1 #ifndef _TCUMATRIX_HPP
2 #define _TCUMATRIX_HPP
3 /*-------------------------------------------------------------------------
4  * drawElements Quality Program Tester Core
5  * ----------------------------------------
6  *
7  * Copyright 2014 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Templatized matrix class.
24  *//*--------------------------------------------------------------------*/
25 
26 #include "tcuDefs.hpp"
27 #include "tcuVector.hpp"
28 #include "tcuArray.hpp"
29 
30 namespace tcu
31 {
32 
33 // Templated matrix class.
34 template <typename T, int Rows, int Cols>
35 class Matrix
36 {
37 public:
38 	typedef	Vector<T, Rows>			Element;
39 	typedef	T						Scalar;
40 
41 	enum
42 	{
43 		SIZE = Cols,
44 		ROWS = Rows,
45 		COLS = Cols,
46 	};
47 
48 									Matrix				(void);
49 	explicit						Matrix				(const T& src);
50 	explicit						Matrix				(const T src[Rows*Cols]);
51 									Matrix				(const Vector<T, Rows>& src);
52 									Matrix				(const Matrix<T, Rows, Cols>& src);
53 									~Matrix				(void);
54 
55 	Matrix<T, Rows, Cols>&			operator=			(const Matrix<T, Rows, Cols>& src);
56 	Matrix<T, Rows, Cols>&			operator*=			(const Matrix<T, Rows, Cols>& src);
57 
58 	void							setRow				(int rowNdx, const Vector<T, Cols>& vec);
59 	void							setColumn			(int colNdx, const Vector<T, Rows>& vec);
60 
61 	Vector<T, Cols>					getRow				(int ndx) const;
62 	Vector<T, Rows>&				getColumn			(int ndx);
63 	const Vector<T, Rows>&			getColumn			(int ndx) const;
64 
operator [](int ndx)65 	Vector<T, Rows>&				operator[]			(int ndx)					{ return getColumn(ndx);	}
operator [](int ndx) const66 	const Vector<T, Rows>&			operator[]			(int ndx) const				{ return getColumn(ndx);	}
67 
operator ()(int row,int col) const68 	inline const T&					operator()			(int row, int col) const	{ return m_data[col][row];	}
operator ()(int row,int col)69 	inline T&						operator()			(int row, int col)			{ return m_data[col][row];	}
70 
71 	Array<T, Rows*Cols>				getRowMajorData		(void) const;
72 	Array<T, Rows*Cols>				getColumnMajorData	(void) const;
73 
74 private:
75 	Vector<Vector<T, Rows>, Cols>	m_data;
76 } DE_WARN_UNUSED_TYPE;
77 
78 // Operators.
79 
80 // Mat * Mat.
81 template <typename T, int Rows0, int Cols0, int Rows1, int Cols1>
82 Matrix<T, Rows0, Cols1> operator* (const Matrix<T, Rows0, Cols0>& a, const Matrix<T, Rows1, Cols1>& b);
83 
84 // Mat * Vec (column vector).
85 template <typename T, int Rows, int Cols>
86 Vector<T, Rows> operator* (const Matrix<T, Rows, Cols>& mtx, const Vector<T, Cols>& vec);
87 
88 // Vec * Mat (row vector).
89 template <typename T, int Rows, int Cols>
90 Vector<T, Cols> operator* (const Vector<T, Rows>& vec, const Matrix<T, Rows, Cols>& mtx);
91 
92 // Further operations
93 
94 template <typename T, int Size>
95 struct SquareMatrixOps
96 {
97 	static T						doDeterminant	(const Matrix<T, Size, Size>& mat);
98 	static Matrix<T, Size, Size>	doInverse		(const Matrix<T, Size, Size>& mat);
99 };
100 
101 template <typename T>
102 struct SquareMatrixOps<T, 2>
103 {
104 	static T						doDeterminant	(const Matrix<T, 2, 2>& mat);
105 	static Matrix<T, 2, 2>			doInverse		(const Matrix<T, 2, 2>& mat);
106 };
107 
108 template <typename T>
109 struct SquareMatrixOps<T, 3>
110 {
111 	static T						doDeterminant	(const Matrix<T, 3, 3>& mat);
112 	static Matrix<T, 3, 3>			doInverse		(const Matrix<T, 3, 3>& mat);
113 };
114 
115 template <typename T>
116 struct SquareMatrixOps<T, 4>
117 {
118 	static T						doDeterminant	(const Matrix<T, 4, 4>& mat);
119 	static Matrix<T, 4, 4>			doInverse		(const Matrix<T, 4, 4>& mat);
120 };
121 
122 namespace matrix
123 {
124 
125 template <typename T, int Size>
determinant(const Matrix<T,Size,Size> & mat)126 T determinant (const Matrix<T, Size, Size>& mat)
127 {
128 	return SquareMatrixOps<T, Size>::doDeterminant(mat);
129 }
130 
131 template <typename T, int Size>
inverse(const Matrix<T,Size,Size> & mat)132 Matrix<T, Size, Size> inverse (const Matrix<T, Size, Size>& mat)
133 {
134 	return SquareMatrixOps<T, Size>::doInverse(mat);
135 }
136 
137 } // matrix
138 
139 // Template implementations.
