1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCRegisterInfo.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/Target/TargetLowering.h"
24 
25 namespace llvm {
26   namespace PPCISD {
27     enum NodeType : unsigned {
28       // Start the numbering where the builtin ops and target ops leave off.
29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
30 
31       /// FSEL - Traditional three-operand fsel node.
32       ///
33       FSEL,
34 
35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
36       /// and f64 value containing the FP representation of the integer that
37       /// was temporarily in the f64 operand.
38       FCFID,
39 
40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41       /// unsigned integers and single-precision outputs.
42       FCFIDU, FCFIDS, FCFIDUS,
43 
44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45       /// operand, producing an f64 value containing the integer representation
46       /// of that FP value.
47       FCTIDZ, FCTIWZ,
48 
49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50       /// unsigned integers.
51       FCTIDUZ, FCTIWUZ,
52 
53       /// Reciprocal estimate instructions (unary FP ops).
54       FRE, FRSQRTE,
55 
56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57       // three v4f32 operands and producing a v4f32 result.
58       VMADDFP, VNMSUBFP,
59 
60       /// VPERM - The PPC VPERM Instruction.
61       ///
62       VPERM,
63 
64       /// XXSPLT - The PPC VSX splat instructions
65       ///
66       XXSPLT,
67 
68       /// XXINSERT - The PPC VSX insert instruction
69       ///
70       XXINSERT,
71 
72       /// VECSHL - The PPC VSX shift left instruction
73       ///
74       VECSHL,
75 
76       /// The CMPB instruction (takes two operands of i32 or i64).
77       CMPB,
78 
79       /// Hi/Lo - These represent the high and low 16-bit parts of a global
80       /// address respectively.  These nodes have two operands, the first of
81       /// which must be a TargetGlobalAddress, and the second of which must be a
82       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
83       /// though these are usually folded into other nodes.
84       Hi, Lo,
85 
86       /// The following two target-specific nodes are used for calls through
87       /// function pointers in the 64-bit SVR4 ABI.
88 
89       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
90       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
91       /// compute an allocation on the stack.
92       DYNALLOC,
93 
94       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
95       /// compute an offset from native SP to the address  of the most recent
96       /// dynamic alloca.
97       DYNAREAOFFSET,
98 
99       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
100       /// at function entry, used for PIC code.
101       GlobalBaseReg,
102 
103       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
104       /// shift amounts.  These nodes are generated by the multi-precision shift
105       /// code.
106       SRL, SRA, SHL,
107 
108       /// The combination of sra[wd]i and addze used to implemented signed
109       /// integer division by a power of 2. The first operand is the dividend,
110       /// and the second is the constant shift amount (representing the
111       /// divisor).
112       SRA_ADDZE,
113 
114       /// CALL - A direct function call.
115       /// CALL_NOP is a call with the special NOP which follows 64-bit
116       /// SVR4 calls.
117       CALL, CALL_NOP,
118 
119       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
120       /// MTCTR instruction.
121       MTCTR,
122 
123       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
124       /// BCTRL instruction.
125       BCTRL,
126 
127       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
128       /// instruction and the TOC reload required on SVR4 PPC64.
129       BCTRL_LOAD_TOC,
130 
131       /// Return with a flag operand, matched by 'blr'
132       RET_FLAG,
133 
134       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
135       /// This copies the bits corresponding to the specified CRREG into the
136       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
137       MFOCRF,
138 
139       /// Direct move from a VSX register to a GPR
140       MFVSR,
141 
142       /// Direct move from a GPR to a VSX register (algebraic)
143       MTVSRA,
144 
145       /// Direct move from a GPR to a VSX register (zero)
146       MTVSRZ,
147 
148       /// Extract a subvector from signed integer vector and convert to FP.
149       /// It is primarily used to convert a (widened) illegal integer vector
150       /// type to a legal floating point vector type.
151       /// For example v2i32 -> widened to v4i32 -> v2f64
152       SINT_VEC_TO_FP,
153 
154       /// Extract a subvector from unsigned integer vector and convert to FP.
155       /// As with SINT_VEC_TO_FP, used for converting illegal types.
156       UINT_VEC_TO_FP,
157 
158       // FIXME: Remove these once the ANDI glue bug is fixed:
159       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
160       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
161       /// implement truncation of i32 or i64 to i1.
