1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16 
17 namespace llvm {
18 
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23 
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     /// DELETED_NODE - This is an illegal value that is used to catch
41     /// errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43 
44     /// EntryToken - This is the marker used to indicate the start of a region.
45     EntryToken,
46 
47     /// TokenFactor - This node takes multiple tokens as input and produces a
48     /// single token result. This is used to represent the fact that the operand
49     /// operators are independent of each other.
50     TokenFactor,
51 
52     /// AssertSext, AssertZext - These nodes record if a register contains a
53     /// value that has already been zero or sign extended from a narrower type.
54     /// These nodes take two operands.  The first is the node that has already
55     /// been extended, and the second is a value type node indicating the width
56     /// of the extension
57     AssertSext, AssertZext,
58 
59     /// Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64 
65     /// The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67 
68     /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     /// of the frame or return address to return.  An index of zero corresponds
71     /// to the current function's frame or return address, an index of one to
72     /// the parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74 
75     /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
76     /// Materializes the offset from the local object pointer of another
77     /// function to a particular local object passed to llvm.localescape. The
78     /// operand is the MCSymbol label used to represent this offset, since
79     /// typically the offset is not known until after code generation of the
80     /// parent.
81     LOCAL_RECOVER,
82 
83     /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
84     /// the DAG, which implements the named register global variables extension.
85     READ_REGISTER,
86     WRITE_REGISTER,
87 
88     /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
89     /// first (possible) on-stack argument. This is needed for correct stack
90     /// adjustment during unwind.
91     FRAME_TO_ARGS_OFFSET,
92 
93     /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
94     /// 'eh_return' gcc dwarf builtin, which is used to return from
95     /// exception. The general meaning is: adjust stack by OFFSET and pass
96     /// execution to HANDLER. Many platform-related details also :)
97     EH_RETURN,
98 
99     /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
100     /// This corresponds to the eh.sjlj.setjmp intrinsic.
101     /// It takes an input chain and a pointer to the jump buffer as inputs
102     /// and returns an outchain.
103     EH_SJLJ_SETJMP,
104 
105     /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
106     /// This corresponds to the eh.sjlj.longjmp intrinsic.
107     /// It takes an input chain and a pointer to the jump buffer as inputs
108     /// and returns an outchain.
109     EH_SJLJ_LONGJMP,
110 
111     /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
112     /// The target initializes the dispatch table here.
113     EH_SJLJ_SETUP_DISPATCH,
114 
115     /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
116     /// simplification, or lowering of the constant. They are used for constants
117     /// which are known to fit in the immediate fields of their users, or for
118     /// carrying magic numbers which are not values which need to be
119     /// materialized in registers.
120     TargetConstant,
121     TargetConstantFP,
122 
123     /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
124     /// anything else with this node, and this is valid in the target-specific
125     /// dag, turning into a GlobalAddress operand.
126     TargetGlobalAddress,
127     TargetGlobalTLSAddress,
128     TargetFrameIndex,
129     TargetJumpTable,
130     TargetConstantPool,
131     TargetExternalSymbol,
132     TargetBlockAddress,
133 
134     MCSymbol,
135 
136     /// TargetIndex - Like a constant pool entry, but with completely
137     /// target-dependent semantics. Holds target flags, a 32-bit index, and a
138     /// 64-bit index. Targets can use this however they like.
139     TargetIndex,
140 
141     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
142     /// This node represents a target intrinsic function with no side effects.
143     /// The first operand is the ID number of the intrinsic from the
144     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
145     /// node returns the result of the intrinsic.
146     INTRINSIC_WO_CHAIN,
147 
148     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
149     /// This node represents a target intrinsic function with side effects that
150     /// returns a result.  The first operand is a chain pointer.  The second is
151     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
152     /// operands to the intrinsic follow.  The node has two results, the result
153     /// of the intrinsic and an output chain.
154     INTRINSIC_W_CHAIN,
155 
156     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
157     /// This node represents a target intrinsic function with side effects that
158     /// does not return a result.  The first operand is a chain pointer.  The
159     /// second is the ID number of the intrinsic from the llvm::Intrinsic
160     /// namespace.  The operands to the intrinsic follow.
