1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "assembler-aarch64.h"
28 #include "instructions-aarch64.h"
29 
30 namespace vixl {
31 namespace aarch64 {
32 
33 
34 // Floating-point infinity values.
35 const float16 kFP16PositiveInfinity = 0x7c00;
36 const float16 kFP16NegativeInfinity = 0xfc00;
37 const float kFP32PositiveInfinity = RawbitsToFloat(0x7f800000);
38 const float kFP32NegativeInfinity = RawbitsToFloat(0xff800000);
39 const double kFP64PositiveInfinity =
40     RawbitsToDouble(UINT64_C(0x7ff0000000000000));
41 const double kFP64NegativeInfinity =
42     RawbitsToDouble(UINT64_C(0xfff0000000000000));
43 
44 
45 // The default NaN values (for FPCR.DN=1).
46 const double kFP64DefaultNaN = RawbitsToDouble(UINT64_C(0x7ff8000000000000));
47 const float kFP32DefaultNaN = RawbitsToFloat(0x7fc00000);
48 const float16 kFP16DefaultNaN = 0x7e00;
49 
50 
RepeatBitsAcrossReg(unsigned reg_size,uint64_t value,unsigned width)51 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
52                                     uint64_t value,
53                                     unsigned width) {
54   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
55               (width == 32));
56   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
57   uint64_t result = value & ((UINT64_C(1) << width) - 1);
58   for (unsigned i = width; i < reg_size; i *= 2) {
59     result |= (result << i);
60   }
61   return result;
62 }
63 
64 
IsLoad() const65 bool Instruction::IsLoad() const {
66   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
67     return false;
68   }
69 
70   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
71     return Mask(LoadStorePairLBit) != 0;
72   } else {
73     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
74     switch (op) {
75       case LDRB_w:
76       case LDRH_w:
77       case LDR_w:
78       case LDR_x:
79       case LDRSB_w:
80       case LDRSB_x:
81       case LDRSH_w:
82       case LDRSH_x:
83       case LDRSW_x:
84       case LDR_b:
85       case LDR_h:
86       case LDR_s:
87       case LDR_d:
88       case LDR_q:
89         return true;
90       default:
91         return false;
92     }
93   }
94 }
95 
96 
IsStore() const97 bool Instruction::IsStore() const {
98   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
99     return false;
100   }
101 
102   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
103     return Mask(LoadStorePairLBit) == 0;
104   } else {
105     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
106     switch (op) {
107       case STRB_w:
108       case STRH_w:
109       case STR_w:
110       case STR_x:
111       case STR_b:
112       case STR_h:
113       case STR_s:
114       case STR_d:
115       case STR_q:
116         return true;
117       default:
118         return false;
119     }
120   }
121 }
122 
123 
124 // Logical immediates can't encode zero, so a return value of zero is used to
125 // indicate a failure case. Specifically, where the constraints on imm_s are
126 // not met.
GetImmLogical() const127 uint64_t Instruction::GetImmLogical() const {
128   unsigned reg_size = GetSixtyFourBits() ? kXRegSize : kWRegSize;
129   int32_t n = GetBitN();
130   int32_t imm_s = GetImmSetBits();
131   int32_t imm_r = GetImmRotate();
132 
133   // An integer is constructed from the n, imm_s and imm_r bits according to
134   // the following table:
135   //
136   //  N   imms    immr    size        S             R
137   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
138   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
139   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
140   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
141   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
142   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
143   // (s bits must not be all set)
144   //
145   // A pattern is constructed of size bits, where the least significant S+1
146   // bits are set. The pattern is rotated right by R, and repeated across a
147   // 32 or 64-bit value, depending on destination register width.