162       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
163 
164       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
165       // target (returns (Lo, Hi)). It takes a chain operand.
166       READ_TIME_BASE,
167 
168       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
169       EH_SJLJ_SETJMP,
170 
171       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
172       EH_SJLJ_LONGJMP,
173 
174       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
175       /// instructions.  For lack of better number, we use the opcode number
176       /// encoding for the OPC field to identify the compare.  For example, 838
177       /// is VCMPGTSH.
178       VCMP,
179 
180       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
181       /// altivec VCMP*o instructions.  For lack of better number, we use the
182       /// opcode number encoding for the OPC field to identify the compare.  For
183       /// example, 838 is VCMPGTSH.
184       VCMPo,
185 
186       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
187       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
188       /// condition register to branch on, OPC is the branch opcode to use (e.g.
189       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
190       /// an optional input flag argument.
191       COND_BRANCH,
192 
193       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
194       /// loops.
195       BDNZ, BDZ,
196 
197       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
198       /// towards zero.  Used only as part of the long double-to-int
199       /// conversion sequence.
200       FADDRTZ,
201 
202       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
203       MFFS,
204 
205       /// TC_RETURN - A tail call return.
206       ///   operand #0 chain
207       ///   operand #1 callee (register or absolute)
208       ///   operand #2 stack adjustment
209       ///   operand #3 optional in flag
210       TC_RETURN,
211 
212       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
213       CR6SET,
214       CR6UNSET,
215 
216       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
217       /// on PPC32.
218       PPC32_GOT,
219 
220       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
221       /// local dynamic TLS on PPC32.
222       PPC32_PICGOT,
223 
224       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
225       /// TLS model, produces an ADDIS8 instruction that adds the GOT
226       /// base to sym\@got\@tprel\@ha.
227       ADDIS_GOT_TPREL_HA,
228 
229       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
230       /// TLS model, produces a LD instruction with base register G8RReg
231       /// and offset sym\@got\@tprel\@l.  This completes the addition that
232       /// finds the offset of "sym" relative to the thread pointer.
233       LD_GOT_TPREL_L,
234 
235       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
236       /// model, produces an ADD instruction that adds the contents of
237       /// G8RReg to the thread pointer.  Symbol contains a relocation
238       /// sym\@tls which is to be replaced by the thread pointer and
239       /// identifies to the linker that the instruction is part of a
240       /// TLS sequence.
241       ADD_TLS,
242 
243       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
244       /// model, produces an ADDIS8 instruction that adds the GOT base
245       /// register to sym\@got\@tlsgd\@ha.
246       ADDIS_TLSGD_HA,
247 
248       /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
249       /// model, produces an ADDI8 instruction that adds G8RReg to
250       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
251       /// ADDIS_TLSGD_L_ADDR until after register assignment.
252       ADDI_TLSGD_L,
253 
254       /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
255       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
256       /// ADDIS_TLSGD_L_ADDR until after register assignment.
257       GET_TLS_ADDR,
258 
259       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
260       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
261       /// register assignment.
262       ADDI_TLSGD_L_ADDR,
263 
264       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
265       /// model, produces an ADDIS8 instruction that adds the GOT base
266       /// register to sym\@got\@tlsld\@ha.
267       ADDIS_TLSLD_HA,
268 
269       /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
270       /// model, produces an ADDI8 instruction that adds G8RReg to
271       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
272       /// ADDIS_TLSLD_L_ADDR until after register assignment.
273       ADDI_TLSLD_L,
274 
275       /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
276       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
277       /// ADDIS_TLSLD_L_ADDR until after register assignment.
278       GET_TLSLD_ADDR,
279 
280       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
281       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
282       /// following register assignment.
283       ADDI_TLSLD_L_ADDR,
284 
285       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
286       /// model, produces an ADDIS8 instruction that adds X3 to
287       /// sym\@dtprel\@ha.
288       ADDIS_DTPREL_HA,
289 
290       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
291       /// model, produces an ADDI8 instruction that adds G8RReg to
292       /// sym\@got\@dtprel\@l.
293       ADDI_DTPREL_L,
294 
295       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
296       /// during instruction selection to optimize a BUILD_VECTOR into
297       /// operations on splats.  This is necessary to avoid losing these
298       /// optimizations due to constant folding.
