1 /* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. 2 * Use of this source code is governed by a BSD-style license that can be 3 * found in the LICENSE file. 4 */ 5 6 /* Host communication command constants for Chrome EC */ 7 8 #ifndef __CROS_EC_COMMANDS_H 9 #define __CROS_EC_COMMANDS_H 10 11 /* 12 * Current version of this protocol 13 * 14 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is 15 * determined in other ways. Remove this once the kernel code no longer 16 * depends on it. 17 */ 18 #define EC_PROTO_VERSION 0x00000002 19 20 /* Command version mask */ 21 #define EC_VER_MASK(version) (1UL << (version)) 22 23 /* I/O addresses for ACPI commands */ 24 #define EC_LPC_ADDR_ACPI_DATA 0x62 25 #define EC_LPC_ADDR_ACPI_CMD 0x66 26 27 /* I/O addresses for host command */ 28 #define EC_LPC_ADDR_HOST_DATA 0x200 29 #define EC_LPC_ADDR_HOST_CMD 0x204 30 31 /* I/O addresses for host command args and params */ 32 /* Protocol version 2 */ 33 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ 34 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is 35 * EC_PROTO2_MAX_PARAM_SIZE */ 36 /* Protocol version 3 */ 37 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ 38 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ 39 40 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff 41 * and they tell the kernel that so we have to think of it as two parts. */ 42 #define EC_HOST_CMD_REGION0 0x800 43 #define EC_HOST_CMD_REGION1 0x880 44 #define EC_HOST_CMD_REGION_SIZE 0x80 45 46 /* EC command register bit functions */ 47 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */ 48 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */ 49 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */ 50 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */ 51 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */ 52 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */ 53 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */ 54 55 #define EC_LPC_ADDR_MEMMAP 0x900 56 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ 57 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ 58 59 /* The offset address of each type of data in mapped memory. */ 60 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ 61 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ 62 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ 63 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ 64 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ 65 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ 66 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ 67 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ 68 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ 69 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ 70 /* Unused 0x28 - 0x2f */ 71 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ 72 /* Unused 0x31 - 0x33 */ 73 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */ 74 /* Reserve 0x38 - 0x3f for additional host event-related stuff */ 75 /* Battery values are all 32 bits */ 76 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ 77 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ 78 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ 79 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */ 80 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ 81 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ 82 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ 83 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ 84 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ 85 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ 86 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ 87 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ 88 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ 89 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ 90 /* Unused 0x84 - 0x8f */ 91 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ 92 /* Unused 0x91 */ 93 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */ 94 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */ 95 /* 0x94 - 0x99: 1st Accelerometer */ 96 /* 0x9a - 0x9f: 2nd Accelerometer */ 97 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ 98 /* Unused 0xa6 - 0xdf */ 99 100 /* 101 * ACPI is unable to access memory mapped data at or above this offset due to 102 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe 103 * which might be needed by ACPI. 104 */ 105 #define EC_MEMMAP_NO_ACPI 0xe0 106 107 /* Define the format of the accelerometer mapped memory status byte. */ 108 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f 109 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4) 110 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7) 111 112 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ 113 #define EC_TEMP_SENSOR_ENTRIES 16 114 /* 115 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. 116 * 117 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. 118 */ 119 #define EC_TEMP_SENSOR_B_ENTRIES 8 120 121 /* Special values for mapped temperature sensors */ 122 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff 123 #define EC_TEMP_SENSOR_ERROR 0xfe 124 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd 125 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc 126 /* 127 * The offset of temperature value stored in mapped memory. This allows 128 * reporting a temperature range of 200K to 454K = -73C to 181C. 129 */ 130 #define EC_TEMP_SENSOR_OFFSET 200 131 132 /* 133 * Number of ALS readings at EC_MEMMAP_ALS 134 */ 135 #define EC_ALS_ENTRIES 2 136 137 /* 138 * The default value a temperature sensor will return when it is present but 139 * has not been read this boot. This is a reasonable number to avoid 140 * triggering alarms on the host. 141 */ 142 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) 143 144 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ 145 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ 146 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ 147 148 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ 149 #define EC_BATT_FLAG_AC_PRESENT 0x01 150 #define EC_BATT_FLAG_BATT_PRESENT 0x02 151 #define EC_BATT_FLAG_DISCHARGING 0x04 152 #define EC_BATT_FLAG_CHARGING 0x08 153 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 154 155 /* Switch flags at EC_MEMMAP_SWITCHES */ 156 #define EC_SWITCH_LID_OPEN 0x01 157 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 158 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 159 /* Was recovery requested via keyboard; now unused. */ 160 #define EC_SWITCH_IGNORE1 0x08 161 /* Recovery requested via dedicated signal (from servo board) */ 162 #define EC_SWITCH_DEDICATED_RECOVERY 0x10 163 /* Was fake developer mode switch; now unused. Remove in next refactor. */ 164 #define EC_SWITCH_IGNORE0 0x20 165 166 /* Host command interface flags */ 167 /* Host command interface supports LPC args (LPC interface only) */ 168 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 169 /* Host command interface supports version 3 protocol */ 170 #define EC_HOST_CMD_FLAG_VERSION_3 0x02 171 172 /* Wireless switch flags */ 173 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ 174 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ 175 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ 176 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ 177 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ 178 179 /*****************************************************************************/ 180 /* 181 * ACPI commands 182 * 183 * These are valid ONLY on the ACPI command/data port. 184 */ 185 186 /* 187 * ACPI Read Embedded Controller 188 * 189 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 190 * 191 * Use the following sequence: 192 * 193 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD 194 * - Wait for EC_LPC_CMDR_PENDING bit to clear 195 * - Write address to EC_LPC_ADDR_ACPI_DATA 196 * - Wait for EC_LPC_CMDR_DATA bit to set 197 * - Read value from EC_LPC_ADDR_ACPI_DATA 198 */ 199 #define EC_CMD_ACPI_READ 0x80 200 201 /* 202 * ACPI Write Embedded Controller 203 * 204 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 205 * 206 * Use the following sequence: 207 * 208 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD 209 * - Wait for EC_LPC_CMDR_PENDING bit to clear 210 * - Write address to EC_LPC_ADDR_ACPI_DATA 211 * - Wait for EC_LPC_CMDR_PENDING bit to clear 212 * - Write value to EC_LPC_ADDR_ACPI_DATA 213 */ 214 #define EC_CMD_ACPI_WRITE 0x81 215 216 /* 217 * ACPI Burst Enable Embedded Controller 218 * 219 * This enables burst mode on the EC to allow the host to issue several 220 * commands back-to-back. While in this mode, writes to mapped multi-byte 221 * data are locked out to ensure data consistency. 222 */ 223 #define EC_CMD_ACPI_BURST_ENABLE 0x82 224 225 /* 226 * ACPI Burst Disable Embedded Controller 227 * 228 * This disables burst mode on the EC and stops preventing EC writes to mapped 229 * multi-byte data. 230 */ 231 #define EC_CMD_ACPI_BURST_DISABLE 0x83 232 233 /* 234 * ACPI Query Embedded Controller 235 * 236 * This clears the lowest-order bit in the currently pending host events, and 237 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, 238 * event 0x80000000 = 32), or 0 if no event was pending. 239 */ 240 #define EC_CMD_ACPI_QUERY_EVENT 0x84 241 242 /* Valid addresses in ACPI memory space, for read/write commands */ 243 244 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ 245 #define EC_ACPI_MEM_VERSION 0x00 246 /* 247 * Test location; writing value here updates test compliment byte to (0xff - 248 * value). 249 */ 250 #define EC_ACPI_MEM_TEST 0x01 251 /* Test compliment; writes here are ignored. */ 252 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 253 254 /* Keyboard backlight brightness percent (0 - 100) */ 255 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 256 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ 257 #define EC_ACPI_MEM_FAN_DUTY 0x04 258 259 /* 260 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two 261 * independent thresholds attached to them. The current value of the ID 262 * register determines which sensor is affected by the THRESHOLD and COMMIT 263 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme 264 * as the memory-mapped sensors. The COMMIT register applies those settings. 265 * 266 * The spec does not mandate any way to read back the threshold settings 267 * themselves, but when a threshold is crossed the AP needs a way to determine 268 * which sensor(s) are responsible. Each reading of the ID register clears and 269 * returns one sensor ID that has crossed one of its threshold (in either 270 * direction) since the last read. A value of 0xFF means "no new thresholds 271 * have tripped". Setting or enabling the thresholds for a sensor will clear 272 * the unread event count for that sensor. 273 */ 274 #define EC_ACPI_MEM_TEMP_ID 0x05 275 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 276 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 277 /* 278 * Here are the bits for the COMMIT register: 279 * bit 0 selects the threshold index for the chosen sensor (0/1) 280 * bit 1 enables/disables the selected threshold (0 = off, 1 = on) 281 * Each write to the commit register affects one threshold. 282 */ 283 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0) 284 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1) 285 /* 286 * Example: 287 * 288 * Set the thresholds for sensor 2 to 50 C and 60 C: 289 * write 2 to [0x05] -- select temp sensor 2 290 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET 291 * write 0x2 to [0x07] -- enable threshold 0 with this value 292 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET 293 * write 0x3 to [0x07] -- enable threshold 1 with this value 294 * 295 * Disable the 60 C threshold, leaving the 50 C threshold unchanged: 296 * write 2 to [0x05] -- select temp sensor 2 297 * write 0x1 to [0x07] -- disable threshold 1 298 */ 299 300 /* DPTF battery charging current limit */ 301 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 302 303 /* Charging limit is specified in 64 mA steps */ 304 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 305 /* Value to disable DPTF battery charging limit */ 306 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff 307 308 /* 309 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data 310 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2. 311 */ 312 #define EC_ACPI_MEM_MAPPED_BEGIN 0x20 313 #define EC_ACPI_MEM_MAPPED_SIZE 0xe0 314 315 /* Current version of ACPI memory address space */ 316 #define EC_ACPI_MEM_VERSION_CURRENT 2 317 318 319 /* 320 * This header file is used in coreboot both in C and ACPI code. The ACPI code 321 * is pre-processed to handle constants but the ASL compiler is unable to 322 * handle actual C code so keep it separate. 323 */ 324 #ifndef __ACPI__ 325 326 /* 327 * Define __packed if someone hasn't beat us to it. Linux kernel style 328 * checking prefers __packed over __attribute__((packed)). 