1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/ValueSymbolTable.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/Dwarf.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/SaveAndRestore.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
getTypeString(Type * T)40 static std::string getTypeString(Type *T) {
41   std::string Result;
42   raw_string_ostream Tmp(Result);
43   Tmp << *T;
44   return Tmp.str();
45 }
46 
47 /// Run: module ::= toplevelentity*
Run()48 bool LLParser::Run() {
49   // Prime the lexer.
50   Lex.Lex();
51 
52   if (Context.shouldDiscardValueNames())
53     return Error(
54         Lex.getLoc(),
55         "Can't read textual IR with a Context that discards named Values");
56 
57   return ParseTopLevelEntities() ||
58          ValidateEndOfModule();
59 }
60 
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)61 bool LLParser::parseStandaloneConstantValue(Constant *&C,
62                                             const SlotMapping *Slots) {
63   restoreParsingState(Slots);
64   Lex.Lex();
65 
66   Type *Ty = nullptr;
67   if (ParseType(Ty) || parseConstantValue(Ty, C))
68     return true;
69   if (Lex.getKind() != lltok::Eof)
70     return Error(Lex.getLoc(), "expected end of string");
71   return false;
72 }
73 
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)74 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
75                                     const SlotMapping *Slots) {
76   restoreParsingState(Slots);
77   Lex.Lex();
78 
79   Read = 0;
80   SMLoc Start = Lex.getLoc();
81   Ty = nullptr;
82   if (ParseType(Ty))
83     return true;
84   SMLoc End = Lex.getLoc();
85   Read = End.getPointer() - Start.getPointer();
86 
87   return false;
88 }
89 
restoreParsingState(const SlotMapping * Slots)90 void LLParser::restoreParsingState(const SlotMapping *Slots) {
91   if (!Slots)
92     return;
93   NumberedVals = Slots->GlobalValues;
94   NumberedMetadata = Slots->MetadataNodes;
95   for (const auto &I : Slots->NamedTypes)
96     NamedTypes.insert(
97         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
98   for (const auto &I : Slots->Types)
99     NumberedTypes.insert(
100         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
101 }
102 
103 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
104 /// module.
ValidateEndOfModule()105 bool LLParser::ValidateEndOfModule() {
106   // Handle any function attribute group forward references.
107   for (std::map<Value*, std::vector<unsigned> >::iterator
108          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
109          I != E; ++I) {
110     Value *V = I->first;
111     std::vector<unsigned> &Vec = I->second;
112     AttrBuilder B;
113 
114     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
115          VI != VE; ++VI)
116       B.merge(NumberedAttrBuilders[*VI]);
117 
118     if (Function *Fn = dyn_cast<Function>(V)) {
119       AttributeSet AS = Fn->getAttributes();
120       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
121       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
122                                AS.getFnAttributes());
123 
124       FnAttrs.merge(B);
125 
126       // If the alignment was parsed as an attribute, move to the alignment
127       // field.
128       if (FnAttrs.hasAlignmentAttr()) {
129         Fn->setAlignment(FnAttrs.getAlignment());
130         FnAttrs.removeAttribute(Attribute::Alignment);
131       }
132 
133       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
134                             AttributeSet::get(Context,
135                                               AttributeSet::FunctionIndex,
136                                               FnAttrs));
137       Fn->setAttributes(AS);
138     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
139       AttributeSet AS = CI->getAttributes();
140       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
141       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
142                                AS.getFnAttributes());
143       FnAttrs.merge(B);
144       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
145                             AttributeSet::get(Context,
146                                               AttributeSet::FunctionIndex,
147                                               FnAttrs));
148       CI->setAttributes(AS);
149     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
150       AttributeSet AS = II->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
152       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
153                                AS.getFnAttributes());
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
156                             AttributeSet::get(Context,
157                                               AttributeSet::FunctionIndex,
158                                               FnAttrs));
159       II->setAttributes(AS);
160     } else {
161       llvm_unreachable("invalid object with forward attribute group reference");
162     }
163   }
164 
165   // If there are entries in ForwardRefBlockAddresses at this point, the
166   // function was never defined.
167   if (!ForwardRefBlockAddresses.empty())
168     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
169                  "expected function name in blockaddress");
170 
171   for (const auto &NT : NumberedTypes)
172     if (NT.second.second.isValid())
173       return Error(NT.second.second,
174                    "use of undefined type '%" + Twine(NT.first) + "'");
175 
176   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
177        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
178     if (I->second.second.isValid())
179       return Error(I->second.second,
180                    "use of undefined type named '" + I->getKey() + "'");
181 
182   if (!ForwardRefComdats.empty())
183     return Error(ForwardRefComdats.begin()->second,
184                  "use of undefined comdat '$" +
185                      ForwardRefComdats.begin()->first + "'");
186 
187   if (!ForwardRefVals.empty())
188     return Error(ForwardRefVals.begin()->second.second,
189                  "use of undefined value '@" + ForwardRefVals.begin()->first +
190                  "'");
191 
192   if (!ForwardRefValIDs.empty())
193     return Error(ForwardRefValIDs.begin()->second.second,
194                  "use of undefined value '@" +
195                  Twine(ForwardRefValIDs.begin()->first) + "'");
196 
197   if (!ForwardRefMDNodes.empty())
198     return Error(ForwardRefMDNodes.begin()->second.second,
199                  "use of undefined metadata '!" +
200                  Twine(ForwardRefMDNodes.begin()->first) + "'");
201 
202   // Resolve metadata cycles.
203   for (auto &N : NumberedMetadata) {
204     if (N.second && !N.second->isResolved())
205       N.second->resolveCycles();
206   }
207 
208   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
209     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
210 
211   // Look for intrinsic functions and CallInst that need to be upgraded
212   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
213     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
214 
215   // Some types could be renamed during loading if several modules are
216   // loaded in the same LLVMContext (LTO scenario). In this case we should
217   // remangle intrinsics names as well.
218   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
219     Function *F = &*FI++;
220     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
221       F->replaceAllUsesWith(Remangled.getValue());
222       F->eraseFromParent();
223     }
224   }
225 
226   UpgradeDebugInfo(*M);
227 
228   UpgradeModuleFlags(*M);
229 
230   if (!Slots)
231     return false;
232   // Initialize the slot mapping.
233   // Because by this point we've parsed and validated everything, we can "steal"
234   // the mapping from LLParser as it doesn't need it anymore.
235   Slots->GlobalValues = std::move(NumberedVals);
236   Slots->MetadataNodes = std::move(NumberedMetadata);
237   for (const auto &I : NamedTypes)
238     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
239   for (const auto &I : NumberedTypes)
240     Slots->Types.insert(std::make_pair(I.first, I.second.first));
241 
242   return false;
243 }
244 
245 //===----------------------------------------------------------------------===//
246 // Top-Level Entities
247 //===----------------------------------------------------------------------===//
248 
ParseTopLevelEntities()249 bool LLParser::ParseTopLevelEntities() {
250   while (1) {
251     switch (Lex.getKind()) {
252     default:         return TokError("expected top-level entity");
253     case lltok::Eof: return false;
254     case lltok::kw_declare: if (ParseDeclare()) return true; break;
255     case lltok::kw_define:  if (ParseDefine()) return true; break;
256     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
257     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
258     case lltok::kw_source_filename:
259       if (ParseSourceFileName())
260         return true;
261       break;
262     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
263     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
264     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
265     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
266     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
267     case lltok::ComdatVar:  if (parseComdat()) return true; break;
268     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
269     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
270     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
271     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
272     case lltok::kw_uselistorder_bb:
273                                  if (ParseUseListOrderBB()) return true; break;
274     }
275   }
276 }
277 
278 
279 /// toplevelentity
280 ///   ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()281 bool LLParser::ParseModuleAsm() {
282   assert(Lex.getKind() == lltok::kw_module);
283   Lex.Lex();
284 
285   std::string AsmStr;
286   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
287       ParseStringConstant(AsmStr)) return true;
288 
289   M->appendModuleInlineAsm(AsmStr);
290   return false;
291 }
292 
293 /// toplevelentity
294 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
295 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()296 bool LLParser::ParseTargetDefinition() {
297   assert(Lex.getKind() == lltok::kw_target);
298   std::string Str;
299   switch (Lex.Lex()) {
300   default: return TokError("unknown target property");
301   case lltok::kw_triple:
302     Lex.Lex();
303     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
304         ParseStringConstant(Str))
305       return true;
306     M->setTargetTriple(Str);
307     return false;
308   case lltok::kw_datalayout:
309     Lex.Lex();
310     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
311         ParseStringConstant(Str))
312       return true;
313     M->setDataLayout(Str);
314     return false;
315   }
316 }
317 
318 /// toplevelentity
319 ///   ::= 'source_filename' '=' STRINGCONSTANT
ParseSourceFileName()320 bool LLParser::ParseSourceFileName() {
321   assert(Lex.getKind() == lltok::kw_source_filename);
322   std::string Str;
323   Lex.Lex();
324   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
325       ParseStringConstant(Str))
326     return true;
327   M->setSourceFileName(Str);
328   return false;
329 }
330 
331 /// toplevelentity
332 ///   ::= 'deplibs' '=' '[' ']'
333 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
334 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()335 bool LLParser::ParseDepLibs() {
336   assert(Lex.getKind() == lltok::kw_deplibs);
337   Lex.Lex();
338   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
339       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
340     return true;
341 
342   if (EatIfPresent(lltok::rsquare))
343     return false;
344 
345   do {
346     std::string Str;
347     if (ParseStringConstant(Str)) return true;
348   } while (EatIfPresent(lltok::comma));
349 
350   return ParseToken(lltok::rsquare, "expected ']' at end of list");
351 }
352 
353 /// ParseUnnamedType:
354 ///   ::= LocalVarID '=' 'type' type
ParseUnnamedType()355 bool LLParser::ParseUnnamedType() {
356   LocTy TypeLoc = Lex.getLoc();
357   unsigned TypeID = Lex.getUIntVal();
358   Lex.Lex(); // eat LocalVarID;
359 
360   if (ParseToken(lltok::equal, "expected '=' after name") ||
361       ParseToken(lltok::kw_type, "expected 'type' after '='"))
362     return true;
363 
364   Type *Result = nullptr;
365   if (ParseStructDefinition(TypeLoc, "",
366                             NumberedTypes[TypeID], Result)) return true;
367 
368   if (!isa<StructType>(Result)) {
369     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
370     if (Entry.first)
371       return Error(TypeLoc, "non-struct types may not be recursive");
372     Entry.first = Result;
373     Entry.second = SMLoc();
374   }
375 
376   return false;
377 }
378 
379 
380 /// toplevelentity
381 ///   ::= LocalVar '=' 'type' type
ParseNamedType()382 bool LLParser::ParseNamedType() {
383   std::string Name = Lex.getStrVal();
384   LocTy NameLoc = Lex.getLoc();
385   Lex.Lex();  // eat LocalVar.
386 
387   if (ParseToken(lltok::equal, "expected '=' after name") ||
388       ParseToken(lltok::kw_type, "expected 'type' after name"))
389     return true;
390 
391   Type *Result = nullptr;
392   if (ParseStructDefinition(NameLoc, Name,
393                             NamedTypes[Name], Result)) return true;
394 
395   if (!isa<StructType>(Result)) {
396     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
397     if (Entry.first)
398       return Error(NameLoc, "non-struct types may not be recursive");
399     Entry.first = Result;
400     Entry.second = SMLoc();
401   }
402 
403   return false;
404 }
405 
406 
407 /// toplevelentity
408 ///   ::= 'declare' FunctionHeader
ParseDeclare()409 bool LLParser::ParseDeclare() {
410   assert(Lex.getKind() == lltok::kw_declare);
411   Lex.Lex();
412 
413   std::vector<std::pair<unsigned, MDNode *>> MDs;
414   while (Lex.getKind() == lltok::MetadataVar) {
415     unsigned MDK;
416     MDNode *N;
417     if (ParseMetadataAttachment(MDK, N))
418       return true;
419     MDs.push_back({MDK, N});
420   }
421 
422   Function *F;
423   if (ParseFunctionHeader(F, false))
424     return true;
425   for (auto &MD : MDs)
426     F->addMetadata(MD.first, *MD.second);
427   return false;
428 }
429 
430 /// toplevelentity
431 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
ParseDefine()432 bool LLParser::ParseDefine() {
433   assert(Lex.getKind() == lltok::kw_define);
434   Lex.Lex();
435 
436   Function *F;
437   return ParseFunctionHeader(F, true) ||
438          ParseOptionalFunctionMetadata(*F) ||
439          ParseFunctionBody(*F);
440 }
441 
442 /// ParseGlobalType
443 ///   ::= 'constant'
444 ///   ::= 'global'
ParseGlobalType(bool & IsConstant)445 bool LLParser::ParseGlobalType(bool &IsConstant) {
446   if (Lex.getKind() == lltok::kw_constant)
447     IsConstant = true;
448   else if (Lex.getKind() == lltok::kw_global)
449     IsConstant = false;
450   else {
451     IsConstant = false;
452     return TokError("expected 'global' or 'constant'");
453   }
454   Lex.Lex();
455   return false;
456 }
457 
ParseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)458 bool LLParser::ParseOptionalUnnamedAddr(
459     GlobalVariable::UnnamedAddr &UnnamedAddr) {
460   if (EatIfPresent(lltok::kw_unnamed_addr))
461     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
462   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
463     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
464   else
465     UnnamedAddr = GlobalValue::UnnamedAddr::None;
466   return false;
467 }
468 
469 /// ParseUnnamedGlobal:
470 ///   OptionalVisibility (ALIAS | IFUNC) ...
471 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
472 ///                                                     ...   -> global variable
473 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
474 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
475 ///                                                     ...   -> global variable
ParseUnnamedGlobal()476 bool LLParser::ParseUnnamedGlobal() {
477   unsigned VarID = NumberedVals.size();
478   std::string Name;
479   LocTy NameLoc = Lex.getLoc();
480 
481   // Handle the GlobalID form.
482   if (Lex.getKind() == lltok::GlobalID) {
483     if (Lex.getUIntVal() != VarID)
484       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
485                    Twine(VarID) + "'");
486     Lex.Lex(); // eat GlobalID;
487 
488     if (ParseToken(lltok::equal, "expected '=' after name"))
489       return true;
490   }
491 
492   bool HasLinkage;
493   unsigned Linkage, Visibility, DLLStorageClass;
494   GlobalVariable::ThreadLocalMode TLM;
495   GlobalVariable::UnnamedAddr UnnamedAddr;
496   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
497       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
498     return true;
499 
500   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
501     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
502                        DLLStorageClass, TLM, UnnamedAddr);
503 
504   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
505                              DLLStorageClass, TLM, UnnamedAddr);
506 }
507 
508 /// ParseNamedGlobal:
509 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
510 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
511 ///                                                     ...   -> global variable
ParseNamedGlobal()512 bool LLParser::ParseNamedGlobal() {
513   assert(Lex.getKind() == lltok::GlobalVar);
514   LocTy NameLoc = Lex.getLoc();
515   std::string Name = Lex.getStrVal();
516   Lex.Lex();
517 
518   bool HasLinkage;
519   unsigned Linkage, Visibility, DLLStorageClass;
520   GlobalVariable::ThreadLocalMode TLM;
521   GlobalVariable::UnnamedAddr UnnamedAddr;
522   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
523       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
524       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
525     return true;
526 
527   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
528     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
529                        DLLStorageClass, TLM, UnnamedAddr);
530 
531   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
532                              DLLStorageClass, TLM, UnnamedAddr);
533 }
534 
parseComdat()535 bool LLParser::parseComdat() {
536   assert(Lex.getKind() == lltok::ComdatVar);
537   std::string Name = Lex.getStrVal();
538   LocTy NameLoc = Lex.getLoc();
539   Lex.Lex();
540 
541   if (ParseToken(lltok::equal, "expected '=' here"))
542     return true;
543 
544   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
545     return TokError("expected comdat type");
546 
547   Comdat::SelectionKind SK;
548   switch (Lex.getKind()) {
549   default:
550     return TokError("unknown selection kind");
551   case lltok::kw_any:
552     SK = Comdat::Any;
553     break;
554   case lltok::kw_exactmatch:
555     SK = Comdat::ExactMatch;
556     break;
557   case lltok::kw_largest:
558     SK = Comdat::Largest;
559     break;
560   case lltok::kw_noduplicates:
561     SK = Comdat::NoDuplicates;
562     break;
563   case lltok::kw_samesize:
564     SK = Comdat::SameSize;
565     break;
566   }
567   Lex.Lex();
568 
569   // See if the comdat was forward referenced, if so, use the comdat.
570   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
571   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
572   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
573     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
574 
575   Comdat *C;
576   if (I != ComdatSymTab.end())
577     C = &I->second;
578   else
579     C = M->getOrInsertComdat(Name);
580   C->setSelectionKind(SK);
581 
582   return false;
583 }
584 
585 // MDString:
586 //   ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)587 bool LLParser::ParseMDString(MDString *&Result) {
588   std::string Str;
589   if (ParseStringConstant(Str)) return true;
590   Result = MDString::get(Context, Str);
591   return false;
592 }
593 
594 // MDNode:
595 //   ::= '!' MDNodeNumber
ParseMDNodeID(MDNode * & Result)596 bool LLParser::ParseMDNodeID(MDNode *&Result) {
597   // !{ ..., !42, ... }
598   LocTy IDLoc = Lex.getLoc();
599   unsigned MID = 0;
600   if (ParseUInt32(MID))
601     return true;
602 
603   // If not a forward reference, just return it now.
604   if (NumberedMetadata.count(MID)) {
605     Result = NumberedMetadata[MID];
606     return false;
607   }
608 
609   // Otherwise, create MDNode forward reference.
610   auto &FwdRef = ForwardRefMDNodes[MID];
611   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
612 
613   Result = FwdRef.first.get();
614   NumberedMetadata[MID].reset(Result);
615   return false;
616 }
617 
618 /// ParseNamedMetadata:
619 ///   !foo = !{ !1, !2 }
ParseNamedMetadata()620 bool LLParser::ParseNamedMetadata() {
621   assert(Lex.getKind() == lltok::MetadataVar);
622   std::string Name = Lex.getStrVal();
623   Lex.Lex();
624 
625   if (ParseToken(lltok::equal, "expected '=' here") ||
626       ParseToken(lltok::exclaim, "Expected '!' here") ||
627       ParseToken(lltok::lbrace, "Expected '{' here"))
628     return true;
629 
630   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
631   if (Lex.getKind() != lltok::rbrace)
632     do {
633       if (ParseToken(lltok::exclaim, "Expected '!' here"))
634         return true;
635 
636       MDNode *N = nullptr;
637       if (ParseMDNodeID(N)) return true;
638       NMD->addOperand(N);
639     } while (EatIfPresent(lltok::comma));
640 
641   return ParseToken(lltok::rbrace, "expected end of metadata node");
642 }
643 
644 /// ParseStandaloneMetadata:
645 ///   !42 = !{...}
ParseStandaloneMetadata()646 bool LLParser::ParseStandaloneMetadata() {
647   assert(Lex.getKind() == lltok::exclaim);
648   Lex.Lex();
649   unsigned MetadataID = 0;
650 
651   MDNode *Init;
652   if (ParseUInt32(MetadataID) ||
653       ParseToken(lltok::equal, "expected '=' here"))
654     return true;
655 
656   // Detect common error, from old metadata syntax.
657   if (Lex.getKind() == lltok::Type)
658     return TokError("unexpected type in metadata definition");
659 
660   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
661   if (Lex.getKind() == lltok::MetadataVar) {
662     if (ParseSpecializedMDNode(Init, IsDistinct))
663       return true;
664   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
665              ParseMDTuple(Init, IsDistinct))
666     return true;
667 
668   // See if this was forward referenced, if so, handle it.
669   auto FI = ForwardRefMDNodes.find(MetadataID);
670   if (FI != ForwardRefMDNodes.end()) {
671     FI->second.first->replaceAllUsesWith(Init);
672     ForwardRefMDNodes.erase(FI);
673 
674     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
675   } else {
676     if (NumberedMetadata.count(MetadataID))
677       return TokError("Metadata id is already used");
678     NumberedMetadata[MetadataID].reset(Init);
679   }
680 
681   return false;
682 }
683 
isValidVisibilityForLinkage(unsigned V,unsigned L)684 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
685   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
686          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
687 }
688 
689 /// parseIndirectSymbol:
690 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
691 ///                     OptionalDLLStorageClass OptionalThreadLocal
692 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
693 ///
694 /// IndirectSymbol
695 ///   ::= TypeAndValue
696 ///
697 /// Everything through OptionalUnnamedAddr has already been parsed.
698 ///
parseIndirectSymbol(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)699 bool LLParser::parseIndirectSymbol(
700     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
701     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
702     GlobalVariable::UnnamedAddr UnnamedAddr) {
703   bool IsAlias;
704   if (Lex.getKind() == lltok::kw_alias)
705     IsAlias = true;
706   else if (Lex.getKind() == lltok::kw_ifunc)
707     IsAlias = false;
708   else
709     llvm_unreachable("Not an alias or ifunc!");
710   Lex.Lex();
711 
712   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
713 
714   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
715     return Error(NameLoc, "invalid linkage type for alias");
716 
717   if (!isValidVisibilityForLinkage(Visibility, L))
718     return Error(NameLoc,
719                  "symbol with local linkage must have default visibility");
720 
721   Type *Ty;
722   LocTy ExplicitTypeLoc = Lex.getLoc();
723   if (ParseType(Ty) ||
724       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
725     return true;
726 
727   Constant *Aliasee;
728   LocTy AliaseeLoc = Lex.getLoc();
729   if (Lex.getKind() != lltok::kw_bitcast &&
730       Lex.getKind() != lltok::kw_getelementptr &&
731       Lex.getKind() != lltok::kw_addrspacecast &&
732       Lex.getKind() != lltok::kw_inttoptr) {
733     if (ParseGlobalTypeAndValue(Aliasee))
734       return true;
735   } else {
736     // The bitcast dest type is not present, it is implied by the dest type.
737     ValID ID;
738     if (ParseValID(ID))
739       return true;
740     if (ID.Kind != ValID::t_Constant)
741       return Error(AliaseeLoc, "invalid aliasee");
742     Aliasee = ID.ConstantVal;
743   }
744 
745   Type *AliaseeType = Aliasee->getType();
746   auto *PTy = dyn_cast<PointerType>(AliaseeType);
747   if (!PTy)
748     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
749   unsigned AddrSpace = PTy->getAddressSpace();
750 
751   if (IsAlias && Ty != PTy->getElementType())
752     return Error(
753         ExplicitTypeLoc,
754         "explicit pointee type doesn't match operand's pointee type");
755 
756   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
757     return Error(
758         ExplicitTypeLoc,
759         "explicit pointee type should be a function type");
760 
761   GlobalValue *GVal = nullptr;
762 
763   // See if the alias was forward referenced, if so, prepare to replace the
764   // forward reference.
765   if (!Name.empty()) {
766     GVal = M->getNamedValue(Name);
767     if (GVal) {
768       if (!ForwardRefVals.erase(Name))
769         return Error(NameLoc, "redefinition of global '@" + Name + "'");
770     }
771   } else {
772     auto I = ForwardRefValIDs.find(NumberedVals.size());
773     if (I != ForwardRefValIDs.end()) {
774       GVal = I->second.first;
775       ForwardRefValIDs.erase(I);
776     }
777   }
778 
779   // Okay, create the alias but do not insert it into the module yet.
780   std::unique_ptr<GlobalIndirectSymbol> GA;
781   if (IsAlias)
782     GA.reset(GlobalAlias::create(Ty, AddrSpace,
783                                  (GlobalValue::LinkageTypes)Linkage, Name,
784                                  Aliasee, /*Parent*/ nullptr));
785   else
786     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
787                                  (GlobalValue::LinkageTypes)Linkage, Name,
788                                  Aliasee, /*Parent*/ nullptr));
789   GA->setThreadLocalMode(TLM);
790   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
791   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
792   GA->setUnnamedAddr(UnnamedAddr);
793 
794   if (Name.empty())
795     NumberedVals.push_back(GA.get());
796 
797   if (GVal) {
798     // Verify that types agree.
799     if (GVal->getType() != GA->getType())
800       return Error(
801           ExplicitTypeLoc,
802           "forward reference and definition of alias have different types");
803 
804     // If they agree, just RAUW the old value with the alias and remove the
805     // forward ref info.
806     GVal->replaceAllUsesWith(GA.get());
807     GVal->eraseFromParent();
808   }
809 
810   // Insert into the module, we know its name won't collide now.
811   if (IsAlias)
812     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
813   else
814     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
815   assert(GA->getName() == Name && "Should not be a name conflict!");
816 
817   // The module owns this now
818   GA.release();
819 
820   return false;
821 }
822 
823 /// ParseGlobal
824 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
825 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
826 ///       OptionalExternallyInitialized GlobalType Type Const
827 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
828 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
829 ///       OptionalExternallyInitialized GlobalType Type Const
830 ///
831 /// Everything up to and including OptionalUnnamedAddr has been parsed
832 /// already.
833 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)834 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
835                            unsigned Linkage, bool HasLinkage,
836                            unsigned Visibility, unsigned DLLStorageClass,
837                            GlobalVariable::ThreadLocalMode TLM,
838                            GlobalVariable::UnnamedAddr UnnamedAddr) {
839   if (!isValidVisibilityForLinkage(Visibility, Linkage))
840     return Error(NameLoc,
841                  "symbol with local linkage must have default visibility");
842 
843   unsigned AddrSpace;
844   bool IsConstant, IsExternallyInitialized;
845   LocTy IsExternallyInitializedLoc;
846   LocTy TyLoc;
847 
848   Type *Ty = nullptr;
849   if (ParseOptionalAddrSpace(AddrSpace) ||
850       ParseOptionalToken(lltok::kw_externally_initialized,
851                          IsExternallyInitialized,
852                          &IsExternallyInitializedLoc) ||
853       ParseGlobalType(IsConstant) ||
854       ParseType(Ty, TyLoc))
855     return true;
856 
857   // If the linkage is specified and is external, then no initializer is
858   // present.