299       VADD_SPLAT,
300 
301       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
302       /// operand identifies the operating system entry point.
303       SC,
304 
305       /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
306       CLRBHRB,
307 
308       /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
309       /// history rolling buffer entry.
310       MFBHRBE,
311 
312       /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
313       RFEBB,
314 
315       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
316       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
317       /// or stxvd2x instruction.  The chain is necessary because the
318       /// sequence replaces a load and needs to provide the same number
319       /// of outputs.
320       XXSWAPD,
321 
322       /// An SDNode for swaps that are not associated with any loads/stores
323       /// and thereby have no chain.
324       SWAP_NO_CHAIN,
325 
326       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
327       QVFPERM,
328 
329       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
330       QVGPCI,
331 
332       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
333       QVALIGNI,
334 
335       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
336       QVESPLATI,
337 
338       /// QBFLT = Access the underlying QPX floating-point boolean
339       /// representation.
340       QBFLT,
341 
342       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
343       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
344       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
345       /// i32.
346       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
347 
348       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
349       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
350       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
351       /// or i32.
352       LBRX,
353 
354       /// STFIWX - The STFIWX instruction.  The first operand is an input token
355       /// chain, then an f64 value to store, then an address to store it to.
356       STFIWX,
357 
358       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
359       /// load which sign-extends from a 32-bit integer value into the
360       /// destination 64-bit register.
361       LFIWAX,
362 
363       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
364       /// load which zero-extends from a 32-bit integer value into the
365       /// destination 64-bit register.
366       LFIWZX,
367 
368       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
369       /// Maps directly to an lxvd2x instruction that will be followed by
370       /// an xxswapd.
371       LXVD2X,
372 
373       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
374       /// Maps directly to an stxvd2x instruction that will be preceded by
375       /// an xxswapd.
376       STXVD2X,
377 
378       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
379       /// The 4xf32 load used for v4i1 constants.
380       QVLFSb,
381 
382       /// GPRC = TOC_ENTRY GA, TOC
383       /// Loads the entry for GA from the TOC, where the TOC base is given by
384       /// the last operand.
385       TOC_ENTRY
386     };
387   }
388 
389   /// Define some predicates that are used for node matching.
390   namespace PPC {
391     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
392     /// VPKUHUM instruction.
393     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
394                               SelectionDAG &DAG);
395 
396     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
397     /// VPKUWUM instruction.
398     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
399                               SelectionDAG &DAG);
400 
401     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
402     /// VPKUDUM instruction.
403     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
404                               SelectionDAG &DAG);
405 
406     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
407     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
408     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
409                             unsigned ShuffleKind, SelectionDAG &DAG);
410 
411     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
412     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
413     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
414                             unsigned ShuffleKind, SelectionDAG &DAG);
415 
416     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
417     /// a VMRGEW or VMRGOW instruction
418     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
419                              unsigned ShuffleKind, SelectionDAG &DAG);
420 
421     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
422     /// shift amount, otherwise return -1.
423     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
424                             SelectionDAG &DAG);
425 
426     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
427     /// specifies a splat of a single element that is suitable for input to
428     /// VSPLTB/VSPLTH/VSPLTW.
429     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
430 
431     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
432     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
433     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
434     /// vector into the other. This function will also set a couple of
435     /// output parameters for how much the source vector needs to be shifted and
436     /// what byte number needs to be specified for the instruction to put the
437     /// element in the desired location of the target vector.
438     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
439                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
440 
441     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
442     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
443     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
444 
445     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
446     /// formed by using a vspltis[bhw] instruction of the specified element
447     /// size, return the constant being splatted.  The ByteSize field indicates
448     /// the number of bytes of each element [124] -> [bhw].
449     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
450 
451     /// If this is a qvaligni shuffle mask, return the shift
452     /// amount, otherwise return -1.
453     int isQVALIGNIShuffleMask(SDNode *N);
454   }
455 
456   class PPCTargetLowering : public TargetLowering {
457     const PPCSubtarget &Subtarget;
458 
459   public:
460     explicit PPCTargetLowering(const PPCTargetMachine &TM,
461                                const PPCSubtarget &STI);
462 
463     /// getTargetNodeName() - This method returns the name of a target specific
464     /// DAG node.
