1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "large_object_space.h"
18 
19 #include <memory>
20 
21 #include "gc/accounting/heap_bitmap-inl.h"
22 #include "gc/accounting/space_bitmap-inl.h"
23 #include "base/logging.h"
24 #include "base/memory_tool.h"
25 #include "base/mutex-inl.h"
26 #include "base/stl_util.h"
27 #include "image.h"
28 #include "os.h"
29 #include "scoped_thread_state_change-inl.h"
30 #include "space-inl.h"
31 #include "thread-inl.h"
32 
33 namespace art {
34 namespace gc {
35 namespace space {
36 
37 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
38  public:
MemoryToolLargeObjectMapSpace(const std::string & name)39   explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
40   }
41 
~MemoryToolLargeObjectMapSpace()42   ~MemoryToolLargeObjectMapSpace() OVERRIDE {
43     // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
44     // freed since they are held live by the class linker.
45     MutexLock mu(Thread::Current(), lock_);
46     for (auto& m : large_objects_) {
47       delete m.second.mem_map;
48     }
49   }
50 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)51   mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
52                         size_t* usable_size, size_t* bytes_tl_bulk_allocated)
53       OVERRIDE {
54     mirror::Object* obj =
55         LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
56                                    usable_size, bytes_tl_bulk_allocated);
57     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
58         reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
59     MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
60     MEMORY_TOOL_MAKE_NOACCESS(
61         reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
62         kMemoryToolRedZoneBytes);
63     if (usable_size != nullptr) {
64       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
65     }
66     return object_without_rdz;
67   }
68 
AllocationSize(mirror::Object * obj,size_t * usable_size)69   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
70     return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
71   }
72 
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const73   bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
74     return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
75   }
76 
Free(Thread * self,mirror::Object * obj)77   size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
78     mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
79     MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
80     return LargeObjectMapSpace::Free(self, object_with_rdz);
81   }
82 
Contains(const mirror::Object * obj) const83   bool Contains(const mirror::Object* obj) const OVERRIDE {
84     return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
85   }
86 
87  private:
ObjectWithRedzone(const mirror::Object * obj)88   static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
89     return reinterpret_cast<const mirror::Object*>(
90         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
91   }
92 
ObjectWithRedzone(mirror::Object * obj)93   static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
94     return reinterpret_cast<mirror::Object*>(
95         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
96   }
97 
98   static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
99 };
100 
SwapBitmaps()101 void LargeObjectSpace::SwapBitmaps() {
102   live_bitmap_.swap(mark_bitmap_);
103   // Swap names to get more descriptive diagnostics.
104   std::string temp_name = live_bitmap_->GetName();
105   live_bitmap_->SetName(mark_bitmap_->GetName());
106   mark_bitmap_->SetName(temp_name);
107 }
108 
LargeObjectSpace(const std::string & name,uint8_t * begin,uint8_t * end)109 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
110     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
111       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
112       total_objects_allocated_(0), begin_(begin), end_(end) {
113 }
114 
115 
CopyLiveToMarked()116 void LargeObjectSpace::CopyLiveToMarked() {
117   mark_bitmap_->CopyFrom(live_bitmap_.get());
118 }
119 
LargeObjectMapSpace(const std::string & name)120 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
121     : LargeObjectSpace(name, nullptr, nullptr),
122       lock_("large object map space lock", kAllocSpaceLock) {}
123 
Create(const std::string & name)124 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
125   if (Runtime::Current()->IsRunningOnMemoryTool()) {
126     return new MemoryToolLargeObjectMapSpace(name);
127   } else {
128     return new LargeObjectMapSpace(name);
129   }
130 }
131 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)132 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
133                                            size_t* bytes_allocated, size_t* usable_size,
134                                            size_t* bytes_tl_bulk_allocated) {
135   std::string error_msg;
136   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
137                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
138   if (UNLIKELY(mem_map == nullptr)) {
139     LOG(WARNING) << "Large object allocation failed: " << error_msg;
140     return nullptr;
141   }
142   mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