859   Constant *Init = nullptr;
860   if (!HasLinkage ||
861       !GlobalValue::isValidDeclarationLinkage(
862           (GlobalValue::LinkageTypes)Linkage)) {
863     if (ParseGlobalValue(Ty, Init))
864       return true;
865   }
866 
867   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
868     return Error(TyLoc, "invalid type for global variable");
869 
870   GlobalValue *GVal = nullptr;
871 
872   // See if the global was forward referenced, if so, use the global.
873   if (!Name.empty()) {
874     GVal = M->getNamedValue(Name);
875     if (GVal) {
876       if (!ForwardRefVals.erase(Name))
877         return Error(NameLoc, "redefinition of global '@" + Name + "'");
878     }
879   } else {
880     auto I = ForwardRefValIDs.find(NumberedVals.size());
881     if (I != ForwardRefValIDs.end()) {
882       GVal = I->second.first;
883       ForwardRefValIDs.erase(I);
884     }
885   }
886 
887   GlobalVariable *GV;
888   if (!GVal) {
889     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
890                             Name, nullptr, GlobalVariable::NotThreadLocal,
891                             AddrSpace);
892   } else {
893     if (GVal->getValueType() != Ty)
894       return Error(TyLoc,
895             "forward reference and definition of global have different types");
896 
897     GV = cast<GlobalVariable>(GVal);
898 
899     // Move the forward-reference to the correct spot in the module.
900     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
901   }
902 
903   if (Name.empty())
904     NumberedVals.push_back(GV);
905 
906   // Set the parsed properties on the global.
907   if (Init)
908     GV->setInitializer(Init);
909   GV->setConstant(IsConstant);
910   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
911   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
912   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
913   GV->setExternallyInitialized(IsExternallyInitialized);
914   GV->setThreadLocalMode(TLM);
915   GV->setUnnamedAddr(UnnamedAddr);
916 
917   // Parse attributes on the global.
918   while (Lex.getKind() == lltok::comma) {
919     Lex.Lex();
920 
921     if (Lex.getKind() == lltok::kw_section) {
922       Lex.Lex();
923       GV->setSection(Lex.getStrVal());
924       if (ParseToken(lltok::StringConstant, "expected global section string"))
925         return true;
926     } else if (Lex.getKind() == lltok::kw_align) {
927       unsigned Alignment;
928       if (ParseOptionalAlignment(Alignment)) return true;
929       GV->setAlignment(Alignment);
930     } else if (Lex.getKind() == lltok::MetadataVar) {
931       if (ParseGlobalObjectMetadataAttachment(*GV))
932         return true;
933     } else {
934       Comdat *C;
935       if (parseOptionalComdat(Name, C))
936         return true;
937       if (C)
938         GV->setComdat(C);
939       else
940         return TokError("unknown global variable property!");
941     }
942   }
943 
944   return false;
945 }
946 
947 /// ParseUnnamedAttrGrp
948 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()949 bool LLParser::ParseUnnamedAttrGrp() {
950   assert(Lex.getKind() == lltok::kw_attributes);
951   LocTy AttrGrpLoc = Lex.getLoc();
952   Lex.Lex();
953 
954   if (Lex.getKind() != lltok::AttrGrpID)
955     return TokError("expected attribute group id");
956 
957   unsigned VarID = Lex.getUIntVal();
958   std::vector<unsigned> unused;
959   LocTy BuiltinLoc;
960   Lex.Lex();
961 
962   if (ParseToken(lltok::equal, "expected '=' here") ||
963       ParseToken(lltok::lbrace, "expected '{' here") ||
964       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
965                                  BuiltinLoc) ||
966       ParseToken(lltok::rbrace, "expected end of attribute group"))
967     return true;
968 
969   if (!NumberedAttrBuilders[VarID].hasAttributes())
970     return Error(AttrGrpLoc, "attribute group has no attributes");
971 
972   return false;
973 }
974 
975 /// ParseFnAttributeValuePairs
976 ///   ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)977 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
978                                           std::vector<unsigned> &FwdRefAttrGrps,
979                                           bool inAttrGrp, LocTy &BuiltinLoc) {
980   bool HaveError = false;
981 
982   B.clear();
983 
984   while (true) {
985     lltok::Kind Token = Lex.getKind();
986     if (Token == lltok::kw_builtin)
987       BuiltinLoc = Lex.getLoc();
988     switch (Token) {
989     default:
990       if (!inAttrGrp) return HaveError;
991       return Error(Lex.getLoc(), "unterminated attribute group");
992     case lltok::rbrace:
993       // Finished.
994       return false;
995 
996     case lltok::AttrGrpID: {
997       // Allow a function to reference an attribute group:
998       //
999       //   define void @foo() #1 { ... }
1000       if (inAttrGrp)
1001         HaveError |=
1002           Error(Lex.getLoc(),
1003               "cannot have an attribute group reference in an attribute group");
1004 
1005       unsigned AttrGrpNum = Lex.getUIntVal();
1006       if (inAttrGrp) break;
1007 
1008       // Save the reference to the attribute group. We'll fill it in later.
1009       FwdRefAttrGrps.push_back(AttrGrpNum);
1010       break;
1011     }
1012     // Target-dependent attributes:
1013     case lltok::StringConstant: {
1014       if (ParseStringAttribute(B))
1015         return true;
1016       continue;
1017     }
1018 
1019     // Target-independent attributes:
1020     case lltok::kw_align: {
1021       // As a hack, we allow function alignment to be initially parsed as an
1022       // attribute on a function declaration/definition or added to an attribute
1023       // group and later moved to the alignment field.
1024       unsigned Alignment;
1025       if (inAttrGrp) {
1026         Lex.Lex();
1027         if (ParseToken(lltok::equal, "expected '=' here") ||
1028             ParseUInt32(Alignment))
1029           return true;
1030       } else {
1031         if (ParseOptionalAlignment(Alignment))
1032           return true;
1033       }
1034       B.addAlignmentAttr(Alignment);
1035       continue;
1036     }
1037     case lltok::kw_alignstack: {
1038       unsigned Alignment;
1039       if (inAttrGrp) {
1040         Lex.Lex();
1041         if (ParseToken(lltok::equal, "expected '=' here") ||
1042             ParseUInt32(Alignment))
1043           return true;
1044       } else {
1045         if (ParseOptionalStackAlignment(Alignment))
1046           return true;
1047       }
1048       B.addStackAlignmentAttr(Alignment);
1049       continue;
1050     }
1051     case lltok::kw_allocsize: {
1052       unsigned ElemSizeArg;
1053       Optional<unsigned> NumElemsArg;
1054       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1055       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1056         return true;
1057       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1058       continue;
1059     }
1060     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1061     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1062     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1063     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1064     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1065     case lltok::kw_inaccessiblememonly:
1066       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1067     case lltok::kw_inaccessiblemem_or_argmemonly:
1068       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1069     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1070     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1071     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1072     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1073     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1074     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1075     case lltok::kw_noimplicitfloat:
1076       B.addAttribute(Attribute::NoImplicitFloat); break;
1077     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1078     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1079     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1080     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1081     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1082     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1083     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1084     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1085     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1086     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1087     case lltok::kw_returns_twice:
1088       B.addAttribute(Attribute::ReturnsTwice); break;
1089     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1090     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1091     case lltok::kw_sspstrong:
1092       B.addAttribute(Attribute::StackProtectStrong); break;
1093     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1094     case lltok::kw_sanitize_address:
1095       B.addAttribute(Attribute::SanitizeAddress); break;
1096     case lltok::kw_sanitize_thread:
1097       B.addAttribute(Attribute::SanitizeThread); break;
1098     case lltok::kw_sanitize_memory:
1099       B.addAttribute(Attribute::SanitizeMemory); break;
1100     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1101     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1102 
1103     // Error handling.
1104     case lltok::kw_inreg:
1105     case lltok::kw_signext:
1106     case lltok::kw_zeroext:
1107       HaveError |=
1108         Error(Lex.getLoc(),
1109               "invalid use of attribute on a function");
1110       break;
1111     case lltok::kw_byval:
1112     case lltok::kw_dereferenceable:
1113     case lltok::kw_dereferenceable_or_null:
1114     case lltok::kw_inalloca:
1115     case lltok::kw_nest:
1116     case lltok::kw_noalias:
1117     case lltok::kw_nocapture:
1118     case lltok::kw_nonnull:
1119     case lltok::kw_returned:
1120     case lltok::kw_sret:
1121     case lltok::kw_swifterror:
1122     case lltok::kw_swiftself:
1123       HaveError |=
1124         Error(Lex.getLoc(),
1125               "invalid use of parameter-only attribute on a function");
1126       break;
1127     }
1128 
1129     Lex.Lex();
1130   }
1131 }
1132 
1133 //===----------------------------------------------------------------------===//
1134 // GlobalValue Reference/Resolution Routines.
1135 //===----------------------------------------------------------------------===//
1136 
createGlobalFwdRef(Module * M,PointerType * PTy,const std::string & Name)1137 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1138                                               const std::string &Name) {
1139   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1140     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1141   else
1142     return new GlobalVariable(*M, PTy->getElementType(), false,
1143                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1144                               nullptr, GlobalVariable::NotThreadLocal,
1145                               PTy->getAddressSpace());
1146 }
1147 
1148 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1149 /// forward reference record if needed.  This can return null if the value
1150 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1151 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1152                                     LocTy Loc) {
1153   PointerType *PTy = dyn_cast<PointerType>(Ty);
1154   if (!PTy) {
1155     Error(Loc, "global variable reference must have pointer type");
1156     return nullptr;
1157   }
1158 
1159   // Look this name up in the normal function symbol table.
1160   GlobalValue *Val =
1161     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1162 
1163   // If this is a forward reference for the value, see if we already created a
1164   // forward ref record.
1165   if (!Val) {
1166     auto I = ForwardRefVals.find(Name);
1167     if (I != ForwardRefVals.end())
1168       Val = I->second.first;
1169   }
1170 
1171   // If we have the value in the symbol table or fwd-ref table, return it.
1172   if (Val) {
1173     if (Val->getType() == Ty) return Val;
1174     Error(Loc, "'@" + Name + "' defined with type '" +
1175           getTypeString(Val->getType()) + "'");
1176     return nullptr;
1177   }
1178 
1179   // Otherwise, create a new forward reference for this value and remember it.
1180   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1181   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1182   return FwdVal;
1183 }
1184 
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1185 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1186   PointerType *PTy = dyn_cast<PointerType>(Ty);
1187   if (!PTy) {
1188     Error(Loc, "global variable reference must have pointer type");
1189     return nullptr;
1190   }
1191 
1192   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1193 
1194   // If this is a forward reference for the value, see if we already created a
1195   // forward ref record.
1196   if (!Val) {
1197     auto I = ForwardRefValIDs.find(ID);
1198     if (I != ForwardRefValIDs.end())
1199       Val = I->second.first;
1200   }
1201 
1202   // If we have the value in the symbol table or fwd-ref table, return it.
1203   if (Val) {
1204     if (Val->getType() == Ty) return Val;
1205     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1206           getTypeString(Val->getType()) + "'");
1207     return nullptr;
1208   }
1209 
1210   // Otherwise, create a new forward reference for this value and remember it.
1211   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1212   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1213   return FwdVal;
1214 }
1215 
1216 
1217 //===----------------------------------------------------------------------===//
1218 // Comdat Reference/Resolution Routines.
1219 //===----------------------------------------------------------------------===//
1220 
getComdat(const std::string & Name,LocTy Loc)1221 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1222   // Look this name up in the comdat symbol table.
1223   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1224   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1225   if (I != ComdatSymTab.end())
1226     return &I->second;
1227 
1228   // Otherwise, create a new forward reference for this value and remember it.
1229   Comdat *C = M->getOrInsertComdat(Name);
1230   ForwardRefComdats[Name] = Loc;
1231   return C;
1232 }
1233 
1234 
1235 //===----------------------------------------------------------------------===//
1236 // Helper Routines.
1237 //===----------------------------------------------------------------------===//
1238 
1239 /// ParseToken - If the current token has the specified kind, eat it and return
1240 /// success.  Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1241 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1242   if (Lex.getKind() != T)
1243     return TokError(ErrMsg);
1244   Lex.Lex();
1245   return false;
1246 }
1247 
1248 /// ParseStringConstant
1249 ///   ::= StringConstant
ParseStringConstant(std::string & Result)1250 bool LLParser::ParseStringConstant(std::string &Result) {
1251   if (Lex.getKind() != lltok::StringConstant)
1252     return TokError("expected string constant");
1253   Result = Lex.getStrVal();
1254   Lex.Lex();
1255   return false;
1256 }
1257 
1258 /// ParseUInt32
1259 ///   ::= uint32
ParseUInt32(unsigned & Val)1260 bool LLParser::ParseUInt32(unsigned &Val) {
1261   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1262     return TokError("expected integer");
1263   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1264   if (Val64 != unsigned(Val64))
1265     return TokError("expected 32-bit integer (too large)");
1266   Val = Val64;
1267   Lex.Lex();
1268   return false;
1269 }
1270 
1271 /// ParseUInt64
1272 ///   ::= uint64
ParseUInt64(uint64_t & Val)1273 bool LLParser::ParseUInt64(uint64_t &Val) {
1274   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1275     return TokError("expected integer");
1276   Val = Lex.getAPSIntVal().getLimitedValue();
1277   Lex.Lex();
1278   return false;
1279 }
1280 
1281 /// ParseTLSModel
1282 ///   := 'localdynamic'
1283 ///   := 'initialexec'
1284 ///   := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1285 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1286   switch (Lex.getKind()) {
1287     default:
1288       return TokError("expected localdynamic, initialexec or localexec");
1289     case lltok::kw_localdynamic:
1290       TLM = GlobalVariable::LocalDynamicTLSModel;
1291       break;
1292     case lltok::kw_initialexec:
1293       TLM = GlobalVariable::InitialExecTLSModel;
1294       break;
1295     case lltok::kw_localexec:
1296       TLM = GlobalVariable::LocalExecTLSModel;
1297       break;
1298   }
1299 
1300   Lex.Lex();
1301   return false;
1302 }
1303 
1304 /// ParseOptionalThreadLocal
1305 ///   := /*empty*/
1306 ///   := 'thread_local'
1307 ///   := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1308 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1309   TLM = GlobalVariable::NotThreadLocal;
1310   if (!EatIfPresent(lltok::kw_thread_local))
1311     return false;
1312 
1313   TLM = GlobalVariable::GeneralDynamicTLSModel;
1314   if (Lex.getKind() == lltok::lparen) {
1315     Lex.Lex();
1316     return ParseTLSModel(TLM) ||
1317       ParseToken(lltok::rparen, "expected ')' after thread local model");
1318   }
1319   return false;
1320 }
1321 
1322 /// ParseOptionalAddrSpace
1323 ///   := /*empty*/
1324 ///   := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1325 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1326   AddrSpace = 0;
1327   if (!EatIfPresent(lltok::kw_addrspace))
1328     return false;
1329   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1330          ParseUInt32(AddrSpace) ||
1331          ParseToken(lltok::rparen, "expected ')' in address space");
1332 }
1333 
1334 /// ParseStringAttribute
1335 ///   := StringConstant
1336 ///   := StringConstant '=' StringConstant
ParseStringAttribute(AttrBuilder & B)1337 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1338   std::string Attr = Lex.getStrVal();
1339   Lex.Lex();
1340   std::string Val;
1341   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1342     return true;
1343   B.addAttribute(Attr, Val);
1344   return false;
1345 }
1346 
1347 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1348 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1349   bool HaveError = false;
1350 
1351   B.clear();
1352 
1353   while (1) {
1354     lltok::Kind Token = Lex.getKind();
1355     switch (Token) {
1356     default:  // End of attributes.
1357       return HaveError;
1358     case lltok::StringConstant: {
1359       if (ParseStringAttribute(B))
1360         return true;
1361       continue;
1362     }
1363     case lltok::kw_align: {
1364       unsigned Alignment;
1365       if (ParseOptionalAlignment(Alignment))
1366         return true;
1367       B.addAlignmentAttr(Alignment);
1368       continue;
1369     }
1370     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1371     case lltok::kw_dereferenceable: {
1372       uint64_t Bytes;
1373       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1374         return true;
1375       B.addDereferenceableAttr(Bytes);
1376       continue;
1377     }
1378     case lltok::kw_dereferenceable_or_null: {
1379       uint64_t Bytes;
1380       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1381         return true;
1382       B.addDereferenceableOrNullAttr(Bytes);
1383       continue;
1384     }
1385     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1386     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1387     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1388     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1389     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1390     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1391     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1392     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1393     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1394     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1395     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1396     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1397     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1398     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1399     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1400 
1401     case lltok::kw_alignstack:
1402     case lltok::kw_alwaysinline:
1403     case lltok::kw_argmemonly:
1404     case lltok::kw_builtin:
1405     case lltok::kw_inlinehint:
1406     case lltok::kw_jumptable:
1407     case lltok::kw_minsize:
1408     case lltok::kw_naked:
1409     case lltok::kw_nobuiltin:
1410     case lltok::kw_noduplicate:
1411     case lltok::kw_noimplicitfloat:
1412     case lltok::kw_noinline:
1413     case lltok::kw_nonlazybind:
1414     case lltok::kw_noredzone:
1415     case lltok::kw_noreturn:
1416     case lltok::kw_nounwind:
1417     case lltok::kw_optnone:
1418     case lltok::kw_optsize:
1419     case lltok::kw_returns_twice:
1420     case lltok::kw_sanitize_address:
1421     case lltok::kw_sanitize_memory:
1422     case lltok::kw_sanitize_thread:
1423     case lltok::kw_ssp:
1424     case lltok::kw_sspreq:
1425     case lltok::kw_sspstrong:
1426     case lltok::kw_safestack:
1427     case lltok::kw_uwtable:
1428       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1429       break;
1430     }
1431 
1432     Lex.Lex();
1433   }
1434 }
1435 
1436 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1437 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1438   bool HaveError = false;
1439 
1440   B.clear();
1441 
1442   while (1) {
1443     lltok::Kind Token = Lex.getKind();
1444     switch (Token) {
1445     default:  // End of attributes.
1446       return HaveError;
1447     case lltok::StringConstant: {
1448       if (ParseStringAttribute(B))
1449         return true;
1450       continue;
1451     }
1452     case lltok::kw_dereferenceable: {
1453       uint64_t Bytes;
1454       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1455         return true;
1456       B.addDereferenceableAttr(Bytes);
1457       continue;
1458     }
1459     case lltok::kw_dereferenceable_or_null: {
1460       uint64_t Bytes;
1461       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1462         return true;
1463       B.addDereferenceableOrNullAttr(Bytes);
1464       continue;
1465     }
1466     case lltok::kw_align: {
1467       unsigned Alignment;
1468       if (ParseOptionalAlignment(Alignment))
1469         return true;
1470       B.addAlignmentAttr(Alignment);
1471       continue;
1472     }
1473     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1474     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1475     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1476     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1477     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1478 
1479     // Error handling.
1480     case lltok::kw_byval:
1481     case lltok::kw_inalloca:
1482     case lltok::kw_nest:
1483     case lltok::kw_nocapture:
1484     case lltok::kw_returned:
1485     case lltok::kw_sret:
1486     case lltok::kw_swifterror:
1487     case lltok::kw_swiftself:
1488       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1489       break;
1490 
1491     case lltok::kw_alignstack:
1492     case lltok::kw_alwaysinline:
1493     case lltok::kw_argmemonly:
1494     case lltok::kw_builtin:
1495     case lltok::kw_cold:
1496     case lltok::kw_inlinehint:
1497     case lltok::kw_jumptable:
1498     case lltok::kw_minsize:
1499     case lltok::kw_naked:
1500     case lltok::kw_nobuiltin:
1501     case lltok::kw_noduplicate:
1502     case lltok::kw_noimplicitfloat:
1503     case lltok::kw_noinline:
1504     case lltok::kw_nonlazybind:
1505     case lltok::kw_noredzone:
1506     case lltok::kw_noreturn:
1507     case lltok::kw_nounwind:
1508     case lltok::kw_optnone:
1509     case lltok::kw_optsize:
1510     case lltok::kw_returns_twice:
1511     case lltok::kw_sanitize_address:
1512     case lltok::kw_sanitize_memory:
1513     case lltok::kw_sanitize_thread:
1514     case lltok::kw_ssp:
1515     case lltok::kw_sspreq:
1516     case lltok::kw_sspstrong:
1517     case lltok::kw_safestack:
1518     case lltok::kw_uwtable:
1519       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1520       break;
1521 
1522     case lltok::kw_readnone:
1523     case lltok::kw_readonly:
1524       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1525     }
1526 
1527     Lex.Lex();
1528   }
1529 }
1530 
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)1531 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1532   HasLinkage = true;
1533   switch (Kind) {
1534   default:
1535     HasLinkage = false;
1536     return GlobalValue::ExternalLinkage;
1537   case lltok::kw_private:
1538     return GlobalValue::PrivateLinkage;
1539   case lltok::kw_internal:
1540     return GlobalValue::InternalLinkage;
1541   case lltok::kw_weak:
1542     return GlobalValue::WeakAnyLinkage;
1543   case lltok::kw_weak_odr:
1544     return GlobalValue::WeakODRLinkage;
1545   case lltok::kw_linkonce:
1546     return GlobalValue::LinkOnceAnyLinkage;
1547   case lltok::kw_linkonce_odr:
1548     return GlobalValue::LinkOnceODRLinkage;
1549   case lltok::kw_available_externally:
1550     return GlobalValue::AvailableExternallyLinkage;
1551   case lltok::kw_appending:
1552     return GlobalValue::AppendingLinkage;
1553   case lltok::kw_common:
1554     return GlobalValue::CommonLinkage;
1555   case lltok::kw_extern_weak:
1556     return GlobalValue::ExternalWeakLinkage;
1557   case lltok::kw_external:
1558     return GlobalValue::ExternalLinkage;
1559   }
1560 }
1561 
1562 /// ParseOptionalLinkage
1563 ///   ::= /*empty*/
1564 ///   ::= 'private'
1565 ///   ::= 'internal'
1566 ///   ::= 'weak'
1567 ///   ::= 'weak_odr'
1568 ///   ::= 'linkonce'
1569 ///   ::= 'linkonce_odr'
1570 ///   ::= 'available_externally'
1571 ///   ::= 'appending'
1572 ///   ::= 'common'
1573 ///   ::= 'extern_weak'
1574 ///   ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass)1575 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1576                                     unsigned &Visibility,
1577                                     unsigned &DLLStorageClass) {
1578   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1579   if (HasLinkage)
1580     Lex.Lex();
1581   ParseOptionalVisibility(Visibility);
1582   ParseOptionalDLLStorageClass(DLLStorageClass);
1583   return false;
1584 }
1585 
1586 /// ParseOptionalVisibility
1587 ///   ::= /*empty*/
1588 ///   ::= 'default'
1589 ///   ::= 'hidden'
1590 ///   ::= 'protected'
1591 ///
ParseOptionalVisibility(unsigned & Res)1592 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1593   switch (Lex.getKind()) {
1594   default:
1595     Res = GlobalValue::DefaultVisibility;
1596     return;
1597   case lltok::kw_default:
1598     Res = GlobalValue::DefaultVisibility;
1599     break;
1600   case lltok::kw_hidden:
1601     Res = GlobalValue::HiddenVisibility;
1602     break;
1603   case lltok::kw_protected:
1604     Res = GlobalValue::ProtectedVisibility;
1605     break;
1606   }
1607   Lex.Lex();
1608 }
1609 
1610 /// ParseOptionalDLLStorageClass
1611 ///   ::= /*empty*/
1612 ///   ::= 'dllimport'
1613 ///   ::= 'dllexport'
1614 ///
ParseOptionalDLLStorageClass(unsigned & Res)1615 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1616   switch (Lex.getKind()) {
1617   default:
1618     Res = GlobalValue::DefaultStorageClass;
1619     return;
1620   case lltok::kw_dllimport:
1621     Res = GlobalValue::DLLImportStorageClass;
1622     break;
1623   case lltok::kw_dllexport:
1624     Res = GlobalValue::DLLExportStorageClass;
1625     break;
1626   }
1627   Lex.Lex();
1628 }
1629 
1630 /// ParseOptionalCallingConv
1631 ///   ::= /*empty*/
1632 ///   ::= 'ccc'
1633 ///   ::= 'fastcc'
1634 ///   ::= 'intel_ocl_bicc'
1635 ///   ::= 'coldcc'
1636 ///   ::= 'x86_stdcallcc'
1637 ///   ::= 'x86_fastcallcc'
1638 ///   ::= 'x86_thiscallcc'
1639 ///   ::= 'x86_vectorcallcc'
1640 ///   ::= 'arm_apcscc'
1641 ///   ::= 'arm_aapcscc'
1642 ///   ::= 'arm_aapcs_vfpcc'
1643 ///   ::= 'msp430_intrcc'
1644 ///   ::= 'avr_intrcc'
1645 ///   ::= 'avr_signalcc'
1646 ///   ::= 'ptx_kernel'
1647 ///   ::= 'ptx_device'
1648 ///   ::= 'spir_func'
1649 ///   ::= 'spir_kernel'
1650 ///   ::= 'x86_64_sysvcc'
1651 ///   ::= 'x86_64_win64cc'
1652 ///   ::= 'webkit_jscc'
1653 ///   ::= 'anyregcc'
1654 ///   ::= 'preserve_mostcc'
1655 ///   ::= 'preserve_allcc'
1656 ///   ::= 'ghccc'
1657 ///   ::= 'swiftcc'
1658 ///   ::= 'x86_intrcc'
1659 ///   ::= 'hhvmcc'
1660 ///   ::= 'hhvm_ccc'
1661 ///   ::= 'cxx_fast_tlscc'
1662 ///   ::= 'amdgpu_vs'
1663 ///   ::= 'amdgpu_tcs'
1664 ///   ::= 'amdgpu_tes'
1665 ///   ::= 'amdgpu_gs'
1666 ///   ::= 'amdgpu_ps'
1667 ///   ::= 'amdgpu_cs'
1668 ///   ::= 'amdgpu_kernel'
1669 ///   ::= 'cc' UINT
1670 ///
ParseOptionalCallingConv(unsigned & CC)1671 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1672   switch (Lex.getKind()) {
1673   default:                       CC = CallingConv::C; return false;
1674   case lltok::kw_ccc:            CC = CallingConv::C; break;
1675   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1676   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1677   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1678   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1679   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1680   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1681   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1682   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1683   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1684   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1685   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1686   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1687   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1688   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1689   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1690   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1691   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1692   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1693   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1694   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1695   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1696   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1697   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1698   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1699   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1700   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1701   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1702   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1703   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1704   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1705   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1706   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1707   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1708   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1709   case lltok::kw_cc: {
1710       Lex.Lex();
1711       return ParseUInt32(CC);
1712     }
1713   }
1714 
1715   Lex.Lex();
1716   return false;
1717 }
1718 
1719 /// ParseMetadataAttachment
1720 ///   ::= !dbg !42
ParseMetadataAttachment(unsigned & Kind,MDNode * & MD)1721 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1722   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1723 
1724   std::string Name = Lex.getStrVal();
1725   Kind = M->getMDKindID(Name);
1726   Lex.Lex();
1727 
1728   return ParseMDNode(MD);
1729 }
1730 
1731 /// ParseInstructionMetadata
1732 ///   ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction & Inst)1733 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1734   do {
1735     if (Lex.getKind() != lltok::MetadataVar)
1736       return TokError("expected metadata after comma");
1737 
1738     unsigned MDK;
1739     MDNode *N;
1740     if (ParseMetadataAttachment(MDK, N))
1741       return true;
1742 
1743     Inst.setMetadata(MDK, N);
1744     if (MDK == LLVMContext::MD_tbaa)
1745       InstsWithTBAATag.push_back(&Inst);
1746 
1747     // If this is the end of the list, we're done.