465     const char *getTargetNodeName(unsigned Opcode) const override;
466 
467     /// getPreferredVectorAction - The code we generate when vector types are
468     /// legalized by promoting the integer element type is often much worse
469     /// than code we generate if we widen the type for applicable vector types.
470     /// The issue with promoting is that the vector is scalaraized, individual
471     /// elements promoted and then the vector is rebuilt. So say we load a pair
472     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
473     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
474     /// then the VPERM for the shuffle. All in all a very slow sequence.
getPreferredVectorAction(EVT VT)475     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
476       const override {
477       if (VT.getVectorElementType().getSizeInBits() % 8 == 0)
478         return TypeWidenVector;
479       return TargetLoweringBase::getPreferredVectorAction(VT);
480     }
481     bool useSoftFloat() const override;
482 
getScalarShiftAmountTy(const DataLayout &,EVT)483     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
484       return MVT::i32;
485     }
486 
isCheapToSpeculateCttz()487     bool isCheapToSpeculateCttz() const override {
488       return true;
489     }
490 
isCheapToSpeculateCtlz()491     bool isCheapToSpeculateCtlz() const override {
492       return true;
493     }
494 
supportSplitCSR(MachineFunction * MF)495     bool supportSplitCSR(MachineFunction *MF) const override {
496       return
497         MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
498         MF->getFunction()->hasFnAttribute(Attribute::NoUnwind);
499     }
500 
501     void initializeSplitCSR(MachineBasicBlock *Entry) const override;
502 
503     void insertCopiesSplitCSR(
504       MachineBasicBlock *Entry,
505       const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
506 
507     /// getSetCCResultType - Return the ISD::SETCC ValueType
508     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
509                            EVT VT) const override;
510 
511     /// Return true if target always beneficiates from combining into FMA for a
512     /// given value type. This must typically return false on targets where FMA
513     /// takes more cycles to execute than FADD.
514     bool enableAggressiveFMAFusion(EVT VT) const override;
515 
516     /// getPreIndexedAddressParts - returns true by value, base pointer and
517     /// offset pointer and addressing mode by reference if the node's address
518     /// can be legally represented as pre-indexed load / store address.
519     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
520                                    SDValue &Offset,
521                                    ISD::MemIndexedMode &AM,
522                                    SelectionDAG &DAG) const override;
523 
524     /// SelectAddressRegReg - Given the specified addressed, check to see if it
525     /// can be represented as an indexed [r+r] operation.  Returns false if it
526     /// can be more efficiently represented with [r+imm].
527     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
528                              SelectionDAG &DAG) const;
529 
530     /// SelectAddressRegImm - Returns true if the address N can be represented
531     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
532     /// is not better represented as reg+reg.  If Aligned is true, only accept
533     /// displacements suitable for STD and friends, i.e. multiples of 4.
534     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
535                              SelectionDAG &DAG, bool Aligned) const;
536 
537     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
538     /// represented as an indexed [r+r] operation.
539     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
540                                  SelectionDAG &DAG) const;
541 
542     Sched::Preference getSchedulingPreference(SDNode *N) const override;
543 
544     /// LowerOperation - Provide custom lowering hooks for some operations.
545     ///
546     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
547 
548     /// ReplaceNodeResults - Replace the results of node with an illegal result
549     /// type with new values built out of custom code.
550     ///
551     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
552                             SelectionDAG &DAG) const override;
553 
554     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
555     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
556 
557     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
558 
559     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
560                           std::vector<SDNode *> *Created) const override;
561 
562     unsigned getRegisterByName(const char* RegName, EVT VT,
563                                SelectionDAG &DAG) const override;
564 
565     void computeKnownBitsForTargetNode(const SDValue Op,
566                                        APInt &KnownZero,
567                                        APInt &KnownOne,
568                                        const SelectionDAG &DAG,
569                                        unsigned Depth = 0) const override;
570 
571     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
572 
shouldInsertFencesForAtomic(const Instruction * I)573     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
574       return true;
575     }
576 
577     Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
578                                   bool IsStore, bool IsLoad) const override;
579     Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
580                                    bool IsStore, bool IsLoad) const override;
581 
582     MachineBasicBlock *
583     EmitInstrWithCustomInserter(MachineInstr &MI,
584                                 MachineBasicBlock *MBB) const override;
585     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
586                                         MachineBasicBlock *MBB,
587                                         unsigned AtomicSize,
588                                         unsigned BinOpcode) const;
589     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
590                                                 MachineBasicBlock *MBB,
591                                                 bool is8bit,
592                                                 unsigned Opcode) const;
593 
594     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
595                                         MachineBasicBlock *MBB) const;
596 
597     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
598                                          MachineBasicBlock *MBB) const;
599 
600     ConstraintType getConstraintType(StringRef Constraint) const override;
601 
602     /// Examine constraint string and operand type and determine a weight value.
