInfo::CODE_TARGET, instr);
2302 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
2303 EmitBranch(instr, equal);
2304 }
2305
2306
TestType(HHasInstanceTypeAndBranch * instr)2307 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2308 InstanceType from = instr->from();
2309 InstanceType to = instr->to();
2310 if (from == FIRST_TYPE) return to;
2311 DCHECK(from == to || to == LAST_TYPE);
2312 return from;
2313 }
2314
2315
BranchCondition(HHasInstanceTypeAndBranch * instr)2316 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2317 InstanceType from = instr->from();
2318 InstanceType to = instr->to();
2319 if (from == to) return equal;
2320 if (to == LAST_TYPE) return above_equal;
2321 if (from == FIRST_TYPE) return below_equal;
2322 UNREACHABLE();
2323 return equal;
2324 }
2325
2326
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2327 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2328 Register input = ToRegister(instr->value());
2329
2330 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2331 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2332 }
2333
2334 __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
2335 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2336 }
2337
2338 // Branches to a label or falls through with the answer in the z flag.
2339 // Trashes the temp register.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2340 void LCodeGen::EmitClassOfTest(Label* is_true,
2341 Label* is_false,
2342 Handle<String> class_name,
2343 Register input,
2344 Register temp,
2345 Register temp2) {
2346 DCHECK(!input.is(temp));
2347 DCHECK(!input.is(temp2));
2348 DCHECK(!temp.is(temp2));
2349
2350 __ JumpIfSmi(input, is_false);
2351
2352 __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
2353 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2354 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2355 __ j(above_equal, is_true);
2356 } else {
2357 __ j(above_equal, is_false);
2358 }
2359
2360 // Check if the constructor in the map is a function.
2361 __ GetMapConstructor(temp, temp, kScratchRegister);
2362
2363 // Objects with a non-function constructor have class 'Object'.
2364 __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
2365 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2366 __ j(not_equal, is_true);
2367 } else {
2368 __ j(not_equal, is_false);
2369 }
2370
2371 // temp now contains the constructor function. Grab the
2372 // instance class name from there.
2373 __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2374 __ movp(temp, FieldOperand(temp,
2375 SharedFunctionInfo::kInstanceClassNameOffset));
2376 // The class name we are testing against is internalized since it's a literal.
2377 // The name in the constructor is internalized because of the way the context
2378 // is booted. This routine isn't expected to work for random API-created
2379 // classes and it doesn't have to because you can't access it with natives
2380 // syntax. Since both sides are internalized it is sufficient to use an
2381 // identity comparison.
2382 DCHECK(class_name->IsInternalizedString());
2383 __ Cmp(temp, class_name);
2384 // End with the answer in the z flag.
2385 }
2386
2387
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2388 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2389 Register input = ToRegister(instr->value());
2390 Register temp = ToRegister(instr->temp());
2391 Register temp2 = ToRegister(instr->temp2());
2392 Handle<String> class_name = instr->hydrogen()->class_name();
2393
2394 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2395 class_name, input, temp, temp2);
2396
2397 EmitBranch(instr, equal);
2398 }
2399
2400
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2401 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2402 Register reg = ToRegister(instr->value());
2403
2404 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2405 EmitBranch(instr, equal);
2406 }
2407
2408
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2409 void LCodeGen::DoHasInPrototypeChainAndBranch(
2410 LHasInPrototypeChainAndBranch* instr) {
2411 Register const object = ToRegister(instr->object());
2412 Register const object_map = kScratchRegister;
2413 Register const object_prototype = object_map;
2414 Register const prototype = ToRegister(instr->prototype());
2415
2416 // The {object} must be a spec object. It's sufficient to know that {object}
2417 // is not a smi, since all other non-spec objects have {null} prototypes and
2418 // will be ruled out below.
2419 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2420 Condition is_smi = __ CheckSmi(object);
2421 EmitFalseBranch(instr, is_smi);
2422 }
2423
2424 // Loop through the {object}s prototype chain looking for the {prototype}.
2425 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2426 Label loop;
2427 __ bind(&loop);
2428
2429 // Deoptimize if the object needs to be access checked.
2430 __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
2431 Immediate(1 << Map::kIsAccessCheckNeeded));
2432 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck);
2433 // Deoptimize for proxies.
2434 __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2435 DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy);
2436
2437 __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2438 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2439 EmitFalseBranch(instr, equal);
2440 __ cmpp(object_prototype, prototype);
2441 EmitTrueBranch(instr, equal);
2442 __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2443 __ jmp(&loop);
2444 }
2445
2446
DoCmpT(LCmpT * instr)2447 void LCodeGen::DoCmpT(LCmpT* instr) {
2448 DCHECK(ToRegister(instr->context()).is(rsi));
2449 Token::Value op = instr->op();
2450
2451 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2452 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2453
2454 Condition condition = TokenToCondition(op, false);
2455 Label true_value, done;
2456 __ testp(rax, rax);
2457 __ j(condition, &true_value, Label::kNear);
2458 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2459 __ jmp(&done, Label::kNear);
2460 __ bind(&true_value);
2461 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2462 __ bind(&done);
2463 }
2464
2465
DoReturn(LReturn * instr)2466 void LCodeGen::DoReturn(LReturn* instr) {
2467 if (FLAG_trace && info()->IsOptimizing()) {
2468 // Preserve the return value on the stack and rely on the runtime call
2469 // to return the value in the same register. We're leaving the code
2470 // managed by the register allocator and tearing down the frame, it's
2471 // safe to write to the context register.
2472 __ Push(rax);
2473 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2474 __ CallRuntime(Runtime::kTraceExit);
2475 }
2476 if (info()->saves_caller_doubles()) {
2477 RestoreCallerDoubles();
2478 }
2479 if (NeedsEagerFrame()) {
2480 __ movp(rsp, rbp);
2481 __ popq(rbp);
2482 }
2483 if (instr->has_constant_parameter_count()) {
2484 __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
2485 rcx);
2486 } else {
2487 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2488 Register reg = ToRegister(instr->parameter_count());
2489 // The argument count parameter is a smi
2490 __ SmiToInteger32(reg, reg);
2491 Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
2492 __ PopReturnAddressTo(return_addr_reg);
2493 __ shlp(reg, Immediate(kPointerSizeLog2));
2494 __ addp(rsp, reg);
2495 __ jmp(return_addr_reg);
2496 }
2497 }
2498
2499
DoLoadContextSlot(LLoadContextSlot * instr)2500 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2501 Register context = ToRegister(instr->context());
2502 Register result = ToRegister(instr->result());
2503 __ movp(result, ContextOperand(context, instr->slot_index()));
2504 if (instr->hydrogen()->RequiresHoleCheck()) {
2505 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2506 if (instr->hydrogen()->DeoptimizesOnHole()) {
2507 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2508 } else {
2509 Label is_not_hole;
2510 __ j(not_equal, &is_not_hole, Label::kNear);
2511 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2512 __ bind(&is_not_hole);
2513 }
2514 }
2515 }
2516
2517
DoStoreContextSlot(LStoreContextSlot * instr)2518 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2519 Register context = ToRegister(instr->context());
2520 Register value = ToRegister(instr->value());
2521
2522 Operand target = ContextOperand(context, instr->slot_index());
2523
2524 Label skip_assignment;
2525 if (instr->hydrogen()->RequiresHoleCheck()) {
2526 __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
2527 if (instr->hydrogen()->DeoptimizesOnHole()) {
2528 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2529 } else {
2530 __ j(not_equal, &skip_assignment);
2531 }
2532 }
2533 __ movp(target, value);
2534
2535 if (instr->hydrogen()->NeedsWriteBarrier()) {
2536 SmiCheck check_needed =
2537 instr->hydrogen()->value()->type().IsHeapObject()
2538 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2539 int offset = Context::SlotOffset(instr->slot_index());
2540 Register scratch = ToRegister(instr->temp());
2541 __ RecordWriteContextSlot(context,
2542 offset,
2543 value,
2544 scratch,
2545 kSaveFPRegs,
2546 EMIT_REMEMBERED_SET,
2547 check_needed);
2548 }
2549
2550 __ bind(&skip_assignment);
2551 }
2552
2553
DoLoadNamedField(LLoadNamedField * instr)2554 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2555 HObjectAccess access = instr->hydrogen()->access();
2556 int offset = access.offset();
2557
2558 if (access.IsExternalMemory()) {
2559 Register result = ToRegister(instr->result());
2560 if (instr->object()->IsConstantOperand()) {
2561 DCHECK(result.is(rax));
2562 __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
2563 } else {
2564 Register object = ToRegister(instr->object());
2565 __ Load(result, MemOperand(object, offset), access.representation());
2566 }
2567 return;
2568 }
2569
2570 Register object = ToRegister(instr->object());
2571 if (instr->hydrogen()->representation().IsDouble()) {
2572 DCHECK(access.IsInobject());
2573 XMMRegister result = ToDoubleRegister(instr->result());
2574 __ Movsd(result, FieldOperand(object, offset));
2575 return;
2576 }
2577
2578 Register result = ToRegister(instr->result());
2579 if (!access.IsInobject()) {
2580 __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
2581 object = result;
2582 }
2583
2584 Representation representation = access.representation();
2585 if (representation.IsSmi() && SmiValuesAre32Bits() &&
2586 instr->hydrogen()->representation().IsInteger32()) {
2587 if (FLAG_debug_code) {
2588 Register scratch = kScratchRegister;
2589 __ Load(scratch, FieldOperand(object, offset), representation);
2590 __ AssertSmi(scratch);
2591 }
2592
2593 // Read int value directly from upper half of the smi.
2594 STATIC_ASSERT(kSmiTag == 0);
2595 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2596 offset += kPointerSize / 2;
2597 representation = Representation::Integer32();
2598 }
2599 __ Load(result, FieldOperand(object, offset), representation);
2600 }
2601
2602
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2603 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2604 Register function = ToRegister(instr->function());
2605 Register result = ToRegister(instr->result());
2606
2607 // Get the prototype or initial map from the function.
2608 __ movp(result,
2609 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2610
2611 // Check that the function has a prototype or an initial map.
2612 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2613 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2614
2615 // If the function does not have an initial map, we're done.
2616 Label done;
2617 __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2618 __ j(not_equal, &done, Label::kNear);
2619
2620 // Get the prototype from the initial map.
2621 __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
2622
2623 // All done.
2624 __ bind(&done);
2625 }
2626
2627
DoLoadRoot(LLoadRoot * instr)2628 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2629 Register result = ToRegister(instr->result());
2630 __ LoadRoot(result, instr->index());
2631 }
2632
2633
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2634 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2635 Register arguments = ToRegister(instr->arguments());
2636 Register result = ToRegister(instr->result());
2637
2638 if (instr->length()->IsConstantOperand() &&
2639 instr->index()->IsConstantOperand()) {
2640 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2641 int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2642 if (const_index >= 0 && const_index < const_length) {
2643 StackArgumentsAccessor args(arguments, const_length,
2644 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2645 __ movp(result, args.GetArgumentOperand(const_index));
2646 } else if (FLAG_debug_code) {
2647 __ int3();
2648 }
2649 } else {
2650 Register length = ToRegister(instr->length());
2651 // There are two words between the frame pointer and the last argument.
2652 // Subtracting from length accounts for one of them add one more.