140 
141 template <typename T>
doDeterminant(const Matrix<T,2,2> & mat)142 T SquareMatrixOps<T, 2>::doDeterminant (const Matrix<T, 2, 2>& mat)
143 {
144 	return mat(0,0) * mat(1,1) - mat(1,0) * mat(0,1);
145 }
146 
147 template <typename T>
doDeterminant(const Matrix<T,3,3> & mat)148 T SquareMatrixOps<T, 3>::doDeterminant (const Matrix<T, 3, 3>& mat)
149 {
150 	return	+ mat(0,0) * mat(1,1) * mat(2,2)
151 			+ mat(0,1) * mat(1,2) * mat(2,0)
152 			+ mat(0,2) * mat(1,0) * mat(2,1)
153 			- mat(0,0) * mat(1,2) * mat(2,1)
154 			- mat(0,1) * mat(1,0) * mat(2,2)
155 			- mat(0,2) * mat(1,1) * mat(2,0);
156 }
157 
158 template <typename T>
doDeterminant(const Matrix<T,4,4> & mat)159 T SquareMatrixOps<T, 4>::doDeterminant (const Matrix<T, 4, 4>& mat)
160 {
161 	using matrix::determinant;
162 
163 	const T minorMatrices[4][3*3] =
164 	{
165 		{
166 			mat(1,1),	mat(2,1),	mat(3,1),
167 			mat(1,2),	mat(2,2),	mat(3,2),
168 			mat(1,3),	mat(2,3),	mat(3,3),
169 		},
170 		{
171 			mat(1,0),	mat(2,0),	mat(3,0),
172 			mat(1,2),	mat(2,2),	mat(3,2),
173 			mat(1,3),	mat(2,3),	mat(3,3),
174 		},
175 		{
176 			mat(1,0),	mat(2,0),	mat(3,0),
177 			mat(1,1),	mat(2,1),	mat(3,1),
178 			mat(1,3),	mat(2,3),	mat(3,3),
179 		},
180 		{
181 			mat(1,0),	mat(2,0),	mat(3,0),
182 			mat(1,1),	mat(2,1),	mat(3,1),
183 			mat(1,2),	mat(2,2),	mat(3,2),
184 		}
185 	};
186 
187 	return	+ mat(0,0) * determinant(Matrix<T, 3, 3>(minorMatrices[0]))
188 			- mat(0,1) * determinant(Matrix<T, 3, 3>(minorMatrices[1]))
189 			+ mat(0,2) * determinant(Matrix<T, 3, 3>(minorMatrices[2]))
190 			- mat(0,3) * determinant(Matrix<T, 3, 3>(minorMatrices[3]));
191 }
192 
193 template <typename T>
doInverse(const Matrix<T,2,2> & mat)194 Matrix<T, 2, 2> SquareMatrixOps<T, 2>::doInverse (const Matrix<T, 2, 2>& mat)
195 {
196 	using matrix::determinant;
197 
198 	const T			det		= determinant(mat);
199 	Matrix<T, 2, 2>	retVal;
200 
201 	retVal(0, 0) =  mat(1, 1) / det;
202 	retVal(0, 1) = -mat(0, 1) / det;
203 	retVal(1, 0) = -mat(1, 0) / det;
204 	retVal(1, 1) =  mat(0, 0) / det;
205 
206 	return retVal;
207 }
208 
209 template <typename T>
doInverse(const Matrix<T,3,3> & mat)210 Matrix<T, 3, 3> SquareMatrixOps<T, 3>::doInverse (const Matrix<T, 3, 3>& mat)
211 {
212 	// Blockwise inversion
213 	using matrix::inverse;
214 
215 	const T areaA[2*2] =
216 	{
217 		mat(0,0),	mat(0,1),
218 		mat(1,0),	mat(1,1)
219 	};
220 	const T areaB[2] =
221 	{
222 		mat(0,2),
223 		mat(1,2),
224 	};
225 	const T areaC[2] =
226 	{
227 		mat(2,0),	mat(2,1),
228 	};
229 	const T areaD[1] =
230 	{
231 		mat(2,2)
232 	};
233 	const T nullField[4] = { T(0.0f) };