603     /// The operand object must already have been set up with the operand type.
604     ConstraintWeight getSingleConstraintMatchWeight(
605       AsmOperandInfo &info, const char *constraint) const override;
606 
607     std::pair<unsigned, const TargetRegisterClass *>
608     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
609                                  StringRef Constraint, MVT VT) const override;
610 
611     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
612     /// function arguments in the caller parameter area.  This is the actual
613     /// alignment, not its logarithm.
614     unsigned getByValTypeAlignment(Type *Ty,
615                                    const DataLayout &DL) const override;
616 
617     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
618     /// vector.  If it is invalid, don't add anything to Ops.
619     void LowerAsmOperandForConstraint(SDValue Op,
620                                       std::string &Constraint,
621                                       std::vector<SDValue> &Ops,
622                                       SelectionDAG &DAG) const override;
623 
624     unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode)625     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
626       if (ConstraintCode == "es")
627         return InlineAsm::Constraint_es;
628       else if (ConstraintCode == "o")
629         return InlineAsm::Constraint_o;
630       else if (ConstraintCode == "Q")
631         return InlineAsm::Constraint_Q;
632       else if (ConstraintCode == "Z")
633         return InlineAsm::Constraint_Z;
634       else if (ConstraintCode == "Zy")
635         return InlineAsm::Constraint_Zy;
636       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
637     }
638 
639     /// isLegalAddressingMode - Return true if the addressing mode represented
640     /// by AM is legal for this target, for a load/store of the specified type.
641     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
642                                Type *Ty, unsigned AS) const override;
643 
644     /// isLegalICmpImmediate - Return true if the specified immediate is legal
645     /// icmp immediate, that is the target has icmp instructions which can
646     /// compare a register against the immediate without having to materialize
647     /// the immediate into a register.
648     bool isLegalICmpImmediate(int64_t Imm) const override;
649 
650     /// isLegalAddImmediate - Return true if the specified immediate is legal
651     /// add immediate, that is the target has add instructions which can
652     /// add a register and the immediate without having to materialize
653     /// the immediate into a register.
654     bool isLegalAddImmediate(int64_t Imm) const override;
655 
656     /// isTruncateFree - Return true if it's free to truncate a value of
657     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
658     /// register X1 to i32 by referencing its sub-register R1.
659     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
660     bool isTruncateFree(EVT VT1, EVT VT2) const override;
661 
662     bool isZExtFree(SDValue Val, EVT VT2) const override;
663 
664     bool isFPExtFree(EVT VT) const override;
665 
666     /// \brief Returns true if it is beneficial to convert a load of a constant
667     /// to just the constant itself.
668     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
669                                            Type *Ty) const override;
670 
671     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
672 
673     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
674                             const CallInst &I,
675                             unsigned Intrinsic) const override;
676 
677     /// getOptimalMemOpType - Returns the target specific optimal type for load
678     /// and store operations as a result of memset, memcpy, and memmove
679     /// lowering. If DstAlign is zero that means it's safe to destination
680     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
681     /// means there isn't a need to check it against alignment requirement,
682     /// probably because the source does not need to be loaded. If 'IsMemset' is
683     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
684     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
685     /// source is constant so it does not need to be loaded.
686     /// It returns EVT::Other if the type should be determined using generic
687     /// target-independent logic.
688     EVT
689     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
690                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
691                         MachineFunction &MF) const override;
692 
693     /// Is unaligned memory access allowed for the given type, and is it fast
694     /// relative to software emulation.