1748   } while (EatIfPresent(lltok::comma));
1749   return false;
1750 }
1751 
1752 /// ParseGlobalObjectMetadataAttachment
1753 ///   ::= !dbg !57
ParseGlobalObjectMetadataAttachment(GlobalObject & GO)1754 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1755   unsigned MDK;
1756   MDNode *N;
1757   if (ParseMetadataAttachment(MDK, N))
1758     return true;
1759 
1760   GO.addMetadata(MDK, *N);
1761   return false;
1762 }
1763 
1764 /// ParseOptionalFunctionMetadata
1765 ///   ::= (!dbg !57)*
ParseOptionalFunctionMetadata(Function & F)1766 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1767   while (Lex.getKind() == lltok::MetadataVar)
1768     if (ParseGlobalObjectMetadataAttachment(F))
1769       return true;
1770   return false;
1771 }
1772 
1773 /// ParseOptionalAlignment
1774 ///   ::= /* empty */
1775 ///   ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1776 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1777   Alignment = 0;
1778   if (!EatIfPresent(lltok::kw_align))
1779     return false;
1780   LocTy AlignLoc = Lex.getLoc();
1781   if (ParseUInt32(Alignment)) return true;
1782   if (!isPowerOf2_32(Alignment))
1783     return Error(AlignLoc, "alignment is not a power of two");
1784   if (Alignment > Value::MaximumAlignment)
1785     return Error(AlignLoc, "huge alignments are not supported yet");
1786   return false;
1787 }
1788 
1789 /// ParseOptionalDerefAttrBytes
1790 ///   ::= /* empty */
1791 ///   ::= AttrKind '(' 4 ')'
1792 ///
1793 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)1794 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1795                                            uint64_t &Bytes) {
1796   assert((AttrKind == lltok::kw_dereferenceable ||
1797           AttrKind == lltok::kw_dereferenceable_or_null) &&
1798          "contract!");
1799 
1800   Bytes = 0;
1801   if (!EatIfPresent(AttrKind))
1802     return false;
1803   LocTy ParenLoc = Lex.getLoc();
1804   if (!EatIfPresent(lltok::lparen))
1805     return Error(ParenLoc, "expected '('");
1806   LocTy DerefLoc = Lex.getLoc();
1807   if (ParseUInt64(Bytes)) return true;
1808   ParenLoc = Lex.getLoc();
1809   if (!EatIfPresent(lltok::rparen))
1810     return Error(ParenLoc, "expected ')'");
1811   if (!Bytes)
1812     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1813   return false;
1814 }
1815 
1816 /// ParseOptionalCommaAlign
1817 ///   ::=
1818 ///   ::= ',' align 4
1819 ///
1820 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1821 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1822 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1823                                        bool &AteExtraComma) {
1824   AteExtraComma = false;
1825   while (EatIfPresent(lltok::comma)) {
1826     // Metadata at the end is an early exit.
1827     if (Lex.getKind() == lltok::MetadataVar) {
1828       AteExtraComma = true;
1829       return false;
1830     }
1831 
1832     if (Lex.getKind() != lltok::kw_align)
1833       return Error(Lex.getLoc(), "expected metadata or 'align'");
1834 
1835     if (ParseOptionalAlignment(Alignment)) return true;
1836   }
1837 
1838   return false;
1839 }
1840 
parseAllocSizeArguments(unsigned & BaseSizeArg,Optional<unsigned> & HowManyArg)1841 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1842                                        Optional<unsigned> &HowManyArg) {
1843   Lex.Lex();
1844 
1845   auto StartParen = Lex.getLoc();
1846   if (!EatIfPresent(lltok::lparen))
1847     return Error(StartParen, "expected '('");
1848 
1849   if (ParseUInt32(BaseSizeArg))
1850     return true;
1851 
1852   if (EatIfPresent(lltok::comma)) {
1853     auto HowManyAt = Lex.getLoc();
1854     unsigned HowMany;
1855     if (ParseUInt32(HowMany))
1856       return true;
1857     if (HowMany == BaseSizeArg)
1858       return Error(HowManyAt,
1859                    "'allocsize' indices can't refer to the same parameter");
1860     HowManyArg = HowMany;
1861   } else
1862     HowManyArg = None;
1863 
1864   auto EndParen = Lex.getLoc();
1865   if (!EatIfPresent(lltok::rparen))
1866     return Error(EndParen, "expected ')'");
1867   return false;
1868 }
1869 
1870 /// ParseScopeAndOrdering
1871 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1872 ///   else: ::=
1873 ///
1874 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1875 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1876                                      AtomicOrdering &Ordering) {
1877   if (!isAtomic)
1878     return false;
1879 
1880   Scope = CrossThread;
1881   if (EatIfPresent(lltok::kw_singlethread))
1882     Scope = SingleThread;
1883 
1884   return ParseOrdering(Ordering);
1885 }
1886 
1887 /// ParseOrdering
1888 ///   ::= AtomicOrdering
1889 ///
1890 /// This sets Ordering to the parsed value.
ParseOrdering(AtomicOrdering & Ordering)1891 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1892   switch (Lex.getKind()) {
1893   default: return TokError("Expected ordering on atomic instruction");
1894   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1895   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1896   // Not specified yet:
1897   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1898   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1899   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1900   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1901   case lltok::kw_seq_cst:
1902     Ordering = AtomicOrdering::SequentiallyConsistent;
1903     break;
1904   }
1905   Lex.Lex();
1906   return false;
1907 }
1908 
1909 /// ParseOptionalStackAlignment
1910 ///   ::= /* empty */
1911 ///   ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1912 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1913   Alignment = 0;
1914   if (!EatIfPresent(lltok::kw_alignstack))
1915     return false;
1916   LocTy ParenLoc = Lex.getLoc();
1917   if (!EatIfPresent(lltok::lparen))
1918     return Error(ParenLoc, "expected '('");
1919   LocTy AlignLoc = Lex.getLoc();
1920   if (ParseUInt32(Alignment)) return true;
1921   ParenLoc = Lex.getLoc();
1922   if (!EatIfPresent(lltok::rparen))
1923     return Error(ParenLoc, "expected ')'");
1924   if (!isPowerOf2_32(Alignment))
1925     return Error(AlignLoc, "stack alignment is not a power of two");
1926   return false;
1927 }
1928 
1929 /// ParseIndexList - This parses the index list for an insert/extractvalue
1930 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1931 /// comma at the end of the line and find that it is followed by metadata.
1932 /// Clients that don't allow metadata can call the version of this function that
1933 /// only takes one argument.
1934 ///
1935 /// ParseIndexList
1936 ///    ::=  (',' uint32)+
1937 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1938 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1939                               bool &AteExtraComma) {
1940   AteExtraComma = false;
1941 
1942   if (Lex.getKind() != lltok::comma)
1943     return TokError("expected ',' as start of index list");
1944 
1945   while (EatIfPresent(lltok::comma)) {
1946     if (Lex.getKind() == lltok::MetadataVar) {
1947       if (Indices.empty()) return TokError("expected index");
1948       AteExtraComma = true;
1949       return false;
1950     }
1951     unsigned Idx = 0;
1952     if (ParseUInt32(Idx)) return true;
1953     Indices.push_back(Idx);
1954   }
1955 
1956   return false;
1957 }
1958 
1959 //===----------------------------------------------------------------------===//
1960 // Type Parsing.
1961 //===----------------------------------------------------------------------===//
1962 
1963 /// ParseType - Parse a type.
ParseType(Type * & Result,const Twine & Msg,bool AllowVoid)1964 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1965   SMLoc TypeLoc = Lex.getLoc();
1966   switch (Lex.getKind()) {
1967   default:
1968     return TokError(Msg);
1969   case lltok::Type:
1970     // Type ::= 'float' | 'void' (etc)
1971     Result = Lex.getTyVal();
1972     Lex.Lex();
1973     break;
1974   case lltok::lbrace:
1975     // Type ::= StructType
1976     if (ParseAnonStructType(Result, false))
1977       return true;
1978     break;
1979   case lltok::lsquare:
1980     // Type ::= '[' ... ']'
1981     Lex.Lex(); // eat the lsquare.
1982     if (ParseArrayVectorType(Result, false))
1983       return true;
1984     break;
1985   case lltok::less: // Either vector or packed struct.
1986     // Type ::= '<' ... '>'
1987     Lex.Lex();
1988     if (Lex.getKind() == lltok::lbrace) {
1989       if (ParseAnonStructType(Result, true) ||
1990           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1991         return true;
1992     } else if (ParseArrayVectorType(Result, true))
1993       return true;
1994     break;
1995   case lltok::LocalVar: {
1996     // Type ::= %foo
1997     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1998 
1999     // If the type hasn't been defined yet, create a forward definition and
2000     // remember where that forward def'n was seen (in case it never is defined).
2001     if (!Entry.first) {
2002       Entry.first = StructType::create(Context, Lex.getStrVal());
2003       Entry.second = Lex.getLoc();
2004     }
2005     Result = Entry.first;
2006     Lex.Lex();
2007     break;
2008   }
2009 
2010   case lltok::LocalVarID: {
2011     // Type ::= %4
2012     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2013 
2014     // If the type hasn't been defined yet, create a forward definition and
2015     // remember where that forward def'n was seen (in case it never is defined).
2016     if (!Entry.first) {
2017       Entry.first = StructType::create(Context);
2018       Entry.second = Lex.getLoc();
2019     }
2020     Result = Entry.first;
2021     Lex.Lex();
2022     break;
2023   }
2024   }
2025 
2026   // Parse the type suffixes.
2027   while (1) {
2028     switch (Lex.getKind()) {
2029     // End of type.
2030     default:
2031       if (!AllowVoid && Result->isVoidTy())
2032         return Error(TypeLoc, "void type only allowed for function results");
2033       return false;
2034 
2035     // Type ::= Type '*'
2036     case lltok::star:
2037       if (Result->isLabelTy())
2038         return TokError("basic block pointers are invalid");
2039       if (Result->isVoidTy())
2040         return TokError("pointers to void are invalid - use i8* instead");
2041       if (!PointerType::isValidElementType(Result))
2042         return TokError("pointer to this type is invalid");
2043       Result = PointerType::getUnqual(Result);
2044       Lex.Lex();
2045       break;
2046 
2047     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2048     case lltok::kw_addrspace: {
2049       if (Result->isLabelTy())
2050         return TokError("basic block pointers are invalid");
2051       if (Result->isVoidTy())
2052         return TokError("pointers to void are invalid; use i8* instead");
2053       if (!PointerType::isValidElementType(Result))
2054         return TokError("pointer to this type is invalid");
2055       unsigned AddrSpace;
2056       if (ParseOptionalAddrSpace(AddrSpace) ||
2057           ParseToken(lltok::star, "expected '*' in address space"))
2058         return true;
2059 
2060       Result = PointerType::get(Result, AddrSpace);
2061       break;
2062     }
2063 
2064     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2065     case lltok::lparen:
2066       if (ParseFunctionType(Result))
2067         return true;
2068       break;
2069     }
2070   }
2071 }
2072 
2073 /// ParseParameterList
2074 ///    ::= '(' ')'
2075 ///    ::= '(' Arg (',' Arg)* ')'
2076 ///  Arg
2077 ///    ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)2078 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2079                                   PerFunctionState &PFS, bool IsMustTailCall,
2080                                   bool InVarArgsFunc) {
2081   if (ParseToken(lltok::lparen, "expected '(' in call"))
2082     return true;
2083 
2084   unsigned AttrIndex = 1;
2085   while (Lex.getKind() != lltok::rparen) {
2086     // If this isn't the first argument, we need a comma.
2087     if (!ArgList.empty() &&
2088         ParseToken(lltok::comma, "expected ',' in argument list"))
2089       return true;
2090 
2091     // Parse an ellipsis if this is a musttail call in a variadic function.
2092     if (Lex.getKind() == lltok::dotdotdot) {
2093       const char *Msg = "unexpected ellipsis in argument list for ";
2094       if (!IsMustTailCall)
2095         return TokError(Twine(Msg) + "non-musttail call");
2096       if (!InVarArgsFunc)
2097         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2098       Lex.Lex();  // Lex the '...', it is purely for readability.
2099       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2100     }
2101 
2102     // Parse the argument.
2103     LocTy ArgLoc;
2104     Type *ArgTy = nullptr;
2105     AttrBuilder ArgAttrs;
2106     Value *V;
2107     if (ParseType(ArgTy, ArgLoc))
2108       return true;
2109 
2110     if (ArgTy->isMetadataTy()) {
2111       if (ParseMetadataAsValue(V, PFS))
2112         return true;
2113     } else {
2114       // Otherwise, handle normal operands.
2115       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2116         return true;
2117     }
2118     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2119                                                              AttrIndex++,
2120                                                              ArgAttrs)));
2121   }
2122 
2123   if (IsMustTailCall && InVarArgsFunc)
2124     return TokError("expected '...' at end of argument list for musttail call "
2125                     "in varargs function");
2126 
2127   Lex.Lex();  // Lex the ')'.
2128   return false;
2129 }
2130 
2131 /// ParseOptionalOperandBundles
2132 ///    ::= /*empty*/
2133 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2134 ///
2135 /// OperandBundle
2136 ///    ::= bundle-tag '(' ')'
2137 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2138 ///
2139 /// bundle-tag ::= String Constant
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)2140 bool LLParser::ParseOptionalOperandBundles(
2141     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2142   LocTy BeginLoc = Lex.getLoc();
2143   if (!EatIfPresent(lltok::lsquare))
2144     return false;
2145 
2146   while (Lex.getKind() != lltok::rsquare) {
2147     // If this isn't the first operand bundle, we need a comma.
2148     if (!BundleList.empty() &&
2149         ParseToken(lltok::comma, "expected ',' in input list"))
2150       return true;
2151 
2152     std::string Tag;
2153     if (ParseStringConstant(Tag))
2154       return true;
2155 
2156     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2157       return true;
2158 
2159     std::vector<Value *> Inputs;
2160     while (Lex.getKind() != lltok::rparen) {
2161       // If this isn't the first input, we need a comma.
2162       if (!Inputs.empty() &&
2163           ParseToken(lltok::comma, "expected ',' in input list"))
2164         return true;
2165 
2166       Type *Ty = nullptr;
2167       Value *Input = nullptr;
2168       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2169         return true;
2170       Inputs.push_back(Input);
2171     }
2172 
2173     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2174 
2175     Lex.Lex(); // Lex the ')'.
2176   }
2177 
2178   if (BundleList.empty())
2179     return Error(BeginLoc, "operand bundle set must not be empty");
2180 
2181   Lex.Lex(); // Lex the ']'.
2182   return false;
2183 }
2184 
2185 /// ParseArgumentList - Parse the argument list for a function type or function
2186 /// prototype.
2187 ///   ::= '(' ArgTypeListI ')'
2188 /// ArgTypeListI
2189 ///   ::= /*empty*/
2190 ///   ::= '...'
2191 ///   ::= ArgTypeList ',' '...'
2192 ///   ::= ArgType (',' ArgType)*
2193 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)2194 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2195                                  bool &isVarArg){
2196   isVarArg = false;
2197   assert(Lex.getKind() == lltok::lparen);
2198   Lex.Lex(); // eat the (.
2199 
2200   if (Lex.getKind() == lltok::rparen) {
2201     // empty
2202   } else if (Lex.getKind() == lltok::dotdotdot) {
2203     isVarArg = true;
2204     Lex.Lex();
2205   } else {
2206     LocTy TypeLoc = Lex.getLoc();
2207     Type *ArgTy = nullptr;
2208     AttrBuilder Attrs;
2209     std::string Name;
2210 
2211     if (ParseType(ArgTy) ||
2212         ParseOptionalParamAttrs(Attrs)) return true;
2213 
2214     if (ArgTy->isVoidTy())
2215       return Error(TypeLoc, "argument can not have void type");
2216 
2217     if (Lex.getKind() == lltok::LocalVar) {
2218       Name = Lex.getStrVal();
2219       Lex.Lex();
2220     }
2221 
2222     if (!FunctionType::isValidArgumentType(ArgTy))
2223       return Error(TypeLoc, "invalid type for function argument");
2224 
2225     unsigned AttrIndex = 1;
2226     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2227                                                            AttrIndex++, Attrs),
2228                          std::move(Name));
2229 
2230     while (EatIfPresent(lltok::comma)) {
2231       // Handle ... at end of arg list.
2232       if (EatIfPresent(lltok::dotdotdot)) {
2233         isVarArg = true;
2234         break;
2235       }
2236 
2237       // Otherwise must be an argument type.
2238       TypeLoc = Lex.getLoc();
2239       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2240 
2241       if (ArgTy->isVoidTy())
2242         return Error(TypeLoc, "argument can not have void type");
2243 
2244       if (Lex.getKind() == lltok::LocalVar) {
2245         Name = Lex.getStrVal();
2246         Lex.Lex();
2247       } else {
2248         Name = "";
2249       }
2250 
2251       if (!ArgTy->isFirstClassType())
2252         return Error(TypeLoc, "invalid type for function argument");
2253 
2254       ArgList.emplace_back(
2255           TypeLoc, ArgTy,
2256           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2257           std::move(Name));
2258     }
2259   }
2260 
2261   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2262 }
2263 
2264 /// ParseFunctionType
2265 ///  ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)2266 bool LLParser::ParseFunctionType(Type *&Result) {
2267   assert(Lex.getKind() == lltok::lparen);
2268 
2269   if (!FunctionType::isValidReturnType(Result))
2270     return TokError("invalid function return type");
2271 
2272   SmallVector<ArgInfo, 8> ArgList;
2273   bool isVarArg;
2274   if (ParseArgumentList(ArgList, isVarArg))
2275     return true;
2276 
2277   // Reject names on the arguments lists.
2278   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2279     if (!ArgList[i].Name.empty())
2280       return Error(ArgList[i].Loc, "argument name invalid in function type");
2281     if (ArgList[i].Attrs.hasAttributes(i + 1))
2282       return Error(ArgList[i].Loc,
2283                    "argument attributes invalid in function type");
2284   }
2285 
2286   SmallVector<Type*, 16> ArgListTy;
2287   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2288     ArgListTy.push_back(ArgList[i].Ty);
2289 
2290   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2291   return false;
2292 }
2293 
2294 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2295 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)2296 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2297   SmallVector<Type*, 8> Elts;
2298   if (ParseStructBody(Elts)) return true;
2299 
2300   Result = StructType::get(Context, Elts, Packed);
2301   return false;
2302 }
2303 
2304 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)2305 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2306                                      std::pair<Type*, LocTy> &Entry,
2307                                      Type *&ResultTy) {
2308   // If the type was already defined, diagnose the redefinition.
2309   if (Entry.first && !Entry.second.isValid())
2310     return Error(TypeLoc, "redefinition of type");
2311 
2312   // If we have opaque, just return without filling in the definition for the
2313   // struct.  This counts as a definition as far as the .ll file goes.
2314   if (EatIfPresent(lltok::kw_opaque)) {
2315     // This type is being defined, so clear the location to indicate this.
2316     Entry.second = SMLoc();
2317 
2318     // If this type number has never been uttered, create it.
2319     if (!Entry.first)
2320       Entry.first = StructType::create(Context, Name);
2321     ResultTy = Entry.first;
2322     return false;
2323   }
2324 
2325   // If the type starts with '<', then it is either a packed struct or a vector.
2326   bool isPacked = EatIfPresent(lltok::less);
2327 
2328   // If we don't have a struct, then we have a random type alias, which we
2329   // accept for compatibility with old files.  These types are not allowed to be
2330   // forward referenced and not allowed to be recursive.
2331   if (Lex.getKind() != lltok::lbrace) {
2332     if (Entry.first)
2333       return Error(TypeLoc, "forward references to non-struct type");
2334 
2335     ResultTy = nullptr;
2336     if (isPacked)
2337       return ParseArrayVectorType(ResultTy, true);
2338     return ParseType(ResultTy);
2339   }
2340 
2341   // This type is being defined, so clear the location to indicate this.
2342   Entry.second = SMLoc();
2343 
2344   // If this type number has never been uttered, create it.
2345   if (!Entry.first)
2346     Entry.first = StructType::create(Context, Name);
2347 
2348   StructType *STy = cast<StructType>(Entry.first);
2349 
2350   SmallVector<Type*, 8> Body;
2351   if (ParseStructBody(Body) ||
2352       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2353     return true;
2354 
2355   STy->setBody(Body, isPacked);
2356   ResultTy = STy;
2357   return false;
2358 }
2359 
2360 
2361 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2362 ///   StructType
2363 ///     ::= '{' '}'
2364 ///     ::= '{' Type (',' Type)* '}'
2365 ///     ::= '<' '{' '}' '>'
2366 ///     ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)2367 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2368   assert(Lex.getKind() == lltok::lbrace);
2369   Lex.Lex(); // Consume the '{'
2370 
2371   // Handle the empty struct.
2372   if (EatIfPresent(lltok::rbrace))
2373     return false;
2374 
2375   LocTy EltTyLoc = Lex.getLoc();
2376   Type *Ty = nullptr;
2377   if (ParseType(Ty)) return true;
2378   Body.push_back(Ty);
2379 
2380   if (!StructType::isValidElementType(Ty))
2381     return Error(EltTyLoc, "invalid element type for struct");
2382 
2383   while (EatIfPresent(lltok::comma)) {
2384     EltTyLoc = Lex.getLoc();
2385     if (ParseType(Ty)) return true;
2386 
2387     if (!StructType::isValidElementType(Ty))
2388       return Error(EltTyLoc, "invalid element type for struct");
2389 
2390     Body.push_back(Ty);
2391   }
2392 
2393   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2394 }
2395 
2396 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2397 /// token has already been consumed.
2398 ///   Type
2399 ///     ::= '[' APSINTVAL 'x' Types ']'
2400 ///     ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)2401 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2402   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2403       Lex.getAPSIntVal().getBitWidth() > 64)
2404     return TokError("expected number in address space");
2405 
2406   LocTy SizeLoc = Lex.getLoc();
2407   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2408   Lex.Lex();
2409 
2410   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2411       return true;
2412 
2413   LocTy TypeLoc = Lex.getLoc();
2414   Type *EltTy = nullptr;
2415   if (ParseType(EltTy)) return true;
2416 
2417   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2418                  "expected end of sequential type"))
2419     return true;
2420 
2421   if (isVector) {
2422     if (Size == 0)
2423       return Error(SizeLoc, "zero element vector is illegal");
2424     if ((unsigned)Size != Size)
2425       return Error(SizeLoc, "size too large for vector");
2426     if (!VectorType::isValidElementType(EltTy))
2427       return Error(TypeLoc, "invalid vector element type");
2428     Result = VectorType::get(EltTy, unsigned(Size));
2429   } else {
2430     if (!ArrayType::isValidElementType(EltTy))
2431       return Error(TypeLoc, "invalid array element type");
2432     Result = ArrayType::get(EltTy, Size);
2433   }
2434   return false;
2435 }
2436 
2437 //===----------------------------------------------------------------------===//
2438 // Function Semantic Analysis.
2439 //===----------------------------------------------------------------------===//
2440 
PerFunctionState(LLParser & p,Function & f,int functionNumber)2441 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2442                                              int functionNumber)
2443   : P(p), F(f), FunctionNumber(functionNumber) {
2444 
2445   // Insert unnamed arguments into the NumberedVals list.