234 
235 	const Matrix<T, 2, 2>	invA = inverse(Matrix<T, 2, 2>(areaA));
236 	const Matrix<T, 2, 1>	matB =         Matrix<T, 2, 1>(areaB);
237 	const Matrix<T, 1, 2>	matC =         Matrix<T, 1, 2>(areaC);
238 	const Matrix<T, 1, 1>	matD =         Matrix<T, 1, 1>(areaD);
239 
240 	const T					schurComplement = T(1.0f) / (matD - matC*invA*matB)(0,0);
241 	const Matrix<T, 2, 2>	zeroMat         = Matrix<T, 2, 2>(nullField);
242 
243 	const Matrix<T, 2, 2>	blockA = invA + invA*matB*schurComplement*matC*invA;
244 	const Matrix<T, 2, 1>	blockB = (zeroMat-invA)*matB*schurComplement;
245 	const Matrix<T, 1, 2>	blockC = matC*invA*(-schurComplement);
246 	const T					blockD = schurComplement;
247 
248 	const T result[3*3] =
249 	{
250 		blockA(0,0),	blockA(0,1),	blockB(0,0),
251 		blockA(1,0),	blockA(1,1),	blockB(1,0),
252 		blockC(0,0),	blockC(0,1),	blockD,
253 	};
254 
255 	return Matrix<T, 3, 3>(result);
256 }
257 
258 template <typename T>
doInverse(const Matrix<T,4,4> & mat)259 Matrix<T, 4, 4> SquareMatrixOps<T, 4>::doInverse (const Matrix<T, 4, 4>& mat)
260 {
261 	// Blockwise inversion
262 	using matrix::inverse;
263 
264 	const T areaA[2*2] =
265 	{
266 		mat(0,0),	mat(0,1),
267 		mat(1,0),	mat(1,1)
268 	};
269 	const T areaB[2*2] =
270 	{
271 		mat(0,2),	mat(0,3),
272 		mat(1,2),	mat(1,3)
273 	};
274 	const T areaC[2*2] =
275 	{
276 		mat(2,0),	mat(2,1),
277 		mat(3,0),	mat(3,1)
278 	};
279 	const T areaD[2*2] =
280 	{
281 		mat(2,2),	mat(2,3),
282 		mat(3,2),	mat(3,3)
283 	};
284 	const T nullField[4] = { T(0.0f) };
285 
286 	const Matrix<T, 2, 2> invA = inverse(Matrix<T, 2, 2>(areaA));
287 	const Matrix<T, 2, 2> matB =         Matrix<T, 2, 2>(areaB);
288 	const Matrix<T, 2, 2> matC =         Matrix<T, 2, 2>(areaC);
289 	const Matrix<T, 2, 2> matD =         Matrix<T, 2, 2>(areaD);
290 
291 	const Matrix<T, 2, 2> schurComplement = inverse(matD - matC*invA*matB);
292 	const Matrix<T, 2, 2> zeroMat         = Matrix<T, 2, 2>(nullField);
293 
294 	const Matrix<T, 2, 2> blockA = invA + invA*matB*schurComplement*matC*invA;
295 	const Matrix<T, 2, 2> blockB = (zeroMat-invA)*matB*schurComplement;
296 	const Matrix<T, 2, 2> blockC = (zeroMat-schurComplement)*matC*invA;
297 	const Matrix<T, 2, 2> blockD = schurComplement;
298 
299 	const T result[4*4] =
300 	{
301 		blockA(0,0),	blockA(0,1),	blockB(0,0),	blockB(0,1),
302 		blockA(1,0),	blockA(1,1),	blockB(1,0),	blockB(1,1),
303 		blockC(0,0),	blockC(0,1),	blockD(0,0),	blockD(0,1),
304 		blockC(1,0),	blockC(1,1),	blockD(1,0),	blockD(1,1),
305 	};
306 
307 	return Matrix<T, 4, 4>(result);
308 }
309 
310 // Initialize to identity.