161     INTRINSIC_VOID,
162 
163     /// CopyToReg - This node has three operands: a chain, a register number to
164     /// set to this value, and a value.
165     CopyToReg,
166 
167     /// CopyFromReg - This node indicates that the input value is a virtual or
168     /// physical register that is defined outside of the scope of this
169     /// SelectionDAG.  The register is available from the RegisterSDNode object.
170     CopyFromReg,
171 
172     /// UNDEF - An undefined node.
173     UNDEF,
174 
175     /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
176     /// a Constant, which is required to be operand #1) half of the integer or
177     /// float value specified as operand #0.  This is only for use before
178     /// legalization, for values that will be broken into multiple registers.
179     EXTRACT_ELEMENT,
180 
181     /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
182     /// Given two values of the same integer value type, this produces a value
183     /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
184     /// legalization.
185     BUILD_PAIR,
186 
187     /// MERGE_VALUES - This node takes multiple discrete operands and returns
188     /// them all as its individual results.  This nodes has exactly the same
189     /// number of inputs and outputs. This node is useful for some pieces of the
190     /// code generator that want to think about a single node with multiple
191     /// results, not multiple nodes.
192     MERGE_VALUES,
193 
194     /// Simple integer binary arithmetic operators.
195     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
196 
197     /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
198     /// a signed/unsigned value of type i[2*N], and return the full value as
199     /// two results, each of type iN.
200     SMUL_LOHI, UMUL_LOHI,
201 
202     /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
203     /// remainder result.
204     SDIVREM, UDIVREM,
205 
206     /// CARRY_FALSE - This node is used when folding other nodes,
207     /// like ADDC/SUBC, which indicate the carry result is always false.
208     CARRY_FALSE,
209 
210     /// Carry-setting nodes for multiple precision addition and subtraction.
211     /// These nodes take two operands of the same value type, and produce two
212     /// results.  The first result is the normal add or sub result, the second
213     /// result is the carry flag result.
214     ADDC, SUBC,
215 
216     /// Carry-using nodes for multiple precision addition and subtraction. These
217     /// nodes take three operands: The first two are the normal lhs and rhs to
218     /// the add or sub, and the third is the input carry flag.  These nodes
219     /// produce two results; the normal result of the add or sub, and the output
220     /// carry flag.  These nodes both read and write a carry flag to allow them
221     /// to them to be chained together for add and sub of arbitrarily large
222     /// values.
223     ADDE, SUBE,
224 
225     /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
226     /// These nodes take two operands: the normal LHS and RHS to the add. They
227     /// produce two results: the normal result of the add, and a boolean that
228     /// indicates if an overflow occurred (*not* a flag, because it may be store
229     /// to memory, etc.).  If the type of the boolean is not i1 then the high
230     /// bits conform to getBooleanContents.
231     /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
232     SADDO, UADDO,
233 
234     /// Same for subtraction.
235     SSUBO, USUBO,
236 
237     /// Same for multiplication.
238     SMULO, UMULO,
239 
240     /// Simple binary floating point operators.
241     FADD, FSUB, FMUL, FDIV, FREM,
242 
243     /// FMA - Perform a * b + c with no intermediate rounding step.
244     FMA,
245 
246     /// FMAD - Perform a * b + c, while getting the same result as the
247     /// separately rounded operations.
248     FMAD,
249 
250     /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
251     /// DAG node does not require that X and Y have the same type, just that
252     /// they are both floating point.  X and the result must have the same type.
253     /// FCOPYSIGN(f32, f64) is allowed.
254     FCOPYSIGN,
255 
256     /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
257     /// value as an integer 0/1 value.
258     FGETSIGN,
259 
260     /// Returns platform specific canonical encoding of a floating point number.
261     FCANONICALIZE,
262 
263     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
264     /// specified, possibly variable, elements.  The number of elements is
265     /// required to be a power of two.  The types of the operands must all be
266     /// the same and must match the vector element type, except that integer
267     /// types are allowed to be larger than the element type, in which case
268     /// the operands are implicitly truncated.
269     BUILD_VECTOR,
270 
271     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
272     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
273     /// element type then VAL is truncated before replacement.
274     INSERT_VECTOR_ELT,
275 
276     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
277     /// identified by the (potentially variable) element number IDX.  If the
278     /// return type is an integer type larger than the element type of the
279     /// vector, the result is extended to the width of the return type.