148   //
149 
150   if (n == 1) {
151     if (imm_s == 0x3f) {
152       return 0;
153     }
154     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
155     return RotateRight(bits, imm_r, 64);
156   } else {
157     if ((imm_s >> 1) == 0x1f) {
158       return 0;
159     }
160     for (int width = 0x20; width >= 0x2; width >>= 1) {
161       if ((imm_s & width) == 0) {
162         int mask = width - 1;
163         if ((imm_s & mask) == mask) {
164           return 0;
165         }
166         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
167         return RepeatBitsAcrossReg(reg_size,
168                                    RotateRight(bits, imm_r & mask, width),
169                                    width);
170       }
171     }
172   }
173   VIXL_UNREACHABLE();
174   return 0;
175 }
176 
177 
GetImmNEONabcdefgh() const178 uint32_t Instruction::GetImmNEONabcdefgh() const {
179   return GetImmNEONabc() << 5 | GetImmNEONdefgh();
180 }
181 
182 
Imm8ToFP32(uint32_t imm8)183 float Instruction::Imm8ToFP32(uint32_t imm8) {
184   //   Imm8: abcdefgh (8 bits)
185   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
186   // where B is b ^ 1
187   uint32_t bits = imm8;
188   uint32_t bit7 = (bits >> 7) & 0x1;
189   uint32_t bit6 = (bits >> 6) & 0x1;
190   uint32_t bit5_to_0 = bits & 0x3f;
191   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
192 
193   return RawbitsToFloat(result);
194 }
195 
196 
GetImmFP32() const197 float Instruction::GetImmFP32() const { return Imm8ToFP32(GetImmFP()); }
198 
199 
Imm8ToFP64(uint32_t imm8)200 double Instruction::Imm8ToFP64(uint32_t imm8) {
201   //   Imm8: abcdefgh (8 bits)
202   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
203   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
204   // where B is b ^ 1
205   uint32_t bits = imm8;
206   uint64_t bit7 = (bits >> 7) & 0x1;
207   uint64_t bit6 = (bits >> 6) & 0x1;
208   uint64_t bit5_to_0 = bits & 0x3f;
209   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
210 
211   return RawbitsToDouble(result);
212 }
213 
214 
GetImmFP64() const215 double Instruction::GetImmFP64() const { return Imm8ToFP64(GetImmFP()); }
216 
217 
GetImmNEONFP32() const218 float Instruction::GetImmNEONFP32() const {
219   return Imm8ToFP32(GetImmNEONabcdefgh());
220 }
221 
222 
GetImmNEONFP64() const223 double Instruction::GetImmNEONFP64() const {
224   return Imm8ToFP64(GetImmNEONabcdefgh());
225 }
226 
227 
CalcLSDataSize(LoadStoreOp op)228 unsigned CalcLSDataSize(LoadStoreOp op) {
229   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
230   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
231   if ((op & LSVector_mask) != 0) {
232     // Vector register memory operations encode the access size in the "size"
233     // and "opc" fields.
234     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
235       size = kQRegSizeInBytesLog2;
236     }
237   }
238   return size;
239 }
240 
241 
CalcLSPairDataSize(LoadStorePairOp op)242 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
243   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
244   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
245   switch (op) {
246     case STP_q:
247     case LDP_q:
248       return kQRegSizeInBytesLog2;
249     case STP_x:
250     case LDP_x:
251     case STP_d:
252     case LDP_d:
253       return kXRegSizeInBytesLog2;
254     default:
255       return kWRegSizeInBytesLog2;
256   }
257 }
258 
259 
GetImmBranchRangeBitwidth(ImmBranchType branch_type)260 int Instruction::GetImmBranchRangeBitwidth(ImmBranchType branch_type) {
261   switch (branch_type) {
262     case UncondBranchType:
263       return ImmUncondBranch_width;
264     case CondBranchType:
265       return ImmCondBranch_width;
266     case CompareBranchType:
267       return ImmCmpBranch_width;
268     case TestBranchType:
269       return ImmTestBranch_width;
270     default:
271       VIXL_UNREACHABLE();
272       return 0;
273   }
274 }
275 
276 
GetImmBranchForwardRange(ImmBranchType branch_type)277 int32_t Instruction::GetImmBranchForwardRange(ImmBranchType branch_type) {
278   int32_t encoded_max = 1 << (GetImmBranchRangeBitwidth(branch_type) - 1);
279   return encoded_max * kInstructionSize;
280 }
281 
282 
IsValidImmPCOffset(ImmBranchType branch_type,int64_t offset)283 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
284                                      int64_t offset) {
285   return IsIntN(GetImmBranchRangeBitwidth(branch_type), offset);
286 }
287 
288 
GetImmPCOffsetTarget() const289 const Instruction* Instruction::GetImmPCOffsetTarget() const {
290   const Instruction* base = this;
291   ptrdiff_t offset;
292   if (IsPCRelAddressing()) {
293     // ADR and ADRP.