311 template <typename T, int Rows, int Cols>
Matrix(void)312 Matrix<T, Rows, Cols>::Matrix (void)
313 {
314 	for (int row = 0; row < Rows; row++)
315 		for (int col = 0; col < Cols; col++)
316 			(*this)(row, col) = (row == col) ? T(1) : T(0);
317 }
318 
319 // Initialize to diagonal matrix.
320 template <typename T, int Rows, int Cols>
Matrix(const T & src)321 Matrix<T, Rows, Cols>::Matrix (const T& src)
322 {
323 	for (int row = 0; row < Rows; row++)
324 		for (int col = 0; col < Cols; col++)
325 			(*this)(row, col) = (row == col) ? src : T(0);
326 }
327 
328 // Initialize from data array.
329 template <typename T, int Rows, int Cols>
Matrix(const T src[Rows * Cols])330 Matrix<T, Rows, Cols>::Matrix (const T src[Rows*Cols])
331 {
332 	for (int row = 0; row < Rows; row++)
333 		for (int col = 0; col < Cols; col++)
334 			(*this)(row, col) = src[row*Cols + col];
335 }
336 
337 // Initialize to diagonal matrix.
338 template <typename T, int Rows, int Cols>
Matrix(const Vector<T,Rows> & src)339 Matrix<T, Rows, Cols>::Matrix (const Vector<T, Rows>& src)
340 {
341 	DE_STATIC_ASSERT(Rows == Cols);
342 	for (int row = 0; row < Rows; row++)
343 		for (int col = 0; col < Cols; col++)
344 			(*this)(row, col) = (row == col) ? src.m_data[row] : T(0);
345 }
346 
347 // Copy constructor.
348 template <typename T, int Rows, int Cols>
Matrix(const Matrix<T,Rows,Cols> & src)349 Matrix<T, Rows, Cols>::Matrix (const Matrix<T, Rows, Cols>& src)
350 {
351 	*this = src;
352 }
353 
354 // Destructor.
355 template <typename T, int Rows, int Cols>
~Matrix(void)356 Matrix<T, Rows, Cols>::~Matrix (void)
357 {
358 }
359 
360 // Assignment operator.
361 template <typename T, int Rows, int Cols>
operator =(const Matrix<T,Rows,Cols> & src)362 Matrix<T, Rows, Cols>& Matrix<T, Rows, Cols>::operator= (const Matrix<T, Rows, Cols>& src)
363 {
364 	for (int row = 0; row < Rows; row++)
365 		for (int col = 0; col < Cols; col++)
366 			(*this)(row, col) = src(row, col);
367 	return *this;
368 }
369 
370 // Multipy and assign op
371 template <typename T, int Rows, int Cols>
operator *=(const Matrix<T,Rows,Cols> & src)372 Matrix<T, Rows, Cols>& Matrix<T, Rows, Cols>::operator*= (const Matrix<T, Rows, Cols>& src)
373 {
374 	*this = *this * src;
375 	return *this;
376 }
377 
378 template <typename T, int Rows, int Cols>
setRow(int rowNdx,const Vector<T,Cols> & vec)379 void Matrix<T, Rows, Cols>::setRow (int rowNdx, const Vector<T, Cols>& vec)
380 {
381 	for (int col = 0; col < Cols; col++)
382 		(*this)(rowNdx, col) = vec.m_data[col];
383 }
384 
385 template <typename T, int Rows, int Cols>
setColumn(int colNdx,const Vector<T,Rows> & vec)386 void Matrix<T, Rows, Cols>::setColumn (int colNdx, const Vector<T, Rows>& vec)
387 {
388 	m_data[colNdx] = vec;
389 }
390 
391 template <typename T, int Rows, int Cols>
getRow(int rowNdx) const392 Vector<T, Cols> Matrix<T, Rows, Cols>::getRow (int rowNdx) const
393 {
394 	Vector<T, Cols> res;
395 	for (int col = 0; col < Cols; col++)
396 		res[col] = (*this)(rowNdx, col);
397 	return res;
398 }
399 