2446   for (Argument &A : F.args())
2447     if (!A.hasName())
2448       NumberedVals.push_back(&A);
2449 }
2450 
~PerFunctionState()2451 LLParser::PerFunctionState::~PerFunctionState() {
2452   // If there were any forward referenced non-basicblock values, delete them.
2453 
2454   for (const auto &P : ForwardRefVals) {
2455     if (isa<BasicBlock>(P.second.first))
2456       continue;
2457     P.second.first->replaceAllUsesWith(
2458         UndefValue::get(P.second.first->getType()));
2459     delete P.second.first;
2460   }
2461 
2462   for (const auto &P : ForwardRefValIDs) {
2463     if (isa<BasicBlock>(P.second.first))
2464       continue;
2465     P.second.first->replaceAllUsesWith(
2466         UndefValue::get(P.second.first->getType()));
2467     delete P.second.first;
2468   }
2469 }
2470 
FinishFunction()2471 bool LLParser::PerFunctionState::FinishFunction() {
2472   if (!ForwardRefVals.empty())
2473     return P.Error(ForwardRefVals.begin()->second.second,
2474                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2475                    "'");
2476   if (!ForwardRefValIDs.empty())
2477     return P.Error(ForwardRefValIDs.begin()->second.second,
2478                    "use of undefined value '%" +
2479                    Twine(ForwardRefValIDs.begin()->first) + "'");
2480   return false;
2481 }
2482 
2483 
2484 /// GetVal - Get a value with the specified name or ID, creating a
2485 /// forward reference record if needed.  This can return null if the value
2486 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)2487 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2488                                           LocTy Loc) {
2489   // Look this name up in the normal function symbol table.
2490   Value *Val = F.getValueSymbolTable().lookup(Name);
2491 
2492   // If this is a forward reference for the value, see if we already created a
2493   // forward ref record.
2494   if (!Val) {
2495     auto I = ForwardRefVals.find(Name);
2496     if (I != ForwardRefVals.end())
2497       Val = I->second.first;
2498   }
2499 
2500   // If we have the value in the symbol table or fwd-ref table, return it.
2501   if (Val) {
2502     if (Val->getType() == Ty) return Val;
2503     if (Ty->isLabelTy())
2504       P.Error(Loc, "'%" + Name + "' is not a basic block");
2505     else
2506       P.Error(Loc, "'%" + Name + "' defined with type '" +
2507               getTypeString(Val->getType()) + "'");
2508     return nullptr;
2509   }
2510 
2511   // Don't make placeholders with invalid type.
2512   if (!Ty->isFirstClassType()) {
2513     P.Error(Loc, "invalid use of a non-first-class type");
2514     return nullptr;
2515   }
2516 
2517   // Otherwise, create a new forward reference for this value and remember it.
2518   Value *FwdVal;
2519   if (Ty->isLabelTy()) {
2520     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2521   } else {
2522     FwdVal = new Argument(Ty, Name);
2523   }
2524 
2525   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2526   return FwdVal;
2527 }
2528 
GetVal(unsigned ID,Type * Ty,LocTy Loc)2529 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2530   // Look this name up in the normal function symbol table.
2531   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2532 
2533   // If this is a forward reference for the value, see if we already created a
2534   // forward ref record.
2535   if (!Val) {
2536     auto I = ForwardRefValIDs.find(ID);
2537     if (I != ForwardRefValIDs.end())
2538       Val = I->second.first;
2539   }
2540 
2541   // If we have the value in the symbol table or fwd-ref table, return it.
2542   if (Val) {
2543     if (Val->getType() == Ty) return Val;
2544     if (Ty->isLabelTy())
2545       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2546     else
2547       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2548               getTypeString(Val->getType()) + "'");
2549     return nullptr;
2550   }
2551 
2552   if (!Ty->isFirstClassType()) {
2553     P.Error(Loc, "invalid use of a non-first-class type");
2554     return nullptr;
2555   }
2556 
2557   // Otherwise, create a new forward reference for this value and remember it.
2558   Value *FwdVal;
2559   if (Ty->isLabelTy()) {
2560     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2561   } else {
2562     FwdVal = new Argument(Ty);
2563   }
2564 
2565   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2566   return FwdVal;
2567 }
2568 
2569 /// SetInstName - After an instruction is parsed and inserted into its
2570 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2571 bool LLParser::PerFunctionState::SetInstName(int NameID,
2572                                              const std::string &NameStr,
2573                                              LocTy NameLoc, Instruction *Inst) {
2574   // If this instruction has void type, it cannot have a name or ID specified.
2575   if (Inst->getType()->isVoidTy()) {
2576     if (NameID != -1 || !NameStr.empty())
2577       return P.Error(NameLoc, "instructions returning void cannot have a name");
2578     return false;
2579   }
2580 
2581   // If this was a numbered instruction, verify that the instruction is the
2582   // expected value and resolve any forward references.
2583   if (NameStr.empty()) {
2584     // If neither a name nor an ID was specified, just use the next ID.
2585     if (NameID == -1)
2586       NameID = NumberedVals.size();
2587 
2588     if (unsigned(NameID) != NumberedVals.size())
2589       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2590                      Twine(NumberedVals.size()) + "'");
2591 
2592     auto FI = ForwardRefValIDs.find(NameID);
2593     if (FI != ForwardRefValIDs.end()) {
2594       Value *Sentinel = FI->second.first;
2595       if (Sentinel->getType() != Inst->getType())
2596         return P.Error(NameLoc, "instruction forward referenced with type '" +
2597                        getTypeString(FI->second.first->getType()) + "'");
2598 
2599       Sentinel->replaceAllUsesWith(Inst);
2600       delete Sentinel;
2601       ForwardRefValIDs.erase(FI);
2602     }
2603 
2604     NumberedVals.push_back(Inst);
2605     return false;
2606   }
2607 
2608   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2609   auto FI = ForwardRefVals.find(NameStr);
2610   if (FI != ForwardRefVals.end()) {
2611     Value *Sentinel = FI->second.first;
2612     if (Sentinel->getType() != Inst->getType())
2613       return P.Error(NameLoc, "instruction forward referenced with type '" +
2614                      getTypeString(FI->second.first->getType()) + "'");
2615 
2616     Sentinel->replaceAllUsesWith(Inst);
2617     delete Sentinel;
2618     ForwardRefVals.erase(FI);
2619   }
2620 
2621   // Set the name on the instruction.
2622   Inst->setName(NameStr);
2623 
2624   if (Inst->getName() != NameStr)
2625     return P.Error(NameLoc, "multiple definition of local value named '" +
2626                    NameStr + "'");
2627   return false;
2628 }
2629 
2630 /// GetBB - Get a basic block with the specified name or ID, creating a
2631 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2632 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2633                                               LocTy Loc) {
2634   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2635                                       Type::getLabelTy(F.getContext()), Loc));
2636 }
2637 
GetBB(unsigned ID,LocTy Loc)2638 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2639   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2640                                       Type::getLabelTy(F.getContext()), Loc));
2641 }
2642 
2643 /// DefineBB - Define the specified basic block, which is either named or
2644 /// unnamed.  If there is an error, this returns null otherwise it returns
2645 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2646 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2647                                                  LocTy Loc) {
2648   BasicBlock *BB;
2649   if (Name.empty())
2650     BB = GetBB(NumberedVals.size(), Loc);
2651   else
2652     BB = GetBB(Name, Loc);
2653   if (!BB) return nullptr; // Already diagnosed error.
2654 
2655   // Move the block to the end of the function.  Forward ref'd blocks are
2656   // inserted wherever they happen to be referenced.
2657   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2658 
2659   // Remove the block from forward ref sets.
2660   if (Name.empty()) {
2661     ForwardRefValIDs.erase(NumberedVals.size());
2662     NumberedVals.push_back(BB);
2663   } else {
2664     // BB forward references are already in the function symbol table.
2665     ForwardRefVals.erase(Name);
2666   }
2667 
2668   return BB;
2669 }
2670 
2671 //===----------------------------------------------------------------------===//
2672 // Constants.
2673 //===----------------------------------------------------------------------===//
2674 
2675 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2676 /// type implied.  For example, if we parse "4" we don't know what integer type
2677 /// it has.  The value will later be combined with its type and checked for
2678 /// sanity.  PFS is used to convert function-local operands of metadata (since
2679 /// metadata operands are not just parsed here but also converted to values).
2680 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2681 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2682   ID.Loc = Lex.getLoc();
2683   switch (Lex.getKind()) {
2684   default: return TokError("expected value token");
2685   case lltok::GlobalID:  // @42
2686     ID.UIntVal = Lex.getUIntVal();
2687     ID.Kind = ValID::t_GlobalID;
2688     break;
2689   case lltok::GlobalVar:  // @foo
2690     ID.StrVal = Lex.getStrVal();
2691     ID.Kind = ValID::t_GlobalName;
2692     break;
2693   case lltok::LocalVarID:  // %42
2694     ID.UIntVal = Lex.getUIntVal();
2695     ID.Kind = ValID::t_LocalID;
2696     break;
2697   case lltok::LocalVar:  // %foo
2698     ID.StrVal = Lex.getStrVal();
2699     ID.Kind = ValID::t_LocalName;
2700     break;
2701   case lltok::APSInt:
2702     ID.APSIntVal = Lex.getAPSIntVal();
2703     ID.Kind = ValID::t_APSInt;
2704     break;
2705   case lltok::APFloat:
2706     ID.APFloatVal = Lex.getAPFloatVal();
2707     ID.Kind = ValID::t_APFloat;
2708     break;
2709   case lltok::kw_true:
2710     ID.ConstantVal = ConstantInt::getTrue(Context);
2711     ID.Kind = ValID::t_Constant;
2712     break;
2713   case lltok::kw_false:
2714     ID.ConstantVal = ConstantInt::getFalse(Context);
2715     ID.Kind = ValID::t_Constant;
2716     break;
2717   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2718   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2719   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2720   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2721 
2722   case lltok::lbrace: {
2723     // ValID ::= '{' ConstVector '}'
2724     Lex.Lex();
2725     SmallVector<Constant*, 16> Elts;
2726     if (ParseGlobalValueVector(Elts) ||
2727         ParseToken(lltok::rbrace, "expected end of struct constant"))
2728       return true;
2729 
2730     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2731     ID.UIntVal = Elts.size();
2732     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2733            Elts.size() * sizeof(Elts[0]));
2734     ID.Kind = ValID::t_ConstantStruct;
2735     return false;
2736   }
2737   case lltok::less: {
2738     // ValID ::= '<' ConstVector '>'         --> Vector.
2739     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2740     Lex.Lex();
2741     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2742 
2743     SmallVector<Constant*, 16> Elts;
2744     LocTy FirstEltLoc = Lex.getLoc();
2745     if (ParseGlobalValueVector(Elts) ||
2746         (isPackedStruct &&
2747          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2748         ParseToken(lltok::greater, "expected end of constant"))
2749       return true;
2750 
2751     if (isPackedStruct) {
2752       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2753       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2754              Elts.size() * sizeof(Elts[0]));
2755       ID.UIntVal = Elts.size();
2756       ID.Kind = ValID::t_PackedConstantStruct;
2757       return false;
2758     }
2759 
2760     if (Elts.empty())
2761       return Error(ID.Loc, "constant vector must not be empty");
2762 
2763     if (!Elts[0]->getType()->isIntegerTy() &&
2764         !Elts[0]->getType()->isFloatingPointTy() &&
2765         !Elts[0]->getType()->isPointerTy())
2766       return Error(FirstEltLoc,
2767             "vector elements must have integer, pointer or floating point type");
2768 
2769     // Verify that all the vector elements have the same type.
2770     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2771       if (Elts[i]->getType() != Elts[0]->getType())
2772         return Error(FirstEltLoc,
2773                      "vector element #" + Twine(i) +
2774                     " is not of type '" + getTypeString(Elts[0]->getType()));
2775 
2776     ID.ConstantVal = ConstantVector::get(Elts);
2777     ID.Kind = ValID::t_Constant;
2778     return false;
2779   }
2780   case lltok::lsquare: {   // Array Constant
2781     Lex.Lex();
2782     SmallVector<Constant*, 16> Elts;
2783     LocTy FirstEltLoc = Lex.getLoc();
2784     if (ParseGlobalValueVector(Elts) ||
2785         ParseToken(lltok::rsquare, "expected end of array constant"))
2786       return true;
2787 
2788     // Handle empty element.
2789     if (Elts.empty()) {
2790       // Use undef instead of an array because it's inconvenient to determine
2791       // the element type at this point, there being no elements to examine.
2792       ID.Kind = ValID::t_EmptyArray;
2793       return false;
2794     }
2795 
2796     if (!Elts[0]->getType()->isFirstClassType())
2797       return Error(FirstEltLoc, "invalid array element type: " +
2798                    getTypeString(Elts[0]->getType()));
2799 
2800     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2801 
2802     // Verify all elements are correct type!
2803     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2804       if (Elts[i]->getType() != Elts[0]->getType())
2805         return Error(FirstEltLoc,
2806                      "array element #" + Twine(i) +
2807                      " is not of type '" + getTypeString(Elts[0]->getType()));
2808     }
2809 
2810     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2811     ID.Kind = ValID::t_Constant;
2812     return false;
2813   }
2814   case lltok::kw_c:  // c "foo"
2815     Lex.Lex();
2816     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2817                                                   false);
2818     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2819     ID.Kind = ValID::t_Constant;
2820     return false;
2821 
2822   case lltok::kw_asm: {
2823     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2824     //             STRINGCONSTANT
2825     bool HasSideEffect, AlignStack, AsmDialect;
2826     Lex.Lex();
2827     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2828         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2829         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2830         ParseStringConstant(ID.StrVal) ||
2831         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2832         ParseToken(lltok::StringConstant, "expected constraint string"))
2833       return true;
2834     ID.StrVal2 = Lex.getStrVal();
2835     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2836       (unsigned(AsmDialect)<<2);
2837     ID.Kind = ValID::t_InlineAsm;
2838     return false;
2839   }
2840 
2841   case lltok::kw_blockaddress: {
2842     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2843     Lex.Lex();
2844 
2845     ValID Fn, Label;
2846 
2847     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2848         ParseValID(Fn) ||
2849         ParseToken(lltok::comma, "expected comma in block address expression")||
2850         ParseValID(Label) ||
2851         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2852       return true;
2853 
2854     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2855       return Error(Fn.Loc, "expected function name in blockaddress");
2856     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2857       return Error(Label.Loc, "expected basic block name in blockaddress");
2858 
2859     // Try to find the function (but skip it if it's forward-referenced).
2860     GlobalValue *GV = nullptr;
2861     if (Fn.Kind == ValID::t_GlobalID) {
2862       if (Fn.UIntVal < NumberedVals.size())
2863         GV = NumberedVals[Fn.UIntVal];
2864     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2865       GV = M->getNamedValue(Fn.StrVal);
2866     }
2867     Function *F = nullptr;
2868     if (GV) {
2869       // Confirm that it's actually a function with a definition.
2870       if (!isa<Function>(GV))
2871         return Error(Fn.Loc, "expected function name in blockaddress");
2872       F = cast<Function>(GV);
2873       if (F->isDeclaration())
2874         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2875     }
2876 
2877     if (!F) {
2878       // Make a global variable as a placeholder for this reference.
2879       GlobalValue *&FwdRef =
2880           ForwardRefBlockAddresses.insert(std::make_pair(
2881                                               std::move(Fn),
2882                                               std::map<ValID, GlobalValue *>()))
2883               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2884               .first->second;
2885       if (!FwdRef)
2886         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2887                                     GlobalValue::InternalLinkage, nullptr, "");
2888       ID.ConstantVal = FwdRef;
2889       ID.Kind = ValID::t_Constant;
2890       return false;
2891     }
2892 
2893     // We found the function; now find the basic block.  Don't use PFS, since we
2894     // might be inside a constant expression.
2895     BasicBlock *BB;
2896     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2897       if (Label.Kind == ValID::t_LocalID)
2898         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2899       else
2900         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2901       if (!BB)
2902         return Error(Label.Loc, "referenced value is not a basic block");
2903     } else {
2904       if (Label.Kind == ValID::t_LocalID)
2905         return Error(Label.Loc, "cannot take address of numeric label after "
2906                                 "the function is defined");
2907       BB = dyn_cast_or_null<BasicBlock>(
2908           F->getValueSymbolTable().lookup(Label.StrVal));
2909       if (!BB)
2910         return Error(Label.Loc, "referenced value is not a basic block");
2911     }
2912 
2913     ID.ConstantVal = BlockAddress::get(F, BB);
2914     ID.Kind = ValID::t_Constant;
2915     return false;
2916   }
2917 
2918   case lltok::kw_trunc:
2919   case lltok::kw_zext:
2920   case lltok::kw_sext:
2921   case lltok::kw_fptrunc:
2922   case lltok::kw_fpext:
2923   case lltok::kw_bitcast:
2924   case lltok::kw_addrspacecast:
2925   case lltok::kw_uitofp:
2926   case lltok::kw_sitofp:
2927   case lltok::kw_fptoui:
2928   case lltok::kw_fptosi:
2929   case lltok::kw_inttoptr:
2930   case lltok::kw_ptrtoint: {
2931     unsigned Opc = Lex.getUIntVal();
2932     Type *DestTy = nullptr;
2933     Constant *SrcVal;
2934     Lex.Lex();
2935     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2936         ParseGlobalTypeAndValue(SrcVal) ||
2937         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2938         ParseType(DestTy) ||
2939         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2940       return true;
2941     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2942       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2943                    getTypeString(SrcVal->getType()) + "' to '" +
2944                    getTypeString(DestTy) + "'");
2945     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2946                                                  SrcVal, DestTy);
2947     ID.Kind = ValID::t_Constant;
2948     return false;
2949   }
2950   case lltok::kw_extractvalue: {
2951     Lex.Lex();
2952     Constant *Val;
2953     SmallVector<unsigned, 4> Indices;
2954     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2955         ParseGlobalTypeAndValue(Val) ||
2956         ParseIndexList(Indices) ||
2957         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2958       return true;
2959 
2960     if (!Val->getType()->isAggregateType())
2961       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2962     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2963       return Error(ID.Loc, "invalid indices for extractvalue");
2964     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2965     ID.Kind = ValID::t_Constant;
2966     return false;
2967   }
2968   case lltok::kw_insertvalue: {
2969     Lex.Lex();
2970     Constant *Val0, *Val1;
2971     SmallVector<unsigned, 4> Indices;
2972     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2973         ParseGlobalTypeAndValue(Val0) ||
2974         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2975         ParseGlobalTypeAndValue(Val1) ||
2976         ParseIndexList(Indices) ||
2977         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2978       return true;
2979     if (!Val0->getType()->isAggregateType())
2980       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2981     Type *IndexedType =
2982         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2983     if (!IndexedType)
2984       return Error(ID.Loc, "invalid indices for insertvalue");
2985     if (IndexedType != Val1->getType())
2986       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2987                                getTypeString(Val1->getType()) +
2988                                "' instead of '" + getTypeString(IndexedType) +
2989                                "'");
2990     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2991     ID.Kind = ValID::t_Constant;
2992     return false;
2993   }
2994   case lltok::kw_icmp:
2995   case lltok::kw_fcmp: {
2996     unsigned PredVal, Opc = Lex.getUIntVal();
2997     Constant *Val0, *Val1;
2998     Lex.Lex();
2999     if (ParseCmpPredicate(PredVal, Opc) ||
3000         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3001         ParseGlobalTypeAndValue(Val0) ||
3002         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3003         ParseGlobalTypeAndValue(Val1) ||
3004         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3005       return true;
3006 
3007     if (Val0->getType() != Val1->getType())
3008       return Error(ID.Loc, "compare operands must have the same type");
3009 
3010     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3011 
3012     if (Opc == Instruction::FCmp) {
3013       if (!Val0->getType()->isFPOrFPVectorTy())
3014         return Error(ID.Loc, "fcmp requires floating point operands");
3015       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3016     } else {
3017       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3018       if (!Val0->getType()->isIntOrIntVectorTy() &&
3019           !Val0->getType()->getScalarType()->isPointerTy())
3020         return Error(ID.Loc, "icmp requires pointer or integer operands");
3021       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3022     }
3023     ID.Kind = ValID::t_Constant;
3024     return false;
3025   }
3026 
3027   // Binary Operators.
3028   case lltok::kw_add:
3029   case lltok::kw_fadd:
3030   case lltok::kw_sub:
3031   case lltok::kw_fsub:
3032   case lltok::kw_mul:
3033   case lltok::kw_fmul:
3034   case lltok::kw_udiv:
3035   case lltok::kw_sdiv:
3036   case lltok::kw_fdiv:
3037   case lltok::kw_urem:
3038   case lltok::kw_srem:
3039   case lltok::kw_frem:
3040   case lltok::kw_shl:
3041   case lltok::kw_lshr:
3042   case lltok::kw_ashr: {
3043     bool NUW = false;
3044     bool NSW = false;
3045     bool Exact = false;
3046     unsigned Opc = Lex.getUIntVal();
3047     Constant *Val0, *Val1;
3048     Lex.Lex();
3049     LocTy ModifierLoc = Lex.getLoc();
3050     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3051         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3052       if (EatIfPresent(lltok::kw_nuw))
3053         NUW = true;
3054       if (EatIfPresent(lltok::kw_nsw)) {
3055         NSW = true;
3056         if (EatIfPresent(lltok::kw_nuw))
3057           NUW = true;
3058       }
3059     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3060                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3061       if (EatIfPresent(lltok::kw_exact))
3062         Exact = true;
3063     }
3064     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3065         ParseGlobalTypeAndValue(Val0) ||
3066         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3067         ParseGlobalTypeAndValue(Val1) ||
3068         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3069       return true;
3070     if (Val0->getType() != Val1->getType())
3071       return Error(ID.Loc, "operands of constexpr must have same type");
3072     if (!Val0->getType()->isIntOrIntVectorTy()) {
3073       if (NUW)
3074         return Error(ModifierLoc, "nuw only applies to integer operations");
3075       if (NSW)
3076         return Error(ModifierLoc, "nsw only applies to integer operations");
3077     }
3078     // Check that the type is valid for the operator.
3079     switch (Opc) {
3080     case Instruction::Add:
3081     case Instruction::Sub:
3082     case Instruction::Mul:
3083     case Instruction::UDiv:
3084     case Instruction::SDiv:
3085     case Instruction::URem:
3086     case Instruction::SRem:
3087     case Instruction::Shl:
3088     case Instruction::AShr:
3089     case Instruction::LShr:
3090       if (!Val0->getType()->isIntOrIntVectorTy())
3091         return Error(ID.Loc, "constexpr requires integer operands");
3092       break;
3093     case Instruction::FAdd:
3094     case Instruction::FSub:
3095     case Instruction::FMul:
3096     case Instruction::FDiv:
3097     case Instruction::FRem:
3098       if (!Val0->getType()->isFPOrFPVectorTy())
3099         return Error(ID.Loc, "constexpr requires fp operands");
3100       break;
3101     default: llvm_unreachable("Unknown binary operator!");
3102     }
3103     unsigned Flags = 0;
3104     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3105     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3106     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3107     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3108     ID.ConstantVal = C;
3109     ID.Kind = ValID::t_Constant;
3110     return false;
3111   }
3112 
3113   // Logical Operations
3114   case lltok::kw_and:
3115   case lltok::kw_or:
3116   case lltok::kw_xor: {
3117     unsigned Opc = Lex.getUIntVal();
3118     Constant *Val0, *Val1;
3119     Lex.Lex();
3120     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3121         ParseGlobalTypeAndValue(Val0) ||
3122         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3123         ParseGlobalTypeAndValue(Val1) ||
3124         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3125       return true;
3126     if (Val0->getType() != Val1->getType())
3127       return Error(ID.Loc, "operands of constexpr must have same type");
3128     if (!Val0->getType()->isIntOrIntVectorTy())
3129       return Error(ID.Loc,
3130                    "constexpr requires integer or integer vector operands");
3131     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3132     ID.Kind = ValID::t_Constant;
3133     return false;
3134   }
3135 
3136   case lltok::kw_getelementptr:
3137   case lltok::kw_shufflevector:
3138   case lltok::kw_insertelement:
3139   case lltok::kw_extractelement:
3140   case lltok::kw_select: {
3141     unsigned Opc = Lex.getUIntVal();
3142     SmallVector<Constant*, 16> Elts;
3143     bool InBounds = false;
3144     Type *Ty;
3145     Lex.Lex();
3146 
3147     if (Opc == Instruction::GetElementPtr)
3148       InBounds = EatIfPresent(lltok::kw_inbounds);
3149 
3150     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3151       return true;
3152 
3153     LocTy ExplicitTypeLoc = Lex.getLoc();
3154     if (Opc == Instruction::GetElementPtr) {
3155       if (ParseType(Ty) ||
3156           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3157         return true;
3158     }
3159 
3160     if (ParseGlobalValueVector(Elts) ||
3161         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3162       return true;
3163 
3164     if (Opc == Instruction::GetElementPtr) {
3165       if (Elts.size() == 0 ||
3166           !Elts[0]->getType()->getScalarType()->isPointerTy())
3167         return Error(ID.Loc, "base of getelementptr must be a pointer");
3168 
3169       Type *BaseType = Elts[0]->getType();
3170       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3171       if (Ty != BasePointerType->getElementType())
3172         return Error(
3173             ExplicitTypeLoc,
3174             "explicit pointee type doesn't match operand's pointee type");
3175 
3176       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3177       for (Constant *Val : Indices) {
3178         Type *ValTy = Val->getType();
3179         if (!ValTy->getScalarType()->isIntegerTy())
3180           return Error(ID.Loc, "getelementptr index must be an integer");
3181         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3182           return Error(ID.Loc, "getelementptr index type missmatch");
3183         if (ValTy->isVectorTy()) {
3184           unsigned ValNumEl = ValTy->getVectorNumElements();
3185           unsigned PtrNumEl = BaseType->getVectorNumElements();
3186           if (ValNumEl != PtrNumEl)
3187             return Error(
3188                 ID.Loc,
3189                 "getelementptr vector index has a wrong number of elements");
3190         }
3191       }
3192 
3193       SmallPtrSet<Type*, 4> Visited;
3194       if (!Indices.empty() && !Ty->isSized(&Visited))
3195         return Error(ID.Loc, "base element of getelementptr must be sized");
3196 
3197       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3198         return Error(ID.Loc, "invalid getelementptr indices");
3199       ID.ConstantVal =
3200           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3201     } else if (Opc == Instruction::Select) {
3202       if (Elts.size() != 3)
3203         return Error(ID.Loc, "expected three operands to select");
3204       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3205                                                               Elts[2]))
3206         return Error(ID.Loc, Reason);
3207       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3208     } else if (Opc == Instruction::ShuffleVector) {
3209       if (Elts.size() != 3)
3210         return Error(ID.Loc, "expected three operands to shufflevector");
3211       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3212         return Error(ID.Loc, "invalid operands to shufflevector");
3213       ID.ConstantVal =
3214                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3215     } else if (Opc == Instruction::ExtractElement) {
3216       if (Elts.size() != 2)
3217         return Error(ID.Loc, "expected two operands to extractelement");
3218       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3219         return Error(ID.Loc, "invalid extractelement operands");
3220       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3221     } else {
3222       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3223       if (Elts.size() != 3)
3224       return Error(ID.Loc, "expected three operands to insertelement");
3225       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3226         return Error(ID.Loc, "invalid insertelement operands");
3227       ID.ConstantVal =
3228                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3229     }
3230 
3231     ID.Kind = ValID::t_Constant;
3232     return false;
3233   }
3234   }
3235 
3236   Lex.Lex();
3237   return false;
3238 }
3239 
3240 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)3241 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3242   C = nullptr;
3243   ValID ID;
3244   Value *V = nullptr;
3245   bool Parsed = ParseValID(ID) ||
3246                 ConvertValIDToValue(Ty, ID, V, nullptr);
3247   if (V && !(C = dyn_cast<Constant>(V)))
3248     return Error(ID.Loc, "global values must be constants");
3249   return Parsed;
3250 }
3251 
ParseGlobalTypeAndValue(Constant * & V)3252 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3253   Type *Ty = nullptr;
3254   return ParseType(Ty) ||
3255          ParseGlobalValue(Ty, V);
3256 }
3257 
parseOptionalComdat(StringRef GlobalName,Comdat * & C)3258 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3259   C = nullptr;
3260 
3261   LocTy KwLoc = Lex.getLoc();
3262   if (!EatIfPresent(lltok::kw_comdat))
3263     return false;
3264 
3265   if (EatIfPresent(lltok::lparen)) {
3266     if (Lex.getKind() != lltok::ComdatVar)
3267       return TokError("expected comdat variable");
3268     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3269     Lex.Lex();
3270     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3271       return true;
3272   } else {
3273     if (GlobalName.empty())
3274       return TokError("comdat cannot be unnamed");
3275     C = getComdat(GlobalName, KwLoc);
3276   }
3277 
3278   return false;
3279 }
3280 
3281 /// ParseGlobalValueVector
3282 ///   ::= /*empty*/
3283 ///   ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)3284 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3285   // Empty list.