2653 if (instr->index()->IsRegister()) {
2654 __ subl(length, ToRegister(instr->index()));
2655 } else {
2656 __ subl(length, ToOperand(instr->index()));
2657 }
2658 StackArgumentsAccessor args(arguments, length,
2659 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2660 __ movp(result, args.GetArgumentOperand(0));
2661 }
2662 }
2663
2664
DoLoadKeyedExternalArray(LLoadKeyed * instr)2665 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2666 ElementsKind elements_kind = instr->elements_kind();
2667 LOperand* key = instr->key();
2668 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
2669 Register key_reg = ToRegister(key);
2670 Representation key_representation =
2671 instr->hydrogen()->key()->representation();
2672 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
2673 __ SmiToInteger64(key_reg, key_reg);
2674 } else if (instr->hydrogen()->IsDehoisted()) {
2675 // Sign extend key because it could be a 32 bit negative value
2676 // and the dehoisted address computation happens in 64 bits
2677 __ movsxlq(key_reg, key_reg);
2678 }
2679 }
2680 Operand operand(BuildFastArrayOperand(
2681 instr->elements(),
2682 key,
2683 instr->hydrogen()->key()->representation(),
2684 elements_kind,
2685 instr->base_offset()));
2686
2687 if (elements_kind == FLOAT32_ELEMENTS) {
2688 XMMRegister result(ToDoubleRegister(instr->result()));
2689 __ Cvtss2sd(result, operand);
2690 } else if (elements_kind == FLOAT64_ELEMENTS) {
2691 __ Movsd(ToDoubleRegister(instr->result()), operand);
2692 } else {
2693 Register result(ToRegister(instr->result()));
2694 switch (elements_kind) {
2695 case INT8_ELEMENTS:
2696 __ movsxbl(result, operand);
2697 break;
2698 case UINT8_ELEMENTS:
2699 case UINT8_CLAMPED_ELEMENTS:
2700 __ movzxbl(result, operand);
2701 break;
2702 case INT16_ELEMENTS:
2703 __ movsxwl(result, operand);
2704 break;
2705 case UINT16_ELEMENTS:
2706 __ movzxwl(result, operand);
2707 break;
2708 case INT32_ELEMENTS:
2709 __ movl(result, operand);
2710 break;
2711 case UINT32_ELEMENTS:
2712 __ movl(result, operand);
2713 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2714 __ testl(result, result);
2715 DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
2716 }
2717 break;
2718 case FLOAT32_ELEMENTS:
2719 case FLOAT64_ELEMENTS:
2720 case FAST_ELEMENTS:
2721 case FAST_SMI_ELEMENTS:
2722 case FAST_DOUBLE_ELEMENTS:
2723 case FAST_HOLEY_ELEMENTS:
2724 case FAST_HOLEY_SMI_ELEMENTS:
2725 case FAST_HOLEY_DOUBLE_ELEMENTS:
2726 case DICTIONARY_ELEMENTS:
2727 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2728 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2729 case FAST_STRING_WRAPPER_ELEMENTS:
2730 case SLOW_STRING_WRAPPER_ELEMENTS:
2731 case NO_ELEMENTS:
2732 UNREACHABLE();
2733 break;
2734 }
2735 }
2736 }
2737
2738
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2739 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2740 XMMRegister result(ToDoubleRegister(instr->result()));
2741 LOperand* key = instr->key();
2742 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2743 instr->hydrogen()->IsDehoisted()) {
2744 // Sign extend key because it could be a 32 bit negative value
2745 // and the dehoisted address computation happens in 64 bits
2746 __ movsxlq(ToRegister(key), ToRegister(key));
2747 }
2748 if (instr->hydrogen()->RequiresHoleCheck()) {
2749 Operand hole_check_operand = BuildFastArrayOperand(
2750 instr->elements(),
2751 key,
2752 instr->hydrogen()->key()->representation(),
2753 FAST_DOUBLE_ELEMENTS,
2754 instr->base_offset() + sizeof(kHoleNanLower32));
2755 __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
2756 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2757 }
2758
2759 Operand double_load_operand = BuildFastArrayOperand(
2760 instr->elements(),
2761 key,
2762 instr->hydrogen()->key()->representation(),
2763 FAST_DOUBLE_ELEMENTS,
2764 instr->base_offset());
2765 __ Movsd(result, double_load_operand);
2766 }
2767
2768
DoLoadKeyedFixedArray(LLoadKeyed * instr)2769 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2770 HLoadKeyed* hinstr = instr->hydrogen();
2771 Register result = ToRegister(instr->result());
2772 LOperand* key = instr->key();
2773 bool requires_hole_check = hinstr->RequiresHoleCheck();
2774 Representation representation = hinstr->representation();
2775 int offset = instr->base_offset();
2776
2777 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2778 instr->hydrogen()->IsDehoisted()) {
2779 // Sign extend key because it could be a 32 bit negative value
2780 // and the dehoisted address computation happens in 64 bits
2781 __ movsxlq(ToRegister(key), ToRegister(key));
2782 }
2783 if (representation.IsInteger32() && SmiValuesAre32Bits() &&
2784 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2785 DCHECK(!requires_hole_check);
2786 if (FLAG_debug_code) {
2787 Register scratch = kScratchRegister;
2788 __ Load(scratch,
2789 BuildFastArrayOperand(instr->elements(),
2790 key,
2791 instr->hydrogen()->key()->representation(),
2792 FAST_ELEMENTS,
2793 offset),
2794 Representation::Smi());
2795 __ AssertSmi(scratch);
2796 }
2797 // Read int value directly from upper half of the smi.
2798 STATIC_ASSERT(kSmiTag == 0);
2799 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2800 offset += kPointerSize / 2;
2801 }
2802
2803 __ Load(result,
2804 BuildFastArrayOperand(instr->elements(), key,
2805 instr->hydrogen()->key()->representation(),
2806 FAST_ELEMENTS, offset),
2807 representation);
2808
2809 // Check for the hole value.
2810 if (requires_hole_check) {
2811 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
2812 Condition smi = __ CheckSmi(result);
2813 DeoptimizeIf(NegateCondition(smi), instr, DeoptimizeReason::kNotASmi);
2814 } else {
2815 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2816 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2817 }
2818 } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2819 DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
2820 Label done;
2821 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2822 __ j(not_equal, &done);
2823 if (info()->IsStub()) {
2824 // A stub can safely convert the hole to undefined only if the array
2825 // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2826 // it needs to bail out.
2827 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2828 __ Cmp(FieldOperand(result, Cell::kValueOffset),
2829 Smi::FromInt(Isolate::kProtectorValid));
2830 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole);
2831 }
2832 __ Move(result, isolate()->factory()->undefined_value());
2833 __ bind(&done);
2834 }
2835 }
2836
2837
DoLoadKeyed(LLoadKeyed * instr)2838 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2839 if (instr->is_fixed_typed_array()) {
2840 DoLoadKeyedExternalArray(instr);
2841 } else if (instr->hydrogen()->representation().IsDouble()) {
2842 DoLoadKeyedFixedDoubleArray(instr);
2843 } else {
2844 DoLoadKeyedFixedArray(instr);
2845 }
2846 }
2847
2848
BuildFastArrayOperand(LOperand * elements_pointer,LOperand * key,Representation key_representation,ElementsKind elements_kind,uint32_t offset)2849 Operand LCodeGen::BuildFastArrayOperand(
2850 LOperand* elements_pointer,
2851 LOperand* key,
2852 Representation key_representation,
2853 ElementsKind elements_kind,
2854 uint32_t offset) {
2855 Register elements_pointer_reg = ToRegister(elements_pointer);
2856 int shift_size = ElementsKindToShiftSize(elements_kind);
2857 if (key->IsConstantOperand()) {
2858 int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
2859 if (constant_value & 0xF0000000) {
2860 Abort(kArrayIndexConstantValueTooBig);
2861 }
2862 return Operand(elements_pointer_reg,
2863 (constant_value << shift_size) + offset);
2864 } else {
2865 // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
2866 DCHECK(key_representation.IsInteger32());
2867
2868 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2869 return Operand(elements_pointer_reg,
2870 ToRegister(key),
2871 scale_factor,
2872 offset);
2873 }
2874 }
2875
2876
DoArgumentsElements(LArgumentsElements * instr)2877 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2878 Register result = ToRegister(instr->result());
2879
2880 if (instr->hydrogen()->from_inlined()) {
2881 __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
2882 } else if (instr->hydrogen()->arguments_adaptor()) {
2883 // Check for arguments adapter frame.
2884 Label done, adapted;
2885 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2886 __ Cmp(Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset),
2887 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2888 __ j(equal, &adapted, Label::kNear);
2889
2890 // No arguments adaptor frame.
2891 __ movp(result, rbp);
2892 __ jmp(&done, Label::kNear);
2893
2894 // Arguments adaptor frame present.
2895 __ bind(&adapted);
2896 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2897
2898 // Result is the frame pointer for the frame if not adapted and for the real
2899 // frame below the adaptor frame if adapted.
2900 __ bind(&done);
2901 } else {
2902 __ movp(result, rbp);
2903 }
2904 }
2905
2906
DoArgumentsLength(LArgumentsLength * instr)2907 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2908 Register result = ToRegister(instr->result());
2909
2910 Label done;
2911
2912 // If no arguments adaptor frame the number of arguments is fixed.
2913 if (instr->elements()->IsRegister()) {
2914 __ cmpp(rbp, ToRegister(instr->elements()));
2915 } else {
2916 __ cmpp(rbp, ToOperand(instr->elements()));
2917 }
2918 __ movl(result, Immediate(scope()->num_parameters()));
2919 __ j(equal, &done, Label::kNear);
2920
2921 // Arguments adaptor frame present. Get argument length from there.
2922 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2923 __ SmiToInteger32(result,
2924 Operand(result,
2925 ArgumentsAdaptorFrameConstants::kLengthOffset));
2926
2927 // Argument length is in result register.
2928 __ bind(&done);
2929 }
2930
2931
DoWrapReceiver(LWrapReceiver * instr)2932 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2933 Register receiver = ToRegister(instr->receiver());
2934 Register function = ToRegister(instr->function());
2935
2936 // If the receiver is null or undefined, we have to pass the global
2937 // object as a receiver to normal functions. Values have to be
2938 // passed unchanged to builtins and strict-mode functions.
2939 Label global_object, receiver_ok;
2940 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
2941
2942 if (!instr->hydrogen()->known_function()) {
2943 // Do not transform the receiver to object for strict mode
2944 // functions.
2945 __ movp(kScratchRegister,
2946 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2947 __ testb(FieldOperand(kScratchRegister,
2948 SharedFunctionInfo::kStrictModeByteOffset),
2949 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
2950 __ j(not_equal, &receiver_ok, dist);
2951
2952 // Do not transform the receiver to object for builtins.
2953 __ testb(FieldOperand(kScratchRegister,
2954 SharedFunctionInfo::kNativeByteOffset),
2955 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
2956 __ j(not_equal, &receiver_ok, dist);
2957 }
2958
2959 // Normal function. Replace undefined or null with global receiver.
2960 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
2961 __ j(equal, &global_object, Label::kNear);
2962 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
2963 __ j(equal, &global_object, Label::kNear);
2964
2965 // The receiver should be a JS object.
2966 Condition is_smi = __ CheckSmi(receiver);
2967 DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi);
2968 __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
2969 DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject);
2970
2971 __ jmp(&receiver_ok, Label::kNear);
2972 __ bind(&global_object);
2973 __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
2974 __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
2975 __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
2976
2977 __ bind(&receiver_ok);
2978 }
2979
2980
DoApplyArguments(LApplyArguments * instr)2981 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2982 Register receiver = ToRegister(instr->receiver());
2983 Register function = ToRegister(instr->function());
2984 Register length = ToRegister(instr->length());
2985 Register elements = ToRegister(instr->elements());
2986 DCHECK(receiver.is(rax)); // Used for parameter count.
2987 DCHECK(function.is(rdi)); // Required by InvokeFunction.
2988 DCHECK(ToRegister(instr->result()).is(rax));
2989
2990 // Copy the arguments to this function possibly from the
2991 // adaptor frame below it.
2992 const uint32_t kArgumentsLimit = 1 * KB;
2993 __ cmpp(length, Immediate(kArgumentsLimit));
2994 DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments);
2995
2996 __ Push(receiver);
2997 __ movp(receiver, length);
2998
2999 // Loop through the arguments pushing them onto the execution
3000 // stack.
3001 Label invoke, loop;
3002 // length is a small non-negative integer, due to the test above.
3003 __ testl(length, length);
3004 __ j(zero, &invoke, Label::kNear);
3005 __ bind(&loop);
3006 StackArgumentsAccessor args(elements, length,
3007 ARGUMENTS_DONT_CONTAIN_RECEIVER);
3008 __ Push(args.GetArgumentOperand(0));
3009 __ decl(length);
3010 __ j(not_zero, &loop);
3011
3012 // Invoke the function.
3013 __ bind(&invoke);
3014
3015 InvokeFlag flag = CALL_FUNCTION;
3016 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3017 DCHECK(!info()->saves_caller_doubles());
3018 // TODO(ishell): drop current frame before pushing arguments to the stack.
3019 flag = JUMP_FUNCTION;
3020 ParameterCount actual(rax);
3021 // It is safe to use rbx, rcx and r8 as scratch registers here given that
3022 // 1) we are not going to return to caller function anyway,
3023 // 2) rbx (expected number of arguments) will be initialized below.
3024 PrepareForTailCall(actual, rbx, rcx, r8);
3025 }
3026
3027 DCHECK(instr->HasPointerMap());
3028 LPointerMap* pointers = instr->pointer_map();
3029 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3030 ParameterCount actual(rax);
3031 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3032 }
3033
3034
DoPushArgument(LPushArgument * instr)3035 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3036 LOperand* argument = instr->value();
3037 EmitPushTaggedOperand(argument);
3038 }
3039
3040
DoDrop(LDrop * instr)3041 void LCodeGen::DoDrop(LDrop* instr) {
3042 __ Drop(instr->count());
3043 }
3044
3045
DoThisFunction(LThisFunction * instr)3046 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3047 Register result = ToRegister(instr->result());
3048 __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3049 }
3050
3051
DoContext(LContext * instr)3052 void LCodeGen::DoContext(LContext* instr) {
3053 Register result = ToRegister(instr->result());
3054 if (info()->IsOptimizing()) {
3055 __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
3056 } else {
3057 // If there is no frame, the context must be in rsi.
3058 DCHECK(result.is(rsi));
3059 }
3060 }
3061
3062
DoDeclareGlobals(LDeclareGlobals * instr)3063 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3064 DCHECK(ToRegister(instr->context()).is(rsi));
3065 __ Push(instr->hydrogen()->pairs());
3066 __ Push(Smi::FromInt(instr->hydrogen()->flags()));
3067 __ Push(instr->hydrogen()->feedback_vector());
3068 CallRuntime(Runtime::kDeclareGlobals, instr);
3069 }
3070
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3071 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3072 int formal_parameter_count, int arity,
3073 bool is_tail_call, LInstruction* instr) {
3074 bool dont_adapt_arguments =
3075 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3076 bool can_invoke_directly =
3077 dont_adapt_arguments || formal_parameter_count == arity;
3078
3079 Register function_reg = rdi;
3080 LPointerMap* pointers = instr->pointer_map();
3081
3082 if (can_invoke_directly) {
3083 // Change context.
3084 __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
3085
3086 // Always initialize new target and number of actual arguments.
3087 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3088 __ Set(rax, arity);
3089
3090 bool is_self_call = function.is_identical_to(info()->closure());
3091
3092 // Invoke function.
