1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/Sink.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Scalar.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "sink"
31 
32 STATISTIC(NumSunk, "Number of instructions sunk");
33 STATISTIC(NumSinkIter, "Number of sinking iterations");
34 
35 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
36 /// occur in blocks dominated by the specified block.
AllUsesDominatedByBlock(Instruction * Inst,BasicBlock * BB,DominatorTree & DT)37 static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB,
38                                     DominatorTree &DT) {
39   // Ignoring debug uses is necessary so debug info doesn't affect the code.
40   // This may leave a referencing dbg_value in the original block, before
41   // the definition of the vreg.  Dwarf generator handles this although the
42   // user might not get the right info at runtime.
43   for (Use &U : Inst->uses()) {
44     // Determine the block of the use.
45     Instruction *UseInst = cast<Instruction>(U.getUser());
46     BasicBlock *UseBlock = UseInst->getParent();
47     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
48       // PHI nodes use the operand in the predecessor block, not the block with
49       // the PHI.
50       unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
51       UseBlock = PN->getIncomingBlock(Num);
52     }
53     // Check that it dominates.
54     if (!DT.dominates(BB, UseBlock))
55       return false;
56   }
57   return true;
58 }
59 
isSafeToMove(Instruction * Inst,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & Stores)60 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
61                          SmallPtrSetImpl<Instruction *> &Stores) {
62 
63   if (Inst->mayWriteToMemory()) {
64     Stores.insert(Inst);
65     return false;
66   }
67 
68   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
69     MemoryLocation Loc = MemoryLocation::get(L);
70     for (Instruction *S : Stores)
71       if (AA.getModRefInfo(S, Loc) & MRI_Mod)
72         return false;
73   }
74 
75   if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst) || Inst->isEHPad() ||
76       Inst->mayThrow())
77     return false;
78 
79   if (auto CS = CallSite(Inst)) {
80     // Convergent operations cannot be made control-dependent on additional
81     // values.
82     if (CS.hasFnAttr(Attribute::Convergent))
83       return false;
84 
85     for (Instruction *S : Stores)
86       if (AA.getModRefInfo(S, CS) & MRI_Mod)
87         return false;
88   }
89 
90   return true;
91 }
92 
93 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
94 /// in the specified basic block.
IsAcceptableTarget(Instruction * Inst,BasicBlock * SuccToSinkTo,DominatorTree & DT,LoopInfo & LI)95 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
96                                DominatorTree &DT, LoopInfo &LI) {
97   assert(Inst && "Instruction to be sunk is null");
98   assert(SuccToSinkTo && "Candidate sink target is null");
99 
100   // It is not possible to sink an instruction into its own block.  This can
101   // happen with loops.
102   if (Inst->getParent() == SuccToSinkTo)
103     return false;
104 
105   // It's never legal to sink an instruction into a block which terminates in an
106   // EH-pad.
107   if (SuccToSinkTo->getTerminator()->isExceptional())
108     return false;
109 
110   // If the block has multiple predecessors, this would introduce computation
111   // on different code paths.  We could split the critical edge, but for now we
112   // just punt.
113   // FIXME: Split critical edges if not backedges.
114   if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
115     // We cannot sink a load across a critical edge - there may be stores in
116     // other code paths.
117     if (!isSafeToSpeculativelyExecute(Inst))
118       return false;
119 
120     // We don't want to sink across a critical edge if we don't dominate the
121     // successor. We could be introducing calculations to new code paths.
122     if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
123       return false;
124 
125     // Don't sink instructions into a loop.
126     Loop *succ = LI.getLoopFor(SuccToSinkTo);
127     Loop *cur = LI.getLoopFor(Inst->getParent());
128     if (succ != nullptr && succ != cur)
129       return false;
130   }
131 
132   // Finally, check that all the uses of the instruction are actually
133   // dominated by the candidate
134   return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT);
135 }
136 
137 /// SinkInstruction - Determine whether it is safe to sink the specified machine
138 /// instruction out of its current block into a successor.
SinkInstruction(Instruction * Inst,SmallPtrSetImpl<Instruction * > & Stores,DominatorTree & DT,LoopInfo & LI,AAResults & AA)139 static bool SinkInstruction(Instruction *Inst,
140                             SmallPtrSetImpl<Instruction *> &Stores,
141                             DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
142 
143   // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
144   // entry block are dynamically sized stack objects.
145   if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
146     if (AI->isStaticAlloca())
147       return false;
148 
149   // Check if it's safe to move the instruction.
150   if (!isSafeToMove(Inst, AA, Stores))
151     return false;
152 
153   // FIXME: This should include support for sinking instructions within the
154   // block they are currently in to shorten the live ranges.  We often get
155   // instructions sunk into the top of a large block, but it would be better to
156   // also sink them down before their first use in the block.  This xform has to
157   // be careful not to *increase* register pressure though, e.g. sinking
158   // "x = y + z" down if it kills y and z would increase the live ranges of y
159   // and z and only shrink the live range of x.
160 
161   // SuccToSinkTo - This is the successor to sink this instruction to, once we
162   // decide.