143   MutexLock mu(self, lock_);
144   large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
145   const size_t allocation_size = mem_map->BaseSize();
146   DCHECK(bytes_allocated != nullptr);
147 
148   if (begin_ == nullptr || begin_ > reinterpret_cast<uint8_t*>(obj)) {
149     begin_ = reinterpret_cast<uint8_t*>(obj);
150   }
151   end_ = std::max(end_, reinterpret_cast<uint8_t*>(obj) + allocation_size);
152 
153   *bytes_allocated = allocation_size;
154   if (usable_size != nullptr) {
155     *usable_size = allocation_size;
156   }
157   DCHECK(bytes_tl_bulk_allocated != nullptr);
158   *bytes_tl_bulk_allocated = allocation_size;
159   num_bytes_allocated_ += allocation_size;
160   total_bytes_allocated_ += allocation_size;
161   ++num_objects_allocated_;
162   ++total_objects_allocated_;
163   return obj;
164 }
165 
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const166 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
167   MutexLock mu(self, lock_);
168   auto it = large_objects_.find(obj);
169   CHECK(it != large_objects_.end());
170   return it->second.is_zygote;
171 }
172 
SetAllLargeObjectsAsZygoteObjects(Thread * self)173 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
174   MutexLock mu(self, lock_);
175   for (auto& pair : large_objects_) {
176     pair.second.is_zygote = true;
177   }
178 }
179 
Free(Thread * self,mirror::Object * ptr)180 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
181   MutexLock mu(self, lock_);
182   auto it = large_objects_.find(ptr);
183   if (UNLIKELY(it == large_objects_.end())) {
184     ScopedObjectAccess soa(self);
185     Runtime::Current()->GetHeap()->DumpSpaces(LOG_STREAM(FATAL_WITHOUT_ABORT));
186     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
187   }
188   MemMap* mem_map = it->second.mem_map;
189   const size_t map_size = mem_map->BaseSize();
190   DCHECK_GE(num_bytes_allocated_, map_size);
191   size_t allocation_size = map_size;
192   num_bytes_allocated_ -= allocation_size;
193   --num_objects_allocated_;
194   delete mem_map;
195   large_objects_.erase(it);
196   return allocation_size;
197 }
198 
AllocationSize(mirror::Object * obj,size_t * usable_size)199 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
200   MutexLock mu(Thread::Current(), lock_);
201   auto it = large_objects_.find(obj);
202   CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
203   size_t alloc_size = it->second.mem_map->BaseSize();
204   if (usable_size != nullptr) {
205     *usable_size = alloc_size;
206   }
207   return alloc_size;
208 }
209 
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)210 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
211   size_t total = 0;
212   for (size_t i = 0; i < num_ptrs; ++i) {
213     if (kDebugSpaces) {
214       CHECK(Contains(ptrs[i]));
215     }
216     total += Free(self, ptrs[i]);
217   }
218   return total;
219 }
220 
Walk(DlMallocSpace::WalkCallback callback,void * arg)221 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
222   MutexLock mu(Thread::Current(), lock_);
223   for (auto& pair : large_objects_) {
224     MemMap* mem_map = pair.second.mem_map;
225     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
226     callback(nullptr, nullptr, 0, arg);
227   }
228 }
229 
Contains(const mirror::Object * obj) const230 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
231   Thread* self = Thread::Current();
232   if (lock_.IsExclusiveHeld(self)) {
233     // We hold lock_ so do the check.
234     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
235   } else {
236     MutexLock mu(self, lock_);
237     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
238   }
239 }
240 
241 // Keeps track of allocation sizes + whether or not the previous allocation is free.
242 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
243 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
244 // block preceding it. Implemented in such a way that we can also find the iterator for any
245 // allocation info pointer.
246 class AllocationInfo {
247  public:
AllocationInfo()248   AllocationInfo() : prev_free_(0), alloc_size_(0) {
249   }
250   // Return the number of pages that the allocation info covers.
AlignSize() const251   size_t AlignSize() const {
252     return alloc_size_ & kFlagsMask;
253   }
254   // Returns the allocation size in bytes.
ByteSize() const255   size_t ByteSize() const {
256     return AlignSize() * FreeListSpace::kAlignment;
257   }
258   // Updates the allocation size and whether or not it is free.
SetByteSize(size_t size,bool free)259   void SetByteSize(size_t size, bool free) {
260     DCHECK_EQ(size & ~kFlagsMask, 0u);
261     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
262     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
263   }
264   // Returns true if the block is free.
IsFree() const265   bool IsFree() const {
266     return (alloc_size_ & kFlagFree) != 0;
267   }
268   // Return true if the large object is a zygote object.
IsZygoteObject() const269   bool IsZygoteObject() const {
270     return (alloc_size_ & kFlagZygote) != 0;
271   }
272   // Change the object to be a zygote object.
SetZygoteObject()273   void SetZygoteObject() {
274     alloc_size_ |= kFlagZygote;
275   }
276   // Return true if this is a zygote large object.