3093 if (is_self_call) {
3094 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3095 if (is_tail_call) {
3096 __ Jump(self, RelocInfo::CODE_TARGET);
3097 } else {
3098 __ Call(self, RelocInfo::CODE_TARGET);
3099 }
3100 } else {
3101 Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
3102 if (is_tail_call) {
3103 __ Jump(target);
3104 } else {
3105 __ Call(target);
3106 }
3107 }
3108
3109 if (!is_tail_call) {
3110 // Set up deoptimization.
3111 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
3112 }
3113 } else {
3114 // We need to adapt arguments.
3115 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3116 ParameterCount actual(arity);
3117 ParameterCount expected(formal_parameter_count);
3118 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3119 __ InvokeFunction(function_reg, no_reg, expected, actual, flag, generator);
3120 }
3121 }
3122
3123
DoCallWithDescriptor(LCallWithDescriptor * instr)3124 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3125 DCHECK(ToRegister(instr->result()).is(rax));
3126
3127 if (instr->hydrogen()->IsTailCall()) {
3128 if (NeedsEagerFrame()) __ leave();
3129
3130 if (instr->target()->IsConstantOperand()) {
3131 LConstantOperand* target = LConstantOperand::cast(instr->target());
3132 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3133 __ jmp(code, RelocInfo::CODE_TARGET);
3134 } else {
3135 DCHECK(instr->target()->IsRegister());
3136 Register target = ToRegister(instr->target());
3137 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3138 __ jmp(target);
3139 }
3140 } else {
3141 LPointerMap* pointers = instr->pointer_map();
3142 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3143
3144 if (instr->target()->IsConstantOperand()) {
3145 LConstantOperand* target = LConstantOperand::cast(instr->target());
3146 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3147 generator.BeforeCall(__ CallSize(code));
3148 __ call(code, RelocInfo::CODE_TARGET);
3149 } else {
3150 DCHECK(instr->target()->IsRegister());
3151 Register target = ToRegister(instr->target());
3152 generator.BeforeCall(__ CallSize(target));
3153 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3154 __ call(target);
3155 }
3156 generator.AfterCall();
3157 }
3158 }
3159
3160
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3161 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3162 Register input_reg = ToRegister(instr->value());
3163 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3164 Heap::kHeapNumberMapRootIndex);
3165 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
3166
3167 Label slow, allocated, done;
3168 uint32_t available_regs = rax.bit() | rcx.bit() | rdx.bit() | rbx.bit();
3169 available_regs &= ~input_reg.bit();
3170 if (instr->context()->IsRegister()) {
3171 // Make sure that the context isn't overwritten in the AllocateHeapNumber
3172 // macro below.
3173 available_regs &= ~ToRegister(instr->context()).bit();
3174 }
3175
3176 Register tmp =
3177 Register::from_code(base::bits::CountTrailingZeros32(available_regs));
3178 available_regs &= ~tmp.bit();
3179 Register tmp2 =
3180 Register::from_code(base::bits::CountTrailingZeros32(available_regs));
3181
3182 // Preserve the value of all registers.
3183 PushSafepointRegistersScope scope(this);
3184
3185 __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3186 // Check the sign of the argument. If the argument is positive, just
3187 // return it. We do not need to patch the stack since |input| and
3188 // |result| are the same register and |input| will be restored
3189 // unchanged by popping safepoint registers.
3190 __ testl(tmp, Immediate(HeapNumber::kSignMask));
3191 __ j(zero, &done);
3192
3193 __ AllocateHeapNumber(tmp, tmp2, &slow);
3194 __ jmp(&allocated, Label::kNear);
3195
3196 // Slow case: Call the runtime system to do the number allocation.
3197 __ bind(&slow);
3198 CallRuntimeFromDeferred(
3199 Runtime::kAllocateHeapNumber, 0, instr, instr->context());
3200 // Set the pointer to the new heap number in tmp.
3201 if (!tmp.is(rax)) __ movp(tmp, rax);
3202 // Restore input_reg after call to runtime.
3203 __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3204
3205 __ bind(&allocated);
3206 __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
3207 __ shlq(tmp2, Immediate(1));
3208 __ shrq(tmp2, Immediate(1));
3209 __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
3210 __ StoreToSafepointRegisterSlot(input_reg, tmp);
3211
3212 __ bind(&done);
3213 }
3214
3215
EmitIntegerMathAbs(LMathAbs * instr)3216 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3217 Register input_reg = ToRegister(instr->value());
3218 __ testl(input_reg, input_reg);
3219 Label is_positive;
3220 __ j(not_sign, &is_positive, Label::kNear);
3221 __ negl(input_reg); // Sets flags.
3222 DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
3223 __ bind(&is_positive);
3224 }
3225
3226
EmitSmiMathAbs(LMathAbs * instr)3227 void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3228 Register input_reg = ToRegister(instr->value());
3229 __ testp(input_reg, input_reg);
3230 Label is_positive;
3231 __ j(not_sign, &is_positive, Label::kNear);
3232 __ negp(input_reg); // Sets flags.
3233 DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
3234 __ bind(&is_positive);
3235 }
3236
3237
DoMathAbs(LMathAbs * instr)3238 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3239 // Class for deferred case.
3240 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3241 public:
3242 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3243 : LDeferredCode(codegen), instr_(instr) { }
3244 void Generate() override {
3245 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3246 }
3247 LInstruction* instr() override { return instr_; }
3248
3249 private:
3250 LMathAbs* instr_;
3251 };
3252
3253 DCHECK(instr->value()->Equals(instr->result()));
3254 Representation r = instr->hydrogen()->value()->representation();
3255
3256 if (r.IsDouble()) {
3257 XMMRegister scratch = double_scratch0();
3258 XMMRegister input_reg = ToDoubleRegister(instr->value());
3259 __ Xorpd(scratch, scratch);
3260 __ Subsd(scratch, input_reg);
3261 __ Andpd(input_reg, scratch);
3262 } else if (r.IsInteger32()) {
3263 EmitIntegerMathAbs(instr);
3264 } else if (r.IsSmi()) {
3265 EmitSmiMathAbs(instr);
3266 } else { // Tagged case.
3267 DeferredMathAbsTaggedHeapNumber* deferred =
3268 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3269 Register input_reg = ToRegister(instr->value());
3270 // Smi check.
3271 __ JumpIfNotSmi(input_reg, deferred->entry());
3272 EmitSmiMathAbs(instr);
3273 __ bind(deferred->exit());
3274 }
3275 }
3276
DoMathFloorD(LMathFloorD * instr)3277 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3278 XMMRegister output_reg = ToDoubleRegister(instr->result());
3279 XMMRegister input_reg = ToDoubleRegister(instr->value());
3280 CpuFeatureScope scope(masm(), SSE4_1);
3281 __ Roundsd(output_reg, input_reg, kRoundDown);
3282 }
3283
DoMathFloorI(LMathFloorI * instr)3284 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3285 XMMRegister xmm_scratch = double_scratch0();
3286 Register output_reg = ToRegister(instr->result());
3287 XMMRegister input_reg = ToDoubleRegister(instr->value());
3288
3289 if (CpuFeatures::IsSupported(SSE4_1)) {
3290 CpuFeatureScope scope(masm(), SSE4_1);
3291 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3292 // Deoptimize if minus zero.
3293 __ Movq(output_reg, input_reg);
3294 __ subq(output_reg, Immediate(1));
3295 DeoptimizeIf(overflow, instr, DeoptimizeReason::kMinusZero);
3296 }
3297 __ Roundsd(xmm_scratch, input_reg, kRoundDown);
3298 __ Cvttsd2si(output_reg, xmm_scratch);
3299 __ cmpl(output_reg, Immediate(0x1));
3300 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
3301 } else {
3302 Label negative_sign, done;
3303 // Deoptimize on unordered.
3304 __ Xorpd(xmm_scratch, xmm_scratch); // Zero the register.
3305 __ Ucomisd(input_reg, xmm_scratch);
3306 DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
3307 __ j(below, &negative_sign, Label::kNear);
3308
3309 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3310 // Check for negative zero.
3311 Label positive_sign;
3312 __ j(above, &positive_sign, Label::kNear);
3313 __ Movmskpd(output_reg, input_reg);
3314 __ testl(output_reg, Immediate(1));
3315 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
3316 __ Set(output_reg, 0);
3317 __ jmp(&done);
3318 __ bind(&positive_sign);
3319 }
3320
3321 // Use truncating instruction (OK because input is positive).
3322 __ Cvttsd2si(output_reg, input_reg);
3323 // Overflow is signalled with minint.
3324 __ cmpl(output_reg, Immediate(0x1));
3325 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
3326 __ jmp(&done, Label::kNear);
3327
3328 // Non-zero negative reaches here.
3329 __ bind(&negative_sign);
3330 // Truncate, then compare and compensate.
3331 __ Cvttsd2si(output_reg, input_reg);
3332 __ Cvtlsi2sd(xmm_scratch, output_reg);
3333 __ Ucomisd(input_reg, xmm_scratch);
3334 __ j(equal, &done, Label::kNear);
3335 __ subl(output_reg, Immediate(1));
3336 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
3337
3338 __ bind(&done);
3339 }
3340 }
3341
DoMathRoundD(LMathRoundD * instr)3342 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3343 XMMRegister xmm_scratch = double_scratch0();
3344 XMMRegister output_reg = ToDoubleRegister(instr->result());
3345 XMMRegister input_reg = ToDoubleRegister(instr->value());
3346 CpuFeatureScope scope(masm(), SSE4_1);
3347 Label done;
3348 __ Roundsd(output_reg, input_reg, kRoundUp);
3349 __ Move(xmm_scratch, -0.5);
3350 __ Addsd(xmm_scratch, output_reg);
3351 __ Ucomisd(xmm_scratch, input_reg);
3352 __ j(below_equal, &done, Label::kNear);
3353 __ Move(xmm_scratch, 1.0);
3354 __ Subsd(output_reg, xmm_scratch);
3355 __ bind(&done);
3356 }
3357
DoMathRoundI(LMathRoundI * instr)3358 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
3359 const XMMRegister xmm_scratch = double_scratch0();
3360 Register output_reg = ToRegister(instr->result());
3361 XMMRegister input_reg = ToDoubleRegister(instr->value());
3362 XMMRegister input_temp = ToDoubleRegister(instr->temp());
3363 static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5
3364 static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5
3365
3366 Label done, round_to_zero, below_one_half;
3367 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3368 __ movq(kScratchRegister, one_half);
3369 __ Movq(xmm_scratch, kScratchRegister);
3370 __ Ucomisd(xmm_scratch, input_reg);
3371 __ j(above, &below_one_half, Label::kNear);
3372
3373 // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
3374 __ Addsd(xmm_scratch, input_reg);
3375 __ Cvttsd2si(output_reg, xmm_scratch);
3376 // Overflow is signalled with minint.
3377 __ cmpl(output_reg, Immediate(0x1));
3378 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
3379 __ jmp(&done, dist);
3380
3381 __ bind(&below_one_half);
3382 __ movq(kScratchRegister, minus_one_half);
3383 __ Movq(xmm_scratch, kScratchRegister);
3384 __ Ucomisd(xmm_scratch, input_reg);
3385 __ j(below_equal, &round_to_zero, Label::kNear);
3386
3387 // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
3388 // compare and compensate.
3389 __ Movapd(input_temp, input_reg); // Do not alter input_reg.
3390 __ Subsd(input_temp, xmm_scratch);
3391 __ Cvttsd2si(output_reg, input_temp);
3392 // Catch minint due to overflow, and to prevent overflow when compensating.
3393 __ cmpl(output_reg, Immediate(0x1));
3394 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
3395
3396 __ Cvtlsi2sd(xmm_scratch, output_reg);
3397 __ Ucomisd(xmm_scratch, input_temp);
3398 __ j(equal, &done, dist);
3399 __ subl(output_reg, Immediate(1));
3400 // No overflow because we already ruled out minint.
3401 __ jmp(&done, dist);
3402
3403 __ bind(&round_to_zero);
3404 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3405 // we can ignore the difference between a result of -0 and +0.
3406 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3407 __ Movq(output_reg, input_reg);
3408 __ testq(output_reg, output_reg);
3409 DeoptimizeIf(negative, instr, DeoptimizeReason::kMinusZero);
3410 }
3411 __ Set(output_reg, 0);
3412 __ bind(&done);
3413 }
3414
3415
DoMathFround(LMathFround * instr)3416 void LCodeGen::DoMathFround(LMathFround* instr) {
3417 XMMRegister input_reg = ToDoubleRegister(instr->value());
3418 XMMRegister output_reg = ToDoubleRegister(instr->result());
3419 __ Cvtsd2ss(output_reg, input_reg);
3420 __ Cvtss2sd(output_reg, output_reg);
3421 }
3422
3423
DoMathSqrt(LMathSqrt * instr)3424 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3425 XMMRegister output = ToDoubleRegister(instr->result());
3426 if (instr->value()->IsDoubleRegister()) {
3427 XMMRegister input = ToDoubleRegister(instr->value());
3428 __ Sqrtsd(output, input);
3429 } else {
3430 Operand input = ToOperand(instr->value());
3431 __ Sqrtsd(output, input);
3432 }
3433 }
3434
3435
DoMathPowHalf(LMathPowHalf * instr)3436 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3437 XMMRegister xmm_scratch = double_scratch0();
3438 XMMRegister input_reg = ToDoubleRegister(instr->value());
3439 DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
3440
3441 // Note that according to ECMA-262 15.8.2.13:
3442 // Math.pow(-Infinity, 0.5) == Infinity
3443 // Math.sqrt(-Infinity) == NaN
3444 Label done, sqrt;
3445 // Check base for -Infinity. According to IEEE-754, double-precision
3446 // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
3447 __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
3448 __ Movq(xmm_scratch, kScratchRegister);
3449 __ Ucomisd(xmm_scratch, input_reg);
3450 // Comparing -Infinity with NaN results in "unordered", which sets the
3451 // zero flag as if both were equal. However, it also sets the carry flag.