280     EXTRACT_VECTOR_ELT,
281 
282     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
283     /// vector type with the same length and element type, this produces a
284     /// concatenated vector result value, with length equal to the sum of the
285     /// lengths of the input vectors.
286     CONCAT_VECTORS,
287 
288     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
289     /// with VECTOR2 inserted into VECTOR1 at the (potentially
290     /// variable) element number IDX, which must be a multiple of the
291     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
292     /// IDX are overwritten with VECTOR2.  Elements IDX through
293     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
294     INSERT_SUBVECTOR,
295 
296     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
297     /// vector value) starting with the element number IDX, which must be a
298     /// constant multiple of the result vector length.
299     EXTRACT_SUBVECTOR,
300 
301     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
302     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
303     /// values that indicate which value (or undef) each result element will
304     /// get.  These constant ints are accessible through the
305     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
306     /// 'vperm' instruction, except that the indices must be constants and are
307     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
308     VECTOR_SHUFFLE,
309 
310     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
311     /// scalar value into element 0 of the resultant vector type.  The top
312     /// elements 1 to N-1 of the N-element vector are undefined.  The type
313     /// of the operand must match the vector element type, except when they
314     /// are integer types.  In this case the operand is allowed to be wider
315     /// than the vector element type, and is implicitly truncated to it.
316     SCALAR_TO_VECTOR,
317 
318     /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
319     /// producing an unsigned/signed value of type i[2*N], then return the top
320     /// part.
321     MULHU, MULHS,
322 
323     /// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
324     /// integers.
325     SMIN, SMAX, UMIN, UMAX,
326 
327     /// Bitwise operators - logical and, logical or, logical xor.
328     AND, OR, XOR,
329 
330     /// Shift and rotation operations.  After legalization, the type of the
331     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
332     /// the shift amount can be any type, but care must be taken to ensure it is
333     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
334     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
335     /// to represent the shift amount.
336     /// When the 1st operand is a vector, the shift amount must be in the same
337     /// type. (TLI.getShiftAmountTy() will return the same type when the input
338     /// type is a vector.)
339     SHL, SRA, SRL, ROTL, ROTR,
340 
341     /// Byte Swap and Counting operators.
342     BSWAP, CTTZ, CTLZ, CTPOP, BITREVERSE,
343 
344     /// Bit counting operators with an undefined result for zero inputs.
345     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
346 
347     /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
348     /// i1 then the high bits must conform to getBooleanContents.
349     SELECT,
350 
351     /// Select with a vector condition (op #0) and two vector operands (ops #1
352     /// and #2), returning a vector result.  All vectors have the same length.
353     /// Much like the scalar select and setcc, each bit in the condition selects
354     /// whether the corresponding result element is taken from op #1 or op #2.
355     /// At first, the VSELECT condition is of vXi1 type. Later, targets may
356     /// change the condition type in order to match the VSELECT node using a
357     /// pattern. The condition follows the BooleanContent format of the target.
358     VSELECT,
359 
360     /// Select with condition operator - This selects between a true value and
361     /// a false value (ops #2 and #3) based on the boolean result of comparing
362     /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
363     /// condition code in op #4, a CondCodeSDNode.
364     SELECT_CC,
365 
366     /// SetCC operator - This evaluates to a true value iff the condition is
367     /// true.  If the result value type is not i1 then the high bits conform
368     /// to getBooleanContents.  The operands to this are the left and right
369     /// operands to compare (ops #0, and #1) and the condition code to compare
370     /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
371     /// then the result type must also be a vector type.
372     SETCC,
373 
374     /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
375     /// op #2 is a *carry value*. This operator checks the result of
376     /// "LHS - RHS - Carry", and can be used to compare two wide integers:
377     /// (setcce lhshi rhshi (subc lhslo rhslo) cc). Only valid for integers.
378     SETCCE,
379 
380     /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
381     /// integer shift operations.  The operation ordering is:
382     ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
383     SHL_PARTS, SRA_PARTS, SRL_PARTS,
384 
385     /// Conversion operators.  These are all single input single output
386     /// operations.  For all of these, the result type must be strictly
387     /// wider or narrower (depending on the operation) than the source
388     /// type.