329 */ 330 #ifndef __packed 331 #define __packed __attribute__((packed)) 332 #endif 333 334 /* LPC command status byte masks */ 335 /* EC has written a byte in the data register and host hasn't read it yet */ 336 #define EC_LPC_STATUS_TO_HOST 0x01 337 /* Host has written a command/data byte and the EC hasn't read it yet */ 338 #define EC_LPC_STATUS_FROM_HOST 0x02 339 /* EC is processing a command */ 340 #define EC_LPC_STATUS_PROCESSING 0x04 341 /* Last write to EC was a command, not data */ 342 #define EC_LPC_STATUS_LAST_CMD 0x08 343 /* EC is in burst mode */ 344 #define EC_LPC_STATUS_BURST_MODE 0x10 345 /* SCI event is pending (requesting SCI query) */ 346 #define EC_LPC_STATUS_SCI_PENDING 0x20 347 /* SMI event is pending (requesting SMI query) */ 348 #define EC_LPC_STATUS_SMI_PENDING 0x40 349 /* (reserved) */ 350 #define EC_LPC_STATUS_RESERVED 0x80 351 352 /* 353 * EC is busy. This covers both the EC processing a command, and the host has 354 * written a new command but the EC hasn't picked it up yet. 355 */ 356 #define EC_LPC_STATUS_BUSY_MASK \ 357 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) 358 359 /* Host command response codes */ 360 enum ec_status { 361 EC_RES_SUCCESS = 0, 362 EC_RES_INVALID_COMMAND = 1, 363 EC_RES_ERROR = 2, 364 EC_RES_INVALID_PARAM = 3, 365 EC_RES_ACCESS_DENIED = 4, 366 EC_RES_INVALID_RESPONSE = 5, 367 EC_RES_INVALID_VERSION = 6, 368 EC_RES_INVALID_CHECKSUM = 7, 369 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ 370 EC_RES_UNAVAILABLE = 9, /* No response available */ 371 EC_RES_TIMEOUT = 10, /* We got a timeout */ 372 EC_RES_OVERFLOW = 11, /* Table / data overflow */ 373 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ 374 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ 375 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */ 376 EC_RES_BUS_ERROR = 15, /* Communications bus error */ 377 EC_RES_BUSY = 16 /* Up but too busy. Should retry */ 378 }; 379 380 /* 381 * Host event codes. Note these are 1-based, not 0-based, because ACPI query 382 * EC command uses code 0 to mean "no event pending". We explicitly specify 383 * each value in the enum listing so they won't change if we delete/insert an 384 * item or rearrange the list (it needs to be stable across platforms, not 385 * just within a single compiled instance). 386 */ 387 enum host_event_code { 388 EC_HOST_EVENT_LID_CLOSED = 1, 389 EC_HOST_EVENT_LID_OPEN = 2, 390 EC_HOST_EVENT_POWER_BUTTON = 3, 391 EC_HOST_EVENT_AC_CONNECTED = 4, 392 EC_HOST_EVENT_AC_DISCONNECTED = 5, 393 EC_HOST_EVENT_BATTERY_LOW = 6, 394 EC_HOST_EVENT_BATTERY_CRITICAL = 7, 395 EC_HOST_EVENT_BATTERY = 8, 396 EC_HOST_EVENT_THERMAL_THRESHOLD = 9, 397 EC_HOST_EVENT_THERMAL_OVERLOAD = 10, 398 EC_HOST_EVENT_THERMAL = 11, 399 EC_HOST_EVENT_USB_CHARGER = 12, 400 EC_HOST_EVENT_KEY_PRESSED = 13, 401 /* 402 * EC has finished initializing the host interface. The host can check 403 * for this event following sending a EC_CMD_REBOOT_EC command to 404 * determine when the EC is ready to accept subsequent commands. 405 */ 406 EC_HOST_EVENT_INTERFACE_READY = 14, 407 /* Keyboard recovery combo has been pressed */ 408 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, 409 410 /* Shutdown due to thermal overload */ 411 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, 412 /* Shutdown due to battery level too low */ 413 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, 414 415 /* Suggest that the AP throttle itself */ 416 EC_HOST_EVENT_THROTTLE_START = 18, 417 /* Suggest that the AP resume normal speed */ 418 EC_HOST_EVENT_THROTTLE_STOP = 19, 419 420 /* Hang detect logic detected a hang and host event timeout expired */ 421 EC_HOST_EVENT_HANG_DETECT = 20, 422 /* Hang detect logic detected a hang and warm rebooted the AP */ 423 EC_HOST_EVENT_HANG_REBOOT = 21, 424 425 /* PD MCU triggering host event */ 426 EC_HOST_EVENT_PD_MCU = 22, 427 428 /* Battery Status flags have changed */ 429 EC_HOST_EVENT_BATTERY_STATUS = 23, 430 431 /* EC encountered a panic, triggering a reset */ 432 EC_HOST_EVENT_PANIC = 24, 433 434 /* Keyboard fastboot combo has been pressed */ 435 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25, 436 437 /* 438 * The high bit of the event mask is not used as a host event code. If 439 * it reads back as set, then the entire event mask should be 440 * considered invalid by the host. This can happen when reading the 441 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is 442 * not initialized on the EC, or improperly configured on the host. 443 */ 444 EC_HOST_EVENT_INVALID = 32 445 }; 446 /* Host event mask */ 447 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1)) 448 449 /* Arguments at EC_LPC_ADDR_HOST_ARGS */ 450 struct ec_lpc_host_args { 451 uint8_t flags; 452 uint8_t command_version; 453 uint8_t data_size; 454 /* 455 * Checksum; sum of command + flags + command_version + data_size + 456 * all params/response data bytes. 457 */ 458 uint8_t checksum; 459 } __packed; 460 461 /* Flags for ec_lpc_host_args.flags */ 462 /* 463 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command 464 * params. 465 * 466 * If EC gets a command and this flag is not set, this is an old-style command. 467 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with 468 * unknown length. EC must respond with an old-style response (that is, 469 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST). 470 */ 471 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 472 /* 473 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. 474 * 475 * If EC responds to a command and this flag is not set, this is an old-style 476 * response. Command version is 0 and response data from EC is at 477 * EC_LPC_ADDR_OLD_PARAM with unknown length. 478 */ 479 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 480 481 /*****************************************************************************/ 482 /* 483 * Byte codes returned by EC over SPI interface. 484 * 485 * These can be used by the AP to debug the EC interface, and to determine 486 * when the EC is not in a state where it will ever get around to responding 487 * to the AP. 488 * 489 * Example of sequence of bytes read from EC for a current good transfer: 490 * 1. - - AP asserts chip select (CS#) 491 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request 492 * 3. - - EC starts handling CS# interrupt 493 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request 494 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in 495 * bytes looking for EC_SPI_FRAME_START 496 * 6. - - EC finishes processing and sets up response 497 * 7. EC_SPI_FRAME_START - AP reads frame byte 498 * 8. (response packet) - AP reads response packet 499 * 9. EC_SPI_PAST_END - Any additional bytes read by AP 500 * 10 - - AP deasserts chip select 501 * 11 - - EC processes CS# interrupt and sets up DMA for 502 * next request 503 * 504 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than 505 * the following byte values: 506 * EC_SPI_OLD_READY 507 * EC_SPI_RX_READY 508 * EC_SPI_RECEIVING 509 * EC_SPI_PROCESSING 510 * 511 * Then the EC found an error in the request, or was not ready for the request 512 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, 513 * because the EC is unable to tell when the AP is done sending its request. 514 */ 515 516 /* 517 * Framing byte which precedes a response packet from the EC. After sending a 518 * request, the AP will clock in bytes until it sees the framing byte, then 519 * clock in the response packet. 520 */ 521 #define EC_SPI_FRAME_START 0xec 522 523 /* 524 * Padding bytes which are clocked out after the end of a response packet. 525 */ 526 #define EC_SPI_PAST_END 0xed 527 528 /* 529 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects 530 * that the AP will send a valid packet header (starting with 531 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. 532 */ 533 #define EC_SPI_RX_READY 0xf8 534 535 /* 536 * EC has started receiving the request from the AP, but hasn't started 537 * processing it yet. 538 */ 539 #define EC_SPI_RECEIVING 0xf9 540 541 /* EC has received the entire request from the AP and is processing it. */ 542 #define EC_SPI_PROCESSING 0xfa 543 544 /* 545 * EC received bad data from the AP, such as a packet header with an invalid 546 * length. EC will ignore all data until chip select deasserts. 547 */ 548 #define EC_SPI_RX_BAD_DATA 0xfb 549 550 /* 551 * EC received data from the AP before it was ready. That is, the AP asserted 552 * chip select and started clocking data before the EC was ready to receive it. 553 * EC will ignore all data until chip select deasserts. 554 */ 555 #define EC_SPI_NOT_READY 0xfc 556 557 /* 558 * EC was ready to receive a request from the AP. EC has treated the byte sent 559 * by the AP as part of a request packet, or (for old-style ECs) is processing 560 * a fully received packet but is not ready to respond yet. 561 */ 562 #define EC_SPI_OLD_READY 0xfd 563 564 /*****************************************************************************/ 565 566 /* 567 * Protocol version 2 for I2C and SPI send a request this way: 568 * 569 * 0 EC_CMD_VERSION0 + (command version) 570 * 1 Command number 571 * 2 Length of params = N 572 * 3..N+2 Params, if any 573 * N+3 8-bit checksum of bytes 0..N+2 574 * 575 * The corresponding response is: 576 * 577 * 0 Result code (EC_RES_*) 578 * 1 Length of params = M 579 * 2..M+1 Params, if any 580 * M+2 8-bit checksum of bytes 0..M+1 581 */ 582 #define EC_PROTO2_REQUEST_HEADER_BYTES 3 583 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 584 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ 585 EC_PROTO2_REQUEST_TRAILER_BYTES) 586 587 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 588 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 589 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ 590 EC_PROTO2_RESPONSE_TRAILER_BYTES) 591 592 /* Parameter length was limited by the LPC interface */ 593 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc 594 595 /* Maximum request and response packet sizes for protocol version 2 */ 596 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ 597 EC_PROTO2_MAX_PARAM_SIZE) 598 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ 599 EC_PROTO2_MAX_PARAM_SIZE) 600 601 /*****************************************************************************/ 602 603 /* 604 * Value written to legacy command port / prefix byte to indicate protocol 605 * 3+ structs are being used. Usage is bus-dependent. 606 */ 607 #define EC_COMMAND_PROTOCOL_3 0xda 608 609 #define EC_HOST_REQUEST_VERSION 3 610 611 /* Version 3 request from host */ 612 struct ec_host_request { 613 /* Struct version (=3) 614 * 615 * EC will return EC_RES_INVALID_HEADER if it receives a header with a 616 * version it doesn't know how to parse. 617 */ 618 uint8_t struct_version; 619 620 /* 621 * Checksum of request and data; sum of all bytes including checksum 622 * should total to 0. 623 */ 624 uint8_t checksum; 625 626 /* Command code */ 627 uint16_t command; 628 629 /* Command version */ 630 uint8_t command_version; 631 632 /* Unused byte in current protocol version; set to 0 */ 633 uint8_t reserved; 634 635 /* Length of data which follows this header */ 636 uint16_t data_len; 637 } __packed; 638 639 #define EC_HOST_RESPONSE_VERSION 3 640 641 /* Version 3 response from EC */ 642 struct ec_host_response { 643 /* Struct version (=3) */ 644 uint8_t struct_version; 645 646 /* 647 * Checksum of response and data; sum of all bytes including checksum 648 * should total to 0. 649 */ 650 uint8_t checksum; 651 652 /* Result code (EC_RES_*) */ 653 uint16_t result; 654 655 /* Length of data which follows this header */ 656 uint16_t data_len; 657 658 /* Unused bytes in current protocol version; set to 0 */ 659 uint16_t reserved; 660 } __packed; 661 662 /*****************************************************************************/ 663 /* 664 * Notes on commands: 665 * 666 * Each command is an 16-bit command value. Commands which take params or 667 * return response data specify structs for that data. If no struct is 668 * specified, the command does not input or output data, respectively. 669 * Parameter/response length is implicit in the structs. Some underlying 670 * communication protocols (I2C, SPI) may add length or checksum headers, but 671 * those are implementation-dependent and not defined here. 672 */ 673 674 /*****************************************************************************/ 675 /* General / test commands */ 676 677 /* 678 * Get protocol version, used to deal with non-backward compatible protocol 679 * changes. 680 */ 681 #define EC_CMD_PROTO_VERSION 0x00 682 683 struct ec_response_proto_version { 684 uint32_t version; 685 } __packed; 686 687 /* 688 * Hello. This is a simple command to test the EC is responsive to 689 * commands. 690 */ 691 #define EC_CMD_HELLO 0x01 692 693 struct ec_params_hello { 694 uint32_t in_data; /* Pass anything here */ 695 } __packed; 696 697 struct ec_response_hello { 698 uint32_t out_data; /* Output will be in_data + 0x01020304 */ 699 } __packed; 700 701 /* Get version number */ 702 #define EC_CMD_GET_VERSION 0x02 703 704 enum ec_current_image { 705 EC_IMAGE_UNKNOWN = 0, 706 EC_IMAGE_RO, 707 EC_IMAGE_RW 708 }; 709 710 struct ec_response_get_version { 711 /* Null-terminated version strings for RO, RW */ 712 char version_string_ro[32]; 713 char version_string_rw[32]; 714 char reserved[32]; /* Was previously RW-B string */ 715 uint32_t current_image; /* One of ec_current_image */ 716 } __packed; 717 718 /* Read test */ 719 #define EC_CMD_READ_TEST 0x03 720 721 struct ec_params_read_test { 722 uint32_t offset; /* Starting value for read buffer */ 723 uint32_t size; /* Size to read in bytes */ 724 } __packed; 725 726 struct ec_response_read_test { 727 uint32_t data[32]; 728 } __packed; 729 730 /* 731 * Get build information 732 * 733 * Response is null-terminated string. 734 */ 735 #define EC_CMD_GET_BUILD_INFO 0x04 736 737 /* Get chip info */ 738 #define EC_CMD_GET_CHIP_INFO 0x05 739 740 struct ec_response_get_chip_info { 741 /* Null-terminated strings */ 742 char vendor[32]; 743 char name[32]; 744 char revision[32]; /* Mask version */ 745 } __packed; 746 747 /* Get board HW version */ 748 #define EC_CMD_GET_BOARD_VERSION 0x06 749 750 struct ec_response_board_version { 751 uint16_t board_version; /* A monotonously incrementing number. */ 752 } __packed; 753 754 /* 755 * Read memory-mapped data. 756 * 757 * This is an alternate interface to memory-mapped data for bus protocols 758 * which don't support direct-mapped memory - I2C, SPI, etc. 759 * 760 * Response is params.size bytes of data. 761 */ 762 #define EC_CMD_READ_MEMMAP 0x07 763 764 struct ec_params_read_memmap { 765 uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */ 766 uint8_t size; /* Size to read in bytes */ 767 } __packed; 768 769 /* Read versions supported for a command */ 770 #define EC_CMD_GET_CMD_VERSIONS 0x08 771 772 struct ec_params_get_cmd_versions { 773 uint8_t cmd; /* Command to check */ 774 } __packed; 775 776 struct ec_params_get_cmd_versions_v1 { 777 uint16_t cmd; /* Command to check */ 778 } __packed; 779 780 struct ec_response_get_cmd_versions { 781 /* 782 * Mask of supported versions; use EC_VER_MASK() to compare with a 783 * desired version. 