3452 __ j(not_equal, &sqrt, Label::kNear);
3453 __ j(carry, &sqrt, Label::kNear);
3454 // If input is -Infinity, return Infinity.
3455 __ Xorpd(input_reg, input_reg);
3456 __ Subsd(input_reg, xmm_scratch);
3457 __ jmp(&done, Label::kNear);
3458
3459 // Square root.
3460 __ bind(&sqrt);
3461 __ Xorpd(xmm_scratch, xmm_scratch);
3462 __ Addsd(input_reg, xmm_scratch); // Convert -0 to +0.
3463 __ Sqrtsd(input_reg, input_reg);
3464 __ bind(&done);
3465 }
3466
3467
DoPower(LPower * instr)3468 void LCodeGen::DoPower(LPower* instr) {
3469 Representation exponent_type = instr->hydrogen()->right()->representation();
3470 // Having marked this as a call, we can use any registers.
3471 // Just make sure that the input/output registers are the expected ones.
3472
3473 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3474 DCHECK(!instr->right()->IsRegister() ||
3475 ToRegister(instr->right()).is(tagged_exponent));
3476 DCHECK(!instr->right()->IsDoubleRegister() ||
3477 ToDoubleRegister(instr->right()).is(xmm1));
3478 DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
3479 DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
3480
3481 if (exponent_type.IsSmi()) {
3482 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3483 __ CallStub(&stub);
3484 } else if (exponent_type.IsTagged()) {
3485 Label no_deopt;
3486 __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
3487 __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
3488 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
3489 __ bind(&no_deopt);
3490 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3491 __ CallStub(&stub);
3492 } else if (exponent_type.IsInteger32()) {
3493 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3494 __ CallStub(&stub);
3495 } else {
3496 DCHECK(exponent_type.IsDouble());
3497 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3498 __ CallStub(&stub);
3499 }
3500 }
3501
DoMathCos(LMathCos * instr)3502 void LCodeGen::DoMathCos(LMathCos* instr) {
3503 DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
3504 DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
3505 __ PrepareCallCFunction(1);
3506 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 1);
3507 }
3508
DoMathExp(LMathExp * instr)3509 void LCodeGen::DoMathExp(LMathExp* instr) {
3510 DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
3511 DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
3512 __ PrepareCallCFunction(1);
3513 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 1);
3514 }
3515
DoMathSin(LMathSin * instr)3516 void LCodeGen::DoMathSin(LMathSin* instr) {
3517 DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
3518 DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
3519 __ PrepareCallCFunction(1);
3520 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 1);
3521 }
3522
DoMathLog(LMathLog * instr)3523 void LCodeGen::DoMathLog(LMathLog* instr) {
3524 DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
3525 DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
3526 __ PrepareCallCFunction(1);
3527 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 1);
3528 }
3529
3530
DoMathClz32(LMathClz32 * instr)3531 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3532 Register input = ToRegister(instr->value());
3533 Register result = ToRegister(instr->result());
3534
3535 __ Lzcntl(result, input);
3536 }
3537
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3538 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3539 Register scratch1, Register scratch2,
3540 Register scratch3) {
3541 #if DEBUG
3542 if (actual.is_reg()) {
3543 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3544 } else {
3545 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3546 }
3547 #endif
3548 if (FLAG_code_comments) {
3549 if (actual.is_reg()) {
3550 Comment(";;; PrepareForTailCall, actual: %s {",
3551 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3552 actual.reg().code()));
3553 } else {
3554 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3555 }
3556 }
3557
3558 // Check if next frame is an arguments adaptor frame.
3559 Register caller_args_count_reg = scratch1;
3560 Label no_arguments_adaptor, formal_parameter_count_loaded;
3561 __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3562 __ Cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
3563 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3564 __ j(not_equal, &no_arguments_adaptor, Label::kNear);
3565
3566 // Drop current frame and load arguments count from arguments adaptor frame.
3567 __ movp(rbp, scratch2);
3568 __ SmiToInteger32(
3569 caller_args_count_reg,
3570 Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3571 __ jmp(&formal_parameter_count_loaded, Label::kNear);
3572
3573 __ bind(&no_arguments_adaptor);
3574 // Load caller's formal parameter count.
3575 __ movp(caller_args_count_reg,
3576 Immediate(info()->literal()->parameter_count()));
3577
3578 __ bind(&formal_parameter_count_loaded);
3579 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
3580 ReturnAddressState::kNotOnStack);
3581 Comment(";;; }");
3582 }
3583
DoInvokeFunction(LInvokeFunction * instr)3584 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3585 HInvokeFunction* hinstr = instr->hydrogen();
3586 DCHECK(ToRegister(instr->context()).is(rsi));
3587 DCHECK(ToRegister(instr->function()).is(rdi));
3588 DCHECK(instr->HasPointerMap());
3589
3590 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3591
3592 if (is_tail_call) {
3593 DCHECK(!info()->saves_caller_doubles());
3594 ParameterCount actual(instr->arity());
3595 // It is safe to use rbx, rcx and r8 as scratch registers here given that
3596 // 1) we are not going to return to caller function anyway,
3597 // 2) rbx (expected number of arguments) will be initialized below.
3598 PrepareForTailCall(actual, rbx, rcx, r8);
3599 }
3600
3601 Handle<JSFunction> known_function = hinstr->known_function();
3602 if (known_function.is_null()) {
3603 LPointerMap* pointers = instr->pointer_map();
3604 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3605 ParameterCount actual(instr->arity());
3606 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3607 __ InvokeFunction(rdi, no_reg, actual, flag, generator);
3608 } else {
3609 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3610 instr->arity(), is_tail_call, instr);
3611 }
3612 }
3613
3614
DoCallNewArray(LCallNewArray * instr)3615 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3616 DCHECK(ToRegister(instr->context()).is(rsi));
3617 DCHECK(ToRegister(instr->constructor()).is(rdi));
3618 DCHECK(ToRegister(instr->result()).is(rax));
3619
3620 __ Set(rax, instr->arity());
3621 __ Move(rbx, instr->hydrogen()->site());
3622
3623 ElementsKind kind = instr->hydrogen()->elements_kind();
3624 AllocationSiteOverrideMode override_mode =
3625 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3626 ? DISABLE_ALLOCATION_SITES
3627 : DONT_OVERRIDE;
3628
3629 if (instr->arity() == 0) {
3630 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3631 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3632 } else if (instr->arity() == 1) {
3633 Label done;
3634 if (IsFastPackedElementsKind(kind)) {
3635 Label packed_case;
3636 // We might need a change here
3637 // look at the first argument
3638 __ movp(rcx, Operand(rsp, 0));
3639 __ testp(rcx, rcx);
3640 __ j(zero, &packed_case, Label::kNear);
3641
3642 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3643 ArraySingleArgumentConstructorStub stub(isolate(),
3644 holey_kind,
3645 override_mode);
3646 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3647 __ jmp(&done, Label::kNear);
3648 __ bind(&packed_case);
3649 }
3650
3651 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3652 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3653 __ bind(&done);
3654 } else {
3655 ArrayNArgumentsConstructorStub stub(isolate());
3656 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3657 }
3658 }
3659
3660
DoCallRuntime(LCallRuntime * instr)3661 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3662 DCHECK(ToRegister(instr->context()).is(rsi));
3663 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3664 }
3665
3666
DoStoreCodeEntry(LStoreCodeEntry * instr)3667 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3668 Register function = ToRegister(instr->function());
3669 Register code_object = ToRegister(instr->code_object());
3670 __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
3671 __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3672 }
3673
3674
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3675 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3676 Register result = ToRegister(instr->result());
3677 Register base = ToRegister(instr->base_object());
3678 if (instr->offset()->IsConstantOperand()) {
3679 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3680 __ leap(result, Operand(base, ToInteger32(offset)));
3681 } else {
3682 Register offset = ToRegister(instr->offset());
3683 __ leap(result, Operand(base, offset, times_1, 0));
3684 }
3685 }
3686
3687
DoStoreNamedField(LStoreNamedField * instr)3688 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3689 HStoreNamedField* hinstr = instr->hydrogen();
3690 Representation representation = instr->representation();
3691
3692 HObjectAccess access = hinstr->access();
3693 int offset = access.offset();
3694
3695 if (access.IsExternalMemory()) {
3696 DCHECK(!hinstr->NeedsWriteBarrier());
3697 Register value = ToRegister(instr->value());
3698 if (instr->object()->IsConstantOperand()) {
3699 DCHECK(value.is(rax));
3700 LConstantOperand* object = LConstantOperand::cast(instr->object());
3701 __ store_rax(ToExternalReference(object));
3702 } else {
3703 Register object = ToRegister(instr->object());
3704 __ Store(MemOperand(object, offset), value, representation);
3705 }
3706 return;
3707 }
3708
3709 Register object = ToRegister(instr->object());
3710 __ AssertNotSmi(object);
3711
3712 DCHECK(!representation.IsSmi() ||
3713 !instr->value()->IsConstantOperand() ||
3714 IsInteger32Constant(LConstantOperand::cast(instr->value())));
3715 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3716 DCHECK(access.IsInobject());
3717 DCHECK(!hinstr->has_transition());
3718 DCHECK(!hinstr->NeedsWriteBarrier());
3719 XMMRegister value = ToDoubleRegister(instr->value());
3720 __ Movsd(FieldOperand(object, offset), value);
3721 return;
3722 }
3723
3724 if (hinstr->has_transition()) {
3725 Handle<Map> transition = hinstr->transition_map();
3726 AddDeprecationDependency(transition);
3727 if (!hinstr->NeedsWriteBarrierForMap()) {
3728 __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
3729 } else {
3730 Register temp = ToRegister(instr->temp());
3731 __ Move(kScratchRegister, transition);
3732 __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
3733 // Update the write barrier for the map field.
3734 __ RecordWriteForMap(object,
3735 kScratchRegister,
3736 temp,
3737 kSaveFPRegs);
3738 }
3739 }
3740
3741 // Do the store.
3742 Register write_register = object;
3743 if (!access.IsInobject()) {
3744 write_register = ToRegister(instr->temp());
3745 __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3746 }
3747
3748 if (representation.IsSmi() && SmiValuesAre32Bits() &&
3749 hinstr->value()->representation().IsInteger32()) {
3750 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3751 if (FLAG_debug_code) {
3752 Register scratch = kScratchRegister;
3753 __ Load(scratch, FieldOperand(write_register, offset), representation);
3754 __ AssertSmi(scratch);
3755 }
3756 // Store int value directly to upper half of the smi.
3757 STATIC_ASSERT(kSmiTag == 0);
3758 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
3759 offset += kPointerSize / 2;
3760 representation = Representation::Integer32();
3761 }
3762
3763 Operand operand = FieldOperand(write_register, offset);
3764
3765 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3766 DCHECK(access.IsInobject());
3767 XMMRegister value = ToDoubleRegister(instr->value());
3768 __ Movsd(operand, value);
3769
3770 } else if (instr->value()->IsRegister()) {
3771 Register value = ToRegister(instr->value());
3772 __ Store(operand, value, representation);
3773 } else {
3774 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3775 if (IsInteger32Constant(operand_value)) {
3776 DCHECK(!hinstr->NeedsWriteBarrier());
3777 int32_t value = ToInteger32(operand_value);
3778 if (representation.IsSmi()) {
3779 __ Move(operand, Smi::FromInt(value));
3780
3781 } else {
3782 __ movl(operand, Immediate(value));
3783 }
3784
3785 } else if (IsExternalConstant(operand_value)) {
3786 DCHECK(!hinstr->NeedsWriteBarrier());
3787 ExternalReference ptr = ToExternalReference(operand_value);
3788 __ Move(kScratchRegister, ptr);
3789 __ movp(operand, kScratchRegister);
3790 } else {
3791 Handle<Object> handle_value = ToHandle(operand_value);
3792 DCHECK(!hinstr->NeedsWriteBarrier());
3793 __ Move(operand, handle_value);
3794 }
3795 }
3796
3797 if (hinstr->NeedsWriteBarrier()) {
3798 Register value = ToRegister(instr->value());
3799 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3800 // Update the write barrier for the object for in-object properties.