389 
390     /// SIGN_EXTEND - Used for integer types, replicating the sign bit
391     /// into new bits.
392     SIGN_EXTEND,
393 
394     /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
395     ZERO_EXTEND,
396 
397     /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
398     ANY_EXTEND,
399 
400     /// TRUNCATE - Completely drop the high bits.
401     TRUNCATE,
402 
403     /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
404     /// depends on the first letter) to floating point.
405     SINT_TO_FP,
406     UINT_TO_FP,
407 
408     /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
409     /// sign extend a small value in a large integer register (e.g. sign
410     /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
411     /// with the 7th bit).  The size of the smaller type is indicated by the 1th
412     /// operand, a ValueType node.
413     SIGN_EXTEND_INREG,
414 
415     /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
416     /// in-register any-extension of the low lanes of an integer vector. The
417     /// result type must have fewer elements than the operand type, and those
418     /// elements must be larger integer types such that the total size of the
419     /// operand type and the result type match. Each of the low operand
420     /// elements is any-extended into the corresponding, wider result
421     /// elements with the high bits becoming undef.
422     ANY_EXTEND_VECTOR_INREG,
423 
424     /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
425     /// in-register sign-extension of the low lanes of an integer vector. The
426     /// result type must have fewer elements than the operand type, and those
427     /// elements must be larger integer types such that the total size of the
428     /// operand type and the result type match. Each of the low operand
429     /// elements is sign-extended into the corresponding, wider result
430     /// elements.
431     // FIXME: The SIGN_EXTEND_INREG node isn't specifically limited to
432     // scalars, but it also doesn't handle vectors well. Either it should be
433     // restricted to scalars or this node (and its handling) should be merged
434     // into it.
435     SIGN_EXTEND_VECTOR_INREG,
436 
437     /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
438     /// in-register zero-extension of the low lanes of an integer vector. The
439     /// result type must have fewer elements than the operand type, and those
440     /// elements must be larger integer types such that the total size of the
441     /// operand type and the result type match. Each of the low operand
442     /// elements is zero-extended into the corresponding, wider result
443     /// elements.
444     ZERO_EXTEND_VECTOR_INREG,
445 
446     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
447     /// integer.
448     FP_TO_SINT,
449     FP_TO_UINT,
450 
451     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
452     /// down to the precision of the destination VT.  TRUNC is a flag, which is
453     /// always an integer that is zero or one.  If TRUNC is 0, this is a
454     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
455     /// value of Y.
456     ///
457     /// The TRUNC = 1 case is used in cases where we know that the value will
458     /// not be modified by the node, because Y is not using any of the extra
459     /// precision of source type.  This allows certain transformations like
460     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
461     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
462     FP_ROUND,
463 
464     /// FLT_ROUNDS_ - Returns current rounding mode:
465     /// -1 Undefined
466     ///  0 Round to 0
467     ///  1 Round to nearest
468     ///  2 Round to +inf
469     ///  3 Round to -inf
470     FLT_ROUNDS_,
471 
472     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
473     /// rounds it to a floating point value.  It then promotes it and returns it
474     /// in a register of the same size.  This operation effectively just
475     /// discards excess precision.  The type to round down to is specified by
476     /// the VT operand, a VTSDNode.
477     FP_ROUND_INREG,
478 
479     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
480     FP_EXTEND,
481 
482     /// BITCAST - This operator converts between integer, vector and FP
483     /// values, as if the value was stored to memory with one type and loaded
484     /// from the same address with the other type (or equivalently for vector
485     /// format conversions, etc).  The source and result are required to have
486     /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
487     /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
488     /// getNode().
489     ///
490     /// This operator is subtly different from the bitcast instruction from
491     /// LLVM-IR since this node may change the bits in the register. For
492     /// example, this occurs on big-endian NEON and big-endian MSA where the
493     /// layout of the bits in the register depends on the vector type and this
494     /// operator acts as a shuffle operation for some vector type combinations.
495     BITCAST,
496 
497     /// ADDRSPACECAST - This operator converts between pointers of different
498     /// address spaces.