784 */ 785 uint32_t version_mask; 786 } __packed; 787 788 /* 789 * Check EC communcations status (busy). This is needed on i2c/spi but not 790 * on lpc since it has its own out-of-band busy indicator. 791 * 792 * lpc must read the status from the command register. Attempting this on 793 * lpc will overwrite the args/parameter space and corrupt its data. 794 */ 795 #define EC_CMD_GET_COMMS_STATUS 0x09 796 797 /* Avoid using ec_status which is for return values */ 798 enum ec_comms_status { 799 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */ 800 }; 801 802 struct ec_response_get_comms_status { 803 uint32_t flags; /* Mask of enum ec_comms_status */ 804 } __packed; 805 806 /* Fake a variety of responses, purely for testing purposes. */ 807 #define EC_CMD_TEST_PROTOCOL 0x0a 808 809 /* Tell the EC what to send back to us. */ 810 struct ec_params_test_protocol { 811 uint32_t ec_result; 812 uint32_t ret_len; 813 uint8_t buf[32]; 814 } __packed; 815 816 /* Here it comes... */ 817 struct ec_response_test_protocol { 818 uint8_t buf[32]; 819 } __packed; 820 821 /* Get prococol information */ 822 #define EC_CMD_GET_PROTOCOL_INFO 0x0b 823 824 /* Flags for ec_response_get_protocol_info.flags */ 825 /* EC_RES_IN_PROGRESS may be returned if a command is slow */ 826 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0) 827 828 struct ec_response_get_protocol_info { 829 /* Fields which exist if at least protocol version 3 supported */ 830 831 /* Bitmask of protocol versions supported (1 << n means version n)*/ 832 uint32_t protocol_versions; 833 834 /* Maximum request packet size, in bytes */ 835 uint16_t max_request_packet_size; 836 837 /* Maximum response packet size, in bytes */ 838 uint16_t max_response_packet_size; 839 840 /* Flags; see EC_PROTOCOL_INFO_* */ 841 uint32_t flags; 842 } __packed; 843 844 845 /*****************************************************************************/ 846 /* Get/Set miscellaneous values */ 847 848 /* The upper byte of .flags tells what to do (nothing means "get") */ 849 #define EC_GSV_SET 0x80000000 850 851 /* The lower three bytes of .flags identifies the parameter, if that has 852 meaning for an individual command. */ 853 #define EC_GSV_PARAM_MASK 0x00ffffff 854 855 struct ec_params_get_set_value { 856 uint32_t flags; 857 uint32_t value; 858 } __packed; 859 860 struct ec_response_get_set_value { 861 uint32_t flags; 862 uint32_t value; 863 } __packed; 864 865 /* More than one command can use these structs to get/set paramters. */ 866 #define EC_CMD_GSV_PAUSE_IN_S5 0x0c 867 /* EC_CMD_GSV_BOOT_ON_AC 0xa3 (defined below) */ 868 869 /*****************************************************************************/ 870 /* List the features supported by the firmware */ 871 #define EC_CMD_GET_FEATURES 0x0d 872 873 /* Supported features */ 874 enum ec_feature_code { 875 /* 876 * This image contains a limited set of features. Another image 877 * in RW partition may support more features. 878 */ 879 EC_FEATURE_LIMITED = 0, 880 /* 881 * Commands for probing/reading/writing/erasing the flash in the 882 * EC are present. 883 */ 884 EC_FEATURE_FLASH = 1, 885 /* 886 * Can control the fan speed directly. 887 */ 888 EC_FEATURE_PWM_FAN = 2, 889 /* 890 * Can control the intensity of the keyboard backlight. 891 */ 892 EC_FEATURE_PWM_KEYB = 3, 893 /* 894 * Support Google lightbar, introduced on Pixel. 895 */ 896 EC_FEATURE_LIGHTBAR = 4, 897 /* Control of LEDs */ 898 EC_FEATURE_LED = 5, 899 /* Exposes an interface to control gyro and sensors. 900 * The host goes through the EC to access these sensors. 901 * In addition, the EC may provide composite sensors, like lid angle. 902 */ 903 EC_FEATURE_MOTION_SENSE = 6, 904 /* The keyboard is controlled by the EC */ 905 EC_FEATURE_KEYB = 7, 906 /* The AP can use part of the EC flash as persistent storage. */ 907 EC_FEATURE_PSTORE = 8, 908 /* The EC monitors BIOS port 80h, and can return POST codes. */ 909 EC_FEATURE_PORT80 = 9, 910 /* 911 * Thermal management: include TMP specific commands. 912 * Higher level than direct fan control. 913 */ 914 EC_FEATURE_THERMAL = 10, 915 /* Can switch the screen backlight on/off */ 916 EC_FEATURE_BKLIGHT_SWITCH = 11, 917 /* Can switch the wifi module on/off */ 918 EC_FEATURE_WIFI_SWITCH = 12, 919 /* Monitor host events, through for example SMI or SCI */ 920 EC_FEATURE_HOST_EVENTS = 13, 921 /* The EC exposes GPIO commands to control/monitor connected devices. */ 922 EC_FEATURE_GPIO = 14, 923 /* The EC can send i2c messages to downstream devices. */ 924 EC_FEATURE_I2C = 15, 925 /* Command to control charger are included */ 926 EC_FEATURE_CHARGER = 16, 927 /* Simple battery support. */ 928 EC_FEATURE_BATTERY = 17, 929 /* 930 * Support Smart battery protocol 931 * (Common Smart Battery System Interface Specification) 932 */ 933 EC_FEATURE_SMART_BATTERY = 18, 934 /* EC can dectect when the host hangs. */ 935 EC_FEATURE_HANG_DETECT = 19, 936 /* Report power information, for pit only */ 937 EC_FEATURE_PMU = 20, 938 /* Another Cros EC device is present downstream of this one */ 939 EC_FEATURE_SUB_MCU = 21, 940 /* Support USB Power delivery (PD) commands */ 941 EC_FEATURE_USB_PD = 22, 942 /* Control USB multiplexer, for audio through USB port for instance. */ 943 EC_FEATURE_USB_MUX = 23, 944 /* Motion Sensor code has an internal software FIFO */ 945 EC_FEATURE_MOTION_SENSE_FIFO = 24, 946 /* Support enabling/disabling booting the system on AC plug event */ 947 EC_FEATURE_BOOT_ON_AC = 25, 948 }; 949 950 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32)) 951 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32)) 952 struct ec_response_get_features { 953 uint32_t flags[2]; 954 } __packed; 955 956 /*****************************************************************************/ 957 /* Flash commands */ 958 959 /* Get flash info */ 960 #define EC_CMD_FLASH_INFO 0x10 961 962 /* Version 0 returns these fields */ 963 struct ec_response_flash_info { 964 /* Usable flash size, in bytes */ 965 uint32_t flash_size; 966 /* 967 * Write block size. Write offset and size must be a multiple 968 * of this. 969 */ 970 uint32_t write_block_size; 971 /* 972 * Erase block size. Erase offset and size must be a multiple 973 * of this. 974 */ 975 uint32_t erase_block_size; 976 /* 977 * Protection block size. Protection offset and size must be a 978 * multiple of this. 979 */ 980 uint32_t protect_block_size; 981 } __packed; 982 983 /* Flags for version 1+ flash info command */ 984 /* EC flash erases bits to 0 instead of 1 */ 985 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0) 986 987 /* 988 * Version 1 returns the same initial fields as version 0, with additional 989 * fields following. 990 * 991 * gcc anonymous structs don't seem to get along with the __packed directive; 992 * if they did we'd define the version 0 struct as a sub-struct of this one. 993 */ 994 struct ec_response_flash_info_1 { 995 /* Version 0 fields; see above for description */ 996 uint32_t flash_size; 997 uint32_t write_block_size; 998 uint32_t erase_block_size; 999 uint32_t protect_block_size; 1000 1001 /* Version 1 adds these fields: */ 1002 /* 1003 * Ideal write size in bytes. Writes will be fastest if size is 1004 * exactly this and offset is a multiple of this. For example, an EC 1005 * may have a write buffer which can do half-page operations if data is 1006 * aligned, and a slower word-at-a-time write mode. 1007 */ 1008 uint32_t write_ideal_size; 1009 1010 /* Flags; see EC_FLASH_INFO_* */ 1011 uint32_t flags; 1012 } __packed; 1013 1014 /* 1015 * Read flash 1016 * 1017 * Response is params.size bytes of data. 1018 */ 1019 #define EC_CMD_FLASH_READ 0x11 1020 1021 struct ec_params_flash_read { 1022 uint32_t offset; /* Byte offset to read */ 1023 uint32_t size; /* Size to read in bytes */ 1024 } __packed; 1025 1026 /* Write flash */ 1027 #define EC_CMD_FLASH_WRITE 0x12 1028 #define EC_VER_FLASH_WRITE 1 1029 1030 /* Version 0 of the flash command supported only 64 bytes of data */ 1031 #define EC_FLASH_WRITE_VER0_SIZE 64 1032 1033 struct ec_params_flash_write { 1034 uint32_t offset; /* Byte offset to write */ 1035 uint32_t size; /* Size to write in bytes */ 1036 /* Followed by data to write */ 1037 } __packed; 1038 1039 /* Erase flash */ 1040 #define EC_CMD_FLASH_ERASE 0x13 1041 1042 struct ec_params_flash_erase { 1043 uint32_t offset; /* Byte offset to erase */ 1044 uint32_t size; /* Size to erase in bytes */ 1045 } __packed; 1046 1047 /* 1048 * Get/set flash protection. 1049 * 1050 * If mask!=0, sets/clear the requested bits of flags. Depending on the 1051 * firmware write protect GPIO, not all flags will take effect immediately; 1052 * some flags require a subsequent hard reset to take effect. Check the 1053 * returned flags bits to see what actually happened. 1054 * 1055 * If mask=0, simply returns the current flags state. 1056 */ 1057 #define EC_CMD_FLASH_PROTECT 0x15 1058 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ 1059 1060 /* Flags for flash protection */ 1061 /* RO flash code protected when the EC boots */ 1062 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0) 1063 /* 1064 * RO flash code protected now. If this bit is set, at-boot status cannot 1065 * be changed. 1066 */ 1067 #define EC_FLASH_PROTECT_RO_NOW (1 << 1) 1068 /* Entire flash code protected now, until reboot. */ 1069 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2) 1070 /* Flash write protect GPIO is asserted now */ 1071 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3) 1072 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ 1073 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4) 1074 /* 1075 * Error - flash protection is in inconsistent state. At least one bank of 1076 * flash which should be protected is not protected. Usually fixed by 1077 * re-requesting the desired flags, or by a hard reset if that fails. 1078 */ 1079 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5) 1080 /* Entire flash code protected when the EC boots */ 1081 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6) 1082 1083 struct ec_params_flash_protect { 1084 uint32_t mask; /* Bits in flags to apply */ 1085 uint32_t flags; /* New flags to apply */ 1086 } __packed; 1087 1088 struct ec_response_flash_protect { 1089 /* Current value of flash protect flags */ 1090 uint32_t flags; 1091 /* 1092 * Flags which are valid on this platform. This allows the caller 1093 * to distinguish between flags which aren't set vs. flags which can't 1094 * be set on this platform. 1095 */ 1096 uint32_t valid_flags; 1097 /* Flags which can be changed given the current protection state */ 1098 uint32_t writable_flags; 1099 } __packed; 1100 1101 /* 1102 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash 1103 * write protect. These commands may be reused with version > 0. 1104 */ 1105 1106 /* Get the region offset/size */ 1107 #define EC_CMD_FLASH_REGION_INFO 0x16 1108 #define EC_VER_FLASH_REGION_INFO 1 1109 1110 enum ec_flash_region { 1111 /* Region which holds read-only EC image */ 1112 EC_FLASH_REGION_RO = 0, 1113 /* Region which holds rewritable EC image */ 1114 EC_FLASH_REGION_RW, 1115 /* 1116 * Region which should be write-protected in the factory (a superset of 1117 * EC_FLASH_REGION_RO) 1118 */ 1119 EC_FLASH_REGION_WP_RO, 1120 /* Number of regions */ 1121 EC_FLASH_REGION_COUNT, 1122 }; 1123 1124 struct ec_params_flash_region_info { 1125 uint32_t region; /* enum ec_flash_region */ 1126 } __packed; 1127 1128 struct ec_response_flash_region_info { 1129 uint32_t offset; 1130 uint32_t size; 1131 } __packed; 1132 1133 /* Read/write VbNvContext */ 1134 #define EC_CMD_VBNV_CONTEXT 0x17 1135 #define EC_VER_VBNV_CONTEXT 1 1136 #define EC_VBNV_BLOCK_SIZE 16 1137 1138 enum ec_vbnvcontext_op { 1139 EC_VBNV_CONTEXT_OP_READ, 1140 EC_VBNV_CONTEXT_OP_WRITE, 1141 }; 1142 1143 struct ec_params_vbnvcontext { 1144 uint32_t op; 1145 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1146 } __packed; 1147 1148 struct ec_response_vbnvcontext { 1149 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1150 } __packed; 1151 1152 /*****************************************************************************/ 1153 /* PWM commands */ 1154 1155 /* Get fan target RPM */ 1156 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20 1157 1158 struct ec_response_pwm_get_fan_rpm { 1159 uint32_t rpm; 1160 } __packed; 1161 1162 /* Set target fan RPM */ 1163 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21 1164 1165 /* Version 0 of input params */ 1166 struct ec_params_pwm_set_fan_target_rpm_v0 { 1167 uint32_t rpm; 1168 } __packed; 1169 1170 /* Version 1 of input params */ 1171 struct ec_params_pwm_set_fan_target_rpm_v1 { 1172 uint32_t rpm; 1173 uint8_t fan_idx; 1174 } __packed; 1175 1176 /* Get keyboard backlight */ 1177 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22 1178 1179 struct ec_response_pwm_get_keyboard_backlight { 1180 uint8_t percent; 1181 uint8_t enabled; 1182 } __packed; 1183 1184 /* Set keyboard backlight */ 1185 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23 1186 1187 struct ec_params_pwm_set_keyboard_backlight { 1188 uint8_t percent; 1189 } __packed; 1190 1191 /* Set target fan PWM duty cycle */ 1192 #define EC_CMD_PWM_SET_FAN_DUTY 0x24 1193 1194 /* Version 0 of input params */ 1195 struct ec_params_pwm_set_fan_duty_v0 { 1196 uint32_t percent; 1197 } __packed; 1198 1199 /* Version 1 of input params */ 1200 struct ec_params_pwm_set_fan_duty_v1 { 1201 uint32_t percent; 1202 uint8_t fan_idx; 1203 } __packed; 1204 1205 /*****************************************************************************/ 1206 /* 1207 * Lightbar commands. This looks worse than it is. Since we only use one HOST 1208 * command to say "talk to the lightbar", we put the "and tell it to do X" part 1209 * into a subcommand. We'll make separate structs for subcommands with 1210 * different input args, so that we know how much to expect. 