400 template <typename T, int Rows, int Cols>
getColumn(int colNdx)401 Vector<T, Rows>& Matrix<T, Rows, Cols>::getColumn (int colNdx)
402 {
403 	return m_data[colNdx];
404 }
405 
406 template <typename T, int Rows, int Cols>
getColumn(int colNdx) const407 const Vector<T, Rows>& Matrix<T, Rows, Cols>::getColumn (int colNdx) const
408 {
409 	return m_data[colNdx];
410 }
411 
412 template <typename T, int Rows, int Cols>
getColumnMajorData(void) const413 Array<T, Rows*Cols> Matrix<T, Rows, Cols>::getColumnMajorData (void) const
414 {
415 	Array<T, Rows*Cols> a;
416 	T* dst = a.getPtr();
417 	for (int col = 0; col < Cols; col++)
418 		for (int row = 0; row < Rows; row++)
419 			*dst++ = (*this)(row, col);
420 	return a;
421 }
422 
423 template <typename T, int Rows, int Cols>
getRowMajorData(void) const424 Array<T, Rows*Cols> Matrix<T, Rows, Cols>::getRowMajorData (void) const
425 {
426 	Array<T, Rows*Cols> a;
427 	T* dst = a.getPtr();
428 	for (int row = 0; row < Rows; row++)
429 		for (int col = 0; col < Cols; col++)
430 			*dst++ = (*this)(row, col);
431 	return a;
432 }
433 
434 // Multiplication of two matrices.
435 template <typename T, int Rows0, int Cols0, int Rows1, int Cols1>
operator *(const Matrix<T,Rows0,Cols0> & a,const Matrix<T,Rows1,Cols1> & b)436 Matrix<T, Rows0, Cols1> operator* (const Matrix<T, Rows0, Cols0>& a, const Matrix<T, Rows1, Cols1>& b)
437 {
438 	DE_STATIC_ASSERT(Cols0 == Rows1);
439 	Matrix<T, Rows0, Cols1> res;
440 	for (int row = 0; row < Rows0; row++)
441 	{
442 		for (int col = 0; col < Cols1; col++)
443 		{
444 			T v = T(0);
445 			for (int ndx = 0; ndx < Cols0; ndx++)
446 				v += a(row,ndx) * b(ndx,col);
447 			res(row,col) = v;
448 		}
449 	}
450 	return res;
451 }
452 
453 // Multiply of matrix with column vector.
454 template <typename T, int Rows, int Cols>
operator *(const Matrix<T,Rows,Cols> & mtx,const Vector<T,Cols> & vec)455 Vector<T, Rows> operator* (const Matrix<T, Rows, Cols>& mtx, const Vector<T, Cols>& vec)
456 {
457 	Vector<T, Rows> res;
458 	for (int row = 0; row < Rows; row++)
459 	{
460 		T v = T(0);
461 		for (int col = 0; col < Cols; col++)
462 			v += mtx(row,col) * vec.m_data[col];
463 		res.m_data[row] = v;
464 	}
465 	return res;
466 }
467 
468 // Multiply of matrix with row vector.
469 template <typename T, int Rows, int Cols>
operator *(const Vector<T,Rows> & vec,const Matrix<T,Rows,Cols> & mtx)470 Vector<T, Cols> operator* (const Vector<T, Rows>& vec, const Matrix<T, Rows, Cols>& mtx)
471 {
472 	Vector<T, Cols> res;
473 	for (int col = 0; col < Cols; col++)
474 	{
475 		T v = T(0);
476 		for (int row = 0; row < Rows; row++)
477 			v += mtx(row,col) * vec.m_data[row];
478 		res.m_data[col] = v;
479 	}
480 	return res;
481 }
482 
483 // Common typedefs.
484 typedef Matrix<float, 2, 2>		Matrix2f;
485 typedef Matrix<float, 3, 3>		Matrix3f;
486 typedef Matrix<float, 4, 4>		Matrix4f;
487 typedef Matrix<double, 2, 2>	Matrix2d;
488 typedef Matrix<double, 3, 3>	Matrix3d;
489 typedef Matrix<double, 4, 4>	Matrix4d;
490 
491 // GLSL-style naming \note CxR.