163   BasicBlock *SuccToSinkTo = nullptr;
164 
165   // Instructions can only be sunk if all their uses are in blocks
166   // dominated by one of the successors.
167   // Look at all the postdominators and see if we can sink it in one.
168   DomTreeNode *DTN = DT.getNode(Inst->getParent());
169   for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
170       I != E && SuccToSinkTo == nullptr; ++I) {
171     BasicBlock *Candidate = (*I)->getBlock();
172     if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
173         IsAcceptableTarget(Inst, Candidate, DT, LI))
174       SuccToSinkTo = Candidate;
175   }
176 
177   // If no suitable postdominator was found, look at all the successors and
178   // decide which one we should sink to, if any.
179   for (succ_iterator I = succ_begin(Inst->getParent()),
180       E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
181     if (IsAcceptableTarget(Inst, *I, DT, LI))
182       SuccToSinkTo = *I;
183   }
184 
185   // If we couldn't find a block to sink to, ignore this instruction.
186   if (!SuccToSinkTo)
187     return false;
188 
189   DEBUG(dbgs() << "Sink" << *Inst << " (";
190         Inst->getParent()->printAsOperand(dbgs(), false);
191         dbgs() << " -> ";
192         SuccToSinkTo->printAsOperand(dbgs(), false);
193         dbgs() << ")\n");
194 
195   // Move the instruction.
196   Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
197   return true;
198 }
199 
ProcessBlock(BasicBlock & BB,DominatorTree & DT,LoopInfo & LI,AAResults & AA)200 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
201                          AAResults &AA) {
202   // Can't sink anything out of a block that has less than two successors.
203   if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
204 
205   // Don't bother sinking code out of unreachable blocks. In addition to being
206   // unprofitable, it can also lead to infinite looping, because in an
207   // unreachable loop there may be nowhere to stop.
208   if (!DT.isReachableFromEntry(&BB)) return false;
209 
210   bool MadeChange = false;
211 
212   // Walk the basic block bottom-up.  Remember if we saw a store.
213   BasicBlock::iterator I = BB.end();
214   --I;
215   bool ProcessedBegin = false;
216   SmallPtrSet<Instruction *, 8> Stores;
217   do {
218     Instruction *Inst = &*I; // The instruction to sink.
219 
220     // Predecrement I (if it's not begin) so that it isn't invalidated by
221     // sinking.
222     ProcessedBegin = I == BB.begin();
223     if (!ProcessedBegin)
224       --I;
225 
226     if (isa<DbgInfoIntrinsic>(Inst))
227       continue;
228 
229     if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
230       ++NumSunk;
231       MadeChange = true;
232     }
233 
234     // If we just processed the first instruction in the block, we're done.
235   } while (!ProcessedBegin);
236 
237   return MadeChange;
238 }
239 
iterativelySinkInstructions(Function & F,DominatorTree & DT,LoopInfo & LI,AAResults & AA)240 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
241                                         LoopInfo &LI, AAResults &AA) {
242   bool MadeChange, EverMadeChange = false;
243 
244   do {
245     MadeChange = false;
246     DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
247     // Process all basic blocks.
248     for (BasicBlock &I : F)
249       MadeChange |= ProcessBlock(I, DT, LI, AA);
250     EverMadeChange |= MadeChange;
251     NumSinkIter++;
252   } while (MadeChange);
253 
254   return EverMadeChange;
255 }
256 
run(Function & F,AnalysisManager<Function> & AM)257 PreservedAnalyses SinkingPass::run(Function &F, AnalysisManager<Function> &AM) {
258   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
259   auto &LI = AM.getResult<LoopAnalysis>(F);
260   auto &AA = AM.getResult<AAManager>(F);
261 
262   if (!iterativelySinkInstructions(F, DT, LI, AA))
263     return PreservedAnalyses::all();
264 
265   auto PA = PreservedAnalyses();
266   PA.preserve<DominatorTreeAnalysis>();
267   PA.preserve<LoopAnalysis>();
268   return PA;
269 }
270 
271 namespace {
272   class SinkingLegacyPass : public FunctionPass {
273   public:
274     static char ID; // Pass identification
SinkingLegacyPass()275     SinkingLegacyPass() : FunctionPass(ID) {
276       initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
277     }
278 
runOnFunction(Function & F)279     bool runOnFunction(Function &F) override {
280       auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
281       auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
282       auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
283 
284       return iterativelySinkInstructions(F, DT, LI, AA);
285     }
286 
getAnalysisUsage(AnalysisUsage & AU) const287     void getAnalysisUsage(AnalysisUsage &AU) const override {
288       AU.setPreservesCFG();
289       FunctionPass::getAnalysisUsage(AU);
290       AU.addRequired<AAResultsWrapperPass>();
291       AU.addRequired<DominatorTreeWrapperPass>();
292       AU.addRequired<LoopInfoWrapperPass>();
293       AU.addPreserved<DominatorTreeWrapperPass>();
294       AU.addPreserved<LoopInfoWrapperPass>();
295     }
296   };
297 } // end anonymous namespace
298 
299 char SinkingLegacyPass::ID = 0;
300 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)301 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
303 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
304 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
305 
306 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }
307