1211 */ 1212 #define EC_CMD_LIGHTBAR_CMD 0x28 1213 1214 struct rgb_s { 1215 uint8_t r, g, b; 1216 }; 1217 1218 #define LB_BATTERY_LEVELS 4 1219 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a 1220 * host command, but the alignment is the same regardless. Keep it that way. 1221 */ 1222 struct lightbar_params_v0 { 1223 /* Timing */ 1224 int32_t google_ramp_up; 1225 int32_t google_ramp_down; 1226 int32_t s3s0_ramp_up; 1227 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1228 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1229 int32_t s0s3_ramp_down; 1230 int32_t s3_sleep_for; 1231 int32_t s3_ramp_up; 1232 int32_t s3_ramp_down; 1233 1234 /* Oscillation */ 1235 uint8_t new_s0; 1236 uint8_t osc_min[2]; /* AC=0/1 */ 1237 uint8_t osc_max[2]; /* AC=0/1 */ 1238 uint8_t w_ofs[2]; /* AC=0/1 */ 1239 1240 /* Brightness limits based on the backlight and AC. */ 1241 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1242 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1243 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1244 1245 /* Battery level thresholds */ 1246 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1247 1248 /* Map [AC][battery_level] to color index */ 1249 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1250 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1251 1252 /* Color palette */ 1253 struct rgb_s color[8]; /* 0-3 are Google colors */ 1254 } __packed; 1255 1256 struct lightbar_params_v1 { 1257 /* Timing */ 1258 int32_t google_ramp_up; 1259 int32_t google_ramp_down; 1260 int32_t s3s0_ramp_up; 1261 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1262 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1263 int32_t s0s3_ramp_down; 1264 int32_t s3_sleep_for; 1265 int32_t s3_ramp_up; 1266 int32_t s3_ramp_down; 1267 int32_t s5_ramp_up; 1268 int32_t s5_ramp_down; 1269 int32_t tap_tick_delay; 1270 int32_t tap_gate_delay; 1271 int32_t tap_display_time; 1272 1273 /* Tap-for-battery params */ 1274 uint8_t tap_pct_red; 1275 uint8_t tap_pct_green; 1276 uint8_t tap_seg_min_on; 1277 uint8_t tap_seg_max_on; 1278 uint8_t tap_seg_osc; 1279 uint8_t tap_idx[3]; 1280 1281 /* Oscillation */ 1282 uint8_t osc_min[2]; /* AC=0/1 */ 1283 uint8_t osc_max[2]; /* AC=0/1 */ 1284 uint8_t w_ofs[2]; /* AC=0/1 */ 1285 1286 /* Brightness limits based on the backlight and AC. */ 1287 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1288 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1289 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1290 1291 /* Battery level thresholds */ 1292 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1293 1294 /* Map [AC][battery_level] to color index */ 1295 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1296 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1297 1298 /* s5: single color pulse on inhibited power-up */ 1299 uint8_t s5_idx; 1300 1301 /* Color palette */ 1302 struct rgb_s color[8]; /* 0-3 are Google colors */ 1303 } __packed; 1304 1305 /* Lightbar command params v2 1306 * crbug.com/467716 1307 * 1308 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by 1309 * logical groups to make it more manageable ( < 120 bytes). 1310 * 1311 * NOTE: Each of these groups must be less than 120 bytes. 1312 */ 1313 1314 struct lightbar_params_v2_timing { 1315 /* Timing */ 1316 int32_t google_ramp_up; 1317 int32_t google_ramp_down; 1318 int32_t s3s0_ramp_up; 1319 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1320 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1321 int32_t s0s3_ramp_down; 1322 int32_t s3_sleep_for; 1323 int32_t s3_ramp_up; 1324 int32_t s3_ramp_down; 1325 int32_t s5_ramp_up; 1326 int32_t s5_ramp_down; 1327 int32_t tap_tick_delay; 1328 int32_t tap_gate_delay; 1329 int32_t tap_display_time; 1330 } __packed; 1331 1332 struct lightbar_params_v2_tap { 1333 /* Tap-for-battery params */ 1334 uint8_t tap_pct_red; 1335 uint8_t tap_pct_green; 1336 uint8_t tap_seg_min_on; 1337 uint8_t tap_seg_max_on; 1338 uint8_t tap_seg_osc; 1339 uint8_t tap_idx[3]; 1340 } __packed; 1341 1342 struct lightbar_params_v2_oscillation { 1343 /* Oscillation */ 1344 uint8_t osc_min[2]; /* AC=0/1 */ 1345 uint8_t osc_max[2]; /* AC=0/1 */ 1346 uint8_t w_ofs[2]; /* AC=0/1 */ 1347 } __packed; 1348 1349 struct lightbar_params_v2_brightness { 1350 /* Brightness limits based on the backlight and AC. */ 1351 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1352 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1353 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1354 } __packed; 1355 1356 struct lightbar_params_v2_thresholds { 1357 /* Battery level thresholds */ 1358 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1359 } __packed; 1360 1361 struct lightbar_params_v2_colors { 1362 /* Map [AC][battery_level] to color index */ 1363 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1364 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1365 1366 /* s5: single color pulse on inhibited power-up */ 1367 uint8_t s5_idx; 1368 1369 /* Color palette */ 1370 struct rgb_s color[8]; /* 0-3 are Google colors */ 1371 } __packed; 1372 1373 /* Lightbyte program. */ 1374 #define EC_LB_PROG_LEN 192 1375 struct lightbar_program { 1376 uint8_t size; 1377 uint8_t data[EC_LB_PROG_LEN]; 1378 }; 1379 1380 struct ec_params_lightbar { 1381 uint8_t cmd; /* Command (see enum lightbar_command) */ 1382 union { 1383 struct { 1384 /* no args */ 1385 } dump, off, on, init, get_seq, get_params_v0, get_params_v1, 1386 version, get_brightness, get_demo, suspend, resume, 1387 get_params_v2_timing, get_params_v2_tap, 1388 get_params_v2_osc, get_params_v2_bright, 1389 get_params_v2_thlds, get_params_v2_colors; 1390 1391 struct { 1392 uint8_t num; 1393 } set_brightness, seq, demo; 1394 1395 struct { 1396 uint8_t ctrl, reg, value; 1397 } reg; 1398 1399 struct { 1400 uint8_t led, red, green, blue; 1401 } set_rgb; 1402 1403 struct { 1404 uint8_t led; 1405 } get_rgb; 1406 1407 struct { 1408 uint8_t enable; 1409 } manual_suspend_ctrl; 1410 1411 struct lightbar_params_v0 set_params_v0; 1412 struct lightbar_params_v1 set_params_v1; 1413 1414 struct lightbar_params_v2_timing set_v2par_timing; 1415 struct lightbar_params_v2_tap set_v2par_tap; 1416 struct lightbar_params_v2_oscillation set_v2par_osc; 1417 struct lightbar_params_v2_brightness set_v2par_bright; 1418 struct lightbar_params_v2_thresholds set_v2par_thlds; 1419 struct lightbar_params_v2_colors set_v2par_colors; 1420 1421 struct lightbar_program set_program; 1422 }; 1423 } __packed; 1424 1425 struct ec_response_lightbar { 1426 union { 1427 struct { 1428 struct { 1429 uint8_t reg; 1430 uint8_t ic0; 1431 uint8_t ic1; 1432 } vals[23]; 1433 } dump; 1434 1435 struct { 1436 uint8_t num; 1437 } get_seq, get_brightness, get_demo; 1438 1439 struct lightbar_params_v0 get_params_v0; 1440 struct lightbar_params_v1 get_params_v1; 1441 1442 1443 struct lightbar_params_v2_timing get_params_v2_timing; 1444 struct lightbar_params_v2_tap get_params_v2_tap; 1445 struct lightbar_params_v2_oscillation get_params_v2_osc; 1446 struct lightbar_params_v2_brightness get_params_v2_bright; 1447 struct lightbar_params_v2_thresholds get_params_v2_thlds; 1448 struct lightbar_params_v2_colors get_params_v2_colors; 1449 1450 struct { 1451 uint32_t num; 1452 uint32_t flags; 1453 } version; 1454 1455 struct { 1456 uint8_t red, green, blue; 1457 } get_rgb; 1458 1459 struct { 1460 /* no return params */ 1461 } off, on, init, set_brightness, seq, reg, set_rgb, 1462 demo, set_params_v0, set_params_v1, 1463 set_program, manual_suspend_ctrl, suspend, resume, 1464 set_v2par_timing, set_v2par_tap, 1465 set_v2par_osc, set_v2par_bright, set_v2par_thlds, 1466 set_v2par_colors; 1467 }; 1468 } __packed; 1469 1470 /* Lightbar commands */ 1471 enum lightbar_command { 1472 LIGHTBAR_CMD_DUMP = 0, 1473 LIGHTBAR_CMD_OFF = 1, 1474 LIGHTBAR_CMD_ON = 2, 1475 LIGHTBAR_CMD_INIT = 3, 1476 LIGHTBAR_CMD_SET_BRIGHTNESS = 4, 1477 LIGHTBAR_CMD_SEQ = 5, 1478 LIGHTBAR_CMD_REG = 6, 1479 LIGHTBAR_CMD_SET_RGB = 7, 1480 LIGHTBAR_CMD_GET_SEQ = 8, 1481 LIGHTBAR_CMD_DEMO = 9, 1482 LIGHTBAR_CMD_GET_PARAMS_V0 = 10, 1483 LIGHTBAR_CMD_SET_PARAMS_V0 = 11, 1484 LIGHTBAR_CMD_VERSION = 12, 1485 LIGHTBAR_CMD_GET_BRIGHTNESS = 13, 1486 LIGHTBAR_CMD_GET_RGB = 14, 1487 LIGHTBAR_CMD_GET_DEMO = 15, 1488 LIGHTBAR_CMD_GET_PARAMS_V1 = 16, 1489 LIGHTBAR_CMD_SET_PARAMS_V1 = 17, 1490 LIGHTBAR_CMD_SET_PROGRAM = 18, 1491 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, 1492 LIGHTBAR_CMD_SUSPEND = 20, 1493 LIGHTBAR_CMD_RESUME = 21, 1494 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22, 1495 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23, 1496 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24, 1497 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25, 1498 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26, 1499 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27, 1500 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28, 1501 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29, 1502 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30, 1503 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31, 1504 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32, 1505 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33, 1506 LIGHTBAR_NUM_CMDS 1507 }; 1508 1509 /*****************************************************************************/ 1510 /* LED control commands */ 1511 1512 #define EC_CMD_LED_CONTROL 0x29 1513 1514 enum ec_led_id { 1515 /* LED to indicate battery state of charge */ 1516 EC_LED_ID_BATTERY_LED = 0, 1517 /* 1518 * LED to indicate system power state (on or in suspend). 1519 * May be on power button or on C-panel. 1520 */ 1521 EC_LED_ID_POWER_LED, 1522 /* LED on power adapter or its plug */ 1523 EC_LED_ID_ADAPTER_LED, 1524 1525 EC_LED_ID_COUNT 1526 }; 1527 1528 /* LED control flags */ 1529 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */ 1530 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */ 1531 1532 enum ec_led_colors { 1533 EC_LED_COLOR_RED = 0, 1534 EC_LED_COLOR_GREEN, 1535 EC_LED_COLOR_BLUE, 1536 EC_LED_COLOR_YELLOW, 1537 EC_LED_COLOR_WHITE, 1538 1539 EC_LED_COLOR_COUNT 1540 }; 1541 1542 struct ec_params_led_control { 1543 uint8_t led_id; /* Which LED to control */ 1544 uint8_t flags; /* Control flags */ 1545 1546 uint8_t brightness[EC_LED_COLOR_COUNT]; 1547 } __packed; 1548 1549 struct ec_response_led_control { 1550 /* 1551 * Available brightness value range. 1552 * 1553 * Range 0 means color channel not present. 1554 * Range 1 means on/off control. 1555 * Other values means the LED is control by PWM. 1556 */ 1557 uint8_t brightness_range[EC_LED_COLOR_COUNT]; 1558 } __packed; 1559 1560 /*****************************************************************************/ 1561 /* Verified boot commands */ 1562 1563 /* 1564 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be 1565 * reused for other purposes with version > 0. 1566 */ 1567 1568 /* Verified boot hash command */ 1569 #define EC_CMD_VBOOT_HASH 0x2a 1570 1571 struct ec_params_vboot_hash { 1572 uint8_t cmd; /* enum ec_vboot_hash_cmd */ 1573 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1574 uint8_t nonce_size; /* Nonce size; may be 0 */ 1575 uint8_t reserved0; /* Reserved; set 0 */ 1576 uint32_t offset; /* Offset in flash to hash */ 1577 uint32_t size; /* Number of bytes to hash */ 1578 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ 1579 } __packed; 1580 1581 struct ec_response_vboot_hash { 1582 uint8_t status; /* enum ec_vboot_hash_status */ 1583 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1584 uint8_t digest_size; /* Size of hash digest in bytes */ 1585 uint8_t reserved0; /* Ignore; will be 0 */ 1586 uint32_t offset; /* Offset in flash which was hashed */ 1587 uint32_t size; /* Number of bytes hashed */ 1588 uint8_t hash_digest[64]; /* Hash digest data */ 1589 } __packed; 1590 1591 enum ec_vboot_hash_cmd { 1592 EC_VBOOT_HASH_GET = 0, /* Get current hash status */ 1593 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ 1594 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ 1595 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ 1596 }; 1597 1598 enum ec_vboot_hash_type { 1599 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ 1600 }; 1601 1602 enum ec_vboot_hash_status { 1603 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ 1604 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ 1605 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ 1606 }; 1607 1608 /* 1609 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. 1610 * If one of these is specified, the EC will automatically update offset and 1611 * size to the correct values for the specified image (RO or RW). 1612 */ 1613 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe 1614 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd 1615 1616 /*****************************************************************************/ 1617 /* 1618 * Motion sense commands. We'll make separate structs for sub-commands with 1619 * different input args, so that we know how much to expect. 1620 */ 1621 #define EC_CMD_MOTION_SENSE_CMD 0x2b 1622 1623 /* Motion sense commands */ 1624 enum motionsense_command { 1625 /* 1626 * Dump command returns all motion sensor data including motion sense 1627 * module flags and individual sensor flags. 1628 */ 1629 MOTIONSENSE_CMD_DUMP = 0, 1630 1631 /* 1632 * Info command returns data describing the details of a given sensor, 1633 * including enum motionsensor_type, enum motionsensor_location, and 1634 * enum motionsensor_chip. 1635 */ 1636 MOTIONSENSE_CMD_INFO = 1, 1637 1638 /* 1639 * EC Rate command is a setter/getter command for the EC sampling rate 1640 * in milliseconds. 