294     offset = GetImmPCRel();
295     if (Mask(PCRelAddressingMask) == ADRP) {
296       base = AlignDown(base, kPageSize);
297       offset *= kPageSize;
298     } else {
299       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
300     }
301   } else {
302     // All PC-relative branches.
303     VIXL_ASSERT(GetBranchType() != UnknownBranchType);
304     // Relative branch offsets are instruction-size-aligned.
305     offset = GetImmBranch() * static_cast<int>(kInstructionSize);
306   }
307   return base + offset;
308 }
309 
310 
GetImmBranch() const311 int Instruction::GetImmBranch() const {
312   switch (GetBranchType()) {
313     case CondBranchType:
314       return GetImmCondBranch();
315     case UncondBranchType:
316       return GetImmUncondBranch();
317     case CompareBranchType:
318       return GetImmCmpBranch();
319     case TestBranchType:
320       return GetImmTestBranch();
321     default:
322       VIXL_UNREACHABLE();
323   }
324   return 0;
325 }
326 
327 
SetImmPCOffsetTarget(const Instruction * target)328 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
329   if (IsPCRelAddressing()) {
330     SetPCRelImmTarget(target);
331   } else {
332     SetBranchImmTarget(target);
333   }
334 }
335 
336 
SetPCRelImmTarget(const Instruction * target)337 void Instruction::SetPCRelImmTarget(const Instruction* target) {
338   ptrdiff_t imm21;
339   if ((Mask(PCRelAddressingMask) == ADR)) {
340     imm21 = target - this;
341   } else {
342     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
343     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
344     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
345     imm21 = target_page - this_page;
346   }
347   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
348 
349   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
350 }
351 
352 
SetBranchImmTarget(const Instruction * target)353 void Instruction::SetBranchImmTarget(const Instruction* target) {
354   VIXL_ASSERT(((target - this) & 3) == 0);
355   Instr branch_imm = 0;
356   uint32_t imm_mask = 0;
357   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
358   switch (GetBranchType()) {
359     case CondBranchType: {
360       branch_imm = Assembler::ImmCondBranch(offset);
361       imm_mask = ImmCondBranch_mask;
362       break;
363     }
364     case UncondBranchType: {
365       branch_imm = Assembler::ImmUncondBranch(offset);
366       imm_mask = ImmUncondBranch_mask;
367       break;
368     }
369     case CompareBranchType: {
370       branch_imm = Assembler::ImmCmpBranch(offset);
371       imm_mask = ImmCmpBranch_mask;
372       break;
373     }
374     case TestBranchType: {
375       branch_imm = Assembler::ImmTestBranch(offset);
376       imm_mask = ImmTestBranch_mask;
377       break;
378     }
379     default:
380       VIXL_UNREACHABLE();
381   }
382   SetInstructionBits(Mask(~imm_mask) | branch_imm);
383 }
384 
385 
SetImmLLiteral(const Instruction * source)386 void Instruction::SetImmLLiteral(const Instruction* source) {
387   VIXL_ASSERT(IsWordAligned(source));
388   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
389   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
390   Instr mask = ImmLLiteral_mask;
391 
392   SetInstructionBits(Mask(~mask) | imm);
393 }
394 
395 
VectorFormatHalfWidth(VectorFormat vform)396 VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
397   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
398               vform == kFormatH || vform == kFormatS || vform == kFormatD);
399   switch (vform) {
400     case kFormat8H:
401       return kFormat8B;
402     case kFormat4S:
403       return kFormat4H;
404     case kFormat2D:
405       return kFormat2S;
406     case kFormatH:
407       return kFormatB;
408     case kFormatS:
409       return kFormatH;
410     case kFormatD:
411       return kFormatS;
412     default:
413       VIXL_UNREACHABLE();
414       return kFormatUndefined;
415   }
416 }
417 
418 
VectorFormatDoubleWidth(VectorFormat vform)419 VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
420   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
421               vform == kFormatB || vform == kFormatH || vform == kFormatS);
422   switch (vform) {
423     case kFormat8B:
424       return kFormat8H;
425     case kFormat4H:
426       return kFormat4S;
427     case kFormat2S:
428       return kFormat2D;
429     case kFormatB:
430       return kFormatH;
431     case kFormatH:
432       return kFormatS;
433     case kFormatS:
434       return kFormatD;
435     default:
436       VIXL_UNREACHABLE();
437       return kFormatUndefined;
438   }
439 }
440 
441 
VectorFormatFillQ(VectorFormat vform)442 VectorFormat VectorFormatFillQ(VectorFormat vform) {
443   switch (vform) {
444     case kFormatB:
445     case kFormat8B:
446     case kFormat16B:
447       return kFormat16B;
448     case kFormatH:
449     case kFormat4H:
450     case kFormat8H:
451       return kFormat8H;
452     case kFormatS:
453     case kFormat2S:
454     case kFormat4S:
455       return kFormat4S;
456     case kFormatD:
457     case kFormat1D:
458     case kFormat2D:
459       return kFormat2D;
460     default:
461       VIXL_UNREACHABLE();
462       return kFormatUndefined;
463   }
464 }
465 
VectorFormatHalfWidthDoubleLanes(VectorFormat vform)466 VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
467   switch (vform) {
468     case kFormat4H:
469       return kFormat8B;
470     case kFormat8H:
471       return kFormat16B;
472     case kFormat2S:
473       return kFormat4H;
474     case kFormat4S:
475       return kFormat8H;
476     case kFormat1D:
477       return kFormat2S;
478     case kFormat2D:
479       return kFormat4S;
480     default:
481       VIXL_UNREACHABLE();
482       return kFormatUndefined;
483   }
484 }
485 
VectorFormatDoubleLanes(VectorFormat vform)486 VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
487   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
488   switch (vform) {
489     case kFormat8B:
490       return kFormat16B;
491     case kFormat4H:
492       return kFormat8H;
493     case kFormat2S:
494       return kFormat4S;
495     default:
496       VIXL_UNREACHABLE();
497       return kFormatUndefined;
498   }
499 }
500 
501 
VectorFormatHalfLanes(VectorFormat vform)502 VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
503   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
504   switch (vform) {
505     case kFormat16B:
506       return kFormat8B;
507     case kFormat8H:
508       return kFormat4H;
509     case kFormat4S:
510       return kFormat2S;
511     default:
512       VIXL_UNREACHABLE();
513       return kFormatUndefined;
514   }
515 }
516 
517 
ScalarFormatFromLaneSize(int laneSize)518 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
519   switch (laneSize) {
520     case 8:
521       return kFormatB;
522     case 16:
523       return kFormatH;
524     case 32:
525       return kFormatS;
526     case 64:
527       return kFormatD;
528     default:
529       VIXL_UNREACHABLE();
530       return kFormatUndefined;
531   }
532 }
533 
534 
ScalarFormatFromFormat(VectorFormat vform)535 VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
536   return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
537 }
538 
539 
RegisterSizeInBitsFromFormat(VectorFormat vform)540 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
541   VIXL_ASSERT(vform != kFormatUndefined);
542   switch (vform) {
543     case kFormatB:
544       return kBRegSize;
545     case kFormatH:
546       return kHRegSize;
547     case kFormatS:
548       return kSRegSize;
549     case kFormatD:
550       return kDRegSize;
551     case kFormat8B:
552     case kFormat4H:
553     case kFormat2S:
554     case kFormat1D:
555       return kDRegSize;
556     default:
557       return kQRegSize;
558   }
559 }
560 
561 
RegisterSizeInBytesFromFormat(VectorFormat vform)562 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
563   return RegisterSizeInBitsFromFormat(vform) / 8;
564 }
565 
566 
LaneSizeInBitsFromFormat(VectorFormat vform)567 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
568   VIXL_ASSERT(vform != kFormatUndefined);
569   switch (vform) {
570     case kFormatB:
571     case kFormat8B:
572     case kFormat16B:
573       return 8;
574     case kFormatH:
575     case kFormat4H:
576     case kFormat8H:
577       return 16;
578     case kFormatS:
579     case kFormat2S:
580     case kFormat4S:
581       return 32;
582     case kFormatD:
583     case kFormat1D:
584     case kFormat2D:
585       return 64;
586     default:
587       VIXL_UNREACHABLE();
588       return 0;
589   }
590 }
591 
592 
LaneSizeInBytesFromFormat(VectorFormat vform)593 int LaneSizeInBytesFromFormat(VectorFormat vform) {
594   return LaneSizeInBitsFromFormat(vform) / 8;
595 }
596 
597 
LaneSizeInBytesLog2FromFormat(VectorFormat vform)598 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
599   VIXL_ASSERT(vform != kFormatUndefined);
600   switch (vform) {
601     case kFormatB:
602     case kFormat8B:
603     case kFormat16B:
604       return 0;
605     case kFormatH:
606     case kFormat4H:
607     case kFormat8H:
608       return 1;
609     case kFormatS:
610     case kFormat2S:
611     case kFormat4S:
612       return 2;
613     case kFormatD:
614     case kFormat1D:
615     case kFormat2D:
616       return 3;
617     default:
618       VIXL_UNREACHABLE();
619       return 0;
620   }
621 }
622 
623 
LaneCountFromFormat(VectorFormat vform)624 int LaneCountFromFormat(VectorFormat vform) {
625   VIXL_ASSERT(vform != kFormatUndefined);
626   switch (vform) {
627     case kFormat16B:
628       return 16;
629     case kFormat8B:
630     case kFormat8H:
631       return 8;
632     case kFormat4H:
633     case kFormat4S:
634       return 4;
635     case kFormat2S:
636     case kFormat2D:
637       return 2;
638     case kFormat1D:
639     case kFormatB:
640     case kFormatH:
641     case kFormatS:
642     case kFormatD:
643       return 1;
644     default:
645       VIXL_UNREACHABLE();
646       return 0;
647   }
648 }
649 
650 
MaxLaneCountFromFormat(VectorFormat vform)651 int MaxLaneCountFromFormat(VectorFormat vform) {
652   VIXL_ASSERT(vform != kFormatUndefined);
653   switch (vform) {
654     case kFormatB:
655     case kFormat8B:
656     case kFormat16B:
657       return 16;
658     case kFormatH:
659     case kFormat4H:
660     case kFormat8H:
661       return 8;
662     case kFormatS:
663     case kFormat2S:
664     case kFormat4S:
665       return 4;
666     case kFormatD:
667     case kFormat1D:
668     case kFormat2D:
669       return 2;
670     default:
671       VIXL_UNREACHABLE();
672       return 0;
673   }
674 }
675 
676 
677 // Does 'vform' indicate a vector format or a scalar format?
IsVectorFormat(VectorFormat vform)678 bool IsVectorFormat(VectorFormat vform) {
679   VIXL_ASSERT(vform != kFormatUndefined);
680   switch (vform) {
681     case kFormatB:
682     case kFormatH:
683     case kFormatS:
684     case kFormatD:
685       return false;
686     default:
687       return true;
688   }
689 }
690 
691 
MaxIntFromFormat(VectorFormat vform)692 int64_t MaxIntFromFormat(VectorFormat vform) {
693   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
694 }
695 
696 
MinIntFromFormat(VectorFormat vform)697 int64_t MinIntFromFormat(VectorFormat vform) {
698   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
699 }
700 
701 
MaxUintFromFormat(VectorFormat vform)702 uint64_t MaxUintFromFormat(VectorFormat vform) {
703   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
704 }
705 }  // namespace aarch64
706 }  // namespace vixl
707