492 typedef Matrix2f			Mat2;
493 typedef Matrix<float, 3, 2>	Mat2x3;
494 typedef Matrix<float, 4, 2>	Mat2x4;
495 typedef Matrix<float, 2, 3>	Mat3x2;
496 typedef Matrix3f			Mat3;
497 typedef Matrix<float, 4, 3>	Mat3x4;
498 typedef Matrix<float, 2, 4>	Mat4x2;
499 typedef Matrix<float, 3, 4>	Mat4x3;
500 typedef Matrix4f			Mat4;
501 
502 // Matrix-scalar operators.
503 
504 template <typename T, int Rows, int Cols>
operator +(const Matrix<T,Rows,Cols> & mtx,T scalar)505 Matrix<T, Rows, Cols> operator+ (const Matrix<T, Rows, Cols>& mtx, T scalar)
506 {
507 	Matrix<T, Rows, Cols> res;
508 	for (int col = 0; col < Cols; col++)
509 		for (int row = 0; row < Rows; row++)
510 			res(row, col) = mtx(row, col) + scalar;
511 	return res;
512 }
513 
514 template <typename T, int Rows, int Cols>
operator -(const Matrix<T,Rows,Cols> & mtx,T scalar)515 Matrix<T, Rows, Cols> operator- (const Matrix<T, Rows, Cols>& mtx, T scalar)
516 {
517 	Matrix<T, Rows, Cols> res;
518 	for (int col = 0; col < Cols; col++)
519 		for (int row = 0; row < Rows; row++)
520 			res(row, col) = mtx(row, col) - scalar;
521 	return res;
522 }
523 
524 template <typename T, int Rows, int Cols>
operator *(const Matrix<T,Rows,Cols> & mtx,T scalar)525 Matrix<T, Rows, Cols> operator* (const Matrix<T, Rows, Cols>& mtx, T scalar)
526 {
527 	Matrix<T, Rows, Cols> res;
528 	for (int col = 0; col < Cols; col++)
529 		for (int row = 0; row < Rows; row++)
530 			res(row, col) = mtx(row, col) * scalar;
531 	return res;
532 }
533 
534 template <typename T, int Rows, int Cols>
operator /(const Matrix<T,Rows,Cols> & mtx,T scalar)535 Matrix<T, Rows, Cols> operator/ (const Matrix<T, Rows, Cols>& mtx, T scalar)
536 {
537 	Matrix<T, Rows, Cols> res;
538 	for (int col = 0; col < Cols; col++)
539 		for (int row = 0; row < Rows; row++)
540 			res(row, col) = mtx(row, col) / scalar;
541 	return res;
542 }
543 
544 // Matrix-matrix component-wise operators.
545 
546 template <typename T, int Rows, int Cols>
operator +(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)547 Matrix<T, Rows, Cols> operator+ (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
548 {
549 	Matrix<T, Rows, Cols> res;
550 	for (int col = 0; col < Cols; col++)
551 		for (int row = 0; row < Rows; row++)
552 			res(row, col) = a(row, col) + b(row, col);
553 	return res;
554 }
555 
556 template <typename T, int Rows, int Cols>
operator -(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)557 Matrix<T, Rows, Cols> operator- (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
558 {
559 	Matrix<T, Rows, Cols> res;
560 	for (int col = 0; col < Cols; col++)
561 		for (int row = 0; row < Rows; row++)
562 			res(row, col) = a(row, col) - b(row, col);
563 	return res;
564 }
565 
566 template <typename T, int Rows, int Cols>
operator /(const Matrix<T,Rows,Cols> & a,const Matrix<T,Rows,Cols> & b)567 Matrix<T, Rows, Cols> operator/ (const Matrix<T, Rows, Cols>& a, const Matrix<T, Rows, Cols>& b)
568 {
569 	Matrix<T, Rows, Cols> res;
570 	for (int col = 0; col < Cols; col++)
571 		for (int row = 0; row < Rows; row++)
572 			res(row, col) = a(row, col) / b(row, col);
573 	return res;
574 }
575 
576 } // tcu
577 
578 #endif // _TCUMATRIX_HPP
579