3286   if (Lex.getKind() == lltok::rbrace ||
3287       Lex.getKind() == lltok::rsquare ||
3288       Lex.getKind() == lltok::greater ||
3289       Lex.getKind() == lltok::rparen)
3290     return false;
3291 
3292   Constant *C;
3293   if (ParseGlobalTypeAndValue(C)) return true;
3294   Elts.push_back(C);
3295 
3296   while (EatIfPresent(lltok::comma)) {
3297     if (ParseGlobalTypeAndValue(C)) return true;
3298     Elts.push_back(C);
3299   }
3300 
3301   return false;
3302 }
3303 
ParseMDTuple(MDNode * & MD,bool IsDistinct)3304 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3305   SmallVector<Metadata *, 16> Elts;
3306   if (ParseMDNodeVector(Elts))
3307     return true;
3308 
3309   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3310   return false;
3311 }
3312 
3313 /// MDNode:
3314 ///  ::= !{ ... }
3315 ///  ::= !7
3316 ///  ::= !DILocation(...)
ParseMDNode(MDNode * & N)3317 bool LLParser::ParseMDNode(MDNode *&N) {
3318   if (Lex.getKind() == lltok::MetadataVar)
3319     return ParseSpecializedMDNode(N);
3320 
3321   return ParseToken(lltok::exclaim, "expected '!' here") ||
3322          ParseMDNodeTail(N);
3323 }
3324 
ParseMDNodeTail(MDNode * & N)3325 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3326   // !{ ... }
3327   if (Lex.getKind() == lltok::lbrace)
3328     return ParseMDTuple(N);
3329 
3330   // !42
3331   return ParseMDNodeID(N);
3332 }
3333 
3334 namespace {
3335 
3336 /// Structure to represent an optional metadata field.
3337 template <class FieldTy> struct MDFieldImpl {
3338   typedef MDFieldImpl ImplTy;
3339   FieldTy Val;
3340   bool Seen;
3341 
assign__anon9b0a3bb40111::MDFieldImpl3342   void assign(FieldTy Val) {
3343     Seen = true;
3344     this->Val = std::move(Val);
3345   }
3346 
MDFieldImpl__anon9b0a3bb40111::MDFieldImpl3347   explicit MDFieldImpl(FieldTy Default)
3348       : Val(std::move(Default)), Seen(false) {}
3349 };
3350 
3351 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3352   uint64_t Max;
3353 
MDUnsignedField__anon9b0a3bb40111::MDUnsignedField3354   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3355       : ImplTy(Default), Max(Max) {}
3356 };
3357 struct LineField : public MDUnsignedField {
LineField__anon9b0a3bb40111::LineField3358   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3359 };
3360 struct ColumnField : public MDUnsignedField {
ColumnField__anon9b0a3bb40111::ColumnField3361   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3362 };
3363 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon9b0a3bb40111::DwarfTagField3364   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon9b0a3bb40111::DwarfTagField3365   DwarfTagField(dwarf::Tag DefaultTag)
3366       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3367 };
3368 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon9b0a3bb40111::DwarfMacinfoTypeField3369   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon9b0a3bb40111::DwarfMacinfoTypeField3370   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3371     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3372 };
3373 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon9b0a3bb40111::DwarfAttEncodingField3374   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3375 };
3376 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon9b0a3bb40111::DwarfVirtualityField3377   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3378 };
3379 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon9b0a3bb40111::DwarfLangField3380   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3381 };
3382 struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon9b0a3bb40111::DwarfCCField3383   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3384 };
3385 struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon9b0a3bb40111::EmissionKindField3386   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3387 };
3388 
3389 struct DIFlagField : public MDUnsignedField {
DIFlagField__anon9b0a3bb40111::DIFlagField3390   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3391 };
3392 
3393 struct MDSignedField : public MDFieldImpl<int64_t> {
3394   int64_t Min;
3395   int64_t Max;
3396 
MDSignedField__anon9b0a3bb40111::MDSignedField3397   MDSignedField(int64_t Default = 0)
3398       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon9b0a3bb40111::MDSignedField3399   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3400       : ImplTy(Default), Min(Min), Max(Max) {}
3401 };
3402 
3403 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon9b0a3bb40111::MDBoolField3404   MDBoolField(bool Default = false) : ImplTy(Default) {}
3405 };
3406 struct MDField : public MDFieldImpl<Metadata *> {
3407   bool AllowNull;
3408 
MDField__anon9b0a3bb40111::MDField3409   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3410 };
3411 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon9b0a3bb40111::MDConstant3412   MDConstant() : ImplTy(nullptr) {}
3413 };
3414 struct MDStringField : public MDFieldImpl<MDString *> {
3415   bool AllowEmpty;
MDStringField__anon9b0a3bb40111::MDStringField3416   MDStringField(bool AllowEmpty = true)
3417       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3418 };
3419 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon9b0a3bb40111::MDFieldList3420   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3421 };
3422 
3423 } // end namespace
3424 
3425 namespace llvm {
3426 
3427 template <>
ParseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)3428 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3429                             MDUnsignedField &Result) {
3430   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3431     return TokError("expected unsigned integer");
3432 
3433   auto &U = Lex.getAPSIntVal();
3434   if (U.ugt(Result.Max))
3435     return TokError("value for '" + Name + "' too large, limit is " +
3436                     Twine(Result.Max));
3437   Result.assign(U.getZExtValue());
3438   assert(Result.Val <= Result.Max && "Expected value in range");
3439   Lex.Lex();
3440   return false;
3441 }
3442 
3443 template <>
ParseMDField(LocTy Loc,StringRef Name,LineField & Result)3444 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3445   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3446 }
3447 template <>
ParseMDField(LocTy Loc,StringRef Name,ColumnField & Result)3448 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3449   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3450 }
3451 
3452 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)3453 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3454   if (Lex.getKind() == lltok::APSInt)
3455     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3456 
3457   if (Lex.getKind() != lltok::DwarfTag)
3458     return TokError("expected DWARF tag");
3459 
3460   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3461   if (Tag == dwarf::DW_TAG_invalid)
3462     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3463   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3464 
3465   Result.assign(Tag);
3466   Lex.Lex();
3467   return false;
3468 }
3469 
3470 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)3471 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3472                             DwarfMacinfoTypeField &Result) {
3473   if (Lex.getKind() == lltok::APSInt)
3474     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3475 
3476   if (Lex.getKind() != lltok::DwarfMacinfo)
3477     return TokError("expected DWARF macinfo type");
3478 
3479   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3480   if (Macinfo == dwarf::DW_MACINFO_invalid)
3481     return TokError(
3482         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3483   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3484 
3485   Result.assign(Macinfo);
3486   Lex.Lex();
3487   return false;
3488 }
3489 
3490 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)3491 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3492                             DwarfVirtualityField &Result) {
3493   if (Lex.getKind() == lltok::APSInt)
3494     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3495 
3496   if (Lex.getKind() != lltok::DwarfVirtuality)
3497     return TokError("expected DWARF virtuality code");
3498 
3499   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3500   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3501     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3502                     Lex.getStrVal() + "'");
3503   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3504   Result.assign(Virtuality);
3505   Lex.Lex();
3506   return false;
3507 }
3508 
3509 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)3510 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3511   if (Lex.getKind() == lltok::APSInt)
3512     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3513 
3514   if (Lex.getKind() != lltok::DwarfLang)
3515     return TokError("expected DWARF language");
3516 
3517   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3518   if (!Lang)
3519     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3520                     "'");
3521   assert(Lang <= Result.Max && "Expected valid DWARF language");
3522   Result.assign(Lang);
3523   Lex.Lex();
3524   return false;
3525 }
3526 
3527 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)3528 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3529   if (Lex.getKind() == lltok::APSInt)
3530     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3531 
3532   if (Lex.getKind() != lltok::DwarfCC)
3533     return TokError("expected DWARF calling convention");
3534 
3535   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3536   if (!CC)
3537     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3538                     "'");
3539   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3540   Result.assign(CC);
3541   Lex.Lex();
3542   return false;
3543 }
3544 
3545 template <>
ParseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)3546 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3547   if (Lex.getKind() == lltok::APSInt)
3548     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3549 
3550   if (Lex.getKind() != lltok::EmissionKind)
3551     return TokError("expected emission kind");
3552 
3553   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3554   if (!Kind)
3555     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3556                     "'");
3557   assert(*Kind <= Result.Max && "Expected valid emission kind");
3558   Result.assign(*Kind);
3559   Lex.Lex();
3560   return false;
3561 }
3562 
3563 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)3564 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3565                             DwarfAttEncodingField &Result) {
3566   if (Lex.getKind() == lltok::APSInt)
3567     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3568 
3569   if (Lex.getKind() != lltok::DwarfAttEncoding)
3570     return TokError("expected DWARF type attribute encoding");
3571 
3572   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3573   if (!Encoding)
3574     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3575                     Lex.getStrVal() + "'");
3576   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3577   Result.assign(Encoding);
3578   Lex.Lex();
3579   return false;
3580 }
3581 
3582 /// DIFlagField
3583 ///  ::= uint32
3584 ///  ::= DIFlagVector
3585 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3586 template <>
ParseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)3587 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3588   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3589 
3590   // Parser for a single flag.
3591   auto parseFlag = [&](unsigned &Val) {
3592     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3593       return ParseUInt32(Val);
3594 
3595     if (Lex.getKind() != lltok::DIFlag)
3596       return TokError("expected debug info flag");
3597 
3598     Val = DINode::getFlag(Lex.getStrVal());
3599     if (!Val)
3600       return TokError(Twine("invalid debug info flag flag '") +
3601                       Lex.getStrVal() + "'");
3602     Lex.Lex();
3603     return false;
3604   };
3605 
3606   // Parse the flags and combine them together.
3607   unsigned Combined = 0;
3608   do {
3609     unsigned Val;
3610     if (parseFlag(Val))
3611       return true;
3612     Combined |= Val;
3613   } while (EatIfPresent(lltok::bar));
3614 
3615   Result.assign(Combined);
3616   return false;
3617 }
3618 
3619 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)3620 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3621                             MDSignedField &Result) {
3622   if (Lex.getKind() != lltok::APSInt)
3623     return TokError("expected signed integer");
3624 
3625   auto &S = Lex.getAPSIntVal();
3626   if (S < Result.Min)
3627     return TokError("value for '" + Name + "' too small, limit is " +
3628                     Twine(Result.Min));
3629   if (S > Result.Max)
3630     return TokError("value for '" + Name + "' too large, limit is " +
3631                     Twine(Result.Max));
3632   Result.assign(S.getExtValue());
3633   assert(Result.Val >= Result.Min && "Expected value in range");
3634   assert(Result.Val <= Result.Max && "Expected value in range");
3635   Lex.Lex();
3636   return false;
3637 }
3638 
3639 template <>
ParseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)3640 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3641   switch (Lex.getKind()) {
3642   default:
3643     return TokError("expected 'true' or 'false'");
3644   case lltok::kw_true:
3645     Result.assign(true);
3646     break;
3647   case lltok::kw_false:
3648     Result.assign(false);
3649     break;
3650   }
3651   Lex.Lex();
3652   return false;
3653 }
3654 
3655 template <>
ParseMDField(LocTy Loc,StringRef Name,MDField & Result)3656 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3657   if (Lex.getKind() == lltok::kw_null) {
3658     if (!Result.AllowNull)
3659       return TokError("'" + Name + "' cannot be null");
3660     Lex.Lex();
3661     Result.assign(nullptr);
3662     return false;
3663   }
3664 
3665   Metadata *MD;
3666   if (ParseMetadata(MD, nullptr))
3667     return true;
3668 
3669   Result.assign(MD);
3670   return false;
3671 }
3672 
3673 template <>
ParseMDField(LocTy Loc,StringRef Name,MDConstant & Result)3674 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3675   Metadata *MD;
3676   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3677     return true;
3678 
3679   Result.assign(cast<ConstantAsMetadata>(MD));
3680   return false;
3681 }
3682 
3683 template <>
ParseMDField(LocTy Loc,StringRef Name,MDStringField & Result)3684 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3685   LocTy ValueLoc = Lex.getLoc();
3686   std::string S;
3687   if (ParseStringConstant(S))
3688     return true;
3689 
3690   if (!Result.AllowEmpty && S.empty())
3691     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3692 
3693   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3694   return false;
3695 }
3696 
3697 template <>
ParseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)3698 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3699   SmallVector<Metadata *, 4> MDs;
3700   if (ParseMDNodeVector(MDs))
3701     return true;
3702 
3703   Result.assign(std::move(MDs));
3704   return false;
3705 }
3706 
3707 } // end namespace llvm
3708 
3709 template <class ParserTy>
ParseMDFieldsImplBody(ParserTy parseField)3710 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3711   do {
3712     if (Lex.getKind() != lltok::LabelStr)
3713       return TokError("expected field label here");
3714 
3715     if (parseField())
3716       return true;
3717   } while (EatIfPresent(lltok::comma));
3718 
3719   return false;
3720 }
3721 
3722 template <class ParserTy>
ParseMDFieldsImpl(ParserTy parseField,LocTy & ClosingLoc)3723 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3724   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3725   Lex.Lex();
3726 
3727   if (ParseToken(lltok::lparen, "expected '(' here"))
3728     return true;
3729   if (Lex.getKind() != lltok::rparen)
3730     if (ParseMDFieldsImplBody(parseField))
3731       return true;
3732 
3733   ClosingLoc = Lex.getLoc();
3734   return ParseToken(lltok::rparen, "expected ')' here");
3735 }
3736 
3737 template <class FieldTy>
ParseMDField(StringRef Name,FieldTy & Result)3738 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3739   if (Result.Seen)
3740     return TokError("field '" + Name + "' cannot be specified more than once");
3741 
3742   LocTy Loc = Lex.getLoc();
3743   Lex.Lex();
3744   return ParseMDField(Loc, Name, Result);
3745 }
3746 
ParseSpecializedMDNode(MDNode * & N,bool IsDistinct)3747 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3748   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3749 
3750 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3751   if (Lex.getStrVal() == #CLASS)                                               \
3752     return Parse##CLASS(N, IsDistinct);
3753 #include "llvm/IR/Metadata.def"
3754 
3755   return TokError("expected metadata type");
3756 }
3757 
3758 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3759 #define NOP_FIELD(NAME, TYPE, INIT)
3760 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3761   if (!NAME.Seen)                                                              \
3762     return Error(ClosingLoc, "missing required field '" #NAME "'");
3763 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3764   if (Lex.getStrVal() == #NAME)                                                \
3765     return ParseMDField(#NAME, NAME);
3766 #define PARSE_MD_FIELDS()                                                      \
3767   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3768   do {                                                                         \
3769     LocTy ClosingLoc;                                                          \
3770     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3771       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3772       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3773     }, ClosingLoc))                                                            \
3774       return true;                                                             \
3775     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3776   } while (false)
3777 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3778   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3779 
3780 /// ParseDILocationFields:
3781 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
ParseDILocation(MDNode * & Result,bool IsDistinct)3782 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3784   OPTIONAL(line, LineField, );                                                 \
3785   OPTIONAL(column, ColumnField, );                                             \
3786   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3787   OPTIONAL(inlinedAt, MDField, );
3788   PARSE_MD_FIELDS();
3789 #undef VISIT_MD_FIELDS
3790 
3791   Result = GET_OR_DISTINCT(
3792       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3793   return false;
3794 }
3795 
3796 /// ParseGenericDINode:
3797 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
ParseGenericDINode(MDNode * & Result,bool IsDistinct)3798 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3800   REQUIRED(tag, DwarfTagField, );                                              \
3801   OPTIONAL(header, MDStringField, );                                           \
3802   OPTIONAL(operands, MDFieldList, );
3803   PARSE_MD_FIELDS();
3804 #undef VISIT_MD_FIELDS
3805 
3806   Result = GET_OR_DISTINCT(GenericDINode,
3807                            (Context, tag.Val, header.Val, operands.Val));
3808   return false;
3809 }
3810 
3811 /// ParseDISubrange:
3812 ///   ::= !DISubrange(count: 30, lowerBound: 2)
ParseDISubrange(MDNode * & Result,bool IsDistinct)3813 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3815   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3816   OPTIONAL(lowerBound, MDSignedField, );
3817   PARSE_MD_FIELDS();
3818 #undef VISIT_MD_FIELDS
3819 
3820   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3821   return false;
3822 }
3823 
3824 /// ParseDIEnumerator:
3825 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
ParseDIEnumerator(MDNode * & Result,bool IsDistinct)3826 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3827 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3828   REQUIRED(name, MDStringField, );                                             \
3829   REQUIRED(value, MDSignedField, );
3830   PARSE_MD_FIELDS();
3831 #undef VISIT_MD_FIELDS
3832 
3833   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3834   return false;
3835 }
3836 
3837 /// ParseDIBasicType:
3838 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
ParseDIBasicType(MDNode * & Result,bool IsDistinct)3839 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3840 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3841   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3842   OPTIONAL(name, MDStringField, );                                             \
3843   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3844   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3845   OPTIONAL(encoding, DwarfAttEncodingField, );
3846   PARSE_MD_FIELDS();
3847 #undef VISIT_MD_FIELDS
3848 
3849   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3850                                          align.Val, encoding.Val));
3851   return false;
3852 }
3853 
3854 /// ParseDIDerivedType:
3855 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3856 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3857 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
ParseDIDerivedType(MDNode * & Result,bool IsDistinct)3858 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3860   REQUIRED(tag, DwarfTagField, );                                              \
3861   OPTIONAL(name, MDStringField, );                                             \
3862   OPTIONAL(file, MDField, );                                                   \
3863   OPTIONAL(line, LineField, );                                                 \
3864   OPTIONAL(scope, MDField, );                                                  \
3865   REQUIRED(baseType, MDField, );                                               \
3866   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3867   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3868   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3869   OPTIONAL(flags, DIFlagField, );                                              \
3870   OPTIONAL(extraData, MDField, );
3871   PARSE_MD_FIELDS();
3872 #undef VISIT_MD_FIELDS
3873 
3874   Result = GET_OR_DISTINCT(DIDerivedType,
3875                            (Context, tag.Val, name.Val, file.Val, line.Val,
3876                             scope.Val, baseType.Val, size.Val, align.Val,
3877                             offset.Val, flags.Val, extraData.Val));
3878   return false;
3879 }
3880 
ParseDICompositeType(MDNode * & Result,bool IsDistinct)3881 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3883   REQUIRED(tag, DwarfTagField, );                                              \
3884   OPTIONAL(name, MDStringField, );                                             \
3885   OPTIONAL(file, MDField, );                                                   \
3886   OPTIONAL(line, LineField, );                                                 \
3887   OPTIONAL(scope, MDField, );                                                  \
3888   OPTIONAL(baseType, MDField, );                                               \
3889   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3890   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3891   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3892   OPTIONAL(flags, DIFlagField, );                                              \
3893   OPTIONAL(elements, MDField, );                                               \
3894   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3895   OPTIONAL(vtableHolder, MDField, );                                           \
3896   OPTIONAL(templateParams, MDField, );                                         \
3897   OPTIONAL(identifier, MDStringField, );
3898   PARSE_MD_FIELDS();
3899 #undef VISIT_MD_FIELDS
3900 
3901   // If this has an identifier try to build an ODR type.
3902   if (identifier.Val)
3903     if (auto *CT = DICompositeType::buildODRType(
3904             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3905             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3906             elements.Val, runtimeLang.Val, vtableHolder.Val,
3907             templateParams.Val)) {
3908       Result = CT;
3909       return false;
3910     }
3911 
3912   // Create a new node, and save it in the context if it belongs in the type
3913   // map.