695     bool allowsMisalignedMemoryAccesses(EVT VT,
696                                         unsigned AddrSpace,
697                                         unsigned Align = 1,
698                                         bool *Fast = nullptr) const override;
699 
700     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
701     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
702     /// expanded to FMAs when this method returns true, otherwise fmuladd is
703     /// expanded to fmul + fadd.
704     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
705 
706     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
707 
708     // Should we expand the build vector with shuffles?
709     bool
710     shouldExpandBuildVectorWithShuffles(EVT VT,
711                                         unsigned DefinedValues) const override;
712 
713     /// createFastISel - This method returns a target-specific FastISel object,
714     /// or null if the target does not support "fast" instruction selection.
715     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
716                              const TargetLibraryInfo *LibInfo) const override;
717 
718     /// \brief Returns true if an argument of type Ty needs to be passed in a
719     /// contiguous block of registers in calling convention CallConv.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)720     bool functionArgumentNeedsConsecutiveRegisters(
721       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
722       // We support any array type as "consecutive" block in the parameter
723       // save area.  The element type defines the alignment requirement and
724       // whether the argument should go in GPRs, FPRs, or VRs if available.
725       //
726       // Note that clang uses this capability both to implement the ELFv2
727       // homogeneous float/vector aggregate ABI, and to avoid having to use
728       // "byval" when passing aggregates that might fully fit in registers.
729       return Ty->isArrayTy();
730     }
731 
732     /// If a physical register, this returns the register that receives the
733     /// exception address on entry to an EH pad.
734     unsigned
735     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
736 
737     /// If a physical register, this returns the register that receives the
738     /// exception typeid on entry to a landing pad.
739     unsigned
740     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
741 
742     /// Override to support customized stack guard loading.
743     bool useLoadStackGuardNode() const override;
744     void insertSSPDeclarations(Module &M) const override;
745 
746   private:
747     struct ReuseLoadInfo {
748       SDValue Ptr;
749       SDValue Chain;
750       SDValue ResChain;
751       MachinePointerInfo MPI;
752       bool IsInvariant;
753       unsigned Alignment;
754       AAMDNodes AAInfo;
755       const MDNode *Ranges;
756 
ReuseLoadInfoReuseLoadInfo757       ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
758     };
759 
760     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
761                              SelectionDAG &DAG,
762                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
763     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
764                          SelectionDAG &DAG) const;
765 
766     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
767                                 SelectionDAG &DAG, const SDLoc &dl) const;
768     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
769                                      const SDLoc &dl) const;
770     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
771                                      const SDLoc &dl) const;
772 
773     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
774     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
775 
776     bool
777     IsEligibleForTailCallOptimization(SDValue Callee,
778                                       CallingConv::ID CalleeCC,
779                                       bool isVarArg,
780                                       const SmallVectorImpl<ISD::InputArg> &Ins,
781                                       SelectionDAG& DAG) const;
782 
783     bool
784     IsEligibleForTailCallOptimization_64SVR4(
785                                     SDValue Callee,
786                                     CallingConv::ID CalleeCC,
787                                     ImmutableCallSite *CS,
788                                     bool isVarArg,
789                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
790                                     const SmallVectorImpl<ISD::InputArg> &Ins,
791                                     SelectionDAG& DAG) const;
792 
793     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
794                                          SDValue Chain, SDValue &LROpOut,
795                                          SDValue &FPOpOut,
796                                          const SDLoc &dl) const;
797 
798     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
799     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
800     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
801     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
802     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
803     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
804     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
805     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
806     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
807     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
808     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
809     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
810     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
811     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
812     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
813     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
814     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
815     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
816     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
817     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
818     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
819                            const SDLoc &dl) const;
820     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
821     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
822     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
823     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
824     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
825     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
826     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
827     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
828     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
829     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
830     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
831     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
832 