1641 * It is per sensor, the EC run sample task at the minimum of all 1642 * sensors EC_RATE. 1643 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR 1644 * to collect all the sensor samples. 1645 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay 1646 * to process of all motion sensors in milliseconds. 1647 */ 1648 MOTIONSENSE_CMD_EC_RATE = 2, 1649 1650 /* 1651 * Sensor ODR command is a setter/getter command for the output data 1652 * rate of a specific motion sensor in millihertz. 1653 */ 1654 MOTIONSENSE_CMD_SENSOR_ODR = 3, 1655 1656 /* 1657 * Sensor range command is a setter/getter command for the range of 1658 * a specified motion sensor in +/-G's or +/- deg/s. 1659 */ 1660 MOTIONSENSE_CMD_SENSOR_RANGE = 4, 1661 1662 /* 1663 * Setter/getter command for the keyboard wake angle. When the lid 1664 * angle is greater than this value, keyboard wake is disabled in S3, 1665 * and when the lid angle goes less than this value, keyboard wake is 1666 * enabled. Note, the lid angle measurement is an approximate, 1667 * un-calibrated value, hence the wake angle isn't exact. 1668 */ 1669 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, 1670 1671 /* 1672 * Returns a single sensor data. 1673 */ 1674 MOTIONSENSE_CMD_DATA = 6, 1675 1676 /* 1677 * Return sensor fifo info. 1678 */ 1679 MOTIONSENSE_CMD_FIFO_INFO = 7, 1680 1681 /* 1682 * Insert a flush element in the fifo and return sensor fifo info. 1683 * The host can use that element to synchronize its operation. 1684 */ 1685 MOTIONSENSE_CMD_FIFO_FLUSH = 8, 1686 1687 /* 1688 * Return a portion of the fifo. 1689 */ 1690 MOTIONSENSE_CMD_FIFO_READ = 9, 1691 1692 /* 1693 * Perform low level calibration. 1694 * On sensors that support it, ask to do offset calibration. 1695 */ 1696 MOTIONSENSE_CMD_PERFORM_CALIB = 10, 1697 1698 /* 1699 * Sensor Offset command is a setter/getter command for the offset 1700 * used for calibration. 1701 * The offsets can be calculated by the host, or via 1702 * PERFORM_CALIB command. 1703 */ 1704 MOTIONSENSE_CMD_SENSOR_OFFSET = 11, 1705 1706 /* Number of motionsense sub-commands. */ 1707 MOTIONSENSE_NUM_CMDS 1708 }; 1709 1710 /* List of motion sensor types. */ 1711 enum motionsensor_type { 1712 MOTIONSENSE_TYPE_ACCEL = 0, 1713 MOTIONSENSE_TYPE_GYRO = 1, 1714 MOTIONSENSE_TYPE_MAG = 2, 1715 MOTIONSENSE_TYPE_PROX = 3, 1716 MOTIONSENSE_TYPE_LIGHT = 4, 1717 MOTIONSENSE_TYPE_MAX, 1718 }; 1719 1720 /* List of motion sensor locations. */ 1721 enum motionsensor_location { 1722 MOTIONSENSE_LOC_BASE = 0, 1723 MOTIONSENSE_LOC_LID = 1, 1724 MOTIONSENSE_LOC_MAX, 1725 }; 1726 1727 /* List of motion sensor chips. */ 1728 enum motionsensor_chip { 1729 MOTIONSENSE_CHIP_KXCJ9 = 0, 1730 MOTIONSENSE_CHIP_LSM6DS0 = 1, 1731 MOTIONSENSE_CHIP_BMI160 = 2, 1732 MOTIONSENSE_CHIP_SI1141 = 3, 1733 MOTIONSENSE_CHIP_SI1142 = 4, 1734 MOTIONSENSE_CHIP_SI1143 = 5, 1735 }; 1736 1737 struct ec_response_motion_sensor_data { 1738 /* Flags for each sensor. */ 1739 uint8_t flags; 1740 /* sensor number the data comes from */ 1741 uint8_t sensor_num; 1742 /* Each sensor is up to 3-axis. */ 1743 union { 1744 int16_t data[3]; 1745 struct { 1746 uint16_t rsvd; 1747 uint32_t timestamp; 1748 } __packed; 1749 }; 1750 } __packed; 1751 1752 struct ec_response_motion_sense_fifo_info { 1753 /* Size of the fifo */ 1754 uint16_t size; 1755 /* Amount of space used in the fifo */ 1756 uint16_t count; 1757 /* TImestamp recorded in us */ 1758 uint32_t timestamp; 1759 /* Total amount of vector lost */ 1760 uint16_t total_lost; 1761 /* Lost events since the last fifo_info, per sensors */ 1762 uint16_t lost[0]; 1763 } __packed; 1764 1765 struct ec_response_motion_sense_fifo_data { 1766 uint32_t number_data; 1767 struct ec_response_motion_sensor_data data[0]; 1768 } __packed; 1769 /* Module flag masks used for the dump sub-command. */ 1770 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0) 1771 1772 /* Sensor flag masks used for the dump sub-command. */ 1773 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0) 1774 1775 /* 1776 * Flush entry for synchronisation. 1777 * data contains time stamp 1778 */ 1779 #define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0) 1780 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1) 1781 1782 /* 1783 * Send this value for the data element to only perform a read. If you 1784 * send any other value, the EC will interpret it as data to set and will 1785 * return the actual value set. 1786 */ 1787 #define EC_MOTION_SENSE_NO_VALUE -1 1788 1789 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 1790 1791 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */ 1792 /* Set Calibration information */ 1793 #define MOTION_SENSE_SET_OFFSET 1 1794 1795 struct ec_params_motion_sense { 1796 uint8_t cmd; 1797 union { 1798 /* Used for MOTIONSENSE_CMD_DUMP */ 1799 struct { 1800 /* 1801 * Maximal number of sensor the host is expecting. 1802 * 0 means the host is only interested in the number 1803 * of sensors controlled by the EC. 1804 */ 1805 uint8_t max_sensor_count; 1806 } dump; 1807 1808 /* 1809 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1810 */ 1811 struct { 1812 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. 1813 * kb_wake_angle: angle to wakup AP. 1814 */ 1815 int16_t data; 1816 } kb_wake_angle; 1817 1818 /* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA 1819 * and MOTIONSENSE_CMD_PERFORM_CALIB. */ 1820 struct { 1821 uint8_t sensor_num; 1822 } info, data, fifo_flush, perform_calib; 1823 1824 /* 1825 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR 1826 * and MOTIONSENSE_CMD_SENSOR_RANGE. 1827 */ 1828 struct { 1829 uint8_t sensor_num; 1830 1831 /* Rounding flag, true for round-up, false for down. */ 1832 uint8_t roundup; 1833 1834 uint16_t reserved; 1835 1836 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 1837 int32_t data; 1838 } ec_rate, sensor_odr, sensor_range; 1839 1840 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1841 struct { 1842 uint8_t sensor_num; 1843 1844 /* 1845 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 1846 * the calibration information in the EC. 1847 * If unset, just retrieve calibration information. 1848 */ 1849 uint16_t flags; 1850 1851 /* 1852 * Temperature at calibration, in units of 0.01 C 1853 * 0x8000: invalid / unknown. 1854 * 0x0: 0C 1855 * 0x7fff: +327.67C 1856 */ 1857 int16_t temp; 1858 1859 /* 1860 * Offset for calibration. 1861 * Unit: 1862 * Accelerometer: 1/1024 g 1863 * Gyro: 1/1024 deg/s 1864 * Compass: 1/16 uT 1865 */ 1866 int16_t offset[3]; 1867 } __packed sensor_offset; 1868 1869 /* Used for MOTIONSENSE_CMD_FIFO_INFO */ 1870 struct { 1871 } fifo_info; 1872 1873 /* Used for MOTIONSENSE_CMD_FIFO_READ */ 1874 struct { 1875 /* 1876 * Number of expected vector to return. 1877 * EC may return less or 0 if none available. 1878 */ 1879 uint32_t max_data_vector; 1880 } fifo_read; 1881 }; 1882 } __packed; 1883 1884 struct ec_response_motion_sense { 1885 union { 1886 /* Used for MOTIONSENSE_CMD_DUMP */ 1887 struct { 1888 /* Flags representing the motion sensor module. */ 1889 uint8_t module_flags; 1890 1891 /* Number of sensors managed directly by the EC */ 1892 uint8_t sensor_count; 1893 1894 /* 1895 * sensor data is truncated if response_max is too small 1896 * for holding all the data. 1897 */ 1898 struct ec_response_motion_sensor_data sensor[0]; 1899 } dump; 1900 1901 /* Used for MOTIONSENSE_CMD_INFO. */ 1902 struct { 1903 /* Should be element of enum motionsensor_type. */ 1904 uint8_t type; 1905 1906 /* Should be element of enum motionsensor_location. */ 1907 uint8_t location; 1908 1909 /* Should be element of enum motionsensor_chip. */ 1910 uint8_t chip; 1911 } info; 1912 1913 /* Used for MOTIONSENSE_CMD_DATA */ 1914 struct ec_response_motion_sensor_data data; 1915 1916 /* 1917 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, 1918 * MOTIONSENSE_CMD_SENSOR_RANGE, and 1919 * MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1920 */ 1921 struct { 1922 /* Current value of the parameter queried. */ 1923 int32_t ret; 1924 } ec_rate, sensor_odr, sensor_range, kb_wake_angle; 1925 1926 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1927 struct { 1928 int16_t temp; 1929 int16_t offset[3]; 1930 } sensor_offset, perform_calib; 1931 1932 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush; 1933 1934 struct ec_response_motion_sense_fifo_data fifo_read; 1935 }; 1936 } __packed; 1937 1938 /*****************************************************************************/ 1939 /* Force lid open command */ 1940 1941 /* Make lid event always open */ 1942 #define EC_CMD_FORCE_LID_OPEN 0x2c 1943 1944 struct ec_params_force_lid_open { 1945 uint8_t enabled; 1946 } __packed; 1947 1948 /*****************************************************************************/ 1949 /* USB charging control commands */ 1950 1951 /* Set USB port charging mode */ 1952 #define EC_CMD_USB_CHARGE_SET_MODE 0x30 1953 1954 struct ec_params_usb_charge_set_mode { 1955 uint8_t usb_port_id; 1956 uint8_t mode; 1957 } __packed; 1958 1959 /*****************************************************************************/ 1960 /* Persistent storage for host */ 1961 1962 /* Maximum bytes that can be read/written in a single command */ 1963 #define EC_PSTORE_SIZE_MAX 64 1964 1965 /* Get persistent storage info */ 1966 #define EC_CMD_PSTORE_INFO 0x40 1967 1968 struct ec_response_pstore_info { 1969 /* Persistent storage size, in bytes */ 1970 uint32_t pstore_size; 1971 /* Access size; read/write offset and size must be a multiple of this */ 1972 uint32_t access_size; 1973 } __packed; 1974 1975 /* 1976 * Read persistent storage 1977 * 1978 * Response is params.size bytes of data. 1979 */ 1980 #define EC_CMD_PSTORE_READ 0x41 1981 1982 struct ec_params_pstore_read { 1983 uint32_t offset; /* Byte offset to read */ 1984 uint32_t size; /* Size to read in bytes */ 1985 } __packed; 1986 1987 /* Write persistent storage */ 1988 #define EC_CMD_PSTORE_WRITE 0x42 1989 1990 struct ec_params_pstore_write { 1991 uint32_t offset; /* Byte offset to write */ 1992 uint32_t size; /* Size to write in bytes */ 1993 uint8_t data[EC_PSTORE_SIZE_MAX]; 1994 } __packed; 1995 1996 /*****************************************************************************/ 1997 /* Real-time clock */ 1998 1999 /* RTC params and response structures */ 2000 struct ec_params_rtc { 2001 uint32_t time; 2002 } __packed; 2003 2004 struct ec_response_rtc { 2005 uint32_t time; 2006 } __packed; 2007 2008 /* These use ec_response_rtc */ 2009 #define EC_CMD_RTC_GET_VALUE 0x44 2010 #define EC_CMD_RTC_GET_ALARM 0x45 2011 2012 /* These all use ec_params_rtc */ 2013 #define EC_CMD_RTC_SET_VALUE 0x46 2014 #define EC_CMD_RTC_SET_ALARM 0x47 2015 2016 /*****************************************************************************/ 2017 /* Port80 log access */ 2018 2019 /* Maximum entries that can be read/written in a single command */ 2020 #define EC_PORT80_SIZE_MAX 32 2021 2022 /* Get last port80 code from previous boot */ 2023 #define EC_CMD_PORT80_LAST_BOOT 0x48 2024 #define EC_CMD_PORT80_READ 0x48 2025 2026 enum ec_port80_subcmd { 2027 EC_PORT80_GET_INFO = 0, 2028 EC_PORT80_READ_BUFFER, 2029 }; 2030 2031 struct ec_params_port80_read { 2032 uint16_t subcmd; 2033 union { 2034 struct { 2035 uint32_t offset; 2036 uint32_t num_entries; 2037 } read_buffer; 2038 }; 2039 } __packed; 2040 2041 struct ec_response_port80_read { 2042 union { 2043 struct { 2044 uint32_t writes; 2045 uint32_t history_size; 2046 uint32_t last_boot; 2047 } get_info; 2048 struct { 2049 uint16_t codes[EC_PORT80_SIZE_MAX]; 2050 } data; 2051 }; 2052 } __packed; 2053 2054 struct ec_response_port80_last_boot { 2055 uint16_t code; 2056 } __packed; 2057 2058 /*****************************************************************************/ 2059 /* Thermal engine commands. Note that there are two implementations. We'll 2060 * reuse the command number, but the data and behavior is incompatible. 2061 * Version 0 is what originally shipped on Link. 2062 * Version 1 separates the CPU thermal limits from the fan control. 2063 */ 2064 2065 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50 2066 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51 2067 2068 /* The version 0 structs are opaque. You have to know what they are for 2069 * the get/set commands to make any sense. 2070 */ 2071 2072 /* Version 0 - set */ 2073 struct ec_params_thermal_set_threshold { 2074 uint8_t sensor_type; 2075 uint8_t threshold_id; 2076 uint16_t value; 2077 } __packed; 2078 2079 /* Version 0 - get */ 2080 struct ec_params_thermal_get_threshold { 2081 uint8_t sensor_type; 2082 uint8_t threshold_id; 2083 } __packed; 2084 2085 struct ec_response_thermal_get_threshold { 2086 uint16_t value; 2087 } __packed; 2088 2089 2090 /* The version 1 structs are visible. */ 2091 enum ec_temp_thresholds { 2092 EC_TEMP_THRESH_WARN = 0, 2093 EC_TEMP_THRESH_HIGH, 2094 EC_TEMP_THRESH_HALT, 2095 2096 EC_TEMP_THRESH_COUNT 2097 }; 2098 2099 /* Thermal configuration for one temperature sensor. Temps are in degrees K. 2100 * Zero values will be silently ignored by the thermal task. 2101 */ 2102 struct ec_thermal_config { 2103 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ 2104 uint32_t temp_fan_off; /* no active cooling needed */ 2105 uint32_t temp_fan_max; /* max active cooling needed */ 2106 } __packed; 2107 2108 /* Version 1 - get config for one sensor. */ 2109 struct ec_params_thermal_get_threshold_v1 { 2110 uint32_t sensor_num; 2111 } __packed; 2112 /* This returns a struct ec_thermal_config */ 2113 2114 /* Version 1 - set config for one sensor. 