3914   Result = GET_OR_DISTINCT(
3915       DICompositeType,
3916       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3917        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3918        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3919   return false;
3920 }
3921 
ParseDISubroutineType(MDNode * & Result,bool IsDistinct)3922 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3923 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3924   OPTIONAL(flags, DIFlagField, );                                              \
3925   OPTIONAL(cc, DwarfCCField, );                                                \
3926   REQUIRED(types, MDField, );
3927   PARSE_MD_FIELDS();
3928 #undef VISIT_MD_FIELDS
3929 
3930   Result = GET_OR_DISTINCT(DISubroutineType,
3931                            (Context, flags.Val, cc.Val, types.Val));
3932   return false;
3933 }
3934 
3935 /// ParseDIFileType:
3936 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
ParseDIFile(MDNode * & Result,bool IsDistinct)3937 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3939   REQUIRED(filename, MDStringField, );                                         \
3940   REQUIRED(directory, MDStringField, );
3941   PARSE_MD_FIELDS();
3942 #undef VISIT_MD_FIELDS
3943 
3944   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3945   return false;
3946 }
3947 
3948 /// ParseDICompileUnit:
3949 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3950 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3951 ///                      splitDebugFilename: "abc.debug",
3952 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3953 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
ParseDICompileUnit(MDNode * & Result,bool IsDistinct)3954 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3955   if (!IsDistinct)
3956     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3957 
3958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3959   REQUIRED(language, DwarfLangField, );                                        \
3960   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3961   OPTIONAL(producer, MDStringField, );                                         \
3962   OPTIONAL(isOptimized, MDBoolField, );                                        \
3963   OPTIONAL(flags, MDStringField, );                                            \
3964   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3965   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3966   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3967   OPTIONAL(enums, MDField, );                                                  \
3968   OPTIONAL(retainedTypes, MDField, );                                          \
3969   OPTIONAL(globals, MDField, );                                                \
3970   OPTIONAL(imports, MDField, );                                                \
3971   OPTIONAL(macros, MDField, );                                                 \
3972   OPTIONAL(dwoId, MDUnsignedField, );
3973   PARSE_MD_FIELDS();
3974 #undef VISIT_MD_FIELDS
3975 
3976   Result = DICompileUnit::getDistinct(
3977       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3978       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3979       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val);
3980   return false;
3981 }
3982 
3983 /// ParseDISubprogram:
3984 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3985 ///                     file: !1, line: 7, type: !2, isLocal: false,
3986 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3987 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3988 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
3989 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3990 ///                     variables: !6)
ParseDISubprogram(MDNode * & Result,bool IsDistinct)3991 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3992   auto Loc = Lex.getLoc();
3993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3994   OPTIONAL(scope, MDField, );                                                  \
3995   OPTIONAL(name, MDStringField, );                                             \
3996   OPTIONAL(linkageName, MDStringField, );                                      \
3997   OPTIONAL(file, MDField, );                                                   \
3998   OPTIONAL(line, LineField, );                                                 \
3999   OPTIONAL(type, MDField, );                                                   \
4000   OPTIONAL(isLocal, MDBoolField, );                                            \
4001   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4002   OPTIONAL(scopeLine, LineField, );                                            \
4003   OPTIONAL(containingType, MDField, );                                         \
4004   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4005   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4006   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4007   OPTIONAL(flags, DIFlagField, );                                              \
4008   OPTIONAL(isOptimized, MDBoolField, );                                        \
4009   OPTIONAL(unit, MDField, );                                                   \
4010   OPTIONAL(templateParams, MDField, );                                         \
4011   OPTIONAL(declaration, MDField, );                                            \
4012   OPTIONAL(variables, MDField, );
4013   PARSE_MD_FIELDS();
4014 #undef VISIT_MD_FIELDS
4015 
4016   if (isDefinition.Val && !IsDistinct)
4017     return Lex.Error(
4018         Loc,
4019         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4020 
4021   Result = GET_OR_DISTINCT(
4022       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4023                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
4024                      scopeLine.Val, containingType.Val, virtuality.Val,
4025                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
4026                      isOptimized.Val, unit.Val, templateParams.Val,
4027                      declaration.Val, variables.Val));
4028   return false;
4029 }
4030 
4031 /// ParseDILexicalBlock:
4032 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
ParseDILexicalBlock(MDNode * & Result,bool IsDistinct)4033 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4035   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4036   OPTIONAL(file, MDField, );                                                   \
4037   OPTIONAL(line, LineField, );                                                 \
4038   OPTIONAL(column, ColumnField, );
4039   PARSE_MD_FIELDS();
4040 #undef VISIT_MD_FIELDS
4041 
4042   Result = GET_OR_DISTINCT(
4043       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4044   return false;
4045 }
4046 
4047 /// ParseDILexicalBlockFile:
4048 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
ParseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)4049 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4050 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4051   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4052   OPTIONAL(file, MDField, );                                                   \
4053   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4054   PARSE_MD_FIELDS();
4055 #undef VISIT_MD_FIELDS
4056 
4057   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4058                            (Context, scope.Val, file.Val, discriminator.Val));
4059   return false;
4060 }
4061 
4062 /// ParseDINamespace:
4063 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
ParseDINamespace(MDNode * & Result,bool IsDistinct)4064 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4065 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4066   REQUIRED(scope, MDField, );                                                  \
4067   OPTIONAL(file, MDField, );                                                   \
4068   OPTIONAL(name, MDStringField, );                                             \
4069   OPTIONAL(line, LineField, );
4070   PARSE_MD_FIELDS();
4071 #undef VISIT_MD_FIELDS
4072 
4073   Result = GET_OR_DISTINCT(DINamespace,
4074                            (Context, scope.Val, file.Val, name.Val, line.Val));
4075   return false;
4076 }
4077 
4078 /// ParseDIMacro:
4079 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
ParseDIMacro(MDNode * & Result,bool IsDistinct)4080 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4082   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4083   REQUIRED(line, LineField, );                                                 \
4084   REQUIRED(name, MDStringField, );                                             \
4085   OPTIONAL(value, MDStringField, );
4086   PARSE_MD_FIELDS();
4087 #undef VISIT_MD_FIELDS
4088 
4089   Result = GET_OR_DISTINCT(DIMacro,
4090                            (Context, type.Val, line.Val, name.Val, value.Val));
4091   return false;
4092 }
4093 
4094 /// ParseDIMacroFile:
4095 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
ParseDIMacroFile(MDNode * & Result,bool IsDistinct)4096 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4098   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4099   REQUIRED(line, LineField, );                                                 \
4100   REQUIRED(file, MDField, );                                                   \
4101   OPTIONAL(nodes, MDField, );
4102   PARSE_MD_FIELDS();
4103 #undef VISIT_MD_FIELDS
4104 
4105   Result = GET_OR_DISTINCT(DIMacroFile,
4106                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4107   return false;
4108 }
4109 
4110 
4111 /// ParseDIModule:
4112 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4113 ///                 includePath: "/usr/include", isysroot: "/")
ParseDIModule(MDNode * & Result,bool IsDistinct)4114 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4116   REQUIRED(scope, MDField, );                                                  \
4117   REQUIRED(name, MDStringField, );                                             \
4118   OPTIONAL(configMacros, MDStringField, );                                     \
4119   OPTIONAL(includePath, MDStringField, );                                      \
4120   OPTIONAL(isysroot, MDStringField, );
4121   PARSE_MD_FIELDS();
4122 #undef VISIT_MD_FIELDS
4123 
4124   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4125                            configMacros.Val, includePath.Val, isysroot.Val));
4126   return false;
4127 }
4128 
4129 /// ParseDITemplateTypeParameter:
4130 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
ParseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)4131 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4132 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4133   OPTIONAL(name, MDStringField, );                                             \
4134   REQUIRED(type, MDField, );
4135   PARSE_MD_FIELDS();
4136 #undef VISIT_MD_FIELDS
4137 
4138   Result =
4139       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4140   return false;
4141 }
4142 
4143 /// ParseDITemplateValueParameter:
4144 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4145 ///                                 name: "V", type: !1, value: i32 7)
ParseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)4146 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4147 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4148   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4149   OPTIONAL(name, MDStringField, );                                             \
4150   OPTIONAL(type, MDField, );                                                   \
4151   REQUIRED(value, MDField, );
4152   PARSE_MD_FIELDS();
4153 #undef VISIT_MD_FIELDS
4154 
4155   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4156                            (Context, tag.Val, name.Val, type.Val, value.Val));
4157   return false;
4158 }
4159 
4160 /// ParseDIGlobalVariable:
4161 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4162 ///                         file: !1, line: 7, type: !2, isLocal: false,
4163 ///                         isDefinition: true, variable: i32* @foo,
4164 ///                         declaration: !3)
ParseDIGlobalVariable(MDNode * & Result,bool IsDistinct)4165 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4166 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4167   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4168   OPTIONAL(scope, MDField, );                                                  \
4169   OPTIONAL(linkageName, MDStringField, );                                      \
4170   OPTIONAL(file, MDField, );                                                   \
4171   OPTIONAL(line, LineField, );                                                 \
4172   OPTIONAL(type, MDField, );                                                   \
4173   OPTIONAL(isLocal, MDBoolField, );                                            \
4174   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4175   OPTIONAL(variable, MDConstant, );                                            \
4176   OPTIONAL(declaration, MDField, );
4177   PARSE_MD_FIELDS();
4178 #undef VISIT_MD_FIELDS
4179 
4180   Result = GET_OR_DISTINCT(DIGlobalVariable,
4181                            (Context, scope.Val, name.Val, linkageName.Val,
4182                             file.Val, line.Val, type.Val, isLocal.Val,
4183                             isDefinition.Val, variable.Val, declaration.Val));
4184   return false;
4185 }
4186 
4187 /// ParseDILocalVariable:
4188 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4189 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4190 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4191 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
ParseDILocalVariable(MDNode * & Result,bool IsDistinct)4192 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4193 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4194   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4195   OPTIONAL(name, MDStringField, );                                             \
4196   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4197   OPTIONAL(file, MDField, );                                                   \
4198   OPTIONAL(line, LineField, );                                                 \
4199   OPTIONAL(type, MDField, );                                                   \
4200   OPTIONAL(flags, DIFlagField, );
4201   PARSE_MD_FIELDS();
4202 #undef VISIT_MD_FIELDS
4203 
4204   Result = GET_OR_DISTINCT(DILocalVariable,
4205                            (Context, scope.Val, name.Val, file.Val, line.Val,
4206                             type.Val, arg.Val, flags.Val));
4207   return false;
4208 }
4209 
4210 /// ParseDIExpression:
4211 ///   ::= !DIExpression(0, 7, -1)
ParseDIExpression(MDNode * & Result,bool IsDistinct)4212 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4213   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4214   Lex.Lex();
4215 
4216   if (ParseToken(lltok::lparen, "expected '(' here"))
4217     return true;
4218 
4219   SmallVector<uint64_t, 8> Elements;
4220   if (Lex.getKind() != lltok::rparen)
4221     do {
4222       if (Lex.getKind() == lltok::DwarfOp) {
4223         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4224           Lex.Lex();
4225           Elements.push_back(Op);
4226           continue;
4227         }
4228         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4229       }
4230 
4231       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4232         return TokError("expected unsigned integer");
4233 
4234       auto &U = Lex.getAPSIntVal();
4235       if (U.ugt(UINT64_MAX))
4236         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4237       Elements.push_back(U.getZExtValue());
4238       Lex.Lex();
4239     } while (EatIfPresent(lltok::comma));
4240 
4241   if (ParseToken(lltok::rparen, "expected ')' here"))
4242     return true;
4243 
4244   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4245   return false;
4246 }
4247 
4248 /// ParseDIObjCProperty:
4249 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4250 ///                       getter: "getFoo", attributes: 7, type: !2)
ParseDIObjCProperty(MDNode * & Result,bool IsDistinct)4251 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4253   OPTIONAL(name, MDStringField, );                                             \
4254   OPTIONAL(file, MDField, );                                                   \
4255   OPTIONAL(line, LineField, );                                                 \
4256   OPTIONAL(setter, MDStringField, );                                           \
4257   OPTIONAL(getter, MDStringField, );                                           \
4258   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4259   OPTIONAL(type, MDField, );
4260   PARSE_MD_FIELDS();
4261 #undef VISIT_MD_FIELDS
4262 
4263   Result = GET_OR_DISTINCT(DIObjCProperty,
4264                            (Context, name.Val, file.Val, line.Val, setter.Val,
4265                             getter.Val, attributes.Val, type.Val));
4266   return false;
4267 }
4268 
4269 /// ParseDIImportedEntity:
4270 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4271 ///                         line: 7, name: "foo")
ParseDIImportedEntity(MDNode * & Result,bool IsDistinct)4272 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4273 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4274   REQUIRED(tag, DwarfTagField, );                                              \
4275   REQUIRED(scope, MDField, );                                                  \
4276   OPTIONAL(entity, MDField, );                                                 \
4277   OPTIONAL(line, LineField, );                                                 \
4278   OPTIONAL(name, MDStringField, );
4279   PARSE_MD_FIELDS();
4280 #undef VISIT_MD_FIELDS
4281 
4282   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4283                                               entity.Val, line.Val, name.Val));
4284   return false;
4285 }
4286 
4287 #undef PARSE_MD_FIELD
4288 #undef NOP_FIELD
4289 #undef REQUIRE_FIELD
4290 #undef DECLARE_FIELD
4291 
4292 /// ParseMetadataAsValue
4293 ///  ::= metadata i32 %local
4294 ///  ::= metadata i32 @global
4295 ///  ::= metadata i32 7
4296 ///  ::= metadata !0
4297 ///  ::= metadata !{...}
4298 ///  ::= metadata !"string"
ParseMetadataAsValue(Value * & V,PerFunctionState & PFS)4299 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4300   // Note: the type 'metadata' has already been parsed.
4301   Metadata *MD;
4302   if (ParseMetadata(MD, &PFS))
4303     return true;
4304 
4305   V = MetadataAsValue::get(Context, MD);
4306   return false;
4307 }
4308 
4309 /// ParseValueAsMetadata
4310 ///  ::= i32 %local
4311 ///  ::= i32 @global
4312 ///  ::= i32 7
ParseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)4313 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4314                                     PerFunctionState *PFS) {
4315   Type *Ty;
4316   LocTy Loc;
4317   if (ParseType(Ty, TypeMsg, Loc))
4318     return true;
4319   if (Ty->isMetadataTy())
4320     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4321 
4322   Value *V;
4323   if (ParseValue(Ty, V, PFS))
4324     return true;
4325 
4326   MD = ValueAsMetadata::get(V);
4327   return false;
4328 }
4329 
4330 /// ParseMetadata
4331 ///  ::= i32 %local
4332 ///  ::= i32 @global
4333 ///  ::= i32 7
4334 ///  ::= !42
4335 ///  ::= !{...}
4336 ///  ::= !"string"
4337 ///  ::= !DILocation(...)
ParseMetadata(Metadata * & MD,PerFunctionState * PFS)4338 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4339   if (Lex.getKind() == lltok::MetadataVar) {
4340     MDNode *N;
4341     if (ParseSpecializedMDNode(N))
4342       return true;
4343     MD = N;
4344     return false;
4345   }
4346 
4347   // ValueAsMetadata:
4348   // <type> <value>
4349   if (Lex.getKind() != lltok::exclaim)
4350     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4351 
4352   // '!'.
4353   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4354   Lex.Lex();
4355 
4356   // MDString:
4357   //   ::= '!' STRINGCONSTANT
4358   if (Lex.getKind() == lltok::StringConstant) {
4359     MDString *S;
4360     if (ParseMDString(S))
4361       return true;
4362     MD = S;
4363     return false;
4364   }
4365 
4366   // MDNode:
4367   // !{ ... }
4368   // !7
4369   MDNode *N;
4370   if (ParseMDNodeTail(N))
4371     return true;
4372   MD = N;
4373   return false;
4374 }
4375 
4376 
4377 //===----------------------------------------------------------------------===//
4378 // Function Parsing.
4379 //===----------------------------------------------------------------------===//
4380 
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)4381 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4382                                    PerFunctionState *PFS) {
4383   if (Ty->isFunctionTy())
4384     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4385 
4386   switch (ID.Kind) {
4387   case ValID::t_LocalID:
4388     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4389     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4390     return V == nullptr;
4391   case ValID::t_LocalName:
4392     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4393     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4394     return V == nullptr;
4395   case ValID::t_InlineAsm: {
4396     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4397       return Error(ID.Loc, "invalid type for inline asm constraint string");
4398     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4399                        (ID.UIntVal >> 1) & 1,
4400                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4401     return false;
4402   }
4403   case ValID::t_GlobalName:
4404     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4405     return V == nullptr;
4406   case ValID::t_GlobalID:
4407     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4408     return V == nullptr;
4409   case ValID::t_APSInt:
4410     if (!Ty->isIntegerTy())
4411       return Error(ID.Loc, "integer constant must have integer type");
4412     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4413     V = ConstantInt::get(Context, ID.APSIntVal);
4414     return false;
4415   case ValID::t_APFloat:
4416     if (!Ty->isFloatingPointTy() ||
4417         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4418       return Error(ID.Loc, "floating point constant invalid for type");
4419 
4420     // The lexer has no type info, so builds all half, float, and double FP
4421     // constants as double.  Fix this here.  Long double does not need this.
4422     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4423       bool Ignored;
4424       if (Ty->isHalfTy())
4425         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4426                               &Ignored);
4427       else if (Ty->isFloatTy())
4428         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4429                               &Ignored);
4430     }
4431     V = ConstantFP::get(Context, ID.APFloatVal);
4432 
4433     if (V->getType() != Ty)
4434       return Error(ID.Loc, "floating point constant does not have type '" +
4435                    getTypeString(Ty) + "'");
4436 
4437     return false;
4438   case ValID::t_Null:
4439     if (!Ty->isPointerTy())
4440       return Error(ID.Loc, "null must be a pointer type");
4441     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4442     return false;
4443   case ValID::t_Undef:
4444     // FIXME: LabelTy should not be a first-class type.
4445     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4446       return Error(ID.Loc, "invalid type for undef constant");
4447     V = UndefValue::get(Ty);
4448     return false;
4449   case ValID::t_EmptyArray:
4450     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4451       return Error(ID.Loc, "invalid empty array initializer");
4452     V = UndefValue::get(Ty);
4453     return false;
4454   case ValID::t_Zero:
4455     // FIXME: LabelTy should not be a first-class type.
4456     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4457       return Error(ID.Loc, "invalid type for null constant");
4458     V = Constant::getNullValue(Ty);
4459     return false;
4460   case ValID::t_None:
4461     if (!Ty->isTokenTy())
4462       return Error(ID.Loc, "invalid type for none constant");
4463     V = Constant::getNullValue(Ty);
4464     return false;
4465   case ValID::t_Constant:
4466     if (ID.ConstantVal->getType() != Ty)
4467       return Error(ID.Loc, "constant expression type mismatch");
4468 
4469     V = ID.ConstantVal;
4470     return false;
4471   case ValID::t_ConstantStruct:
4472   case ValID::t_PackedConstantStruct:
4473     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4474       if (ST->getNumElements() != ID.UIntVal)
4475         return Error(ID.Loc,
4476                      "initializer with struct type has wrong # elements");
4477       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4478         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4479 
4480       // Verify that the elements are compatible with the structtype.
4481       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4482         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4483           return Error(ID.Loc, "element " + Twine(i) +
4484                     " of struct initializer doesn't match struct element type");
4485 
4486       V = ConstantStruct::get(
4487           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4488     } else
4489       return Error(ID.Loc, "constant expression type mismatch");
4490     return false;
4491   }
4492   llvm_unreachable("Invalid ValID");
4493 }
4494 
parseConstantValue(Type * Ty,Constant * & C)4495 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4496   C = nullptr;
4497   ValID ID;
4498   auto Loc = Lex.getLoc();
4499   if (ParseValID(ID, /*PFS=*/nullptr))
4500     return true;
4501   switch (ID.Kind) {
4502   case ValID::t_APSInt:
4503   case ValID::t_APFloat:
4504   case ValID::t_Undef:
4505   case ValID::t_Constant:
4506   case ValID::t_ConstantStruct:
4507   case ValID::t_PackedConstantStruct: {
4508     Value *V;
4509     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4510       return true;
4511     assert(isa<Constant>(V) && "Expected a constant value");
4512     C = cast<Constant>(V);
4513     return false;
4514   }
4515   default:
4516     return Error(Loc, "expected a constant value");
4517   }
4518 }
4519 
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)4520 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4521   V = nullptr;
4522   ValID ID;
4523   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4524 }
4525 
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)4526 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4527   Type *Ty = nullptr;
4528   return ParseType(Ty) ||
4529          ParseValue(Ty, V, PFS);
4530 }
4531 
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)4532 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4533                                       PerFunctionState &PFS) {
4534   Value *V;
4535   Loc = Lex.getLoc();
4536   if (ParseTypeAndValue(V, PFS)) return true;
4537   if (!isa<BasicBlock>(V))
4538     return Error(Loc, "expected a basic block");
4539   BB = cast<BasicBlock>(V);
4540   return false;
4541 }
4542 
4543 
4544 /// FunctionHeader
4545 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4546 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4547 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
ParseFunctionHeader(Function * & Fn,bool isDefine)4548 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4549   // Parse the linkage.
4550   LocTy LinkageLoc = Lex.getLoc();
4551   unsigned Linkage;
4552 
4553   unsigned Visibility;
4554   unsigned DLLStorageClass;
4555   AttrBuilder RetAttrs;
4556   unsigned CC;
4557   bool HasLinkage;
4558   Type *RetType = nullptr;
4559   LocTy RetTypeLoc = Lex.getLoc();
4560   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4561       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4562       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4563     return true;
4564 
4565   // Verify that the linkage is ok.
4566   switch ((GlobalValue::LinkageTypes)Linkage) {
4567   case GlobalValue::ExternalLinkage:
4568     break; // always ok.
4569   case GlobalValue::ExternalWeakLinkage:
4570     if (isDefine)
4571       return Error(LinkageLoc, "invalid linkage for function definition");
4572     break;
4573   case GlobalValue::PrivateLinkage:
4574   case GlobalValue::InternalLinkage:
4575   case GlobalValue::AvailableExternallyLinkage:
4576   case GlobalValue::LinkOnceAnyLinkage:
4577   case GlobalValue::LinkOnceODRLinkage:
4578   case GlobalValue::WeakAnyLinkage:
4579   case GlobalValue::WeakODRLinkage:
4580     if (!isDefine)
4581       return Error(LinkageLoc, "invalid linkage for function declaration");
4582     break;
4583   case GlobalValue::AppendingLinkage:
4584   case GlobalValue::CommonLinkage:
4585     return Error(LinkageLoc, "invalid function linkage type");
4586   }
4587 
4588   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4589     return Error(LinkageLoc,
4590                  "symbol with local linkage must have default visibility");
4591 
4592   if (!FunctionType::isValidReturnType(RetType))
4593     return Error(RetTypeLoc, "invalid function return type");
4594 
4595   LocTy NameLoc = Lex.getLoc();
4596 
4597   std::string FunctionName;
4598   if (Lex.getKind() == lltok::GlobalVar) {
4599     FunctionName = Lex.getStrVal();
4600   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4601     unsigned NameID = Lex.getUIntVal();
4602 
4603     if (NameID != NumberedVals.size())
4604       return TokError("function expected to be numbered '%" +
4605                       Twine(NumberedVals.size()) + "'");
4606   } else {
4607     return TokError("expected function name");
4608   }
4609 
4610   Lex.Lex();
4611 
4612   if (Lex.getKind() != lltok::lparen)
4613     return TokError("expected '(' in function argument list");
4614 
4615   SmallVector<ArgInfo, 8> ArgList;
4616   bool isVarArg;
4617   AttrBuilder FuncAttrs;
4618   std::vector<unsigned> FwdRefAttrGrps;
4619   LocTy BuiltinLoc;
4620   std::string Section;
4621   unsigned Alignment;
4622   std::string GC;
4623   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4624   LocTy UnnamedAddrLoc;
4625   Constant *Prefix = nullptr;
4626   Constant *Prologue = nullptr;
4627   Constant *PersonalityFn = nullptr;
4628   Comdat *C;
4629 
4630   if (ParseArgumentList(ArgList, isVarArg) ||
4631       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4632       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4633                                  BuiltinLoc) ||
4634       (EatIfPresent(lltok::kw_section) &&
4635        ParseStringConstant(Section)) ||
4636       parseOptionalComdat(FunctionName, C) ||
4637       ParseOptionalAlignment(Alignment) ||
4638       (EatIfPresent(lltok::kw_gc) &&
4639        ParseStringConstant(GC)) ||
4640       (EatIfPresent(lltok::kw_prefix) &&
4641        ParseGlobalTypeAndValue(Prefix)) ||
4642       (EatIfPresent(lltok::kw_prologue) &&
4643        ParseGlobalTypeAndValue(Prologue)) ||
4644       (EatIfPresent(lltok::kw_personality) &&
4645        ParseGlobalTypeAndValue(PersonalityFn)))
4646     return true;
4647 
4648   if (FuncAttrs.contains(Attribute::Builtin))
4649     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4650 
4651   // If the alignment was parsed as an attribute, move to the alignment field.
4652   if (FuncAttrs.hasAlignmentAttr()) {
4653     Alignment = FuncAttrs.getAlignment();
4654     FuncAttrs.removeAttribute(Attribute::Alignment);
4655   }
4656 
4657   // Okay, if we got here, the function is syntactically valid.  Convert types
4658   // and do semantic checks.
4659   std::vector<Type*> ParamTypeList;
4660   SmallVector<AttributeSet, 8> Attrs;
4661 
4662   if (RetAttrs.hasAttributes())
4663     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4664                                       AttributeSet::ReturnIndex,
4665                                       RetAttrs));
4666 
4667   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4668     ParamTypeList.push_back(ArgList[i].Ty);
4669     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4670       AttrBuilder B(ArgList[i].Attrs, i + 1);
4671       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4672     }
4673   }
4674 
4675   if (FuncAttrs.hasAttributes())
4676     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4677                                       AttributeSet::FunctionIndex,
4678                                       FuncAttrs));
4679 
4680   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4681 
4682   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4683     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4684 
4685   FunctionType *FT =
4686     FunctionType::get(RetType, ParamTypeList, isVarArg);
4687   PointerType *PFT = PointerType::getUnqual(FT);
4688 
4689   Fn = nullptr;
4690   if (!FunctionName.empty()) {
4691     // If this was a definition of a forward reference, remove the definition
4692     // from the forward reference table and fill in the forward ref.
4693     auto FRVI = ForwardRefVals.find(FunctionName);
4694     if (FRVI != ForwardRefVals.end()) {
4695       Fn = M->getFunction(FunctionName);
4696       if (!Fn)
4697         return Error(FRVI->second.second, "invalid forward reference to "
4698                      "function as global value!");
4699       if (Fn->getType() != PFT)
4700         return Error(FRVI->second.second, "invalid forward reference to "
4701                      "function '" + FunctionName + "' with wrong type!");
4702 
4703       ForwardRefVals.erase(FRVI);
4704     } else if ((Fn = M->getFunction(FunctionName))) {
4705       // Reject redefinitions.
4706       return Error(NameLoc, "invalid redefinition of function '" +
4707                    FunctionName + "'");
4708     } else if (M->getNamedValue(FunctionName)) {
4709       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4710     }
4711 
4712   } else {
4713     // If this is a definition of a forward referenced function, make sure the
4714     // types agree.
4715     auto I = ForwardRefValIDs.find(NumberedVals.size());
4716     if (I != ForwardRefValIDs.end()) {
4717       Fn = cast<Function>(I->second.first);
4718       if (Fn->getType() != PFT)
4719         return Error(NameLoc, "type of definition and forward reference of '@" +
4720                      Twine(NumberedVals.size()) + "' disagree");
4721       ForwardRefValIDs.erase(I);
4722     }
4723   }
4724 
4725   if (!Fn)
4726     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4727   else // Move the forward-reference to the correct spot in the module.
4728     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4729 
4730   if (FunctionName.empty())
4731     NumberedVals.push_back(Fn);
4732 
4733   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4734   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4735   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4736   Fn->setCallingConv(CC);
4737   Fn->setAttributes(PAL);
4738   Fn->setUnnamedAddr(UnnamedAddr);
4739   Fn->setAlignment(Alignment);
4740   Fn->setSection(Section);
4741   Fn->setComdat(C);
4742   Fn->setPersonalityFn(PersonalityFn);
4743   if (!GC.empty()) Fn->setGC(GC);
4744   Fn->setPrefixData(Prefix);
4745   Fn->setPrologueData(Prologue);
4746   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4747 
4748   // Add all of the arguments we parsed to the function.