499     ADDRSPACECAST,
500 
501     /// CONVERT_RNDSAT - This operator is used to support various conversions
502     /// between various types (float, signed, unsigned and vectors of those
503     /// types) with rounding and saturation. NOTE: Avoid using this operator as
504     /// most target don't support it and the operator might be removed in the
505     /// future. It takes the following arguments:
506     ///   0) value
507     ///   1) dest type (type to convert to)
508     ///   2) src type (type to convert from)
509     ///   3) rounding imm
510     ///   4) saturation imm
511     ///   5) ISD::CvtCode indicating the type of conversion to do
512     CONVERT_RNDSAT,
513 
514     /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
515     /// and truncation for half-precision (16 bit) floating numbers. These nodes
516     /// form a semi-softened interface for dealing with f16 (as an i16), which
517     /// is often a storage-only type but has native conversions.
518     FP16_TO_FP, FP_TO_FP16,
519 
520     /// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
521     /// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
522     /// FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR - Perform various unary
523     /// floating point operations. These are inspired by libm.
524     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
525     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
526     FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR,
527     /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
528     /// values.
529     /// In the case where a single input is NaN, the non-NaN input is returned.
530     ///
531     /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
532     FMINNUM, FMAXNUM,
533     /// FMINNAN/FMAXNAN - Behave identically to FMINNUM/FMAXNUM, except that
534     /// when a single input is NaN, NaN is returned.
535     FMINNAN, FMAXNAN,
536 
537     /// FSINCOS - Compute both fsin and fcos as a single operation.
538     FSINCOS,
539 
540     /// LOAD and STORE have token chains as their first operand, then the same
541     /// operands as an LLVM load/store instruction, then an offset node that
542     /// is added / subtracted from the base pointer to form the address (for
543     /// indexed memory ops).
544     LOAD, STORE,
545 
546     /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
547     /// to a specified boundary.  This node always has two return values: a new
548     /// stack pointer value and a chain. The first operand is the token chain,
549     /// the second is the number of bytes to allocate, and the third is the
550     /// alignment boundary.  The size is guaranteed to be a multiple of the
551     /// stack alignment, and the alignment is guaranteed to be bigger than the
552     /// stack alignment (if required) or 0 to get standard stack alignment.
553     DYNAMIC_STACKALLOC,
554 
555     /// Control flow instructions.  These all have token chains.
556 
557     /// BR - Unconditional branch.  The first operand is the chain
558     /// operand, the second is the MBB to branch to.
559     BR,
560 
561     /// BRIND - Indirect branch.  The first operand is the chain, the second
562     /// is the value to branch to, which must be of the same type as the
563     /// target's pointer type.
564     BRIND,
565 
566     /// BR_JT - Jumptable branch. The first operand is the chain, the second
567     /// is the jumptable index, the last one is the jumptable entry index.
568     BR_JT,
569 
570     /// BRCOND - Conditional branch.  The first operand is the chain, the
571     /// second is the condition, the third is the block to branch to if the
572     /// condition is true.  If the type of the condition is not i1, then the
573     /// high bits must conform to getBooleanContents.
574     BRCOND,
575 
576     /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
577     /// that the condition is represented as condition code, and two nodes to
578     /// compare, rather than as a combined SetCC node.  The operands in order
579     /// are chain, cc, lhs, rhs, block to branch to if condition is true.
580     BR_CC,
581 
582     /// INLINEASM - Represents an inline asm block.  This node always has two
583     /// return values: a chain and a flag result.  The inputs are as follows:
584     ///   Operand #0  : Input chain.
585     ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
586     ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
587     ///   Operand #3  : HasSideEffect, IsAlignStack bits.
588     ///   After this, it is followed by a list of operands with this format:
589     ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
590     ///                     of operands that follow, etc.  See InlineAsm.h.
591     ///     ... however many operands ...
592     ///   Operand #last: Optional, an incoming flag.
593     ///
594     /// The variable width operands are required to represent target addressing
595     /// modes as a single "operand", even though they may have multiple
596     /// SDOperands.
597     INLINEASM,
598 
599     /// EH_LABEL - Represents a label in mid basic block used to track
600     /// locations needed for debug and exception handling tables.  These nodes
601     /// take a chain as input and return a chain.
602     EH_LABEL,
603 
604     /// CATCHPAD - Represents a catchpad instruction.