2115 * Use read-modify-write for best results! */ 2116 struct ec_params_thermal_set_threshold_v1 { 2117 uint32_t sensor_num; 2118 struct ec_thermal_config cfg; 2119 } __packed; 2120 /* This returns no data */ 2121 2122 /****************************************************************************/ 2123 2124 /* Toggle automatic fan control */ 2125 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52 2126 2127 /* Version 1 of input params */ 2128 struct ec_params_auto_fan_ctrl_v1 { 2129 uint8_t fan_idx; 2130 } __packed; 2131 2132 /* Get/Set TMP006 calibration data */ 2133 #define EC_CMD_TMP006_GET_CALIBRATION 0x53 2134 #define EC_CMD_TMP006_SET_CALIBRATION 0x54 2135 2136 /* 2137 * The original TMP006 calibration only needed four params, but now we need 2138 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave 2139 * the params opaque. The v1 "get" response will include the algorithm number 2140 * and how many params it requires. That way we can change the EC code without 2141 * needing to update this file. We can also use a different algorithm on each 2142 * sensor. 2143 */ 2144 2145 /* This is the same struct for both v0 and v1. */ 2146 struct ec_params_tmp006_get_calibration { 2147 uint8_t index; 2148 } __packed; 2149 2150 /* Version 0 */ 2151 struct ec_response_tmp006_get_calibration_v0 { 2152 float s0; 2153 float b0; 2154 float b1; 2155 float b2; 2156 } __packed; 2157 2158 struct ec_params_tmp006_set_calibration_v0 { 2159 uint8_t index; 2160 uint8_t reserved[3]; 2161 float s0; 2162 float b0; 2163 float b1; 2164 float b2; 2165 } __packed; 2166 2167 /* Version 1 */ 2168 struct ec_response_tmp006_get_calibration_v1 { 2169 uint8_t algorithm; 2170 uint8_t num_params; 2171 uint8_t reserved[2]; 2172 float val[0]; 2173 } __packed; 2174 2175 struct ec_params_tmp006_set_calibration_v1 { 2176 uint8_t index; 2177 uint8_t algorithm; 2178 uint8_t num_params; 2179 uint8_t reserved; 2180 float val[0]; 2181 } __packed; 2182 2183 2184 /* Read raw TMP006 data */ 2185 #define EC_CMD_TMP006_GET_RAW 0x55 2186 2187 struct ec_params_tmp006_get_raw { 2188 uint8_t index; 2189 } __packed; 2190 2191 struct ec_response_tmp006_get_raw { 2192 int32_t t; /* In 1/100 K */ 2193 int32_t v; /* In nV */ 2194 }; 2195 2196 /*****************************************************************************/ 2197 /* MKBP - Matrix KeyBoard Protocol */ 2198 2199 /* 2200 * Read key state 2201 * 2202 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for 2203 * expected response size. 2204 */ 2205 #define EC_CMD_MKBP_STATE 0x60 2206 2207 /* Provide information about the matrix : number of rows and columns */ 2208 #define EC_CMD_MKBP_INFO 0x61 2209 2210 struct ec_response_mkbp_info { 2211 uint32_t rows; 2212 uint32_t cols; 2213 uint8_t switches; 2214 } __packed; 2215 2216 /* Simulate key press */ 2217 #define EC_CMD_MKBP_SIMULATE_KEY 0x62 2218 2219 struct ec_params_mkbp_simulate_key { 2220 uint8_t col; 2221 uint8_t row; 2222 uint8_t pressed; 2223 } __packed; 2224 2225 /* Configure keyboard scanning */ 2226 #define EC_CMD_MKBP_SET_CONFIG 0x64 2227 #define EC_CMD_MKBP_GET_CONFIG 0x65 2228 2229 /* flags */ 2230 enum mkbp_config_flags { 2231 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ 2232 }; 2233 2234 enum mkbp_config_valid { 2235 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0, 2236 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1, 2237 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3, 2238 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4, 2239 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5, 2240 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6, 2241 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7, 2242 }; 2243 2244 /* Configuration for our key scanning algorithm */ 2245 struct ec_mkbp_config { 2246 uint32_t valid_mask; /* valid fields */ 2247 uint8_t flags; /* some flags (enum mkbp_config_flags) */ 2248 uint8_t valid_flags; /* which flags are valid */ 2249 uint16_t scan_period_us; /* period between start of scans */ 2250 /* revert to interrupt mode after no activity for this long */ 2251 uint32_t poll_timeout_us; 2252 /* 2253 * minimum post-scan relax time. Once we finish a scan we check 2254 * the time until we are due to start the next one. If this time is 2255 * shorter this field, we use this instead. 2256 */ 2257 uint16_t min_post_scan_delay_us; 2258 /* delay between setting up output and waiting for it to settle */ 2259 uint16_t output_settle_us; 2260 uint16_t debounce_down_us; /* time for debounce on key down */ 2261 uint16_t debounce_up_us; /* time for debounce on key up */ 2262 /* maximum depth to allow for fifo (0 = no keyscan output) */ 2263 uint8_t fifo_max_depth; 2264 } __packed; 2265 2266 struct ec_params_mkbp_set_config { 2267 struct ec_mkbp_config config; 2268 } __packed; 2269 2270 struct ec_response_mkbp_get_config { 2271 struct ec_mkbp_config config; 2272 } __packed; 2273 2274 /* Run the key scan emulation */ 2275 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66 2276 2277 enum ec_keyscan_seq_cmd { 2278 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ 2279 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ 2280 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ 2281 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ 2282 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ 2283 }; 2284 2285 enum ec_collect_flags { 2286 /* 2287 * Indicates this scan was processed by the EC. Due to timing, some 2288 * scans may be skipped. 2289 */ 2290 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0, 2291 }; 2292 2293 struct ec_collect_item { 2294 uint8_t flags; /* some flags (enum ec_collect_flags) */ 2295 }; 2296 2297 struct ec_params_keyscan_seq_ctrl { 2298 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ 2299 union { 2300 struct { 2301 uint8_t active; /* still active */ 2302 uint8_t num_items; /* number of items */ 2303 /* Current item being presented */ 2304 uint8_t cur_item; 2305 } status; 2306 struct { 2307 /* 2308 * Absolute time for this scan, measured from the 2309 * start of the sequence. 2310 */ 2311 uint32_t time_us; 2312 uint8_t scan[0]; /* keyscan data */ 2313 } add; 2314 struct { 2315 uint8_t start_item; /* First item to return */ 2316 uint8_t num_items; /* Number of items to return */ 2317 } collect; 2318 }; 2319 } __packed; 2320 2321 struct ec_result_keyscan_seq_ctrl { 2322 union { 2323 struct { 2324 uint8_t num_items; /* Number of items */ 2325 /* Data for each item */ 2326 struct ec_collect_item item[0]; 2327 } collect; 2328 }; 2329 } __packed; 2330 2331 /* 2332 * Get the next pending MKBP event. 2333 * 2334 * Returns EC_RES_UNAVAILABLE if there is no event pending. 2335 */ 2336 #define EC_CMD_GET_NEXT_EVENT 0x67 2337 2338 enum ec_mkbp_event { 2339 /* Keyboard matrix changed. The event data is the new matrix state. */ 2340 EC_MKBP_EVENT_KEY_MATRIX = 0, 2341 2342 /* New host event. The event data is 4 bytes of host event flags. */ 2343 EC_MKBP_EVENT_HOST_EVENT = 1, 2344 2345 /* New Sensor FIFO data. The event data is fifo_info structure. */ 2346 EC_MKBP_EVENT_SENSOR_FIFO = 2, 2347 2348 /* Number of MKBP events */ 2349 EC_MKBP_EVENT_COUNT, 2350 }; 2351 2352 union ec_response_get_next_data { 2353 uint8_t key_matrix[13]; 2354 2355 /* Unaligned */ 2356 uint32_t host_event; 2357 2358 struct { 2359 /* For aligning the fifo_info */ 2360 uint8_t rsvd[3]; 2361 struct ec_response_motion_sense_fifo_info info; 2362 } sensor_fifo; 2363 } __packed; 2364 2365 struct ec_response_get_next_event { 2366 uint8_t event_type; 2367 /* Followed by event data if any */ 2368 union ec_response_get_next_data data; 2369 } __packed; 2370 2371 /*****************************************************************************/ 2372 /* Temperature sensor commands */ 2373 2374 /* Read temperature sensor info */ 2375 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70 2376 2377 struct ec_params_temp_sensor_get_info { 2378 uint8_t id; 2379 } __packed; 2380 2381 struct ec_response_temp_sensor_get_info { 2382 char sensor_name[32]; 2383 uint8_t sensor_type; 2384 } __packed; 2385 2386 /*****************************************************************************/ 2387 2388 /* 2389 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI 2390 * commands accidentally sent to the wrong interface. See the ACPI section 2391 * below. 2392 */ 2393 2394 /*****************************************************************************/ 2395 /* Host event commands */ 2396 2397 /* 2398 * Host event mask params and response structures, shared by all of the host 2399 * event commands below. 2400 */ 2401 struct ec_params_host_event_mask { 2402 uint32_t mask; 2403 } __packed; 2404 2405 struct ec_response_host_event_mask { 2406 uint32_t mask; 2407 } __packed; 2408 2409 /* These all use ec_response_host_event_mask */ 2410 #define EC_CMD_HOST_EVENT_GET_B 0x87 2411 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88 2412 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89 2413 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d 2414 2415 /* These all use ec_params_host_event_mask */ 2416 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a 2417 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b 2418 #define EC_CMD_HOST_EVENT_CLEAR 0x8c 2419 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e 2420 #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f 2421 2422 /*****************************************************************************/ 2423 /* Switch commands */ 2424 2425 /* Enable/disable LCD backlight */ 2426 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90 2427 2428 struct ec_params_switch_enable_backlight { 2429 uint8_t enabled; 2430 } __packed; 2431 2432 /* Enable/disable WLAN/Bluetooth */ 2433 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91 2434 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 2435 2436 /* Version 0 params; no response */ 2437 struct ec_params_switch_enable_wireless_v0 { 2438 uint8_t enabled; 2439 } __packed; 2440 2441 /* Version 1 params */ 2442 struct ec_params_switch_enable_wireless_v1 { 2443 /* Flags to enable now */ 2444 uint8_t now_flags; 2445 2446 /* Which flags to copy from now_flags */ 2447 uint8_t now_mask; 2448 2449 /* 2450 * Flags to leave enabled in S3, if they're on at the S0->S3 2451 * transition. (Other flags will be disabled by the S0->S3 2452 * transition.) 2453 */ 2454 uint8_t suspend_flags; 2455 2456 /* Which flags to copy from suspend_flags */ 2457 uint8_t suspend_mask; 2458 } __packed; 2459 2460 /* Version 1 response */ 2461 struct ec_response_switch_enable_wireless_v1 { 2462 /* Flags to enable now */ 2463 uint8_t now_flags; 2464 2465 /* Flags to leave enabled in S3 */ 2466 uint8_t suspend_flags; 2467 } __packed; 2468 2469 /*****************************************************************************/ 2470 /* GPIO commands. Only available on EC if write protect has been disabled. */ 2471 2472 /* Set GPIO output value */ 2473 #define EC_CMD_GPIO_SET 0x92 2474 2475 struct ec_params_gpio_set { 2476 char name[32]; 2477 uint8_t val; 2478 } __packed; 2479 2480 /* Get GPIO value */ 2481 #define EC_CMD_GPIO_GET 0x93 2482 2483 /* Version 0 of input params and response */ 2484 struct ec_params_gpio_get { 2485 char name[32]; 2486 } __packed; 2487 struct ec_response_gpio_get { 2488 uint8_t val; 2489 } __packed; 2490 2491 /* Version 1 of input params and response */ 2492 struct ec_params_gpio_get_v1 { 2493 uint8_t subcmd; 2494 union { 2495 struct { 2496 char name[32]; 2497 } get_value_by_name; 2498 struct { 2499 uint8_t index; 2500 } get_info; 2501 }; 2502 } __packed; 2503 2504 struct ec_response_gpio_get_v1 { 2505 union { 2506 struct { 2507 uint8_t val; 2508 } get_value_by_name, get_count; 2509 struct { 2510 uint8_t val; 2511 char name[32]; 2512 uint32_t flags; 2513 } get_info; 2514 }; 2515 } __packed; 2516 2517 enum gpio_get_subcmd { 2518 EC_GPIO_GET_BY_NAME = 0, 2519 EC_GPIO_GET_COUNT = 1, 2520 EC_GPIO_GET_INFO = 2, 2521 }; 2522 2523 /*****************************************************************************/ 2524 /* I2C commands. Only available when flash write protect is unlocked. */ 2525 2526 /* 2527 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be 2528 * removed soon. Use EC_CMD_I2C_PASSTHRU instead. 2529 */ 2530 2531 /* Read I2C bus */ 2532 #define EC_CMD_I2C_READ 0x94 2533 2534 struct ec_params_i2c_read { 2535 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2536 uint8_t read_size; /* Either 8 or 16. */ 2537 uint8_t port; 2538 uint8_t offset; 2539 } __packed; 2540 struct ec_response_i2c_read { 2541 uint16_t data; 2542 } __packed; 2543 2544 /* Write I2C bus */ 2545 #define EC_CMD_I2C_WRITE 0x95 2546 2547 struct ec_params_i2c_write { 2548 uint16_t data; 2549 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2550 uint8_t write_size; /* Either 8 or 16. */ 2551 uint8_t port; 2552 uint8_t offset; 2553 } __packed; 2554 2555 /*****************************************************************************/ 2556 /* Charge state commands. Only available when flash write protect unlocked. */ 2557 2558 /* Force charge state machine to stop charging the battery or force it to 2559 * discharge the battery. 2560 */ 2561 #define EC_CMD_CHARGE_CONTROL 0x96 2562 #define EC_VER_CHARGE_CONTROL 1 2563 2564 enum ec_charge_control_mode { 2565 CHARGE_CONTROL_NORMAL = 0, 2566 CHARGE_CONTROL_IDLE, 2567 CHARGE_CONTROL_DISCHARGE, 2568 }; 2569 2570 struct ec_params_charge_control { 2571 uint32_t mode; /* enum charge_control_mode */ 2572 } __packed; 2573 2574 /*****************************************************************************/ 2575 /* Console commands. Only available when flash write protect is unlocked. */ 2576 2577 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ 2578 #define EC_CMD_CONSOLE_SNAPSHOT 0x97 2579 2580 /* 2581 * Read data from the saved snapshot. If the subcmd parameter is 2582 * CONSOLE_READ_NEXT, this will return data starting from the beginning of 2583 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the 2584 * end of the previous snapshot. 2585 * 2586 * The params are only looked at in version >= 1 of this command. Prior 2587 * versions will just default to CONSOLE_READ_NEXT behavior. 