4749   Function::arg_iterator ArgIt = Fn->arg_begin();
4750   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4751     // If the argument has a name, insert it into the argument symbol table.
4752     if (ArgList[i].Name.empty()) continue;
4753 
4754     // Set the name, if it conflicted, it will be auto-renamed.
4755     ArgIt->setName(ArgList[i].Name);
4756 
4757     if (ArgIt->getName() != ArgList[i].Name)
4758       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4759                    ArgList[i].Name + "'");
4760   }
4761 
4762   if (isDefine)
4763     return false;
4764 
4765   // Check the declaration has no block address forward references.
4766   ValID ID;
4767   if (FunctionName.empty()) {
4768     ID.Kind = ValID::t_GlobalID;
4769     ID.UIntVal = NumberedVals.size() - 1;
4770   } else {
4771     ID.Kind = ValID::t_GlobalName;
4772     ID.StrVal = FunctionName;
4773   }
4774   auto Blocks = ForwardRefBlockAddresses.find(ID);
4775   if (Blocks != ForwardRefBlockAddresses.end())
4776     return Error(Blocks->first.Loc,
4777                  "cannot take blockaddress inside a declaration");
4778   return false;
4779 }
4780 
resolveForwardRefBlockAddresses()4781 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4782   ValID ID;
4783   if (FunctionNumber == -1) {
4784     ID.Kind = ValID::t_GlobalName;
4785     ID.StrVal = F.getName();
4786   } else {
4787     ID.Kind = ValID::t_GlobalID;
4788     ID.UIntVal = FunctionNumber;
4789   }
4790 
4791   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4792   if (Blocks == P.ForwardRefBlockAddresses.end())
4793     return false;
4794 
4795   for (const auto &I : Blocks->second) {
4796     const ValID &BBID = I.first;
4797     GlobalValue *GV = I.second;
4798 
4799     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4800            "Expected local id or name");
4801     BasicBlock *BB;
4802     if (BBID.Kind == ValID::t_LocalName)
4803       BB = GetBB(BBID.StrVal, BBID.Loc);
4804     else
4805       BB = GetBB(BBID.UIntVal, BBID.Loc);
4806     if (!BB)
4807       return P.Error(BBID.Loc, "referenced value is not a basic block");
4808 
4809     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4810     GV->eraseFromParent();
4811   }
4812 
4813   P.ForwardRefBlockAddresses.erase(Blocks);
4814   return false;
4815 }
4816 
4817 /// ParseFunctionBody
4818 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
ParseFunctionBody(Function & Fn)4819 bool LLParser::ParseFunctionBody(Function &Fn) {
4820   if (Lex.getKind() != lltok::lbrace)
4821     return TokError("expected '{' in function body");
4822   Lex.Lex();  // eat the {.
4823 
4824   int FunctionNumber = -1;
4825   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4826 
4827   PerFunctionState PFS(*this, Fn, FunctionNumber);
4828 
4829   // Resolve block addresses and allow basic blocks to be forward-declared
4830   // within this function.
4831   if (PFS.resolveForwardRefBlockAddresses())
4832     return true;
4833   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4834 
4835   // We need at least one basic block.
4836   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4837     return TokError("function body requires at least one basic block");
4838 
4839   while (Lex.getKind() != lltok::rbrace &&
4840          Lex.getKind() != lltok::kw_uselistorder)
4841     if (ParseBasicBlock(PFS)) return true;
4842 
4843   while (Lex.getKind() != lltok::rbrace)
4844     if (ParseUseListOrder(&PFS))
4845       return true;
4846 
4847   // Eat the }.
4848   Lex.Lex();
4849 
4850   // Verify function is ok.
4851   return PFS.FinishFunction();
4852 }
4853 
4854 /// ParseBasicBlock
4855 ///   ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)4856 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4857   // If this basic block starts out with a name, remember it.
4858   std::string Name;
4859   LocTy NameLoc = Lex.getLoc();
4860   if (Lex.getKind() == lltok::LabelStr) {
4861     Name = Lex.getStrVal();
4862     Lex.Lex();
4863   }
4864 
4865   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4866   if (!BB)
4867     return Error(NameLoc,
4868                  "unable to create block named '" + Name + "'");
4869 
4870   std::string NameStr;
4871 
4872   // Parse the instructions in this block until we get a terminator.
4873   Instruction *Inst;
4874   do {
4875     // This instruction may have three possibilities for a name: a) none
4876     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4877     LocTy NameLoc = Lex.getLoc();
4878     int NameID = -1;
4879     NameStr = "";
4880 
4881     if (Lex.getKind() == lltok::LocalVarID) {
4882       NameID = Lex.getUIntVal();
4883       Lex.Lex();
4884       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4885         return true;
4886     } else if (Lex.getKind() == lltok::LocalVar) {
4887       NameStr = Lex.getStrVal();
4888       Lex.Lex();
4889       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4890         return true;
4891     }
4892 
4893     switch (ParseInstruction(Inst, BB, PFS)) {
4894     default: llvm_unreachable("Unknown ParseInstruction result!");
4895     case InstError: return true;
4896     case InstNormal:
4897       BB->getInstList().push_back(Inst);
4898 
4899       // With a normal result, we check to see if the instruction is followed by
4900       // a comma and metadata.
4901       if (EatIfPresent(lltok::comma))
4902         if (ParseInstructionMetadata(*Inst))
4903           return true;
4904       break;
4905     case InstExtraComma:
4906       BB->getInstList().push_back(Inst);
4907 
4908       // If the instruction parser ate an extra comma at the end of it, it
4909       // *must* be followed by metadata.
4910       if (ParseInstructionMetadata(*Inst))
4911         return true;
4912       break;
4913     }
4914 
4915     // Set the name on the instruction.
4916     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4917   } while (!isa<TerminatorInst>(Inst));
4918 
4919   return false;
4920 }
4921 
4922 //===----------------------------------------------------------------------===//
4923 // Instruction Parsing.
4924 //===----------------------------------------------------------------------===//
4925 
4926 /// ParseInstruction - Parse one of the many different instructions.
4927 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)4928 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4929                                PerFunctionState &PFS) {
4930   lltok::Kind Token = Lex.getKind();
4931   if (Token == lltok::Eof)
4932     return TokError("found end of file when expecting more instructions");
4933   LocTy Loc = Lex.getLoc();
4934   unsigned KeywordVal = Lex.getUIntVal();
4935   Lex.Lex();  // Eat the keyword.
4936 
4937   switch (Token) {
4938   default:                    return Error(Loc, "expected instruction opcode");
4939   // Terminator Instructions.
4940   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4941   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4942   case lltok::kw_br:          return ParseBr(Inst, PFS);
4943   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4944   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4945   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4946   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4947   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4948   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4949   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4950   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4951   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4952   // Binary Operators.
4953   case lltok::kw_add:
4954   case lltok::kw_sub:
4955   case lltok::kw_mul:
4956   case lltok::kw_shl: {
4957     bool NUW = EatIfPresent(lltok::kw_nuw);
4958     bool NSW = EatIfPresent(lltok::kw_nsw);
4959     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4960 
4961     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4962 
4963     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4964     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4965     return false;
4966   }
4967   case lltok::kw_fadd:
4968   case lltok::kw_fsub:
4969   case lltok::kw_fmul:
4970   case lltok::kw_fdiv:
4971   case lltok::kw_frem: {
4972     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4973     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4974     if (Res != 0)
4975       return Res;
4976     if (FMF.any())
4977       Inst->setFastMathFlags(FMF);
4978     return 0;
4979   }
4980 
4981   case lltok::kw_sdiv:
4982   case lltok::kw_udiv:
4983   case lltok::kw_lshr:
4984   case lltok::kw_ashr: {
4985     bool Exact = EatIfPresent(lltok::kw_exact);
4986 
4987     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4988     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4989     return false;
4990   }
4991 
4992   case lltok::kw_urem:
4993   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4994   case lltok::kw_and:
4995   case lltok::kw_or:
4996   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4997   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4998   case lltok::kw_fcmp: {
4999     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5000     int Res = ParseCompare(Inst, PFS, KeywordVal);
5001     if (Res != 0)
5002       return Res;
5003     if (FMF.any())
5004       Inst->setFastMathFlags(FMF);
5005     return 0;
5006   }
5007 
5008   // Casts.
5009   case lltok::kw_trunc:
5010   case lltok::kw_zext:
5011   case lltok::kw_sext:
5012   case lltok::kw_fptrunc:
5013   case lltok::kw_fpext:
5014   case lltok::kw_bitcast:
5015   case lltok::kw_addrspacecast:
5016   case lltok::kw_uitofp:
5017   case lltok::kw_sitofp:
5018   case lltok::kw_fptoui:
5019   case lltok::kw_fptosi:
5020   case lltok::kw_inttoptr:
5021   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5022   // Other.
5023   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5024   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5025   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5026   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5027   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5028   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5029   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5030   // Call.
5031   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5032   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5033   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5034   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5035   // Memory.
5036   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5037   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5038   case lltok::kw_store:          return ParseStore(Inst, PFS);
5039   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5040   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5041   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5042   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5043   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5044   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5045   }
5046 }
5047 
5048 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)5049 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5050   if (Opc == Instruction::FCmp) {
5051     switch (Lex.getKind()) {
5052     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5053     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5054     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5055     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5056     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5057     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5058     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5059     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5060     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5061     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5062     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5063     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5064     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5065     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5066     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5067     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5068     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5069     }
5070   } else {
5071     switch (Lex.getKind()) {
5072     default: return TokError("expected icmp predicate (e.g. 'eq')");
5073     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5074     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5075     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5076     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5077     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5078     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5079     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5080     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5081     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5082     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5083     }
5084   }
5085   Lex.Lex();
5086   return false;
5087 }
5088 
5089 //===----------------------------------------------------------------------===//
5090 // Terminator Instructions.
5091 //===----------------------------------------------------------------------===//
5092 
5093 /// ParseRet - Parse a return instruction.
5094 ///   ::= 'ret' void (',' !dbg, !1)*
5095 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)5096 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5097                         PerFunctionState &PFS) {
5098   SMLoc TypeLoc = Lex.getLoc();
5099   Type *Ty = nullptr;
5100   if (ParseType(Ty, true /*void allowed*/)) return true;
5101 
5102   Type *ResType = PFS.getFunction().getReturnType();
5103 
5104   if (Ty->isVoidTy()) {
5105     if (!ResType->isVoidTy())
5106       return Error(TypeLoc, "value doesn't match function result type '" +
5107                    getTypeString(ResType) + "'");
5108 
5109     Inst = ReturnInst::Create(Context);
5110     return false;
5111   }
5112 
5113   Value *RV;
5114   if (ParseValue(Ty, RV, PFS)) return true;
5115 
5116   if (ResType != RV->getType())
5117     return Error(TypeLoc, "value doesn't match function result type '" +
5118                  getTypeString(ResType) + "'");
5119 
5120   Inst = ReturnInst::Create(Context, RV);
5121   return false;
5122 }
5123 
5124 
5125 /// ParseBr
5126 ///   ::= 'br' TypeAndValue
5127 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)5128 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5129   LocTy Loc, Loc2;
5130   Value *Op0;
5131   BasicBlock *Op1, *Op2;
5132   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5133 
5134   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5135     Inst = BranchInst::Create(BB);
5136     return false;
5137   }
5138 
5139   if (Op0->getType() != Type::getInt1Ty(Context))
5140     return Error(Loc, "branch condition must have 'i1' type");
5141 
5142   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5143       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5144       ParseToken(lltok::comma, "expected ',' after true destination") ||
5145       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5146     return true;
5147 
5148   Inst = BranchInst::Create(Op1, Op2, Op0);
5149   return false;
5150 }
5151 
5152 /// ParseSwitch
5153 ///  Instruction
5154 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5155 ///  JumpTable
5156 ///    ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)5157 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5158   LocTy CondLoc, BBLoc;
5159   Value *Cond;
5160   BasicBlock *DefaultBB;
5161   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5162       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5163       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5164       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5165     return true;
5166 
5167   if (!Cond->getType()->isIntegerTy())
5168     return Error(CondLoc, "switch condition must have integer type");
5169 
5170   // Parse the jump table pairs.
5171   SmallPtrSet<Value*, 32> SeenCases;
5172   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5173   while (Lex.getKind() != lltok::rsquare) {
5174     Value *Constant;
5175     BasicBlock *DestBB;
5176 
5177     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5178         ParseToken(lltok::comma, "expected ',' after case value") ||
5179         ParseTypeAndBasicBlock(DestBB, PFS))
5180       return true;
5181 
5182     if (!SeenCases.insert(Constant).second)
5183       return Error(CondLoc, "duplicate case value in switch");
5184     if (!isa<ConstantInt>(Constant))
5185       return Error(CondLoc, "case value is not a constant integer");
5186 
5187     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5188   }
5189 
5190   Lex.Lex();  // Eat the ']'.
5191 
5192   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5193   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5194     SI->addCase(Table[i].first, Table[i].second);
5195   Inst = SI;
5196   return false;
5197 }
5198 
5199 /// ParseIndirectBr
5200 ///  Instruction
5201 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)5202 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5203   LocTy AddrLoc;
5204   Value *Address;
5205   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5206       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5207       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5208     return true;
5209 
5210   if (!Address->getType()->isPointerTy())
5211     return Error(AddrLoc, "indirectbr address must have pointer type");
5212 
5213   // Parse the destination list.
5214   SmallVector<BasicBlock*, 16> DestList;
5215 
5216   if (Lex.getKind() != lltok::rsquare) {
5217     BasicBlock *DestBB;
5218     if (ParseTypeAndBasicBlock(DestBB, PFS))
5219       return true;
5220     DestList.push_back(DestBB);
5221 
5222     while (EatIfPresent(lltok::comma)) {
5223       if (ParseTypeAndBasicBlock(DestBB, PFS))
5224         return true;
5225       DestList.push_back(DestBB);
5226     }
5227   }
5228 
5229   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5230     return true;
5231 
5232   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5233   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5234     IBI->addDestination(DestList[i]);
5235   Inst = IBI;
5236   return false;
5237 }
5238 
5239 
5240 /// ParseInvoke
5241 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5242 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)5243 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5244   LocTy CallLoc = Lex.getLoc();
5245   AttrBuilder RetAttrs, FnAttrs;
5246   std::vector<unsigned> FwdRefAttrGrps;
5247   LocTy NoBuiltinLoc;
5248   unsigned CC;
5249   Type *RetType = nullptr;
5250   LocTy RetTypeLoc;
5251   ValID CalleeID;
5252   SmallVector<ParamInfo, 16> ArgList;
5253   SmallVector<OperandBundleDef, 2> BundleList;
5254 
5255   BasicBlock *NormalBB, *UnwindBB;
5256   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5257       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5258       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5259       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5260                                  NoBuiltinLoc) ||
5261       ParseOptionalOperandBundles(BundleList, PFS) ||
5262       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5263       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5264       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5265       ParseTypeAndBasicBlock(UnwindBB, PFS))
5266     return true;
5267 
5268   // If RetType is a non-function pointer type, then this is the short syntax
5269   // for the call, which means that RetType is just the return type.  Infer the
5270   // rest of the function argument types from the arguments that are present.
5271   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5272   if (!Ty) {
5273     // Pull out the types of all of the arguments...
5274     std::vector<Type*> ParamTypes;
5275     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5276       ParamTypes.push_back(ArgList[i].V->getType());
5277 
5278     if (!FunctionType::isValidReturnType(RetType))
5279       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5280 
5281     Ty = FunctionType::get(RetType, ParamTypes, false);
5282   }
5283 
5284   CalleeID.FTy = Ty;
5285 
5286   // Look up the callee.
5287   Value *Callee;
5288   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5289     return true;
5290 
5291   // Set up the Attribute for the function.
5292   SmallVector<AttributeSet, 8> Attrs;
5293   if (RetAttrs.hasAttributes())
5294     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5295                                       AttributeSet::ReturnIndex,
5296                                       RetAttrs));
5297 
5298   SmallVector<Value*, 8> Args;
5299 
5300   // Loop through FunctionType's arguments and ensure they are specified
5301   // correctly.  Also, gather any parameter attributes.
5302   FunctionType::param_iterator I = Ty->param_begin();
5303   FunctionType::param_iterator E = Ty->param_end();
5304   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5305     Type *ExpectedTy = nullptr;
5306     if (I != E) {
5307       ExpectedTy = *I++;
5308     } else if (!Ty->isVarArg()) {
5309       return Error(ArgList[i].Loc, "too many arguments specified");
5310     }
5311 
5312     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5313       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5314                    getTypeString(ExpectedTy) + "'");
5315     Args.push_back(ArgList[i].V);
5316     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5317       AttrBuilder B(ArgList[i].Attrs, i + 1);
5318       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5319     }
5320   }
5321 
5322   if (I != E)
5323     return Error(CallLoc, "not enough parameters specified for call");
5324 
5325   if (FnAttrs.hasAttributes()) {
5326     if (FnAttrs.hasAlignmentAttr())
5327       return Error(CallLoc, "invoke instructions may not have an alignment");
5328 
5329     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5330                                       AttributeSet::FunctionIndex,
5331                                       FnAttrs));
5332   }
5333 
5334   // Finish off the Attribute and check them
5335   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5336 
5337   InvokeInst *II =
5338       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5339   II->setCallingConv(CC);
5340   II->setAttributes(PAL);
5341   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5342   Inst = II;
5343   return false;
5344 }
5345 
5346 /// ParseResume
5347 ///   ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)5348 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5349   Value *Exn; LocTy ExnLoc;
5350   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5351     return true;
5352 
5353   ResumeInst *RI = ResumeInst::Create(Exn);
5354   Inst = RI;
5355   return false;
5356 }
5357 
ParseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)5358 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5359                                   PerFunctionState &PFS) {
5360   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5361     return true;
5362 
5363   while (Lex.getKind() != lltok::rsquare) {
5364     // If this isn't the first argument, we need a comma.
5365     if (!Args.empty() &&
5366         ParseToken(lltok::comma, "expected ',' in argument list"))
5367       return true;
5368 
5369     // Parse the argument.
5370     LocTy ArgLoc;
5371     Type *ArgTy = nullptr;
5372     if (ParseType(ArgTy, ArgLoc))
5373       return true;
5374 
5375     Value *V;
5376     if (ArgTy->isMetadataTy()) {
5377       if (ParseMetadataAsValue(V, PFS))
5378         return true;
5379     } else {
5380       if (ParseValue(ArgTy, V, PFS))
5381         return true;
5382     }
5383     Args.push_back(V);
5384   }
5385 
5386   Lex.Lex();  // Lex the ']'.
5387   return false;
5388 }
5389 
5390 /// ParseCleanupRet
5391 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
ParseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)5392 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5393   Value *CleanupPad = nullptr;
5394 
5395   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5396     return true;
5397 
5398   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5399     return true;
5400 
5401   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5402     return true;
5403 
5404   BasicBlock *UnwindBB = nullptr;
5405   if (Lex.getKind() == lltok::kw_to) {
5406     Lex.Lex();
5407     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5408       return true;
5409   } else {
5410     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5411       return true;
5412     }
5413   }
5414 
5415   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5416   return false;
5417 }
5418 
5419 /// ParseCatchRet
5420 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
ParseCatchRet(Instruction * & Inst,PerFunctionState & PFS)5421 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5422   Value *CatchPad = nullptr;
5423 
5424   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5425     return true;
5426 
5427   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5428     return true;
5429 
5430   BasicBlock *BB;
5431   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5432       ParseTypeAndBasicBlock(BB, PFS))
5433       return true;
5434 
5435   Inst = CatchReturnInst::Create(CatchPad, BB);
5436   return false;
5437 }
5438 
5439 /// ParseCatchSwitch
5440 ///   ::= 'catchswitch' within Parent
ParseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)5441 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5442   Value *ParentPad;
5443   LocTy BBLoc;
5444 
5445   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5446     return true;
5447 
5448   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5449       Lex.getKind() != lltok::LocalVarID)
5450     return TokError("expected scope value for catchswitch");
5451 
5452   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5453     return true;
5454 
5455   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5456     return true;
5457 
5458   SmallVector<BasicBlock *, 32> Table;
5459   do {
5460     BasicBlock *DestBB;
5461     if (ParseTypeAndBasicBlock(DestBB, PFS))
5462       return true;
5463     Table.push_back(DestBB);
5464   } while (EatIfPresent(lltok::comma));
5465 
5466   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5467     return true;
5468 
5469   if (ParseToken(lltok::kw_unwind,
5470                  "expected 'unwind' after catchswitch scope"))
5471     return true;
5472 
5473   BasicBlock *UnwindBB = nullptr;
5474   if (EatIfPresent(lltok::kw_to)) {
5475     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5476       return true;
5477   } else {
5478     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5479       return true;
5480   }
5481 
5482   auto *CatchSwitch =
5483       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5484   for (BasicBlock *DestBB : Table)
5485     CatchSwitch->addHandler(DestBB);
5486   Inst = CatchSwitch;
5487   return false;
5488 }
5489 
5490 /// ParseCatchPad
5491 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
ParseCatchPad(Instruction * & Inst,PerFunctionState & PFS)5492 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5493   Value *CatchSwitch = nullptr;
5494 
5495   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5496     return true;
5497 
5498   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5499     return TokError("expected scope value for catchpad");
5500 
5501   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5502     return true;
5503 
5504   SmallVector<Value *, 8> Args;
5505   if (ParseExceptionArgs(Args, PFS))
5506     return true;
5507 
5508   Inst = CatchPadInst::Create(CatchSwitch, Args);
5509   return false;
5510 }
5511 
5512 /// ParseCleanupPad
5513 ///   ::= 'cleanuppad' within Parent ParamList
ParseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)5514 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5515   Value *ParentPad = nullptr;
5516 
5517   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5518     return true;
5519 
5520   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5521       Lex.getKind() != lltok::LocalVarID)
5522     return TokError("expected scope value for cleanuppad");
5523 
5524   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5525     return true;
5526 
5527   SmallVector<Value *, 8> Args;
5528   if (ParseExceptionArgs(Args, PFS))
5529     return true;
5530 
5531   Inst = CleanupPadInst::Create(ParentPad, Args);
5532   return false;
5533 }
5534 
5535 //===----------------------------------------------------------------------===//
5536 // Binary Operators.
5537 //===----------------------------------------------------------------------===//
5538 
5539 /// ParseArithmetic
5540 ///  ::= ArithmeticOps TypeAndValue ',' Value
5541 ///
5542 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5543 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)5544 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5545                                unsigned Opc, unsigned OperandType) {
5546   LocTy Loc; Value *LHS, *RHS;
5547   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5548       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5549       ParseValue(LHS->getType(), RHS, PFS))
5550     return true;
5551 
5552   bool Valid;
5553   switch (OperandType) {
5554   default: llvm_unreachable("Unknown operand type!");
5555   case 0: // int or FP.
5556     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5557             LHS->getType()->isFPOrFPVectorTy();
5558     break;
5559   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5560   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5561   }
5562 
5563   if (!Valid)
5564     return Error(Loc, "invalid operand type for instruction");
5565 
5566   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5567   return false;
5568 }
5569 
5570 /// ParseLogical
5571 ///  ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5572 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5573                             unsigned Opc) {
5574   LocTy Loc; Value *LHS, *RHS;
5575   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5576       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5577       ParseValue(LHS->getType(), RHS, PFS))
5578     return true;
5579 
5580   if (!LHS->getType()->isIntOrIntVectorTy())
5581     return Error(Loc,"instruction requires integer or integer vector operands");
5582 
5583   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5584   return false;
5585 }
5586 
5587 
5588 /// ParseCompare
5589 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5590 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5591 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5592                             unsigned Opc) {
5593   // Parse the integer/fp comparison predicate.
5594   LocTy Loc;
5595   unsigned Pred;
5596   Value *LHS, *RHS;
5597   if (ParseCmpPredicate(Pred, Opc) ||
5598       ParseTypeAndValue(LHS, Loc, PFS) ||
5599       ParseToken(lltok::comma, "expected ',' after compare value") ||
5600       ParseValue(LHS->getType(), RHS, PFS))
5601     return true;
5602 
5603   if (Opc == Instruction::FCmp) {
5604     if (!LHS->getType()->isFPOrFPVectorTy())
5605       return Error(Loc, "fcmp requires floating point operands");
5606     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5607   } else {
5608     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5609     if (!LHS->getType()->isIntOrIntVectorTy() &&
5610         !LHS->getType()->getScalarType()->isPointerTy())
5611       return Error(Loc, "icmp requires integer operands");
5612     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5613   }
5614   return false;
5615 }
5616 
5617 //===----------------------------------------------------------------------===//
5618 // Other Instructions.