605     CATCHPAD,
606 
607     /// CATCHRET - Represents a return from a catch block funclet. Used for
608     /// MSVC compatible exception handling. Takes a chain operand and a
609     /// destination basic block operand.
610     CATCHRET,
611 
612     /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
613     /// MSVC compatible exception handling. Takes only a chain operand.
614     CLEANUPRET,
615 
616     /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
617     /// value, the same type as the pointer type for the system, and an output
618     /// chain.
619     STACKSAVE,
620 
621     /// STACKRESTORE has two operands, an input chain and a pointer to restore
622     /// to it returns an output chain.
623     STACKRESTORE,
624 
625     /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
626     /// of a call sequence, and carry arbitrary information that target might
627     /// want to know.  The first operand is a chain, the rest are specified by
628     /// the target and not touched by the DAG optimizers.
629     /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
630     CALLSEQ_START,  // Beginning of a call sequence
631     CALLSEQ_END,    // End of a call sequence
632 
633     /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
634     /// and the alignment. It returns a pair of values: the vaarg value and a
635     /// new chain.
636     VAARG,
637 
638     /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
639     /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
640     /// source.
641     VACOPY,
642 
643     /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
644     /// pointer, and a SRCVALUE.
645     VAEND, VASTART,
646 
647     /// SRCVALUE - This is a node type that holds a Value* that is used to
648     /// make reference to a value in the LLVM IR.
649     SRCVALUE,
650 
651     /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
652     /// reference metadata in the IR.
653     MDNODE_SDNODE,
654 
655     /// PCMARKER - This corresponds to the pcmarker intrinsic.
656     PCMARKER,
657 
658     /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
659     /// It produces a chain and one i64 value. The only operand is a chain.
660     /// If i64 is not legal, the result will be expanded into smaller values.
661     /// Still, it returns an i64, so targets should set legality for i64.
662     /// The result is the content of the architecture-specific cycle
663     /// counter-like register (or other high accuracy low latency clock source).
664     READCYCLECOUNTER,
665 
666     /// HANDLENODE node - Used as a handle for various purposes.
667     HANDLENODE,
668 
669     /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
670     /// takes as input a token chain, the pointer to the trampoline, the pointer
671     /// to the nested function, the pointer to pass for the 'nest' parameter, a
672     /// SRCVALUE for the trampoline and another for the nested function
673     /// (allowing targets to access the original Function*).
674     /// It produces a token chain as output.
675     INIT_TRAMPOLINE,
676 
677     /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
678     /// It takes a pointer to the trampoline and produces a (possibly) new
679     /// pointer to the same trampoline with platform-specific adjustments
680     /// applied.  The pointer it returns points to an executable block of code.
681     ADJUST_TRAMPOLINE,
682 
683     /// TRAP - Trapping instruction
684     TRAP,
685 
686     /// DEBUGTRAP - Trap intended to get the attention of a debugger.
687     DEBUGTRAP,
688 
689     /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
690     /// is the chain.  The other operands are the address to prefetch,
691     /// read / write specifier, locality specifier and instruction / data cache
692     /// specifier.
693     PREFETCH,
694 
695     /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
696     /// This corresponds to the fence instruction. It takes an input chain, and
697     /// two integer constants: an AtomicOrdering and a SynchronizationScope.
698     ATOMIC_FENCE,
699 
700     /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
701     /// This corresponds to "load atomic" instruction.
702     ATOMIC_LOAD,
703 
704     /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
705     /// This corresponds to "store atomic" instruction.
706     ATOMIC_STORE,
707 
708     /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
709     /// For double-word atomic operations:
710     /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
711     ///                                          swapLo, swapHi)
712     /// This corresponds to the cmpxchg instruction.
713     ATOMIC_CMP_SWAP,
714 
715     /// Val, Success, OUTCHAIN
716     ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
717     /// N.b. this is still a strong cmpxchg operation, so
718     /// Success == "Val == cmp".
719     ATOMIC_CMP_SWAP_WITH_SUCCESS,
720 
721     /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
722     /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
723     /// For double-word atomic operations:
724     /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
725     /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
726     /// These correspond to the atomicrmw instruction.