2588 * 2589 * Response is null-terminated string. Empty string, if there is no more 2590 * remaining output. 2591 */ 2592 #define EC_CMD_CONSOLE_READ 0x98 2593 2594 enum ec_console_read_subcmd { 2595 CONSOLE_READ_NEXT = 0, 2596 CONSOLE_READ_RECENT 2597 }; 2598 2599 struct ec_params_console_read_v1 { 2600 uint8_t subcmd; /* enum ec_console_read_subcmd */ 2601 } __packed; 2602 2603 /*****************************************************************************/ 2604 2605 /* 2606 * Cut off battery power immediately or after the host has shut down. 2607 * 2608 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. 2609 * EC_RES_SUCCESS if the command was successful. 2610 * EC_RES_ERROR if the cut off command failed. 2611 */ 2612 #define EC_CMD_BATTERY_CUT_OFF 0x99 2613 2614 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0) 2615 2616 struct ec_params_battery_cutoff { 2617 uint8_t flags; 2618 } __packed; 2619 2620 /*****************************************************************************/ 2621 /* USB port mux control. */ 2622 2623 /* 2624 * Switch USB mux or return to automatic switching. 2625 */ 2626 #define EC_CMD_USB_MUX 0x9a 2627 2628 struct ec_params_usb_mux { 2629 uint8_t mux; 2630 } __packed; 2631 2632 /*****************************************************************************/ 2633 /* LDOs / FETs control. */ 2634 2635 enum ec_ldo_state { 2636 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ 2637 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ 2638 }; 2639 2640 /* 2641 * Switch on/off a LDO. 2642 */ 2643 #define EC_CMD_LDO_SET 0x9b 2644 2645 struct ec_params_ldo_set { 2646 uint8_t index; 2647 uint8_t state; 2648 } __packed; 2649 2650 /* 2651 * Get LDO state. 2652 */ 2653 #define EC_CMD_LDO_GET 0x9c 2654 2655 struct ec_params_ldo_get { 2656 uint8_t index; 2657 } __packed; 2658 2659 struct ec_response_ldo_get { 2660 uint8_t state; 2661 } __packed; 2662 2663 /*****************************************************************************/ 2664 /* Power info. */ 2665 2666 /* 2667 * Get power info. 2668 */ 2669 #define EC_CMD_POWER_INFO 0x9d 2670 2671 struct ec_response_power_info { 2672 uint32_t usb_dev_type; 2673 uint16_t voltage_ac; 2674 uint16_t voltage_system; 2675 uint16_t current_system; 2676 uint16_t usb_current_limit; 2677 } __packed; 2678 2679 /*****************************************************************************/ 2680 /* I2C passthru command */ 2681 2682 #define EC_CMD_I2C_PASSTHRU 0x9e 2683 2684 /* Read data; if not present, message is a write */ 2685 #define EC_I2C_FLAG_READ (1 << 15) 2686 2687 /* Mask for address */ 2688 #define EC_I2C_ADDR_MASK 0x3ff 2689 2690 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */ 2691 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */ 2692 2693 /* Any error */ 2694 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) 2695 2696 struct ec_params_i2c_passthru_msg { 2697 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ 2698 uint16_t len; /* Number of bytes to read or write */ 2699 } __packed; 2700 2701 struct ec_params_i2c_passthru { 2702 uint8_t port; /* I2C port number */ 2703 uint8_t num_msgs; /* Number of messages */ 2704 struct ec_params_i2c_passthru_msg msg[]; 2705 /* Data to write for all messages is concatenated here */ 2706 } __packed; 2707 2708 struct ec_response_i2c_passthru { 2709 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ 2710 uint8_t num_msgs; /* Number of messages processed */ 2711 uint8_t data[]; /* Data read by messages concatenated here */ 2712 } __packed; 2713 2714 /*****************************************************************************/ 2715 /* Power button hang detect */ 2716 2717 #define EC_CMD_HANG_DETECT 0x9f 2718 2719 /* Reasons to start hang detection timer */ 2720 /* Power button pressed */ 2721 #define EC_HANG_START_ON_POWER_PRESS (1 << 0) 2722 2723 /* Lid closed */ 2724 #define EC_HANG_START_ON_LID_CLOSE (1 << 1) 2725 2726 /* Lid opened */ 2727 #define EC_HANG_START_ON_LID_OPEN (1 << 2) 2728 2729 /* Start of AP S3->S0 transition (booting or resuming from suspend) */ 2730 #define EC_HANG_START_ON_RESUME (1 << 3) 2731 2732 /* Reasons to cancel hang detection */ 2733 2734 /* Power button released */ 2735 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8) 2736 2737 /* Any host command from AP received */ 2738 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9) 2739 2740 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */ 2741 #define EC_HANG_STOP_ON_SUSPEND (1 << 10) 2742 2743 /* 2744 * If this flag is set, all the other fields are ignored, and the hang detect 2745 * timer is started. This provides the AP a way to start the hang timer 2746 * without reconfiguring any of the other hang detect settings. Note that 2747 * you must previously have configured the timeouts. 2748 */ 2749 #define EC_HANG_START_NOW (1 << 30) 2750 2751 /* 2752 * If this flag is set, all the other fields are ignored (including 2753 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer 2754 * without reconfiguring any of the other hang detect settings. 2755 */ 2756 #define EC_HANG_STOP_NOW (1 << 31) 2757 2758 struct ec_params_hang_detect { 2759 /* Flags; see EC_HANG_* */ 2760 uint32_t flags; 2761 2762 /* Timeout in msec before generating host event, if enabled */ 2763 uint16_t host_event_timeout_msec; 2764 2765 /* Timeout in msec before generating warm reboot, if enabled */ 2766 uint16_t warm_reboot_timeout_msec; 2767 } __packed; 2768 2769 /*****************************************************************************/ 2770 /* Commands for battery charging */ 2771 2772 /* 2773 * This is the single catch-all host command to exchange data regarding the 2774 * charge state machine (v2 and up). 2775 */ 2776 #define EC_CMD_CHARGE_STATE 0xa0 2777 2778 /* Subcommands for this host command */ 2779 enum charge_state_command { 2780 CHARGE_STATE_CMD_GET_STATE, 2781 CHARGE_STATE_CMD_GET_PARAM, 2782 CHARGE_STATE_CMD_SET_PARAM, 2783 CHARGE_STATE_NUM_CMDS 2784 }; 2785 2786 /* 2787 * Known param numbers are defined here. Ranges are reserved for board-specific 2788 * params, which are handled by the particular implementations. 2789 */ 2790 enum charge_state_params { 2791 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ 2792 CS_PARAM_CHG_CURRENT, /* charger current limit */ 2793 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ 2794 CS_PARAM_CHG_STATUS, /* charger-specific status */ 2795 CS_PARAM_CHG_OPTION, /* charger-specific options */ 2796 /* How many so far? */ 2797 CS_NUM_BASE_PARAMS, 2798 2799 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ 2800 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, 2801 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, 2802 2803 /* Other custom param ranges go here... */ 2804 }; 2805 2806 struct ec_params_charge_state { 2807 uint8_t cmd; /* enum charge_state_command */ 2808 union { 2809 struct { 2810 /* no args */ 2811 } get_state; 2812 2813 struct { 2814 uint32_t param; /* enum charge_state_param */ 2815 } get_param; 2816 2817 struct { 2818 uint32_t param; /* param to set */ 2819 uint32_t value; /* value to set */ 2820 } set_param; 2821 }; 2822 } __packed; 2823 2824 struct ec_response_charge_state { 2825 union { 2826 struct { 2827 int ac; 2828 int chg_voltage; 2829 int chg_current; 2830 int chg_input_current; 2831 int batt_state_of_charge; 2832 } get_state; 2833 2834 struct { 2835 uint32_t value; 2836 } get_param; 2837 struct { 2838 /* no return values */ 2839 } set_param; 2840 }; 2841 } __packed; 2842 2843 2844 /* 2845 * Set maximum battery charging current. 2846 */ 2847 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1 2848 2849 struct ec_params_current_limit { 2850 uint32_t limit; /* in mA */ 2851 } __packed; 2852 2853 /* 2854 * Set maximum external voltage / current. 2855 */ 2856 #define EC_CMD_EXTERNAL_POWER_LIMIT 0xa2 2857 2858 /* Command v0 is used only on Spring and is obsolete + unsupported */ 2859 struct ec_params_external_power_limit_v1 { 2860 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ 2861 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ 2862 } __packed; 2863 2864 #define EC_POWER_LIMIT_NONE 0xffff 2865 2866 /*****************************************************************************/ 2867 2868 /* 2869 * Get/Set the option to boot the AP when the AC power is plugged 2870 * 2871 * Use ec_params_get_set_value/ec_response_get_set_value structs and EC_GSV_SET 2872 * please see "Get/Set miscellaneous values" section above. 2873 */ 2874 #define EC_CMD_GSV_BOOT_ON_AC 0xa3 2875 2876 /*****************************************************************************/ 2877 /* Smart battery pass-through */ 2878 2879 /* Get / Set 16-bit smart battery registers */ 2880 #define EC_CMD_SB_READ_WORD 0xb0 2881 #define EC_CMD_SB_WRITE_WORD 0xb1 2882 2883 /* Get / Set string smart battery parameters 2884 * formatted as SMBUS "block". 2885 */ 2886 #define EC_CMD_SB_READ_BLOCK 0xb2 2887 #define EC_CMD_SB_WRITE_BLOCK 0xb3 2888 2889 struct ec_params_sb_rd { 2890 uint8_t reg; 2891 } __packed; 2892 2893 struct ec_response_sb_rd_word { 2894 uint16_t value; 2895 } __packed; 2896 2897 struct ec_params_sb_wr_word { 2898 uint8_t reg; 2899 uint16_t value; 2900 } __packed; 2901 2902 struct ec_response_sb_rd_block { 2903 uint8_t data[32]; 2904 } __packed; 2905 2906 struct ec_params_sb_wr_block { 2907 uint8_t reg; 2908 uint16_t data[32]; 2909 } __packed; 2910 2911 2912 /*****************************************************************************/ 2913 /* Battery vendor parameters 2914 * 2915 * Get or set vendor-specific parameters in the battery. Implementations may 2916 * differ between boards or batteries. On a set operation, the response 2917 * contains the actual value set, which may be rounded or clipped from the 2918 * requested value. 2919 */ 2920 2921 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4 2922 2923 enum ec_battery_vendor_param_mode { 2924 BATTERY_VENDOR_PARAM_MODE_GET = 0, 2925 BATTERY_VENDOR_PARAM_MODE_SET, 2926 }; 2927 2928 struct ec_params_battery_vendor_param { 2929 uint32_t param; 2930 uint32_t value; 2931 uint8_t mode; 2932 } __packed; 2933 2934 struct ec_response_battery_vendor_param { 2935 uint32_t value; 2936 } __packed; 2937 2938 /*****************************************************************************/ 2939 /* 2940 * Smart Battery Firmware Update Commands 2941 */ 2942 #define EC_CMD_SB_FW_UPDATE 0xb5 2943 2944 enum ec_sb_fw_update_subcmd { 2945 EC_SB_FW_UPDATE_PREPARE = 0x0, 2946 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */ 2947 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */ 2948 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */ 2949 EC_SB_FW_UPDATE_END = 0x4, 2950 EC_SB_FW_UPDATE_STATUS = 0x5, 2951 EC_SB_FW_UPDATE_PROTECT = 0x6, 2952 EC_SB_FW_UPDATE_MAX = 0x7, 2953 }; 2954 2955 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32 2956 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2 2957 #define SB_FW_UPDATE_CMD_INFO_SIZE 8 2958 2959 struct ec_sb_fw_update_header { 2960 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */ 2961 uint16_t fw_id; /* firmware id */ 2962 } __packed; 2963 2964 struct ec_params_sb_fw_update { 2965 struct ec_sb_fw_update_header hdr; 2966 union { 2967 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */ 2968 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 2969 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */ 2970 /* EC_SB_FW_UPDATE_END = 0x4 */ 2971 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 2972 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */ 2973 struct { 2974 /* no args */ 2975 } dummy; 2976 2977 /* EC_SB_FW_UPDATE_WRITE = 0x3 */ 2978 struct { 2979 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE]; 2980 } write; 2981 }; 2982 } __packed; 2983 2984 struct ec_response_sb_fw_update { 2985 union { 2986 /* EC_SB_FW_UPDATE_INFO = 0x1 */ 2987 struct { 2988 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE]; 2989 } info; 2990 2991 /* EC_SB_FW_UPDATE_STATUS = 0x5 */ 2992 struct { 2993 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE]; 2994 } status; 2995 }; 2996 } __packed; 2997 2998 /* 2999 * Entering Verified Boot Mode Command 3000 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command. 3001 * Valid Modes are: normal, developer, and recovery. 3002 */ 3003 #define EC_CMD_ENTERING_MODE 0xb6 3004 3005 struct ec_params_entering_mode { 3006 int vboot_mode; 3007 } __packed; 3008 3009 #define VBOOT_MODE_NORMAL 0 3010 #define VBOOT_MODE_DEVELOPER 1 3011 #define VBOOT_MODE_RECOVERY 2 3012 3013 /*****************************************************************************/ 3014 /* System commands */ 3015 3016 /* 3017 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't 3018 * necessarily reboot the EC. Rename to "image" or something similar? 3019 */ 3020 #define EC_CMD_REBOOT_EC 0xd2 3021 3022 /* Command */ 3023 enum ec_reboot_cmd { 3024 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ 3025 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ 3026 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */ 3027 /* (command 3 was jump to RW-B) */ 3028 EC_REBOOT_COLD = 4, /* Cold-reboot */ 3029 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ 3030 EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */ 3031 }; 3032 3033 /* Flags for ec_params_reboot_ec.reboot_flags */ 3034 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */ 3035 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */ 3036 3037 struct ec_params_reboot_ec { 3038 uint8_t cmd; /* enum ec_reboot_cmd */ 3039 uint8_t flags; /* See EC_REBOOT_FLAG_* */ 3040 } __packed; 3041 3042 /* 3043 * Get information on last EC panic. 3044 * 3045 * Returns variable-length platform-dependent panic information. See panic.h 3046 * for details. 