3801 __ RecordWriteField(write_register,
3802 offset,
3803 value,
3804 temp,
3805 kSaveFPRegs,
3806 EMIT_REMEMBERED_SET,
3807 hinstr->SmiCheckForWriteBarrier(),
3808 hinstr->PointersToHereCheckForValue());
3809 }
3810 }
3811
3812
DoBoundsCheck(LBoundsCheck * instr)3813 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3814 Representation representation = instr->hydrogen()->length()->representation();
3815 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
3816 DCHECK(representation.IsSmiOrInteger32());
3817
3818 Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
3819 if (instr->length()->IsConstantOperand()) {
3820 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
3821 Register index = ToRegister(instr->index());
3822 if (representation.IsSmi()) {
3823 __ Cmp(index, Smi::FromInt(length));
3824 } else {
3825 __ cmpl(index, Immediate(length));
3826 }
3827 cc = CommuteCondition(cc);
3828 } else if (instr->index()->IsConstantOperand()) {
3829 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
3830 if (instr->length()->IsRegister()) {
3831 Register length = ToRegister(instr->length());
3832 if (representation.IsSmi()) {
3833 __ Cmp(length, Smi::FromInt(index));
3834 } else {
3835 __ cmpl(length, Immediate(index));
3836 }
3837 } else {
3838 Operand length = ToOperand(instr->length());
3839 if (representation.IsSmi()) {
3840 __ Cmp(length, Smi::FromInt(index));
3841 } else {
3842 __ cmpl(length, Immediate(index));
3843 }
3844 }
3845 } else {
3846 Register index = ToRegister(instr->index());
3847 if (instr->length()->IsRegister()) {
3848 Register length = ToRegister(instr->length());
3849 if (representation.IsSmi()) {
3850 __ cmpp(length, index);
3851 } else {
3852 __ cmpl(length, index);
3853 }
3854 } else {
3855 Operand length = ToOperand(instr->length());
3856 if (representation.IsSmi()) {
3857 __ cmpp(length, index);
3858 } else {
3859 __ cmpl(length, index);
3860 }
3861 }
3862 }
3863 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3864 Label done;
3865 __ j(NegateCondition(cc), &done, Label::kNear);
3866 __ int3();
3867 __ bind(&done);
3868 } else {
3869 DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3870 }
3871 }
3872
3873
DoStoreKeyedExternalArray(LStoreKeyed * instr)3874 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3875 ElementsKind elements_kind = instr->elements_kind();
3876 LOperand* key = instr->key();
3877 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
3878 Register key_reg = ToRegister(key);
3879 Representation key_representation =
3880 instr->hydrogen()->key()->representation();
3881 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
3882 __ SmiToInteger64(key_reg, key_reg);
3883 } else if (instr->hydrogen()->IsDehoisted()) {
3884 // Sign extend key because it could be a 32 bit negative value
3885 // and the dehoisted address computation happens in 64 bits
3886 __ movsxlq(key_reg, key_reg);
3887 }
3888 }
3889 Operand operand(BuildFastArrayOperand(
3890 instr->elements(),
3891 key,
3892 instr->hydrogen()->key()->representation(),
3893 elements_kind,
3894 instr->base_offset()));
3895
3896 if (elements_kind == FLOAT32_ELEMENTS) {
3897 XMMRegister value(ToDoubleRegister(instr->value()));
3898 __ Cvtsd2ss(value, value);
3899 __ Movss(operand, value);
3900 } else if (elements_kind == FLOAT64_ELEMENTS) {
3901 __ Movsd(operand, ToDoubleRegister(instr->value()));
3902 } else {
3903 Register value(ToRegister(instr->value()));
3904 switch (elements_kind) {
3905 case INT8_ELEMENTS:
3906 case UINT8_ELEMENTS:
3907 case UINT8_CLAMPED_ELEMENTS:
3908 __ movb(operand, value);
3909 break;
3910 case INT16_ELEMENTS:
3911 case UINT16_ELEMENTS:
3912 __ movw(operand, value);
3913 break;
3914 case INT32_ELEMENTS:
3915 case UINT32_ELEMENTS:
3916 __ movl(operand, value);
3917 break;
3918 case FLOAT32_ELEMENTS:
3919 case FLOAT64_ELEMENTS:
3920 case FAST_ELEMENTS:
3921 case FAST_SMI_ELEMENTS:
3922 case FAST_DOUBLE_ELEMENTS:
3923 case FAST_HOLEY_ELEMENTS:
3924 case FAST_HOLEY_SMI_ELEMENTS:
3925 case FAST_HOLEY_DOUBLE_ELEMENTS:
3926 case DICTIONARY_ELEMENTS:
3927 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3928 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3929 case FAST_STRING_WRAPPER_ELEMENTS:
3930 case SLOW_STRING_WRAPPER_ELEMENTS:
3931 case NO_ELEMENTS:
3932 UNREACHABLE();
3933 break;
3934 }
3935 }
3936 }
3937
3938
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)3939 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3940 XMMRegister value = ToDoubleRegister(instr->value());
3941 LOperand* key = instr->key();
3942 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
3943 instr->hydrogen()->IsDehoisted()) {
3944 // Sign extend key because it could be a 32 bit negative value
3945 // and the dehoisted address computation happens in 64 bits
3946 __ movsxlq(ToRegister(key), ToRegister(key));
3947 }
3948 if (instr->NeedsCanonicalization()) {
3949 XMMRegister xmm_scratch = double_scratch0();
3950 // Turn potential sNaN value into qNaN.
3951 __ Xorpd(xmm_scratch, xmm_scratch);
3952 __ Subsd(value, xmm_scratch);
3953 }
3954
3955 Operand double_store_operand = BuildFastArrayOperand(
3956 instr->elements(),
3957 key,
3958 instr->hydrogen()->key()->representation(),
3959 FAST_DOUBLE_ELEMENTS,
3960 instr->base_offset());
3961
3962 __ Movsd(double_store_operand, value);
3963 }
3964
3965
DoStoreKeyedFixedArray(LStoreKeyed * instr)3966 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
3967 HStoreKeyed* hinstr = instr->hydrogen();
3968 LOperand* key = instr->key();
3969 int offset = instr->base_offset();
3970 Representation representation = hinstr->value()->representation();
3971
3972 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
3973 instr->hydrogen()->IsDehoisted()) {
3974 // Sign extend key because it could be a 32 bit negative value
3975 // and the dehoisted address computation happens in 64 bits
3976 __ movsxlq(ToRegister(key), ToRegister(key));
3977 }
3978 if (representation.IsInteger32() && SmiValuesAre32Bits()) {
3979 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3980 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
3981 if (FLAG_debug_code) {
3982 Register scratch = kScratchRegister;
3983 __ Load(scratch,
3984 BuildFastArrayOperand(instr->elements(),
3985 key,
3986 instr->hydrogen()->key()->representation(),
3987 FAST_ELEMENTS,
3988 offset),
3989 Representation::Smi());
3990 __ AssertSmi(scratch);
3991 }
3992 // Store int value directly to upper half of the smi.
3993 STATIC_ASSERT(kSmiTag == 0);
3994 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
3995 offset += kPointerSize / 2;
3996 }
3997
3998 Operand operand =
3999 BuildFastArrayOperand(instr->elements(),
4000 key,
4001 instr->hydrogen()->key()->representation(),
4002 FAST_ELEMENTS,
4003 offset);
4004 if (instr->value()->IsRegister()) {
4005 __ Store(operand, ToRegister(instr->value()), representation);
4006 } else {
4007 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4008 if (IsInteger32Constant(operand_value)) {
4009 int32_t value = ToInteger32(operand_value);
4010 if (representation.IsSmi()) {
4011 __ Move(operand, Smi::FromInt(value));
4012
4013 } else {
4014 __ movl(operand, Immediate(value));
4015 }
4016 } else {
4017 Handle<Object> handle_value = ToHandle(operand_value);
4018 __ Move(operand, handle_value);
4019 }
4020 }
4021
4022 if (hinstr->NeedsWriteBarrier()) {
4023 Register elements = ToRegister(instr->elements());
4024 DCHECK(instr->value()->IsRegister());
4025 Register value = ToRegister(instr->value());
4026 DCHECK(!key->IsConstantOperand());
4027 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4028 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4029 // Compute address of modified element and store it into key register.
4030 Register key_reg(ToRegister(key));
4031 __ leap(key_reg, operand);
4032 __ RecordWrite(elements,
4033 key_reg,
4034 value,
4035 kSaveFPRegs,
4036 EMIT_REMEMBERED_SET,
4037 check_needed,
4038 hinstr->PointersToHereCheckForValue());
4039 }
4040 }
4041
4042
DoStoreKeyed(LStoreKeyed * instr)4043 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4044 if (instr->is_fixed_typed_array()) {
4045 DoStoreKeyedExternalArray(instr);
4046 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4047 DoStoreKeyedFixedDoubleArray(instr);
4048 } else {
4049 DoStoreKeyedFixedArray(instr);
4050 }
4051 }
4052
4053
DoMaybeGrowElements(LMaybeGrowElements * instr)4054 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4055 class DeferredMaybeGrowElements final : public LDeferredCode {
4056 public:
4057 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4058 : LDeferredCode(codegen), instr_(instr) {}
4059 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4060 LInstruction* instr() override { return instr_; }
4061
4062 private:
4063 LMaybeGrowElements* instr_;
4064 };
4065
4066 Register result = rax;
4067 DeferredMaybeGrowElements* deferred =
4068 new (zone()) DeferredMaybeGrowElements(this, instr);
4069 LOperand* key = instr->key();
4070 LOperand* current_capacity = instr->current_capacity();
4071
4072 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4073 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4074 DCHECK(key->IsConstantOperand() || key->IsRegister());
4075 DCHECK(current_capacity->IsConstantOperand() ||
4076 current_capacity->IsRegister());
4077
4078 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4079 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4080 int32_t constant_capacity =
4081 ToInteger32(LConstantOperand::cast(current_capacity));
4082 if (constant_key >= constant_capacity) {
4083 // Deferred case.
4084 __ jmp(deferred->entry());
4085 }
4086 } else if (key->IsConstantOperand()) {
4087 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4088 __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
4089 __ j(less_equal, deferred->entry());
4090 } else if (current_capacity->IsConstantOperand()) {
4091 int32_t constant_capacity =
4092 ToInteger32(LConstantOperand::cast(current_capacity));
4093 __ cmpl(ToRegister(key), Immediate(constant_capacity));
4094 __ j(greater_equal, deferred->entry());
4095 } else {
4096 __ cmpl(ToRegister(key), ToRegister(current_capacity));
4097 __ j(greater_equal, deferred->entry());
4098 }
4099
4100 if (instr->elements()->IsRegister()) {
4101 __ movp(result, ToRegister(instr->elements()));
4102 } else {
4103 __ movp(result, ToOperand(instr->elements()));
4104 }
4105
4106 __ bind(deferred->exit());
4107 }
4108
4109
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4110 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4111 // TODO(3095996): Get rid of this. For now, we need to make the
4112 // result register contain a valid pointer because it is already
4113 // contained in the register pointer map.
4114 Register result = rax;
4115 __ Move(result, Smi::kZero);
4116
4117 // We have to call a stub.
4118 {
4119 PushSafepointRegistersScope scope(this);
4120 if (instr->object()->IsConstantOperand()) {
4121 LConstantOperand* constant_object =
4122 LConstantOperand::cast(instr->object());
4123 if (IsSmiConstant(constant_object)) {
4124 Smi* immediate = ToSmi(constant_object);
4125 __ Move(result, immediate);
4126 } else {
4127 Handle<Object> handle_value = ToHandle(constant_object);
4128 __ Move(result, handle_value);
4129 }
4130 } else if (instr->object()->IsRegister()) {
4131 __ Move(result, ToRegister(instr->object()));
4132 } else {
4133 __ movp(result, ToOperand(instr->object()));
4134 }
4135
4136 LOperand* key = instr->key();
4137 if (key->IsConstantOperand()) {
4138 __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
4139 } else {
4140 __ Move(rbx, ToRegister(key));
4141 __ Integer32ToSmi(rbx, rbx);
4142 }
4143
4144 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4145 __ CallStub(&stub);
4146 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4147 __ StoreToSafepointRegisterSlot(result, result);
4148 }
4149
4150 // Deopt on smi, which means the elements array changed to dictionary mode.
4151 Condition is_smi = __ CheckSmi(result);
4152 DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi);
4153 }
4154
4155
DoTransitionElementsKind(LTransitionElementsKind * instr)4156 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4157 Register object_reg = ToRegister(instr->object());
4158
4159 Handle<Map> from_map = instr->original_map();
4160 Handle<Map> to_map = instr->transitioned_map();
4161 ElementsKind from_kind = instr->from_kind();
4162 ElementsKind to_kind = instr->to_kind();
4163
4164 Label not_applicable;
4165 __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4166 __ j(not_equal, ¬_applicable);
4167 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4168 Register new_map_reg = ToRegister(instr->new_map_temp());
4169 __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
4170 __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
4171 // Write barrier.
4172 __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
4173 kDontSaveFPRegs);
4174 } else {
4175 DCHECK(object_reg.is(rax));
4176 DCHECK(ToRegister(instr->context()).is(rsi));
4177 PushSafepointRegistersScope scope(this);
4178 __ Move(rbx, to_map);
4179 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4180 __ CallStub(&stub);
4181 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4182 }
4183 __ bind(¬_applicable);
4184 }
4185
4186
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4187 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4188 Register object = ToRegister(instr->object());
4189 Register temp = ToRegister(instr->temp());
4190 Label no_memento_found;
4191 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4192 DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound);
4193 __ bind(&no_memento_found);
4194 }
4195
4196
DoStringAdd(LStringAdd * instr)4197 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4198 DCHECK(ToRegister(instr->context()).is(rsi));
4199 DCHECK(ToRegister(instr->left()).is(rdx));
4200 DCHECK(ToRegister(instr->right()).is(rax));
4201 StringAddStub stub(isolate(),
4202 instr->hydrogen()->flags(),
4203 instr->hydrogen()->pretenure_flag());
4204 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4205 }
4206
4207
DoStringCharCodeAt(LStringCharCodeAt * instr)4208 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4209 class DeferredStringCharCodeAt final : public LDeferredCode {
4210 public:
4211 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4212 : LDeferredCode(codegen), instr_(instr) { }
4213 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4214 LInstruction* instr() override { return instr_; }
4215
4216 private:
4217 LStringCharCodeAt* instr_;
4218 };
4219
4220 DeferredStringCharCodeAt* deferred =
4221 new(zone()) DeferredStringCharCodeAt(this, instr);
4222
4223 StringCharLoadGenerator::Generate(masm(),
4224 ToRegister(instr->string()),
4225 ToRegister(instr->index()),
4226 ToRegister(instr->result()),
4227 deferred->entry());
4228 __ bind(deferred->exit());
4229 }
4230
4231
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4232 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4233 Register string = ToRegister(instr->string());
4234 Register result = ToRegister(instr->result());
4235
4236 // TODO(3095996): Get rid of this. For now, we need to make the
4237 // result register contain a valid pointer because it is already
4238 // contained in the register pointer map.