277   // Finds and returns the next non free allocation info after ourself.
GetNextInfo()278   AllocationInfo* GetNextInfo() {
279     return this + AlignSize();
280   }
GetNextInfo() const281   const AllocationInfo* GetNextInfo() const {
282     return this + AlignSize();
283   }
284   // Returns the previous free allocation info by using the prev_free_ member to figure out
285   // where it is. This is only used for coalescing so we only need to be able to do it if the
286   // previous allocation info is free.
GetPrevFreeInfo()287   AllocationInfo* GetPrevFreeInfo() {
288     DCHECK_NE(prev_free_, 0U);
289     return this - prev_free_;
290   }
291   // Returns the address of the object associated with this allocation info.
GetObjectAddress()292   mirror::Object* GetObjectAddress() {
293     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
294   }
295   // Return how many kAlignment units there are before the free block.
GetPrevFree() const296   size_t GetPrevFree() const {
297     return prev_free_;
298   }
299   // Returns how many free bytes there is before the block.
GetPrevFreeBytes() const300   size_t GetPrevFreeBytes() const {
301     return GetPrevFree() * FreeListSpace::kAlignment;
302   }
303   // Update the size of the free block prior to the allocation.
SetPrevFreeBytes(size_t bytes)304   void SetPrevFreeBytes(size_t bytes) {
305     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
306     prev_free_ = bytes / FreeListSpace::kAlignment;
307   }
308 
309  private:
310   static constexpr uint32_t kFlagFree = 0x80000000;  // If block is free.
311   static constexpr uint32_t kFlagZygote = 0x40000000;  // If the large object is a zygote object.
312   static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote);  // Combined flags for masking.
313   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
314   // allocation before us is not free.
315   // These variables are undefined in the middle of allocations / free blocks.
316   uint32_t prev_free_;
317   // Allocation size of this object in kAlignment as the unit.
318   uint32_t alloc_size_;
319 };
320 
GetSlotIndexForAllocationInfo(const AllocationInfo * info) const321 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
322   DCHECK_GE(info, allocation_info_);
323   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
324   return info - allocation_info_;
325 }
326 
GetAllocationInfoForAddress(uintptr_t address)327 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
328   return &allocation_info_[GetSlotIndexForAddress(address)];
329 }
330 
GetAllocationInfoForAddress(uintptr_t address) const331 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
332   return &allocation_info_[GetSlotIndexForAddress(address)];
333 }
334 
operator ()(const AllocationInfo * a,const AllocationInfo * b) const335 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
336                                                       const AllocationInfo* b) const {
337   if (a->GetPrevFree() < b->GetPrevFree()) return true;
338   if (a->GetPrevFree() > b->GetPrevFree()) return false;
339   if (a->AlignSize() < b->AlignSize()) return true;
340   if (a->AlignSize() > b->AlignSize()) return false;
341   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
342 }
343 
Create(const std::string & name,uint8_t * requested_begin,size_t size)344 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
345   CHECK_EQ(size % kAlignment, 0U);
346   std::string error_msg;
347   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
348                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
349   CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
350   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
351 }
352 
FreeListSpace(const std::string & name,MemMap * mem_map,uint8_t * begin,uint8_t * end)353 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
354     : LargeObjectSpace(name, begin, end),
355       mem_map_(mem_map),
356       lock_("free list space lock", kAllocSpaceLock) {
357   const size_t space_capacity = end - begin;
358   free_end_ = space_capacity;
359   CHECK_ALIGNED(space_capacity, kAlignment);
360   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
361   std::string error_msg;
362   allocation_info_map_.reset(
363       MemMap::MapAnonymous("large object free list space allocation info map",
364                            nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
365                            false, false, &error_msg));
366   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
367       << error_msg;
368   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
369 }
370 
~FreeListSpace()371 FreeListSpace::~FreeListSpace() {}
372 
Walk(DlMallocSpace::WalkCallback callback,void * arg)373 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
374   MutexLock mu(Thread::Current(), lock_);
375   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
376   AllocationInfo* cur_info = &allocation_info_[0];
377   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
378   while (cur_info < end_info) {
379     if (!cur_info->IsFree()) {
380       size_t alloc_size = cur_info->ByteSize();
381       uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
382       uint8_t* byte_end = byte_start + alloc_size;
383       callback(byte_start, byte_end, alloc_size, arg);
384       callback(nullptr, nullptr, 0, arg);
385     }
386     cur_info = cur_info->GetNextInfo();
387   }
388   CHECK_EQ(cur_info, end_info);
389 }
390 
RemoveFreePrev(AllocationInfo * info)391 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
392   CHECK_GT(info->GetPrevFree(), 0U);
393   auto it = free_blocks_.lower_bound(info);
394   CHECK(it != free_blocks_.end());
395   CHECK_EQ(*it, info);
396   free_blocks_.erase(it);
397 }
398 
Free(Thread * self,mirror::Object * obj)399 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
400   MutexLock mu(self, lock_);
401   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
402                         << reinterpret_cast<void*>(End());
403   DCHECK_ALIGNED(obj, kAlignment);
404   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
405   DCHECK(!info->IsFree());
406   const size_t allocation_size = info->ByteSize();
407   DCHECK_GT(allocation_size, 0U);
408   DCHECK_ALIGNED(allocation_size, kAlignment);
409   info->SetByteSize(allocation_size, true);  // Mark as free.