3047 */ 3048 #define EC_CMD_GET_PANIC_INFO 0xd3 3049 3050 /*****************************************************************************/ 3051 /* 3052 * Special commands 3053 * 3054 * These do not follow the normal rules for commands. See each command for 3055 * details. 3056 */ 3057 3058 /* 3059 * Reboot NOW 3060 * 3061 * This command will work even when the EC LPC interface is busy, because the 3062 * reboot command is processed at interrupt level. Note that when the EC 3063 * reboots, the host will reboot too, so there is no response to this command. 3064 * 3065 * Use EC_CMD_REBOOT_EC to reboot the EC more politely. 3066 */ 3067 #define EC_CMD_REBOOT 0xd1 /* Think "die" */ 3068 3069 /* 3070 * Resend last response (not supported on LPC). 3071 * 3072 * Returns EC_RES_UNAVAILABLE if there is no response available - for example, 3073 * there was no previous command, or the previous command's response was too 3074 * big to save. 3075 */ 3076 #define EC_CMD_RESEND_RESPONSE 0xdb 3077 3078 /* 3079 * This header byte on a command indicate version 0. Any header byte less 3080 * than this means that we are talking to an old EC which doesn't support 3081 * versioning. In that case, we assume version 0. 3082 * 3083 * Header bytes greater than this indicate a later version. For example, 3084 * EC_CMD_VERSION0 + 1 means we are using version 1. 3085 * 3086 * The old EC interface must not use commands 0xdc or higher. 3087 */ 3088 #define EC_CMD_VERSION0 0xdc 3089 3090 /*****************************************************************************/ 3091 /* 3092 * PD commands 3093 * 3094 * These commands are for PD MCU communication. 3095 */ 3096 3097 /* EC to PD MCU exchange status command */ 3098 #define EC_CMD_PD_EXCHANGE_STATUS 0x100 3099 3100 enum pd_charge_state { 3101 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */ 3102 PD_CHARGE_NONE, /* No charging allowed */ 3103 PD_CHARGE_5V, /* 5V charging only */ 3104 PD_CHARGE_MAX /* Charge at max voltage */ 3105 }; 3106 3107 /* Status of EC being sent to PD */ 3108 struct ec_params_pd_status { 3109 int8_t batt_soc; /* battery state of charge */ 3110 uint8_t charge_state; /* charging state (from enum pd_charge_state) */ 3111 } __packed; 3112 3113 /* Status of PD being sent back to EC */ 3114 #define PD_STATUS_HOST_EVENT (1 << 0) /* Forward host event to AP */ 3115 #define PD_STATUS_IN_RW (1 << 1) /* Running RW image */ 3116 #define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */ 3117 #define PD_STATUS_TCPC_ALERT_0 (1 << 3) /* Alert active in port 0 TCPC */ 3118 #define PD_STATUS_TCPC_ALERT_1 (1 << 4) /* Alert active in port 1 TCPC */ 3119 #define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \ 3120 PD_STATUS_TCPC_ALERT_1 | \ 3121 PD_STATUS_HOST_EVENT) 3122 struct ec_response_pd_status { 3123 uint32_t status; /* PD MCU status */ 3124 uint32_t curr_lim_ma; /* input current limit */ 3125 int32_t active_charge_port; /* active charging port */ 3126 } __packed; 3127 3128 /* AP to PD MCU host event status command, cleared on read */ 3129 #define EC_CMD_PD_HOST_EVENT_STATUS 0x104 3130 3131 /* PD MCU host event status bits */ 3132 #define PD_EVENT_UPDATE_DEVICE (1 << 0) 3133 #define PD_EVENT_POWER_CHANGE (1 << 1) 3134 #define PD_EVENT_IDENTITY_RECEIVED (1 << 2) 3135 #define PD_EVENT_DATA_SWAP (1 << 3) 3136 struct ec_response_host_event_status { 3137 uint32_t status; /* PD MCU host event status */ 3138 } __packed; 3139 3140 /* Set USB type-C port role and muxes */ 3141 #define EC_CMD_USB_PD_CONTROL 0x101 3142 3143 enum usb_pd_control_role { 3144 USB_PD_CTRL_ROLE_NO_CHANGE = 0, 3145 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ 3146 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, 3147 USB_PD_CTRL_ROLE_FORCE_SINK = 3, 3148 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, 3149 USB_PD_CTRL_ROLE_COUNT 3150 }; 3151 3152 enum usb_pd_control_mux { 3153 USB_PD_CTRL_MUX_NO_CHANGE = 0, 3154 USB_PD_CTRL_MUX_NONE = 1, 3155 USB_PD_CTRL_MUX_USB = 2, 3156 USB_PD_CTRL_MUX_DP = 3, 3157 USB_PD_CTRL_MUX_DOCK = 4, 3158 USB_PD_CTRL_MUX_AUTO = 5, 3159 USB_PD_CTRL_MUX_COUNT 3160 }; 3161 3162 enum usb_pd_control_swap { 3163 USB_PD_CTRL_SWAP_NONE = 0, 3164 USB_PD_CTRL_SWAP_DATA = 1, 3165 USB_PD_CTRL_SWAP_POWER = 2, 3166 USB_PD_CTRL_SWAP_VCONN = 3, 3167 USB_PD_CTRL_SWAP_COUNT 3168 }; 3169 3170 struct ec_params_usb_pd_control { 3171 uint8_t port; 3172 uint8_t role; 3173 uint8_t mux; 3174 uint8_t swap; 3175 } __packed; 3176 3177 struct ec_response_usb_pd_control { 3178 uint8_t enabled; 3179 uint8_t role; 3180 uint8_t polarity; 3181 uint8_t state; 3182 } __packed; 3183 3184 struct ec_response_usb_pd_control_v1 { 3185 uint8_t enabled; /* [0] comm enabled [1] connected */ 3186 uint8_t role; /* [0] power: 0=SNK/1=SRC [1] data: 0=UFP/1=DFP 3187 [2] vconn 0=off/1=on */ 3188 uint8_t polarity; 3189 char state[32]; 3190 } __packed; 3191 3192 #define EC_CMD_USB_PD_PORTS 0x102 3193 3194 struct ec_response_usb_pd_ports { 3195 uint8_t num_ports; 3196 } __packed; 3197 3198 #define EC_CMD_USB_PD_POWER_INFO 0x103 3199 3200 #define PD_POWER_CHARGING_PORT 0xff 3201 struct ec_params_usb_pd_power_info { 3202 uint8_t port; 3203 } __packed; 3204 3205 enum usb_chg_type { 3206 USB_CHG_TYPE_NONE, 3207 USB_CHG_TYPE_PD, 3208 USB_CHG_TYPE_C, 3209 USB_CHG_TYPE_PROPRIETARY, 3210 USB_CHG_TYPE_BC12_DCP, 3211 USB_CHG_TYPE_BC12_CDP, 3212 USB_CHG_TYPE_BC12_SDP, 3213 USB_CHG_TYPE_OTHER, 3214 USB_CHG_TYPE_VBUS, 3215 USB_CHG_TYPE_UNKNOWN, 3216 }; 3217 enum usb_power_roles { 3218 USB_PD_PORT_POWER_DISCONNECTED, 3219 USB_PD_PORT_POWER_SOURCE, 3220 USB_PD_PORT_POWER_SINK, 3221 USB_PD_PORT_POWER_SINK_NOT_CHARGING, 3222 }; 3223 3224 struct usb_chg_measures { 3225 uint16_t voltage_max; 3226 uint16_t voltage_now; 3227 uint16_t current_max; 3228 uint16_t current_lim; 3229 } __packed; 3230 3231 struct ec_response_usb_pd_power_info { 3232 uint8_t role; 3233 uint8_t type; 3234 uint8_t dualrole; 3235 uint8_t reserved1; 3236 struct usb_chg_measures meas; 3237 uint32_t max_power; 3238 } __packed; 3239 3240 /* Write USB-PD device FW */ 3241 #define EC_CMD_USB_PD_FW_UPDATE 0x110 3242 3243 enum usb_pd_fw_update_cmds { 3244 USB_PD_FW_REBOOT, 3245 USB_PD_FW_FLASH_ERASE, 3246 USB_PD_FW_FLASH_WRITE, 3247 USB_PD_FW_ERASE_SIG, 3248 }; 3249 3250 struct ec_params_usb_pd_fw_update { 3251 uint16_t dev_id; 3252 uint8_t cmd; 3253 uint8_t port; 3254 uint32_t size; /* Size to write in bytes */ 3255 /* Followed by data to write */ 3256 } __packed; 3257 3258 /* Write USB-PD Accessory RW_HASH table entry */ 3259 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x111 3260 /* RW hash is first 20 bytes of SHA-256 of RW section */ 3261 #define PD_RW_HASH_SIZE 20 3262 struct ec_params_usb_pd_rw_hash_entry { 3263 uint16_t dev_id; 3264 uint8_t dev_rw_hash[PD_RW_HASH_SIZE]; 3265 uint8_t reserved; /* For alignment of current_image */ 3266 uint32_t current_image; /* One of ec_current_image */ 3267 } __packed; 3268 3269 /* Read USB-PD Accessory info */ 3270 #define EC_CMD_USB_PD_DEV_INFO 0x112 3271 3272 struct ec_params_usb_pd_info_request { 3273 uint8_t port; 3274 } __packed; 3275 3276 /* Read USB-PD Device discovery info */ 3277 #define EC_CMD_USB_PD_DISCOVERY 0x113 3278 struct ec_params_usb_pd_discovery_entry { 3279 uint16_t vid; /* USB-IF VID */ 3280 uint16_t pid; /* USB-IF PID */ 3281 uint8_t ptype; /* product type (hub,periph,cable,ama) */ 3282 } __packed; 3283 3284 /* Override default charge behavior */ 3285 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x114 3286 3287 /* Negative port parameters have special meaning */ 3288 enum usb_pd_override_ports { 3289 OVERRIDE_DONT_CHARGE = -2, 3290 OVERRIDE_OFF = -1, 3291 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ 3292 }; 3293 3294 struct ec_params_charge_port_override { 3295 int16_t override_port; /* Override port# */ 3296 } __packed; 3297 3298 /* Read (and delete) one entry of PD event log */ 3299 #define EC_CMD_PD_GET_LOG_ENTRY 0x115 3300 3301 struct ec_response_pd_log { 3302 uint32_t timestamp; /* relative timestamp in milliseconds */ 3303 uint8_t type; /* event type : see PD_EVENT_xx below */ 3304 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ 3305 uint16_t data; /* type-defined data payload */ 3306 uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ 3307 } __packed; 3308 3309 3310 /* The timestamp is the microsecond counter shifted to get about a ms. */ 3311 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ 3312 3313 #define PD_LOG_SIZE_MASK 0x1f 3314 #define PD_LOG_PORT_MASK 0xe0 3315 #define PD_LOG_PORT_SHIFT 5 3316 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ 3317 ((size) & PD_LOG_SIZE_MASK)) 3318 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) 3319 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) 3320 3321 /* PD event log : entry types */ 3322 /* PD MCU events */ 3323 #define PD_EVENT_MCU_BASE 0x00 3324 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) 3325 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) 3326 /* Reserved for custom board event */ 3327 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) 3328 /* PD generic accessory events */ 3329 #define PD_EVENT_ACC_BASE 0x20 3330 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) 3331 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) 3332 /* PD power supply events */ 3333 #define PD_EVENT_PS_BASE 0x40 3334 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) 3335 /* PD video dongles events */ 3336 #define PD_EVENT_VIDEO_BASE 0x60 3337 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) 3338 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) 3339 /* Returned in the "type" field, when there is no entry available */ 3340 #define PD_EVENT_NO_ENTRY 0xff 3341 3342 /* 3343 * PD_EVENT_MCU_CHARGE event definition : 3344 * the payload is "struct usb_chg_measures" 3345 * the data field contains the port state flags as defined below : 3346 */ 3347 /* Port partner is a dual role device */ 3348 #define CHARGE_FLAGS_DUAL_ROLE (1 << 15) 3349 /* Port is the pending override port */ 3350 #define CHARGE_FLAGS_DELAYED_OVERRIDE (1 << 14) 3351 /* Port is the override port */ 3352 #define CHARGE_FLAGS_OVERRIDE (1 << 13) 3353 /* Charger type */ 3354 #define CHARGE_FLAGS_TYPE_SHIFT 3 3355 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) 3356 /* Power delivery role */ 3357 #define CHARGE_FLAGS_ROLE_MASK (7 << 0) 3358 3359 /* 3360 * PD_EVENT_PS_FAULT data field flags definition : 3361 */ 3362 #define PS_FAULT_OCP 1 3363 #define PS_FAULT_FAST_OCP 2 3364 #define PS_FAULT_OVP 3 3365 #define PS_FAULT_DISCH 4 3366 3367 /* 3368 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". 3369 */ 3370 struct mcdp_version { 3371 uint8_t major; 3372 uint8_t minor; 3373 uint16_t build; 3374 } __packed; 3375 3376 struct mcdp_info { 3377 uint8_t family[2]; 3378 uint8_t chipid[2]; 3379 struct mcdp_version irom; 3380 struct mcdp_version fw; 3381 } __packed; 3382 3383 /* struct mcdp_info field decoding */ 3384 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) 3385 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) 3386 3387 /* Get/Set USB-PD Alternate mode info */ 3388 #define EC_CMD_USB_PD_GET_AMODE 0x116 3389 struct ec_params_usb_pd_get_mode_request { 3390 uint16_t svid_idx; /* SVID index to get */ 3391 uint8_t port; /* port */ 3392 } __packed; 3393 3394 struct ec_params_usb_pd_get_mode_response { 3395 uint16_t svid; /* SVID */ 3396 uint16_t opos; /* Object Position */ 3397 uint32_t vdo[6]; /* Mode VDOs */ 3398 } __packed; 3399 3400 #define EC_CMD_USB_PD_SET_AMODE 0x117 3401 3402 enum pd_mode_cmd { 3403 PD_EXIT_MODE = 0, 3404 PD_ENTER_MODE = 1, 3405 /* Not a command. Do NOT remove. */ 3406 PD_MODE_CMD_COUNT, 3407 }; 3408 3409 struct ec_params_usb_pd_set_mode_request { 3410 uint32_t cmd; /* enum pd_mode_cmd */ 3411 uint16_t svid; /* SVID to set */ 3412 uint8_t opos; /* Object Position */ 3413 uint8_t port; /* port */ 3414 } __packed; 3415 3416 /* Ask the PD MCU to record a log of a requested type */ 3417 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x118 3418 3419 struct ec_params_pd_write_log_entry { 3420 uint8_t type; /* event type : see PD_EVENT_xx above */ 3421 uint8_t port; /* port#, or 0 for events unrelated to a given port */ 3422 } __packed; 3423 3424 #endif /* !__ACPI__ */ 3425 3426 /*****************************************************************************/ 3427 /* 3428 * Passthru commands 3429 * 3430 * Some platforms have sub-processors chained to each other. For example. 3431 * 3432 * AP <--> EC <--> PD MCU 3433 * 3434 * The top 2 bits of the command number are used to indicate which device the 3435 * command is intended for. Device 0 is always the device receiving the 3436 * command; other device mapping is board-specific. 3437 * 3438 * When a device receives a command to be passed to a sub-processor, it passes 3439 * it on with the device number set back to 0. This allows the sub-processor 3440 * to remain blissfully unaware of whether the command originated on the next 3441 * device up the chain, or was passed through from the AP. 3442 * 3443 * In the above example, if the AP wants to send command 0x0002 to the PD MCU, 3444 * AP sends command 0x4002 to the EC 3445 * EC sends command 0x0002 to the PD MCU 3446 * EC forwards PD MCU response back to the AP 3447 */ 3448 3449 /* Offset and max command number for sub-device n */ 3450 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) 3451 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) 3452 3453 /*****************************************************************************/ 3454 /* 3455 * Deprecated constants. These constants have been renamed for clarity. The 3456 * meaning and size has not changed. Programs that use the old names should 3457 * switch to the new names soon, as the old names may not be carried forward 3458 * forever. 3459 */ 3460 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE 3461 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 3462 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE 3463 3464 #endif /* __CROS_EC_COMMANDS_H */ 3465