4239 __ Set(result, 0);
4240
4241 PushSafepointRegistersScope scope(this);
4242 __ Push(string);
4243 // Push the index as a smi. This is safe because of the checks in
4244 // DoStringCharCodeAt above.
4245 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4246 if (instr->index()->IsConstantOperand()) {
4247 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4248 __ Push(Smi::FromInt(const_index));
4249 } else {
4250 Register index = ToRegister(instr->index());
4251 __ Integer32ToSmi(index, index);
4252 __ Push(index);
4253 }
4254 CallRuntimeFromDeferred(
4255 Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
4256 __ AssertSmi(rax);
4257 __ SmiToInteger32(rax, rax);
4258 __ StoreToSafepointRegisterSlot(result, rax);
4259 }
4260
4261
DoStringCharFromCode(LStringCharFromCode * instr)4262 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4263 class DeferredStringCharFromCode final : public LDeferredCode {
4264 public:
4265 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4266 : LDeferredCode(codegen), instr_(instr) { }
4267 void Generate() override {
4268 codegen()->DoDeferredStringCharFromCode(instr_);
4269 }
4270 LInstruction* instr() override { return instr_; }
4271
4272 private:
4273 LStringCharFromCode* instr_;
4274 };
4275
4276 DeferredStringCharFromCode* deferred =
4277 new(zone()) DeferredStringCharFromCode(this, instr);
4278
4279 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4280 Register char_code = ToRegister(instr->char_code());
4281 Register result = ToRegister(instr->result());
4282 DCHECK(!char_code.is(result));
4283
4284 __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
4285 __ j(above, deferred->entry());
4286 __ movsxlq(char_code, char_code);
4287 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4288 __ movp(result, FieldOperand(result,
4289 char_code, times_pointer_size,
4290 FixedArray::kHeaderSize));
4291 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4292 __ j(equal, deferred->entry());
4293 __ bind(deferred->exit());
4294 }
4295
4296
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4297 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4298 Register char_code = ToRegister(instr->char_code());
4299 Register result = ToRegister(instr->result());
4300
4301 // TODO(3095996): Get rid of this. For now, we need to make the
4302 // result register contain a valid pointer because it is already
4303 // contained in the register pointer map.
4304 __ Set(result, 0);
4305
4306 PushSafepointRegistersScope scope(this);
4307 __ Integer32ToSmi(char_code, char_code);
4308 __ Push(char_code);
4309 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4310 instr->context());
4311 __ StoreToSafepointRegisterSlot(result, rax);
4312 }
4313
4314
DoInteger32ToDouble(LInteger32ToDouble * instr)4315 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4316 LOperand* input = instr->value();
4317 DCHECK(input->IsRegister() || input->IsStackSlot());
4318 LOperand* output = instr->result();
4319 DCHECK(output->IsDoubleRegister());
4320 if (input->IsRegister()) {
4321 __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
4322 } else {
4323 __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
4324 }
4325 }
4326
4327
DoUint32ToDouble(LUint32ToDouble * instr)4328 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4329 LOperand* input = instr->value();
4330 LOperand* output = instr->result();
4331
4332 __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
4333 }
4334
4335
DoNumberTagI(LNumberTagI * instr)4336 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4337 class DeferredNumberTagI final : public LDeferredCode {
4338 public:
4339 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4340 : LDeferredCode(codegen), instr_(instr) { }
4341 void Generate() override {
4342 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4343 instr_->temp2(), SIGNED_INT32);
4344 }
4345 LInstruction* instr() override { return instr_; }
4346
4347 private:
4348 LNumberTagI* instr_;
4349 };
4350
4351 LOperand* input = instr->value();
4352 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4353 Register reg = ToRegister(input);
4354
4355 if (SmiValuesAre32Bits()) {
4356 __ Integer32ToSmi(reg, reg);
4357 } else {
4358 DCHECK(SmiValuesAre31Bits());
4359 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4360 __ Integer32ToSmi(reg, reg);
4361 __ j(overflow, deferred->entry());
4362 __ bind(deferred->exit());
4363 }
4364 }
4365
4366
DoNumberTagU(LNumberTagU * instr)4367 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4368 class DeferredNumberTagU final : public LDeferredCode {
4369 public:
4370 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4371 : LDeferredCode(codegen), instr_(instr) { }
4372 void Generate() override {
4373 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4374 instr_->temp2(), UNSIGNED_INT32);
4375 }
4376 LInstruction* instr() override { return instr_; }
4377
4378 private:
4379 LNumberTagU* instr_;
4380 };
4381
4382 LOperand* input = instr->value();
4383 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4384 Register reg = ToRegister(input);
4385
4386 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4387 __ cmpl(reg, Immediate(Smi::kMaxValue));
4388 __ j(above, deferred->entry());
4389 __ Integer32ToSmi(reg, reg);
4390 __ bind(deferred->exit());
4391 }
4392
4393
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4394 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4395 LOperand* value,
4396 LOperand* temp1,
4397 LOperand* temp2,
4398 IntegerSignedness signedness) {
4399 Label done, slow;
4400 Register reg = ToRegister(value);
4401 Register tmp = ToRegister(temp1);
4402 XMMRegister temp_xmm = ToDoubleRegister(temp2);
4403
4404 // Load value into temp_xmm which will be preserved across potential call to
4405 // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
4406 // XMM registers on x64).
4407 if (signedness == SIGNED_INT32) {
4408 DCHECK(SmiValuesAre31Bits());
4409 // There was overflow, so bits 30 and 31 of the original integer
4410 // disagree. Try to allocate a heap number in new space and store
4411 // the value in there. If that fails, call the runtime system.
4412 __ SmiToInteger32(reg, reg);
4413 __ xorl(reg, Immediate(0x80000000));
4414 __ Cvtlsi2sd(temp_xmm, reg);
4415 } else {
4416 DCHECK(signedness == UNSIGNED_INT32);
4417 __ LoadUint32(temp_xmm, reg);
4418 }
4419
4420 if (FLAG_inline_new) {
4421 __ AllocateHeapNumber(reg, tmp, &slow);
4422 __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
4423 }
4424
4425 // Slow case: Call the runtime system to do the number allocation.
4426 __ bind(&slow);
4427 {
4428 // Put a valid pointer value in the stack slot where the result
4429 // register is stored, as this register is in the pointer map, but contains
4430 // an integer value.
4431 __ Set(reg, 0);
4432
4433 // Preserve the value of all registers.
4434 PushSafepointRegistersScope scope(this);
4435 // Reset the context register.
4436 if (!reg.is(rsi)) {
4437 __ Set(rsi, 0);
4438 }
4439 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4440 RecordSafepointWithRegisters(
4441 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4442 __ StoreToSafepointRegisterSlot(reg, rax);
4443 }
4444
4445 // Done. Put the value in temp_xmm into the value of the allocated heap
4446 // number.
4447 __ bind(&done);
4448 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
4449 }
4450
4451
DoNumberTagD(LNumberTagD * instr)4452 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4453 class DeferredNumberTagD final : public LDeferredCode {
4454 public:
4455 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4456 : LDeferredCode(codegen), instr_(instr) { }
4457 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4458 LInstruction* instr() override { return instr_; }
4459
4460 private:
4461 LNumberTagD* instr_;
4462 };
4463
4464 XMMRegister input_reg = ToDoubleRegister(instr->value());
4465 Register reg = ToRegister(instr->result());
4466 Register tmp = ToRegister(instr->temp());
4467
4468 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4469 if (FLAG_inline_new) {
4470 __ AllocateHeapNumber(reg, tmp, deferred->entry());
4471 } else {
4472 __ jmp(deferred->entry());
4473 }
4474 __ bind(deferred->exit());
4475 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4476 }
4477
4478
DoDeferredNumberTagD(LNumberTagD * instr)4479 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4480 // TODO(3095996): Get rid of this. For now, we need to make the
4481 // result register contain a valid pointer because it is already
4482 // contained in the register pointer map.
4483 Register reg = ToRegister(instr->result());
4484 __ Move(reg, Smi::kZero);
4485
4486 {
4487 PushSafepointRegistersScope scope(this);
4488 // Reset the context register.
4489 if (!reg.is(rsi)) {
4490 __ Move(rsi, 0);
4491 }
4492 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4493 RecordSafepointWithRegisters(
4494 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4495 __ movp(kScratchRegister, rax);
4496 }
4497 __ movp(reg, kScratchRegister);
4498 }
4499
4500
DoSmiTag(LSmiTag * instr)4501 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4502 HChange* hchange = instr->hydrogen();
4503 Register input = ToRegister(instr->value());
4504 Register output = ToRegister(instr->result());
4505 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4506 hchange->value()->CheckFlag(HValue::kUint32)) {
4507 Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
4508 DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kOverflow);
4509 }
4510 __ Integer32ToSmi(output, input);
4511 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4512 !hchange->value()->CheckFlag(HValue::kUint32)) {
4513 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
4514 }
4515 }
4516
4517
DoSmiUntag(LSmiUntag * instr)4518 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4519 DCHECK(instr->value()->Equals(instr->result()));
4520 Register input = ToRegister(instr->value());
4521 if (instr->needs_check()) {
4522 Condition is_smi = __ CheckSmi(input);
4523 DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kNotASmi);
4524 } else {
4525 __ AssertSmi(input);
4526 }
4527 __ SmiToInteger32(input, input);
4528 }
4529
4530
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,XMMRegister result_reg,NumberUntagDMode mode)4531 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4532 XMMRegister result_reg, NumberUntagDMode mode) {
4533 bool can_convert_undefined_to_nan = instr->truncating();
4534 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4535
4536 Label convert, load_smi, done;
4537
4538 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4539 // Smi check.
4540 __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4541
4542 // Heap number map check.
4543 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4544 Heap::kHeapNumberMapRootIndex);
4545
4546 // On x64 it is safe to load at heap number offset before evaluating the map
4547 // check, since all heap objects are at least two words long.