5619 //===----------------------------------------------------------------------===//
5620 
5621 
5622 /// ParseCast
5623 ///   ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5624 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5625                          unsigned Opc) {
5626   LocTy Loc;
5627   Value *Op;
5628   Type *DestTy = nullptr;
5629   if (ParseTypeAndValue(Op, Loc, PFS) ||
5630       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5631       ParseType(DestTy))
5632     return true;
5633 
5634   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5635     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5636     return Error(Loc, "invalid cast opcode for cast from '" +
5637                  getTypeString(Op->getType()) + "' to '" +
5638                  getTypeString(DestTy) + "'");
5639   }
5640   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5641   return false;
5642 }
5643 
5644 /// ParseSelect
5645 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)5646 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5647   LocTy Loc;
5648   Value *Op0, *Op1, *Op2;
5649   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5650       ParseToken(lltok::comma, "expected ',' after select condition") ||
5651       ParseTypeAndValue(Op1, PFS) ||
5652       ParseToken(lltok::comma, "expected ',' after select value") ||
5653       ParseTypeAndValue(Op2, PFS))
5654     return true;
5655 
5656   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5657     return Error(Loc, Reason);
5658 
5659   Inst = SelectInst::Create(Op0, Op1, Op2);
5660   return false;
5661 }
5662 
5663 /// ParseVA_Arg
5664 ///   ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)5665 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5666   Value *Op;
5667   Type *EltTy = nullptr;
5668   LocTy TypeLoc;
5669   if (ParseTypeAndValue(Op, PFS) ||
5670       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5671       ParseType(EltTy, TypeLoc))
5672     return true;
5673 
5674   if (!EltTy->isFirstClassType())
5675     return Error(TypeLoc, "va_arg requires operand with first class type");
5676 
5677   Inst = new VAArgInst(Op, EltTy);
5678   return false;
5679 }
5680 
5681 /// ParseExtractElement
5682 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)5683 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5684   LocTy Loc;
5685   Value *Op0, *Op1;
5686   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5687       ParseToken(lltok::comma, "expected ',' after extract value") ||
5688       ParseTypeAndValue(Op1, PFS))
5689     return true;
5690 
5691   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5692     return Error(Loc, "invalid extractelement operands");
5693 
5694   Inst = ExtractElementInst::Create(Op0, Op1);
5695   return false;
5696 }
5697 
5698 /// ParseInsertElement
5699 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)5700 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5701   LocTy Loc;
5702   Value *Op0, *Op1, *Op2;
5703   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5704       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5705       ParseTypeAndValue(Op1, PFS) ||
5706       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5707       ParseTypeAndValue(Op2, PFS))
5708     return true;
5709 
5710   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5711     return Error(Loc, "invalid insertelement operands");
5712 
5713   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5714   return false;
5715 }
5716 
5717 /// ParseShuffleVector
5718 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)5719 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5720   LocTy Loc;
5721   Value *Op0, *Op1, *Op2;
5722   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5723       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5724       ParseTypeAndValue(Op1, PFS) ||
5725       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5726       ParseTypeAndValue(Op2, PFS))
5727     return true;
5728 
5729   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5730     return Error(Loc, "invalid shufflevector operands");
5731 
5732   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5733   return false;
5734 }
5735 
5736 /// ParsePHI
5737 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)5738 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5739   Type *Ty = nullptr;  LocTy TypeLoc;
5740   Value *Op0, *Op1;
5741 
5742   if (ParseType(Ty, TypeLoc) ||
5743       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5744       ParseValue(Ty, Op0, PFS) ||
5745       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5746       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5747       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5748     return true;
5749 
5750   bool AteExtraComma = false;
5751   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5752   while (1) {
5753     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5754 
5755     if (!EatIfPresent(lltok::comma))
5756       break;
5757 
5758     if (Lex.getKind() == lltok::MetadataVar) {
5759       AteExtraComma = true;
5760       break;
5761     }
5762 
5763     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5764         ParseValue(Ty, Op0, PFS) ||
5765         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5766         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5767         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5768       return true;
5769   }
5770 
5771   if (!Ty->isFirstClassType())
5772     return Error(TypeLoc, "phi node must have first class type");
5773 
5774   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5775   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5776     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5777   Inst = PN;
5778   return AteExtraComma ? InstExtraComma : InstNormal;
5779 }
5780 
5781 /// ParseLandingPad
5782 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5783 /// Clause
5784 ///   ::= 'catch' TypeAndValue
5785 ///   ::= 'filter'
5786 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)5787 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5788   Type *Ty = nullptr; LocTy TyLoc;
5789 
5790   if (ParseType(Ty, TyLoc))
5791     return true;
5792 
5793   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5794   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5795 
5796   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5797     LandingPadInst::ClauseType CT;
5798     if (EatIfPresent(lltok::kw_catch))
5799       CT = LandingPadInst::Catch;
5800     else if (EatIfPresent(lltok::kw_filter))
5801       CT = LandingPadInst::Filter;
5802     else
5803       return TokError("expected 'catch' or 'filter' clause type");
5804 
5805     Value *V;
5806     LocTy VLoc;
5807     if (ParseTypeAndValue(V, VLoc, PFS))
5808       return true;
5809 
5810     // A 'catch' type expects a non-array constant. A filter clause expects an
5811     // array constant.
5812     if (CT == LandingPadInst::Catch) {
5813       if (isa<ArrayType>(V->getType()))
5814         Error(VLoc, "'catch' clause has an invalid type");
5815     } else {
5816       if (!isa<ArrayType>(V->getType()))
5817         Error(VLoc, "'filter' clause has an invalid type");
5818     }
5819 
5820     Constant *CV = dyn_cast<Constant>(V);
5821     if (!CV)
5822       return Error(VLoc, "clause argument must be a constant");
5823     LP->addClause(CV);
5824   }
5825 
5826   Inst = LP.release();
5827   return false;
5828 }
5829 
5830 /// ParseCall
5831 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5832 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5833 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5834 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5835 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5836 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5837 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5838 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)5839 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5840                          CallInst::TailCallKind TCK) {
5841   AttrBuilder RetAttrs, FnAttrs;
5842   std::vector<unsigned> FwdRefAttrGrps;
5843   LocTy BuiltinLoc;
5844   unsigned CC;
5845   Type *RetType = nullptr;
5846   LocTy RetTypeLoc;
5847   ValID CalleeID;
5848   SmallVector<ParamInfo, 16> ArgList;
5849   SmallVector<OperandBundleDef, 2> BundleList;
5850   LocTy CallLoc = Lex.getLoc();
5851 
5852   if (TCK != CallInst::TCK_None &&
5853       ParseToken(lltok::kw_call,
5854                  "expected 'tail call', 'musttail call', or 'notail call'"))
5855     return true;
5856 
5857   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5858 
5859   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5860       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5861       ParseValID(CalleeID) ||
5862       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5863                          PFS.getFunction().isVarArg()) ||
5864       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5865       ParseOptionalOperandBundles(BundleList, PFS))
5866     return true;
5867 
5868   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5869     return Error(CallLoc, "fast-math-flags specified for call without "
5870                           "floating-point scalar or vector return type");
5871 
5872   // If RetType is a non-function pointer type, then this is the short syntax
5873   // for the call, which means that RetType is just the return type.  Infer the
5874   // rest of the function argument types from the arguments that are present.
5875   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5876   if (!Ty) {
5877     // Pull out the types of all of the arguments...
5878     std::vector<Type*> ParamTypes;
5879     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5880       ParamTypes.push_back(ArgList[i].V->getType());
5881 
5882     if (!FunctionType::isValidReturnType(RetType))
5883       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5884 
5885     Ty = FunctionType::get(RetType, ParamTypes, false);
5886   }
5887 
5888   CalleeID.FTy = Ty;
5889 
5890   // Look up the callee.
5891   Value *Callee;
5892   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5893     return true;
5894 
5895   // Set up the Attribute for the function.
5896   SmallVector<AttributeSet, 8> Attrs;
5897   if (RetAttrs.hasAttributes())
5898     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5899                                       AttributeSet::ReturnIndex,
5900                                       RetAttrs));
5901 
5902   SmallVector<Value*, 8> Args;
5903 
5904   // Loop through FunctionType's arguments and ensure they are specified
5905   // correctly.  Also, gather any parameter attributes.
5906   FunctionType::param_iterator I = Ty->param_begin();
5907   FunctionType::param_iterator E = Ty->param_end();
5908   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5909     Type *ExpectedTy = nullptr;
5910     if (I != E) {
5911       ExpectedTy = *I++;
5912     } else if (!Ty->isVarArg()) {
5913       return Error(ArgList[i].Loc, "too many arguments specified");
5914     }
5915 
5916     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5917       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5918                    getTypeString(ExpectedTy) + "'");
5919     Args.push_back(ArgList[i].V);
5920     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5921       AttrBuilder B(ArgList[i].Attrs, i + 1);
5922       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5923     }
5924   }
5925 
5926   if (I != E)
5927     return Error(CallLoc, "not enough parameters specified for call");
5928 
5929   if (FnAttrs.hasAttributes()) {
5930     if (FnAttrs.hasAlignmentAttr())
5931       return Error(CallLoc, "call instructions may not have an alignment");
5932 
5933     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5934                                       AttributeSet::FunctionIndex,
5935                                       FnAttrs));
5936   }
5937 
5938   // Finish off the Attribute and check them
5939   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5940 
5941   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5942   CI->setTailCallKind(TCK);
5943   CI->setCallingConv(CC);
5944   if (FMF.any())
5945     CI->setFastMathFlags(FMF);
5946   CI->setAttributes(PAL);
5947   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5948   Inst = CI;
5949   return false;
5950 }
5951 
5952 //===----------------------------------------------------------------------===//
5953 // Memory Instructions.
5954 //===----------------------------------------------------------------------===//
5955 
5956 /// ParseAlloc
5957 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5958 ///       (',' 'align' i32)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)5959 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5960   Value *Size = nullptr;
5961   LocTy SizeLoc, TyLoc;
5962   unsigned Alignment = 0;
5963   Type *Ty = nullptr;
5964 
5965   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5966   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5967 
5968   if (ParseType(Ty, TyLoc)) return true;
5969 
5970   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5971     return Error(TyLoc, "invalid type for alloca");
5972 
5973   bool AteExtraComma = false;
5974   if (EatIfPresent(lltok::comma)) {
5975     if (Lex.getKind() == lltok::kw_align) {
5976       if (ParseOptionalAlignment(Alignment)) return true;
5977     } else if (Lex.getKind() == lltok::MetadataVar) {
5978       AteExtraComma = true;
5979     } else {
5980       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5981           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5982         return true;
5983     }
5984   }
5985 
5986   if (Size && !Size->getType()->isIntegerTy())
5987     return Error(SizeLoc, "element count must have integer type");
5988 
5989   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5990   AI->setUsedWithInAlloca(IsInAlloca);
5991   AI->setSwiftError(IsSwiftError);
5992   Inst = AI;
5993   return AteExtraComma ? InstExtraComma : InstNormal;
5994 }
5995 
5996 /// ParseLoad
5997 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5998 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5999 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)6000 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6001   Value *Val; LocTy Loc;
6002   unsigned Alignment = 0;
6003   bool AteExtraComma = false;
6004   bool isAtomic = false;
6005   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6006   SynchronizationScope Scope = CrossThread;
6007 
6008   if (Lex.getKind() == lltok::kw_atomic) {
6009     isAtomic = true;
6010     Lex.Lex();
6011   }
6012 
6013   bool isVolatile = false;
6014   if (Lex.getKind() == lltok::kw_volatile) {
6015     isVolatile = true;
6016     Lex.Lex();
6017   }
6018 
6019   Type *Ty;
6020   LocTy ExplicitTypeLoc = Lex.getLoc();
6021   if (ParseType(Ty) ||
6022       ParseToken(lltok::comma, "expected comma after load's type") ||
6023       ParseTypeAndValue(Val, Loc, PFS) ||
6024       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6025       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6026     return true;
6027 
6028   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6029     return Error(Loc, "load operand must be a pointer to a first class type");
6030   if (isAtomic && !Alignment)
6031     return Error(Loc, "atomic load must have explicit non-zero alignment");
6032   if (Ordering == AtomicOrdering::Release ||
6033       Ordering == AtomicOrdering::AcquireRelease)
6034     return Error(Loc, "atomic load cannot use Release ordering");
6035 
6036   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6037     return Error(ExplicitTypeLoc,
6038                  "explicit pointee type doesn't match operand's pointee type");
6039 
6040   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6041   return AteExtraComma ? InstExtraComma : InstNormal;
6042 }
6043 
6044 /// ParseStore
6045 
6046 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6047 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6048 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)6049 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6050   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6051   unsigned Alignment = 0;
6052   bool AteExtraComma = false;
6053   bool isAtomic = false;
6054   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6055   SynchronizationScope Scope = CrossThread;
6056 
6057   if (Lex.getKind() == lltok::kw_atomic) {
6058     isAtomic = true;
6059     Lex.Lex();
6060   }
6061 
6062   bool isVolatile = false;
6063   if (Lex.getKind() == lltok::kw_volatile) {
6064     isVolatile = true;
6065     Lex.Lex();
6066   }
6067 
6068   if (ParseTypeAndValue(Val, Loc, PFS) ||
6069       ParseToken(lltok::comma, "expected ',' after store operand") ||
6070       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6071       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6072       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6073     return true;
6074 
6075   if (!Ptr->getType()->isPointerTy())
6076     return Error(PtrLoc, "store operand must be a pointer");
6077   if (!Val->getType()->isFirstClassType())
6078     return Error(Loc, "store operand must be a first class value");
6079   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6080     return Error(Loc, "stored value and pointer type do not match");
6081   if (isAtomic && !Alignment)
6082     return Error(Loc, "atomic store must have explicit non-zero alignment");
6083   if (Ordering == AtomicOrdering::Acquire ||
6084       Ordering == AtomicOrdering::AcquireRelease)
6085     return Error(Loc, "atomic store cannot use Acquire ordering");
6086 
6087   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6088   return AteExtraComma ? InstExtraComma : InstNormal;
6089 }
6090 
6091 /// ParseCmpXchg
6092 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6093 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)6094 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6095   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6096   bool AteExtraComma = false;
6097   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6098   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6099   SynchronizationScope Scope = CrossThread;
6100   bool isVolatile = false;
6101   bool isWeak = false;
6102 
6103   if (EatIfPresent(lltok::kw_weak))
6104     isWeak = true;
6105 
6106   if (EatIfPresent(lltok::kw_volatile))
6107     isVolatile = true;
6108 
6109   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6110       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6111       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6112       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6113       ParseTypeAndValue(New, NewLoc, PFS) ||
6114       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6115       ParseOrdering(FailureOrdering))
6116     return true;
6117 
6118   if (SuccessOrdering == AtomicOrdering::Unordered ||
6119       FailureOrdering == AtomicOrdering::Unordered)
6120     return TokError("cmpxchg cannot be unordered");
6121   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6122     return TokError("cmpxchg failure argument shall be no stronger than the "
6123                     "success argument");
6124   if (FailureOrdering == AtomicOrdering::Release ||
6125       FailureOrdering == AtomicOrdering::AcquireRelease)
6126     return TokError(
6127         "cmpxchg failure ordering cannot include release semantics");
6128   if (!Ptr->getType()->isPointerTy())
6129     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6130   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6131     return Error(CmpLoc, "compare value and pointer type do not match");
6132   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6133     return Error(NewLoc, "new value and pointer type do not match");
6134   if (!New->getType()->isFirstClassType())
6135     return Error(NewLoc, "cmpxchg operand must be a first class value");
6136   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6137       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6138   CXI->setVolatile(isVolatile);
6139   CXI->setWeak(isWeak);
6140   Inst = CXI;
6141   return AteExtraComma ? InstExtraComma : InstNormal;
6142 }
6143 
6144 /// ParseAtomicRMW
6145 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6146 ///       'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)6147 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6148   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6149   bool AteExtraComma = false;
6150   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6151   SynchronizationScope Scope = CrossThread;
6152   bool isVolatile = false;
6153   AtomicRMWInst::BinOp Operation;
6154 
6155   if (EatIfPresent(lltok::kw_volatile))
6156     isVolatile = true;
6157 
6158   switch (Lex.getKind()) {
6159   default: return TokError("expected binary operation in atomicrmw");
6160   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6161   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6162   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6163   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6164   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6165   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6166   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6167   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6168   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6169   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6170   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6171   }
6172   Lex.Lex();  // Eat the operation.
6173 
6174   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6175       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6176       ParseTypeAndValue(Val, ValLoc, PFS) ||
6177       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6178     return true;
6179 
6180   if (Ordering == AtomicOrdering::Unordered)
6181     return TokError("atomicrmw cannot be unordered");
6182   if (!Ptr->getType()->isPointerTy())
6183     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6184   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6185     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6186   if (!Val->getType()->isIntegerTy())
6187     return Error(ValLoc, "atomicrmw operand must be an integer");
6188   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6189   if (Size < 8 || (Size & (Size - 1)))
6190     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6191                          " integer");
6192 
6193   AtomicRMWInst *RMWI =
6194     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6195   RMWI->setVolatile(isVolatile);
6196   Inst = RMWI;
6197   return AteExtraComma ? InstExtraComma : InstNormal;
6198 }
6199 
6200 /// ParseFence
6201 ///   ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)6202 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6203   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6204   SynchronizationScope Scope = CrossThread;
6205   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6206     return true;
6207 
6208   if (Ordering == AtomicOrdering::Unordered)
6209     return TokError("fence cannot be unordered");
6210   if (Ordering == AtomicOrdering::Monotonic)
6211     return TokError("fence cannot be monotonic");
6212 
6213   Inst = new FenceInst(Context, Ordering, Scope);
6214   return InstNormal;
6215 }
6216 
6217 /// ParseGetElementPtr
6218 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)6219 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6220   Value *Ptr = nullptr;
6221   Value *Val = nullptr;
6222   LocTy Loc, EltLoc;
6223 
6224   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6225 
6226   Type *Ty = nullptr;
6227   LocTy ExplicitTypeLoc = Lex.getLoc();
6228   if (ParseType(Ty) ||
6229       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6230       ParseTypeAndValue(Ptr, Loc, PFS))
6231     return true;
6232 
6233   Type *BaseType = Ptr->getType();
6234   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6235   if (!BasePointerType)
6236     return Error(Loc, "base of getelementptr must be a pointer");
6237 
6238   if (Ty != BasePointerType->getElementType())
6239     return Error(ExplicitTypeLoc,
6240                  "explicit pointee type doesn't match operand's pointee type");
6241 
6242   SmallVector<Value*, 16> Indices;
6243   bool AteExtraComma = false;
6244   // GEP returns a vector of pointers if at least one of parameters is a vector.
6245   // All vector parameters should have the same vector width.
6246   unsigned GEPWidth = BaseType->isVectorTy() ?
6247     BaseType->getVectorNumElements() : 0;
6248 
6249   while (EatIfPresent(lltok::comma)) {
6250     if (Lex.getKind() == lltok::MetadataVar) {
6251       AteExtraComma = true;
6252       break;
6253     }
6254     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6255     if (!Val->getType()->getScalarType()->isIntegerTy())
6256       return Error(EltLoc, "getelementptr index must be an integer");
6257 
6258     if (Val->getType()->isVectorTy()) {
6259       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6260       if (GEPWidth && GEPWidth != ValNumEl)
6261         return Error(EltLoc,
6262           "getelementptr vector index has a wrong number of elements");
6263       GEPWidth = ValNumEl;
6264     }
6265     Indices.push_back(Val);
6266   }
6267 
6268   SmallPtrSet<Type*, 4> Visited;
6269   if (!Indices.empty() && !Ty->isSized(&Visited))
6270     return Error(Loc, "base element of getelementptr must be sized");
6271 
6272   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6273     return Error(Loc, "invalid getelementptr indices");
6274   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6275   if (InBounds)
6276     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6277   return AteExtraComma ? InstExtraComma : InstNormal;
6278 }
6279 
6280 /// ParseExtractValue
6281 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)6282 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6283   Value *Val; LocTy Loc;
6284   SmallVector<unsigned, 4> Indices;
6285   bool AteExtraComma;
6286   if (ParseTypeAndValue(Val, Loc, PFS) ||
6287       ParseIndexList(Indices, AteExtraComma))
6288     return true;
6289 
6290   if (!Val->getType()->isAggregateType())
6291     return Error(Loc, "extractvalue operand must be aggregate type");
6292 
6293   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6294     return Error(Loc, "invalid indices for extractvalue");
6295   Inst = ExtractValueInst::Create(Val, Indices);
6296   return AteExtraComma ? InstExtraComma : InstNormal;
6297 }
6298 
6299 /// ParseInsertValue
6300 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)6301 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6302   Value *Val0, *Val1; LocTy Loc0, Loc1;
6303   SmallVector<unsigned, 4> Indices;
6304   bool AteExtraComma;
6305   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6306       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6307       ParseTypeAndValue(Val1, Loc1, PFS) ||
6308       ParseIndexList(Indices, AteExtraComma))
6309     return true;
6310 
6311   if (!Val0->getType()->isAggregateType())
6312     return Error(Loc0, "insertvalue operand must be aggregate type");
6313 
6314   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6315   if (!IndexedType)
6316     return Error(Loc0, "invalid indices for insertvalue");
6317   if (IndexedType != Val1->getType())
6318     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6319                            getTypeString(Val1->getType()) + "' instead of '" +
6320                            getTypeString(IndexedType) + "'");
6321   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6322   return AteExtraComma ? InstExtraComma : InstNormal;
6323 }
6324 
6325 //===----------------------------------------------------------------------===//
6326 // Embedded metadata.
6327 //===----------------------------------------------------------------------===//
6328 
6329 /// ParseMDNodeVector
6330 ///   ::= { Element (',' Element)* }
6331 /// Element
6332 ///   ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)6333 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6334   if (ParseToken(lltok::lbrace, "expected '{' here"))
6335     return true;
6336 
6337   // Check for an empty list.
6338   if (EatIfPresent(lltok::rbrace))
6339     return false;
6340 
6341   do {
6342     // Null is a special case since it is typeless.
6343     if (EatIfPresent(lltok::kw_null)) {
6344       Elts.push_back(nullptr);
6345       continue;
6346     }
6347 
6348     Metadata *MD;
6349     if (ParseMetadata(MD, nullptr))
6350       return true;
6351     Elts.push_back(MD);
6352   } while (EatIfPresent(lltok::comma));
6353 
6354   return ParseToken(lltok::rbrace, "expected end of metadata node");
6355 }
6356 
6357 //===----------------------------------------------------------------------===//
6358 // Use-list order directives.
6359 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)6360 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6361                                 SMLoc Loc) {
6362   if (V->use_empty())
6363     return Error(Loc, "value has no uses");
6364 
6365   unsigned NumUses = 0;
6366   SmallDenseMap<const Use *, unsigned, 16> Order;
6367   for (const Use &U : V->uses()) {
6368     if (++NumUses > Indexes.size())
6369       break;
6370     Order[&U] = Indexes[NumUses - 1];
6371   }
6372   if (NumUses < 2)
6373     return Error(Loc, "value only has one use");
6374   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6375     return Error(Loc, "wrong number of indexes, expected " +
6376                           Twine(std::distance(V->use_begin(), V->use_end())));
6377 
6378   V->sortUseList([&](const Use &L, const Use &R) {
6379     return Order.lookup(&L) < Order.lookup(&R);
6380   });
6381   return false;
6382 }
6383 
6384 /// ParseUseListOrderIndexes
6385 ///   ::= '{' uint32 (',' uint32)+ '}'
ParseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)6386 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6387   SMLoc Loc = Lex.getLoc();
6388   if (ParseToken(lltok::lbrace, "expected '{' here"))
6389     return true;
6390   if (Lex.getKind() == lltok::rbrace)
6391     return Lex.Error("expected non-empty list of uselistorder indexes");
6392 
6393   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6394   // indexes should be distinct numbers in the range [0, size-1], and should
6395   // not be in order.
6396   unsigned Offset = 0;
6397   unsigned Max = 0;
6398   bool IsOrdered = true;
6399   assert(Indexes.empty() && "Expected empty order vector");
6400   do {
6401     unsigned Index;
6402     if (ParseUInt32(Index))
6403       return true;
6404 
6405     // Update consistency checks.
6406     Offset += Index - Indexes.size();
6407     Max = std::max(Max, Index);
6408     IsOrdered &= Index == Indexes.size();
6409 
6410     Indexes.push_back(Index);
6411   } while (EatIfPresent(lltok::comma));
6412 
6413   if (ParseToken(lltok::rbrace, "expected '}' here"))
6414     return true;
6415 
6416   if (Indexes.size() < 2)
6417     return Error(Loc, "expected >= 2 uselistorder indexes");
6418   if (Offset != 0 || Max >= Indexes.size())
6419     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6420   if (IsOrdered)
6421     return Error(Loc, "expected uselistorder indexes to change the order");
6422 
6423   return false;
6424 }
6425 
6426 /// ParseUseListOrder
6427 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
ParseUseListOrder(PerFunctionState * PFS)6428 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6429   SMLoc Loc = Lex.getLoc();
6430   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6431     return true;
6432 
6433   Value *V;
6434   SmallVector<unsigned, 16> Indexes;
6435   if (ParseTypeAndValue(V, PFS) ||
6436       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6437       ParseUseListOrderIndexes(Indexes))
6438     return true;
6439 
6440   return sortUseListOrder(V, Indexes, Loc);
6441 }
6442 
6443 /// ParseUseListOrderBB
6444 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
ParseUseListOrderBB()6445 bool LLParser::ParseUseListOrderBB() {
6446   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6447   SMLoc Loc = Lex.getLoc();
6448   Lex.Lex();
6449 
6450   ValID Fn, Label;
6451   SmallVector<unsigned, 16> Indexes;
6452   if (ParseValID(Fn) ||
6453       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6454       ParseValID(Label) ||
6455       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6456       ParseUseListOrderIndexes(Indexes))
6457     return true;
6458 
6459   // Check the function.
6460   GlobalValue *GV;
6461   if (Fn.Kind == ValID::t_GlobalName)
6462     GV = M->getNamedValue(Fn.StrVal);
6463   else if (Fn.Kind == ValID::t_GlobalID)
6464     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6465   else
6466     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6467   if (!GV)
6468     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6469   auto *F = dyn_cast<Function>(GV);
6470   if (!F)
6471     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6472   if (F->isDeclaration())
6473     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6474 
6475   // Check the basic block.
6476   if (Label.Kind == ValID::t_LocalID)
6477     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6478   if (Label.Kind != ValID::t_LocalName)
6479     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6480   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6481   if (!V)
6482     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6483   if (!isa<BasicBlock>(V))
6484     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6485 
6486   return sortUseListOrder(V, Indexes, Loc);
6487 }
6488