410   // Look at the next chunk.
411   AllocationInfo* next_info = info->GetNextInfo();
412   // Calculate the start of the end free block.
413   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
414   size_t prev_free_bytes = info->GetPrevFreeBytes();
415   size_t new_free_size = allocation_size;
416   if (prev_free_bytes != 0) {
417     // Coalesce with previous free chunk.
418     new_free_size += prev_free_bytes;
419     RemoveFreePrev(info);
420     info = info->GetPrevFreeInfo();
421     // The previous allocation info must not be free since we are supposed to always coalesce.
422     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
423   }
424   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
425   if (next_addr >= free_end_start) {
426     // Easy case, the next chunk is the end free region.
427     CHECK_EQ(next_addr, free_end_start);
428     free_end_ += new_free_size;
429   } else {
430     AllocationInfo* new_free_info;
431     if (next_info->IsFree()) {
432       AllocationInfo* next_next_info = next_info->GetNextInfo();
433       // Next next info can't be free since we always coalesce.
434       DCHECK(!next_next_info->IsFree());
435       DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
436       new_free_info = next_next_info;
437       new_free_size += next_next_info->GetPrevFreeBytes();
438       RemoveFreePrev(next_next_info);
439     } else {
440       new_free_info = next_info;
441     }
442     new_free_info->SetPrevFreeBytes(new_free_size);
443     free_blocks_.insert(new_free_info);
444     info->SetByteSize(new_free_size, true);
445     DCHECK_EQ(info->GetNextInfo(), new_free_info);
446   }
447   --num_objects_allocated_;
448   DCHECK_LE(allocation_size, num_bytes_allocated_);
449   num_bytes_allocated_ -= allocation_size;
450   madvise(obj, allocation_size, MADV_DONTNEED);
451   if (kIsDebugBuild) {
452     // Can't disallow reads since we use them to find next chunks during coalescing.
453     mprotect(obj, allocation_size, PROT_READ);
454   }
455   return allocation_size;
456 }
457 
AllocationSize(mirror::Object * obj,size_t * usable_size)458 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
459   DCHECK(Contains(obj));
460   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
461   DCHECK(!info->IsFree());
462   size_t alloc_size = info->ByteSize();
463   if (usable_size != nullptr) {
464     *usable_size = alloc_size;
465   }
466   return alloc_size;
467 }
468 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)469 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
470                                      size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
471   MutexLock mu(self, lock_);
472   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
473   AllocationInfo temp_info;
474   temp_info.SetPrevFreeBytes(allocation_size);
475   temp_info.SetByteSize(0, false);
476   AllocationInfo* new_info;
477   // Find the smallest chunk at least num_bytes in size.
478   auto it = free_blocks_.lower_bound(&temp_info);
479   if (it != free_blocks_.end()) {
480     AllocationInfo* info = *it;
481     free_blocks_.erase(it);
482     // Fit our object in the previous allocation info free space.
483     new_info = info->GetPrevFreeInfo();
484     // Remove the newly allocated block from the info and update the prev_free_.
485     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
486     if (info->GetPrevFreeBytes() > 0) {
487       AllocationInfo* new_free = info - info->GetPrevFree();
488       new_free->SetPrevFreeBytes(0);
489       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
490       // If there is remaining space, insert back into the free set.
491       free_blocks_.insert(info);
492     }
493   } else {
494     // Try to steal some memory from the free space at the end of the space.
495     if (LIKELY(free_end_ >= allocation_size)) {
496       // Fit our object at the start of the end free block.