4548 __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
4549
4550 if (can_convert_undefined_to_nan) {
4551 __ j(not_equal, &convert, Label::kNear);
4552 } else {
4553 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
4554 }
4555
4556 if (deoptimize_on_minus_zero) {
4557 XMMRegister xmm_scratch = double_scratch0();
4558 __ Xorpd(xmm_scratch, xmm_scratch);
4559 __ Ucomisd(xmm_scratch, result_reg);
4560 __ j(not_equal, &done, Label::kNear);
4561 __ Movmskpd(kScratchRegister, result_reg);
4562 __ testl(kScratchRegister, Immediate(1));
4563 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
4564 }
4565 __ jmp(&done, Label::kNear);
4566
4567 if (can_convert_undefined_to_nan) {
4568 __ bind(&convert);
4569
4570 // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
4571 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4572 DeoptimizeIf(not_equal, instr,
4573 DeoptimizeReason::kNotAHeapNumberUndefined);
4574
4575 __ Xorpd(result_reg, result_reg);
4576 __ Divsd(result_reg, result_reg);
4577 __ jmp(&done, Label::kNear);
4578 }
4579 } else {
4580 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4581 }
4582
4583 // Smi to XMM conversion
4584 __ bind(&load_smi);
4585 __ SmiToInteger32(kScratchRegister, input_reg);
4586 __ Cvtlsi2sd(result_reg, kScratchRegister);
4587 __ bind(&done);
4588 }
4589
4590
DoDeferredTaggedToI(LTaggedToI * instr,Label * done)4591 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4592 Register input_reg = ToRegister(instr->value());
4593
4594 if (instr->truncating()) {
4595 Register input_map_reg = kScratchRegister;
4596 Label truncate;
4597 Label::Distance truncate_distance =
4598 DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4599 __ movp(input_map_reg, FieldOperand(input_reg, HeapObject::kMapOffset));
4600 __ JumpIfRoot(input_map_reg, Heap::kHeapNumberMapRootIndex, &truncate,
4601 truncate_distance);
4602 __ CmpInstanceType(input_map_reg, ODDBALL_TYPE);
4603 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball);
4604 __ bind(&truncate);
4605 __ TruncateHeapNumberToI(input_reg, input_reg);
4606 } else {
4607 XMMRegister scratch = ToDoubleRegister(instr->temp());
4608 DCHECK(!scratch.is(double_scratch0()));
4609 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4610 Heap::kHeapNumberMapRootIndex);
4611 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
4612 __ Movsd(double_scratch0(),
4613 FieldOperand(input_reg, HeapNumber::kValueOffset));
4614 __ Cvttsd2si(input_reg, double_scratch0());
4615 __ Cvtlsi2sd(scratch, input_reg);
4616 __ Ucomisd(double_scratch0(), scratch);
4617 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
4618 DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
4619 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4620 __ testl(input_reg, input_reg);
4621 __ j(not_zero, done);
4622 __ Movmskpd(input_reg, double_scratch0());
4623 __ andl(input_reg, Immediate(1));
4624 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
4625 }
4626 }
4627 }
4628
4629
DoTaggedToI(LTaggedToI * instr)4630 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4631 class DeferredTaggedToI final : public LDeferredCode {
4632 public:
4633 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4634 : LDeferredCode(codegen), instr_(instr) { }
4635 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
4636 LInstruction* instr() override { return instr_; }
4637
4638 private:
4639 LTaggedToI* instr_;
4640 };
4641
4642 LOperand* input = instr->value();
4643 DCHECK(input->IsRegister());
4644 DCHECK(input->Equals(instr->result()));
4645 Register input_reg = ToRegister(input);
4646
4647 if (instr->hydrogen()->value()->representation().IsSmi()) {
4648 __ SmiToInteger32(input_reg, input_reg);
4649 } else {
4650 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4651 __ JumpIfNotSmi(input_reg, deferred->entry());
4652 __ SmiToInteger32(input_reg, input_reg);
4653 __ bind(deferred->exit());
4654 }
4655 }
4656
4657
DoNumberUntagD(LNumberUntagD * instr)4658 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4659 LOperand* input = instr->value();
4660 DCHECK(input->IsRegister());
4661 LOperand* result = instr->result();
4662 DCHECK(result->IsDoubleRegister());
4663
4664 Register input_reg = ToRegister(input);
4665 XMMRegister result_reg = ToDoubleRegister(result);
4666
4667 HValue* value = instr->hydrogen()->value();
4668 NumberUntagDMode mode = value->representation().IsSmi()
4669 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4670
4671 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4672 }
4673
4674
DoDoubleToI(LDoubleToI * instr)4675 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4676 LOperand* input = instr->value();
4677 DCHECK(input->IsDoubleRegister());
4678 LOperand* result = instr->result();
4679 DCHECK(result->IsRegister());
4680
4681 XMMRegister input_reg = ToDoubleRegister(input);
4682 Register result_reg = ToRegister(result);
4683
4684 if (instr->truncating()) {
4685 __ TruncateDoubleToI(result_reg, input_reg);
4686 } else {
4687 Label lost_precision, is_nan, minus_zero, done;
4688 XMMRegister xmm_scratch = double_scratch0();
4689 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4690 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4691 instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
4692 &is_nan, &minus_zero, dist);
4693 __ jmp(&done, dist);
4694 __ bind(&lost_precision);
4695 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
4696 __ bind(&is_nan);
4697 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
4698 __ bind(&minus_zero);
4699 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
4700 __ bind(&done);
4701 }
4702 }
4703
4704
DoDoubleToSmi(LDoubleToSmi * instr)4705 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4706 LOperand* input = instr->value();
4707 DCHECK(input->IsDoubleRegister());
4708 LOperand* result = instr->result();
4709 DCHECK(result->IsRegister());
4710
4711 XMMRegister input_reg = ToDoubleRegister(input);
4712 Register result_reg = ToRegister(result);
4713
4714 Label lost_precision, is_nan, minus_zero, done;
4715 XMMRegister xmm_scratch = double_scratch0();
4716 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4717 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4718 instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
4719 &minus_zero, dist);
4720 __ jmp(&done, dist);
4721 __ bind(&lost_precision);
4722 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
4723 __ bind(&is_nan);
4724 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
4725 __ bind(&minus_zero);
4726 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
4727 __ bind(&done);
4728 __ Integer32ToSmi(result_reg, result_reg);
4729 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
4730 }
4731
4732
DoCheckSmi(LCheckSmi * instr)4733 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4734 LOperand* input = instr->value();
4735 Condition cc = masm()->CheckSmi(ToRegister(input));
4736 DeoptimizeIf(NegateCondition(cc), instr, DeoptimizeReason::kNotASmi);
4737 }
4738
4739
DoCheckNonSmi(LCheckNonSmi * instr)4740 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4741 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4742 LOperand* input = instr->value();
4743 Condition cc = masm()->CheckSmi(ToRegister(input));
4744 DeoptimizeIf(cc, instr, DeoptimizeReason::kSmi);
4745 }
4746 }
4747
4748
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4749 void LCodeGen::DoCheckArrayBufferNotNeutered(
4750 LCheckArrayBufferNotNeutered* instr) {
4751 Register view = ToRegister(instr->view());
4752
4753 __ movp(kScratchRegister,
4754 FieldOperand(view, JSArrayBufferView::kBufferOffset));
4755 __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
4756 Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
4757 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds);
4758 }
4759
4760
DoCheckInstanceType(LCheckInstanceType * instr)4761 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4762 Register input = ToRegister(instr->value());
4763
4764 __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
4765
4766 if (instr->hydrogen()->is_interval_check()) {
4767 InstanceType first;
4768 InstanceType last;
4769 instr->hydrogen()->GetCheckInterval(&first, &last);
4770
4771 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4772 Immediate(static_cast<int8_t>(first)));
4773
4774 // If there is only one type in the interval check for equality.
4775 if (first == last) {
4776 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
4777 } else {
4778 DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType);
4779 // Omit check for the last type.
4780 if (last != LAST_TYPE) {
4781 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4782 Immediate(static_cast<int8_t>(last)));
4783 DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType);
4784 }
4785 }
4786 } else {
4787 uint8_t mask;
4788 uint8_t tag;
4789 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4790
4791 if (base::bits::IsPowerOfTwo32(mask)) {
4792 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4793 __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4794 Immediate(mask));
4795 DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
4796 DeoptimizeReason::kWrongInstanceType);
4797 } else {
4798 __ movzxbl(kScratchRegister,
4799 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
4800 __ andb(kScratchRegister, Immediate(mask));
4801 __ cmpb(kScratchRegister, Immediate(tag));
4802 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
4803 }
4804 }
4805 }
4806
4807
DoCheckValue(LCheckValue * instr)4808 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4809 Register reg = ToRegister(instr->value());
4810 __ Cmp(reg, instr->hydrogen()->object().handle());
4811 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch);
4812 }
4813
4814
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4815 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4816 {
4817 PushSafepointRegistersScope scope(this);
4818 __ Push(object);
4819 __ Set(rsi, 0);
4820 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4821 RecordSafepointWithRegisters(
4822 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4823
4824 __ testp(rax, Immediate(kSmiTagMask));
4825 }
4826 DeoptimizeIf(zero, instr, DeoptimizeReason::kInstanceMigrationFailed);
4827 }
4828
4829
DoCheckMaps(LCheckMaps * instr)4830 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4831 class DeferredCheckMaps final : public LDeferredCode {
4832 public:
4833 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4834 : LDeferredCode(codegen), instr_(instr), object_(object) {
4835 SetExit(check_maps());
4836 }
4837 void Generate() override {
4838 codegen()->DoDeferredInstanceMigration(instr_, object_);
4839 }
4840 Label* check_maps() { return &check_maps_; }
4841 LInstruction* instr() override { return instr_; }
4842
4843 private:
4844 LCheckMaps* instr_;
4845 Label check_maps_;
4846 Register object_;
4847 };
4848
4849 if (instr->hydrogen()->IsStabilityCheck()) {
4850 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4851 for (int i = 0; i < maps->size(); ++i) {
4852 AddStabilityDependency(maps->at(i).handle());
4853 }
4854 return;
4855 }
4856
4857 LOperand* input = instr->value();
4858 DCHECK(input->IsRegister());
4859 Register reg = ToRegister(input);
4860
4861 DeferredCheckMaps* deferred = NULL;
4862 if (instr->hydrogen()->HasMigrationTarget()) {
4863 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
4864 __ bind(deferred->check_maps());
4865 }
4866
4867 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4868 Label success;
4869 for (int i = 0; i < maps->size() - 1; i++) {
4870 Handle<Map> map = maps->at(i).handle();
4871 __ CompareMap(reg, map);
4872 __ j(equal, &success, Label::kNear);
4873 }
4874
4875 Handle<Map> map = maps->at(maps->size() - 1).handle();
4876 __ CompareMap(reg, map);
4877 if (instr->hydrogen()->HasMigrationTarget()) {
4878 __ j(not_equal, deferred->entry());
4879 } else {
4880 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
4881 }
4882
4883 __ bind(&success);
4884 }
4885
4886
DoClampDToUint8(LClampDToUint8 * instr)4887 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4888 XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
4889 XMMRegister xmm_scratch = double_scratch0();
4890 Register result_reg = ToRegister(instr->result());
4891 __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
4892 }
4893
4894
DoClampIToUint8(LClampIToUint8 * instr)4895 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4896 DCHECK(instr->unclamped()->Equals(instr->result()));
4897 Register value_reg = ToRegister(instr->result());
4898 __ ClampUint8(value_reg);
4899 }
4900
4901
DoClampTToUint8(LClampTToUint8 * instr)4902 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4903 DCHECK(instr->unclamped()->Equals(instr->result()));
4904 Register input_reg = ToRegister(instr->unclamped());
4905 XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
4906 XMMRegister xmm_scratch = double_scratch0();
4907 Label is_smi, done, heap_number;
4908 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4909 __ JumpIfSmi(input_reg, &is_smi, dist);
4910
4911 // Check for heap number
4912 __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4913 factory()->heap_number_map());
4914 __ j(equal, &heap_number, Label::kNear);
4915
4916 // Check for undefined. Undefined is converted to zero for clamping
4917 // conversions.
4918 __ Cmp(input_reg, factory()->undefined_value());
4919 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4920 __ xorl(input_reg, input_reg);
4921 __ jmp(&done, Label::kNear);
4922
4923 // Heap number
4924 __ bind(&heap_number);
4925 __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
4926 __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
4927 __ jmp(&done, Label::kNear);
4928
4929 // smi
4930 __ bind(&is_smi);
4931 __ SmiToInteger32(input_reg, input_reg);
4932 __ ClampUint8(input_reg);
4933
4934 __ bind(&done);
4935 }
4936
4937
DoAllocate(LAllocate * instr)4938 void LCodeGen::DoAllocate(LAllocate* instr) {
4939 class DeferredAllocate final : public LDeferredCode {
4940 public:
4941 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
4942 : LDeferredCode(codegen), instr_(instr) { }
4943 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
4944 LInstruction* instr() override { return instr_; }
4945
4946 private:
4947 LAllocate* instr_;
4948 };
4949
4950 DeferredAllocate* deferred =
4951 new(zone()) DeferredAllocate(this, instr);
4952
4953 Register result = ToRegister(instr->result());
4954 Register temp = ToRegister(instr->temp());
4955
4956 // Allocate memory for the object.
4957 AllocationFlags flags = NO_ALLOCATION_FLAGS;
4958 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
4959 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
4960 }
4961 if (instr->hydrogen()->IsOldSpaceAllocation()) {
4962 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4963 flags = static_cast<AllocationFlags>(flags | PRETENURE);
4964 }
4965
4966 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4967 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
4968 }
4969 DCHECK(!instr->hydrogen()->IsAllocationFolded());
4970
4971 if (instr->size()->IsConstantOperand()) {
4972 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4973 CHECK(size <= kMaxRegularHeapObjectSize);
4974 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
4975 } else {
4976 Register size = ToRegister(instr->size());
4977 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
4978 }
4979
4980 __ bind(deferred->exit());
4981
4982 if (instr->hydrogen()->MustPrefillWithFiller()) {
4983 if (instr->size()->IsConstantOperand()) {
4984 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4985 __ movl(temp, Immediate((size / kPointerSize) - 1));
4986 } else {
4987 temp = ToRegister(instr->size());
4988 __ sarp(temp, Immediate(kPointerSizeLog2));
4989 __ decl(temp);
4990 }
4991 Label loop;
4992 __ bind(&loop);
4993 __ Move(FieldOperand(result, temp, times_pointer_size, 0),
4994 isolate()->factory()->one_pointer_filler_map());
4995 __ decl(temp);
4996 __ j(not_zero, &loop);
4997 }
4998 }
4999
DoFastAllocate(LFastAllocate * instr)5000 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5001 DCHECK(instr->hydrogen()->IsAllocationFolded());
5002 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5003 Register result = ToRegister(instr->result());
5004 Register temp = ToRegister(instr->temp());
5005
5006 AllocationFlags flags = ALLOCATION_FOLDED;
5007 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5008 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5009 }
5010 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5011 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5012 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5013 }
5014 if (instr->size()->IsConstantOperand()) {
5015 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5016 CHECK(size <= kMaxRegularHeapObjectSize);
5017 __ FastAllocate(size, result, temp, flags);
5018 } else {
5019 Register size = ToRegister(instr->size());
5020 __ FastAllocate(size, result, temp, flags);
5021 }
5022 }
5023
DoDeferredAllocate(LAllocate * instr)5024 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5025 Register result = ToRegister(instr->result());
5026
5027 // TODO(3095996): Get rid of this. For now, we need to make the
5028 // result register contain a valid pointer because it is already
5029 // contained in the register pointer map.