727     ATOMIC_SWAP,
728     ATOMIC_LOAD_ADD,
729     ATOMIC_LOAD_SUB,
730     ATOMIC_LOAD_AND,
731     ATOMIC_LOAD_OR,
732     ATOMIC_LOAD_XOR,
733     ATOMIC_LOAD_NAND,
734     ATOMIC_LOAD_MIN,
735     ATOMIC_LOAD_MAX,
736     ATOMIC_LOAD_UMIN,
737     ATOMIC_LOAD_UMAX,
738 
739     // Masked load and store - consecutive vector load and store operations
740     // with additional mask operand that prevents memory accesses to the
741     // masked-off lanes.
742     MLOAD, MSTORE,
743 
744     // Masked gather and scatter - load and store operations for a vector of
745     // random addresses with additional mask operand that prevents memory
746     // accesses to the masked-off lanes.
747     MGATHER, MSCATTER,
748 
749     /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
750     /// is the chain and the second operand is the alloca pointer.
751     LIFETIME_START, LIFETIME_END,
752 
753     /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
754     /// beginning and end of GC transition  sequence, and carry arbitrary
755     /// information that target might need for lowering.  The first operand is
756     /// a chain, the rest are specified by the target and not touched by the DAG
757     /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
758     /// nested.
759     GC_TRANSITION_START,
760     GC_TRANSITION_END,
761 
762     /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
763     /// the most recent dynamic alloca. For most targets that would be 0, but
764     /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
765     /// known nonzero constant. The only operand here is the chain.
766     GET_DYNAMIC_AREA_OFFSET,
767 
768     /// BUILTIN_OP_END - This must be the last enum value in this list.
769     /// The target-specific pre-isel opcode values start here.
770     BUILTIN_OP_END
771   };
772 
773   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
774   /// which do not reference a specific memory location should be less than
775   /// this value. Those that do must not be less than this value, and can
776   /// be used with SelectionDAG::getMemIntrinsicNode.
777   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+300;
778 
779   //===--------------------------------------------------------------------===//
780   /// MemIndexedMode enum - This enum defines the load / store indexed
781   /// addressing modes.
782   ///
783   /// UNINDEXED    "Normal" load / store. The effective address is already
784   ///              computed and is available in the base pointer. The offset
785   ///              operand is always undefined. In addition to producing a
786   ///              chain, an unindexed load produces one value (result of the
787   ///              load); an unindexed store does not produce a value.
788   ///
789   /// PRE_INC      Similar to the unindexed mode where the effective address is
790   /// PRE_DEC      the value of the base pointer add / subtract the offset.
791   ///              It considers the computation as being folded into the load /
792   ///              store operation (i.e. the load / store does the address
793   ///              computation as well as performing the memory transaction).
794   ///              The base operand is always undefined. In addition to
795   ///              producing a chain, pre-indexed load produces two values
796   ///              (result of the load and the result of the address
797   ///              computation); a pre-indexed store produces one value (result
798   ///              of the address computation).
799   ///
800   /// POST_INC     The effective address is the value of the base pointer. The
801   /// POST_DEC     value of the offset operand is then added to / subtracted
802   ///              from the base after memory transaction. In addition to
803   ///              producing a chain, post-indexed load produces two values
804   ///              (the result of the load and the result of the base +/- offset
805   ///              computation); a post-indexed store produces one value (the
806   ///              the result of the base +/- offset computation).
807   enum MemIndexedMode {
808     UNINDEXED = 0,
809     PRE_INC,
810     PRE_DEC,
811     POST_INC,
812     POST_DEC,
813     LAST_INDEXED_MODE
814   };
815 
816   //===--------------------------------------------------------------------===//
817   /// LoadExtType enum - This enum defines the three variants of LOADEXT
818   /// (load with extension).
819   ///
820   /// SEXTLOAD loads the integer operand and sign extends it to a larger
821   ///          integer result type.
822   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
823   ///          integer result type.
824   /// EXTLOAD  is used for two things: floating point extending loads and
825   ///          integer extending loads [the top bits are undefined].
826   enum LoadExtType {
827     NON_EXTLOAD = 0,
828     EXTLOAD,
829     SEXTLOAD,
830     ZEXTLOAD,
831     LAST_LOADEXT_TYPE
832   };
833 
834   NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
835 
836   //===--------------------------------------------------------------------===//
837   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
838   /// below work out, when considering SETFALSE (something that never exists
839   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
840   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
841   /// to.  If the "N" column is 1, the result of the comparison is undefined if
842   /// the input is a NAN.