497       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
498       free_end_ -= allocation_size;
499     } else {
500       return nullptr;
501     }
502   }
503   DCHECK(bytes_allocated != nullptr);
504   *bytes_allocated = allocation_size;
505   if (usable_size != nullptr) {
506     *usable_size = allocation_size;
507   }
508   DCHECK(bytes_tl_bulk_allocated != nullptr);
509   *bytes_tl_bulk_allocated = allocation_size;
510   // Need to do these inside of the lock.
511   ++num_objects_allocated_;
512   ++total_objects_allocated_;
513   num_bytes_allocated_ += allocation_size;
514   total_bytes_allocated_ += allocation_size;
515   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
516   // We always put our object at the start of the free block, there cannot be another free block
517   // before it.
518   if (kIsDebugBuild) {
519     mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
520   }
521   new_info->SetPrevFreeBytes(0);
522   new_info->SetByteSize(allocation_size, false);
523   return obj;
524 }
525 
Dump(std::ostream & os) const526 void FreeListSpace::Dump(std::ostream& os) const {
527   MutexLock mu(Thread::Current(), lock_);
528   os << GetName() << " -"
529      << " begin: " << reinterpret_cast<void*>(Begin())
530      << " end: " << reinterpret_cast<void*>(End()) << "\n";
531   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
532   const AllocationInfo* cur_info =
533       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
534   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
535   while (cur_info < end_info) {
536     size_t size = cur_info->ByteSize();
537     uintptr_t address = GetAddressForAllocationInfo(cur_info);
538     if (cur_info->IsFree()) {
539       os << "Free block at address: " << reinterpret_cast<const void*>(address)
540          << " of length " << size << " bytes\n";
541     } else {
542       os << "Large object at address: " << reinterpret_cast<const void*>(address)
543          << " of length " << size << " bytes\n";
544     }
545     cur_info = cur_info->GetNextInfo();
546   }
547   if (free_end_) {
548     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
549        << " of length " << free_end_ << " bytes\n";
550   }
551 }
552 
IsZygoteLargeObject(Thread * self ATTRIBUTE_UNUSED,mirror::Object * obj) const553 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
554   const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
555   DCHECK(info != nullptr);
556   return info->IsZygoteObject();
557 }
558 
SetAllLargeObjectsAsZygoteObjects(Thread * self)559 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
560   MutexLock mu(self, lock_);
561   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
562   for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
563       *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
564       cur_info = cur_info->GetNextInfo()) {
565     if (!cur_info->IsFree()) {
566       cur_info->SetZygoteObject();
567     }
568   }
569 }
570 
SweepCallback(size_t num_ptrs,mirror::Object ** ptrs,void * arg)571 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
572   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
573   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
574   Thread* self = context->self;
575   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
576   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
577   // the bitmaps as an optimization.
578   if (!context->swap_bitmaps) {
579     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
580     for (size_t i = 0; i < num_ptrs; ++i) {
581       bitmap->Clear(ptrs[i]);
582     }
583   }
584   context->freed.objects += num_ptrs;
585   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
586 }
587 
Sweep(bool swap_bitmaps)588 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
589   if (Begin() >= End()) {
590     return collector::ObjectBytePair(0, 0);
591   }
592   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
593   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
594   if (swap_bitmaps) {
595     std::swap(live_bitmap, mark_bitmap);
596   }
597   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
598   std::pair<uint8_t*, uint8_t*> range = GetBeginEndAtomic();
599   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
600                                            reinterpret_cast<uintptr_t>(range.first),
601                                            reinterpret_cast<uintptr_t>(range.second),
602                                            SweepCallback,
603                                            &scc);
604   return scc.freed;
605 }
606 
LogFragmentationAllocFailure(std::ostream &,size_t)607 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
608                                                     size_t /*failed_alloc_bytes*/) {
609   UNIMPLEMENTED(FATAL);
610 }
611 
GetBeginEndAtomic() const612 std::pair<uint8_t*, uint8_t*> LargeObjectMapSpace::GetBeginEndAtomic() const {
613   MutexLock mu(Thread::Current(), lock_);
614   return std::make_pair(Begin(), End());
615 }
616 
GetBeginEndAtomic() const617 std::pair<uint8_t*, uint8_t*> FreeListSpace::GetBeginEndAtomic() const {
618   MutexLock mu(Thread::Current(), lock_);
619   return std::make_pair(Begin(), End());
620 }
621 
622 }  // namespace space
623 }  // namespace gc
624 }  // namespace art
625