5030 __ Move(result, Smi::kZero);
5031
5032 PushSafepointRegistersScope scope(this);
5033 if (instr->size()->IsRegister()) {
5034 Register size = ToRegister(instr->size());
5035 DCHECK(!size.is(result));
5036 __ Integer32ToSmi(size, size);
5037 __ Push(size);
5038 } else {
5039 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5040 __ Push(Smi::FromInt(size));
5041 }
5042
5043 int flags = 0;
5044 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5045 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5046 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5047 } else {
5048 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5049 }
5050 __ Push(Smi::FromInt(flags));
5051
5052 CallRuntimeFromDeferred(
5053 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5054 __ StoreToSafepointRegisterSlot(result, rax);
5055
5056 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5057 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5058 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5059 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5060 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5061 }
5062 // If the allocation folding dominator allocate triggered a GC, allocation
5063 // happend in the runtime. We have to reset the top pointer to virtually
5064 // undo the allocation.
5065 ExternalReference allocation_top =
5066 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5067 __ subp(rax, Immediate(kHeapObjectTag));
5068 __ Store(allocation_top, rax);
5069 __ addp(rax, Immediate(kHeapObjectTag));
5070 }
5071 }
5072
5073
DoTypeof(LTypeof * instr)5074 void LCodeGen::DoTypeof(LTypeof* instr) {
5075 DCHECK(ToRegister(instr->context()).is(rsi));
5076 DCHECK(ToRegister(instr->value()).is(rbx));
5077 Label end, do_call;
5078 Register value_register = ToRegister(instr->value());
5079 __ JumpIfNotSmi(value_register, &do_call);
5080 __ Move(rax, isolate()->factory()->number_string());
5081 __ jmp(&end);
5082 __ bind(&do_call);
5083 Callable callable = CodeFactory::Typeof(isolate());
5084 CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5085 __ bind(&end);
5086 }
5087
5088
EmitPushTaggedOperand(LOperand * operand)5089 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
5090 DCHECK(!operand->IsDoubleRegister());
5091 if (operand->IsConstantOperand()) {
5092 __ Push(ToHandle(LConstantOperand::cast(operand)));
5093 } else if (operand->IsRegister()) {
5094 __ Push(ToRegister(operand));
5095 } else {
5096 __ Push(ToOperand(operand));
5097 }
5098 }
5099
5100
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5101 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5102 Register input = ToRegister(instr->value());
5103 Condition final_branch_condition = EmitTypeofIs(instr, input);
5104 if (final_branch_condition != no_condition) {
5105 EmitBranch(instr, final_branch_condition);
5106 }
5107 }
5108
5109
EmitTypeofIs(LTypeofIsAndBranch * instr,Register input)5110 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5111 Label* true_label = instr->TrueLabel(chunk_);
5112 Label* false_label = instr->FalseLabel(chunk_);
5113 Handle<String> type_name = instr->type_literal();
5114 int left_block = instr->TrueDestination(chunk_);
5115 int right_block = instr->FalseDestination(chunk_);
5116 int next_block = GetNextEmittedBlock();
5117
5118 Label::Distance true_distance = left_block == next_block ? Label::kNear
5119 : Label::kFar;
5120 Label::Distance false_distance = right_block == next_block ? Label::kNear
5121 : Label::kFar;
5122 Condition final_branch_condition = no_condition;
5123 Factory* factory = isolate()->factory();
5124 if (String::Equals(type_name, factory->number_string())) {
5125 __ JumpIfSmi(input, true_label, true_distance);
5126 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
5127 Heap::kHeapNumberMapRootIndex);
5128
5129 final_branch_condition = equal;
5130
5131 } else if (String::Equals(type_name, factory->string_string())) {
5132 __ JumpIfSmi(input, false_label, false_distance);
5133 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5134 final_branch_condition = below;
5135
5136 } else if (String::Equals(type_name, factory->symbol_string())) {
5137 __ JumpIfSmi(input, false_label, false_distance);
5138 __ CmpObjectType(input, SYMBOL_TYPE, input);
5139 final_branch_condition = equal;
5140
5141 } else if (String::Equals(type_name, factory->boolean_string())) {
5142 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5143 __ j(equal, true_label, true_distance);
5144 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5145 final_branch_condition = equal;
5146
5147 } else if (String::Equals(type_name, factory->undefined_string())) {
5148 __ CompareRoot(input, Heap::kNullValueRootIndex);
5149 __ j(equal, false_label, false_distance);
5150 __ JumpIfSmi(input, false_label, false_distance);
5151 // Check for undetectable objects => true.
5152 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5153 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5154 Immediate(1 << Map::kIsUndetectable));
5155 final_branch_condition = not_zero;
5156
5157 } else if (String::Equals(type_name, factory->function_string())) {
5158 __ JumpIfSmi(input, false_label, false_distance);
5159 // Check for callable and not undetectable objects => true.
5160 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5161 __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
5162 __ andb(input,
5163 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5164 __ cmpb(input, Immediate(1 << Map::kIsCallable));
5165 final_branch_condition = equal;
5166
5167 } else if (String::Equals(type_name, factory->object_string())) {
5168 __ JumpIfSmi(input, false_label, false_distance);
5169 __ CompareRoot(input, Heap::kNullValueRootIndex);
5170 __ j(equal, true_label, true_distance);
5171 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5172 __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
5173 __ j(below, false_label, false_distance);
5174 // Check for callable or undetectable objects => false.
5175 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5176 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5177 final_branch_condition = zero;
5178
5179 // clang-format off
5180 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5181 } else if (String::Equals(type_name, factory->type##_string())) { \
5182 __ JumpIfSmi(input, false_label, false_distance); \
5183 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), \
5184 Heap::k##Type##MapRootIndex); \
5185 final_branch_condition = equal;
5186 SIMD128_TYPES(SIMD128_TYPE)
5187 #undef SIMD128_TYPE
5188 // clang-format on
5189
5190 } else {
5191 __ jmp(false_label, false_distance);
5192 }
5193
5194 return final_branch_condition;
5195 }
5196
5197
EnsureSpaceForLazyDeopt(int space_needed)5198 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5199 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5200 // Ensure that we have enough space after the previous lazy-bailout
5201 // instruction for patching the code here.
5202 int current_pc = masm()->pc_offset();
5203 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5204 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5205 __ Nop(padding_size);
5206 }
5207 }
5208 last_lazy_deopt_pc_ = masm()->pc_offset();
5209 }
5210
5211
DoLazyBailout(LLazyBailout * instr)5212 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5213 last_lazy_deopt_pc_ = masm()->pc_offset();
5214 DCHECK(instr->HasEnvironment());
5215 LEnvironment* env = instr->environment();
5216 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5217 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5218 }
5219
5220
DoDeoptimize(LDeoptimize * instr)5221 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5222 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5223 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5224 // needed return address), even though the implementation of LAZY and EAGER is
5225 // now identical. When LAZY is eventually completely folded into EAGER, remove
5226 // the special case below.
5227 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5228 type = Deoptimizer::LAZY;
5229 }
5230 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5231 }
5232
5233
DoDummy(LDummy * instr)5234 void LCodeGen::DoDummy(LDummy* instr) {
5235 // Nothing to see here, move on!
5236 }
5237
5238
DoDummyUse(LDummyUse * instr)5239 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5240 // Nothing to see here, move on!
5241 }
5242
5243
DoDeferredStackCheck(LStackCheck * instr)5244 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5245 PushSafepointRegistersScope scope(this);
5246 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
5247 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5248 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
5249 DCHECK(instr->HasEnvironment());
5250 LEnvironment* env = instr->environment();
5251 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5252 }
5253
5254
DoStackCheck(LStackCheck * instr)5255 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5256 class DeferredStackCheck final : public LDeferredCode {
5257 public:
5258 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5259 : LDeferredCode(codegen), instr_(instr) { }
5260 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5261 LInstruction* instr() override { return instr_; }
5262
5263 private:
5264 LStackCheck* instr_;
5265 };
5266
5267 DCHECK(instr->HasEnvironment());
5268 LEnvironment* env = instr->environment();
5269 // There is no LLazyBailout instruction for stack-checks. We have to
5270 // prepare for lazy deoptimization explicitly here.
5271 if (instr->hydrogen()->is_function_entry()) {
5272 // Perform stack overflow check.
5273 Label done;
5274 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5275 __ j(above_equal, &done, Label::kNear);
5276
5277 DCHECK(instr->context()->IsRegister());
5278 DCHECK(ToRegister(instr->context()).is(rsi));
5279 CallCode(isolate()->builtins()->StackCheck(),
5280 RelocInfo::CODE_TARGET,
5281 instr);
5282 __ bind(&done);
5283 } else {
5284 DCHECK(instr->hydrogen()->is_backwards_branch());
5285 // Perform stack overflow check if this goto needs it before jumping.
5286 DeferredStackCheck* deferred_stack_check =
5287 new(zone()) DeferredStackCheck(this, instr);
5288 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5289 __ j(below, deferred_stack_check->entry());
5290 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5291 __ bind(instr->done_label());
5292 deferred_stack_check->SetExit(instr->done_label());
5293 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5294 // Don't record a deoptimization index for the safepoint here.
5295 // This will be done explicitly when emitting call and the safepoint in
5296 // the deferred code.
5297 }
5298 }
5299
5300
DoOsrEntry(LOsrEntry * instr)5301 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5302 // This is a pseudo-instruction that ensures that the environment here is
5303 // properly registered for deoptimization and records the assembler's PC
5304 // offset.
5305 LEnvironment* environment = instr->environment();
5306
5307 // If the environment were already registered, we would have no way of
5308 // backpatching it with the spill slot operands.
5309 DCHECK(!environment->HasBeenRegistered());
5310 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5311
5312 GenerateOsrPrologue();
5313 }
5314
5315
DoForInPrepareMap(LForInPrepareMap * instr)5316 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5317 DCHECK(ToRegister(instr->context()).is(rsi));
5318
5319 Label use_cache, call_runtime;
5320 __ CheckEnumCache(&call_runtime);
5321
5322 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
5323 __ jmp(&use_cache, Label::kNear);
5324
5325 // Get the set of properties to enumerate.
5326 __ bind(&call_runtime);
5327 __ Push(rax);
5328 CallRuntime(Runtime::kForInEnumerate, instr);
5329 __ bind(&use_cache);
5330 }
5331
5332
DoForInCacheArray(LForInCacheArray * instr)5333 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5334 Register map = ToRegister(instr->map());
5335 Register result = ToRegister(instr->result());
5336 Label load_cache, done;
5337 __ EnumLength(result, map);
5338 __ Cmp(result, Smi::kZero);
5339 __ j(not_equal, &load_cache, Label::kNear);
5340 __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
5341 __ jmp(&done, Label::kNear);
5342 __ bind(&load_cache);
5343 __ LoadInstanceDescriptors(map, result);
5344 __ movp(result,
5345 FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5346 __ movp(result,
5347 FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5348 __ bind(&done);
5349 Condition cc = masm()->CheckSmi(result);
5350 DeoptimizeIf(cc, instr, DeoptimizeReason::kNoCache);
5351 }
5352
5353
DoCheckMapValue(LCheckMapValue * instr)5354 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5355 Register object = ToRegister(instr->value());
5356 __ cmpp(ToRegister(instr->map()),
5357 FieldOperand(object, HeapObject::kMapOffset));
5358 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
5359 }
5360
5361
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register object,Register index)5362 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5363 Register object,
5364 Register index) {
5365 PushSafepointRegistersScope scope(this);
5366 __ Push(object);
5367 __ Push(index);
5368 __ xorp(rsi, rsi);
5369 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5370 RecordSafepointWithRegisters(
5371 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5372 __ StoreToSafepointRegisterSlot(object, rax);
5373 }
5374
5375
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5376 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5377 class DeferredLoadMutableDouble final : public LDeferredCode {
5378 public:
5379 DeferredLoadMutableDouble(LCodeGen* codegen,
5380 LLoadFieldByIndex* instr,
5381 Register object,
5382 Register index)
5383 : LDeferredCode(codegen),
5384 instr_(instr),
5385 object_(object),
5386 index_(index) {
5387 }
5388 void Generate() override {
5389 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5390 }
5391 LInstruction* instr() override { return instr_; }
5392
5393 private:
5394 LLoadFieldByIndex* instr_;
5395 Register object_;
5396 Register index_;
5397 };
5398
5399 Register object = ToRegister(instr->object());
5400 Register index = ToRegister(instr->index());
5401
5402 DeferredLoadMutableDouble* deferred;
5403 deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
5404
5405 Label out_of_object, done;
5406 __ Move(kScratchRegister, Smi::FromInt(1));
5407 __ testp(index, kScratchRegister);
5408 __ j(not_zero, deferred->entry());
5409
5410 __ sarp(index, Immediate(1));
5411
5412 __ SmiToInteger32(index, index);
5413 __ cmpl(index, Immediate(0));
5414 __ j(less, &out_of_object, Label::kNear);
5415 __ movp(object, FieldOperand(object,
5416 index,
5417 times_pointer_size,
5418 JSObject::kHeaderSize));
5419 __ jmp(&done, Label::kNear);
5420
5421 __ bind(&out_of_object);
5422 __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
5423 __ negl(index);
5424 // Index is now equal to out of object property index plus 1.
5425 __ movp(object, FieldOperand(object,
5426 index,
5427 times_pointer_size,
5428 FixedArray::kHeaderSize - kPointerSize));
5429 __ bind(deferred->exit());
5430 __ bind(&done);
5431 }
5432
5433 #undef __
5434
5435 } // namespace internal
5436 } // namespace v8
5437
5438 #endif // V8_TARGET_ARCH_X64
5439