833     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
834     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
835 
836     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
837                             CallingConv::ID CallConv, bool isVarArg,
838                             const SmallVectorImpl<ISD::InputArg> &Ins,
839                             const SDLoc &dl, SelectionDAG &DAG,
840                             SmallVectorImpl<SDValue> &InVals) const;
841     SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
842                        bool isTailCall, bool isVarArg, bool isPatchPoint,
843                        bool hasNest, SelectionDAG &DAG,
844                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
845                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
846                        SDValue &Callee, int SPDiff, unsigned NumBytes,
847                        const SmallVectorImpl<ISD::InputArg> &Ins,
848                        SmallVectorImpl<SDValue> &InVals,
849                        ImmutableCallSite *CS) const;
850 
851     SDValue
852     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
853                          const SmallVectorImpl<ISD::InputArg> &Ins,
854                          const SDLoc &dl, SelectionDAG &DAG,
855                          SmallVectorImpl<SDValue> &InVals) const override;
856 
857     SDValue
858       LowerCall(TargetLowering::CallLoweringInfo &CLI,
859                 SmallVectorImpl<SDValue> &InVals) const override;
860 
861     bool
862       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
863                    bool isVarArg,
864                    const SmallVectorImpl<ISD::OutputArg> &Outs,
865                    LLVMContext &Context) const override;
866 
867     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
868                         const SmallVectorImpl<ISD::OutputArg> &Outs,
869                         const SmallVectorImpl<SDValue> &OutVals,
870                         const SDLoc &dl, SelectionDAG &DAG) const override;
871 
872     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
873                               SelectionDAG &DAG, SDValue ArgVal,
874                               const SDLoc &dl) const;
875 
876     SDValue LowerFormalArguments_Darwin(
877         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
878         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
879         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
880     SDValue LowerFormalArguments_64SVR4(
881         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
882         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
883         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
884     SDValue LowerFormalArguments_32SVR4(
885         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
886         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
887         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
888 
889     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
890                                        SDValue CallSeqStart,
891                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
892                                        const SDLoc &dl) const;
893 
894     SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
895                              CallingConv::ID CallConv, bool isVarArg,
896                              bool isTailCall, bool isPatchPoint,
897                              const SmallVectorImpl<ISD::OutputArg> &Outs,
898                              const SmallVectorImpl<SDValue> &OutVals,
899                              const SmallVectorImpl<ISD::InputArg> &Ins,
900                              const SDLoc &dl, SelectionDAG &DAG,
901                              SmallVectorImpl<SDValue> &InVals,
902                              ImmutableCallSite *CS) const;
903     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
904                              CallingConv::ID CallConv, bool isVarArg,
905                              bool isTailCall, bool isPatchPoint,
906                              const SmallVectorImpl<ISD::OutputArg> &Outs,
907                              const SmallVectorImpl<SDValue> &OutVals,
908                              const SmallVectorImpl<ISD::InputArg> &Ins,
909                              const SDLoc &dl, SelectionDAG &DAG,
910                              SmallVectorImpl<SDValue> &InVals,
911                              ImmutableCallSite *CS) const;
912     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
913                              CallingConv::ID CallConv, bool isVarArg,
914                              bool isTailCall, bool isPatchPoint,
915                              const SmallVectorImpl<ISD::OutputArg> &Outs,
916                              const SmallVectorImpl<SDValue> &OutVals,
917                              const SmallVectorImpl<ISD::InputArg> &Ins,
918                              const SDLoc &dl, SelectionDAG &DAG,
919                              SmallVectorImpl<SDValue> &InVals,
920                              ImmutableCallSite *CS) const;
921 
922     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
923     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
924 
925     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
926     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
927     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
928     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
929 
930     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
931                              unsigned &RefinementSteps,
932                              bool &UseOneConstNR) const override;
933     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
934                              unsigned &RefinementSteps) const override;
935     unsigned combineRepeatedFPDivisors() const override;
936 
937     CCAssignFn *useFastISelCCs(unsigned Flag) const;
938   };
939 
940   namespace PPC {
941     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
942                              const TargetLibraryInfo *LibInfo);
943   }
944 
945   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
946                                   CCValAssign::LocInfo &LocInfo,
947                                   ISD::ArgFlagsTy &ArgFlags,
948                                   CCState &State);
949 
950   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
951                                          MVT &LocVT,
952                                          CCValAssign::LocInfo &LocInfo,
953                                          ISD::ArgFlagsTy &ArgFlags,
954                                          CCState &State);
955 
956   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
957                                            MVT &LocVT,
958                                            CCValAssign::LocInfo &LocInfo,
959                                            ISD::ArgFlagsTy &ArgFlags,
960                                            CCState &State);
961 }
962 
963 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
964