843   ///
844   /// All of these (except for the 'always folded ops') should be handled for
845   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
846   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
847   ///
848   /// Note that these are laid out in a specific order to allow bit-twiddling
849   /// to transform conditions.
850   enum CondCode {
851     // Opcode          N U L G E       Intuitive operation
852     SETFALSE,      //    0 0 0 0       Always false (always folded)
853     SETOEQ,        //    0 0 0 1       True if ordered and equal
854     SETOGT,        //    0 0 1 0       True if ordered and greater than
855     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
856     SETOLT,        //    0 1 0 0       True if ordered and less than
857     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
858     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
859     SETO,          //    0 1 1 1       True if ordered (no nans)
860     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
861     SETUEQ,        //    1 0 0 1       True if unordered or equal
862     SETUGT,        //    1 0 1 0       True if unordered or greater than
863     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
864     SETULT,        //    1 1 0 0       True if unordered or less than
865     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
866     SETUNE,        //    1 1 1 0       True if unordered or not equal
867     SETTRUE,       //    1 1 1 1       Always true (always folded)
868     // Don't care operations: undefined if the input is a nan.
869     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
870     SETEQ,         //  1 X 0 0 1       True if equal
871     SETGT,         //  1 X 0 1 0       True if greater than
872     SETGE,         //  1 X 0 1 1       True if greater than or equal
873     SETLT,         //  1 X 1 0 0       True if less than
874     SETLE,         //  1 X 1 0 1       True if less than or equal
875     SETNE,         //  1 X 1 1 0       True if not equal
876     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
877 
878     SETCC_INVALID       // Marker value.
879   };
880 
881   /// Return true if this is a setcc instruction that performs a signed
882   /// comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)883   inline bool isSignedIntSetCC(CondCode Code) {
884     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
885   }
886 
887   /// Return true if this is a setcc instruction that performs an unsigned
888   /// comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)889   inline bool isUnsignedIntSetCC(CondCode Code) {
890     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
891   }
892 
893   /// Return true if the specified condition returns true if the two operands to
894   /// the condition are equal. Note that if one of the two operands is a NaN,
895   /// this value is meaningless.
isTrueWhenEqual(CondCode Cond)896   inline bool isTrueWhenEqual(CondCode Cond) {
897     return ((int)Cond & 1) != 0;
898   }
899 
900   /// This function returns 0 if the condition is always false if an operand is
901   /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
902   /// the condition is undefined if the operand is a NaN.
getUnorderedFlavor(CondCode Cond)903   inline unsigned getUnorderedFlavor(CondCode Cond) {
904     return ((int)Cond >> 3) & 3;
905   }
906 
907   /// Return the operation corresponding to !(X op Y), where 'op' is a valid
908   /// SetCC operation.
909   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
910 
911   /// Return the operation corresponding to (Y op X) when given the operation
912   /// for (X op Y).
913   CondCode getSetCCSwappedOperands(CondCode Operation);
914 
915   /// Return the result of a logical OR between different comparisons of
916   /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
917   /// SETCC_INVALID if it is not possible to represent the resultant comparison.
918   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
919 
920   /// Return the result of a logical AND between different comparisons of
921   /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
922   /// SETCC_INVALID if it is not possible to represent the resultant comparison.
923   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
924 
925   //===--------------------------------------------------------------------===//
926   /// This enum defines the various converts CONVERT_RNDSAT supports.
927   enum CvtCode {
928     CVT_FF,     /// Float from Float
929     CVT_FS,     /// Float from Signed
930     CVT_FU,     /// Float from Unsigned
931     CVT_SF,     /// Signed from Float
932     CVT_UF,     /// Unsigned from Float
933     CVT_SS,     /// Signed from Signed
934     CVT_SU,     /// Signed from Unsigned
935     CVT_US,     /// Unsigned from Signed
936     CVT_UU,     /// Unsigned from Unsigned
937     CVT_INVALID /// Marker - Invalid opcode
938   };
939 
940 } // end llvm::ISD namespace
941 
942 } // end llvm namespace
943 
944 #endif
945