1 /** @file 2 This library is only intended to be used by UEFI network stack modules. 3 It provides basic functions for the UEFI network stack. 4 5 Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR> 6 This program and the accompanying materials 7 are licensed and made available under the terms and conditions of the BSD License 8 which accompanies this distribution. The full text of the license may be found at<BR> 9 http://opensource.org/licenses/bsd-license.php 10 11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 13 14 **/ 15 16 #ifndef _NET_LIB_H_ 17 #define _NET_LIB_H_ 18 19 #include <Protocol/Ip6.h> 20 21 #include <Library/BaseLib.h> 22 #include <Library/BaseMemoryLib.h> 23 24 typedef UINT32 IP4_ADDR; 25 typedef UINT32 TCP_SEQNO; 26 typedef UINT16 TCP_PORTNO; 27 28 29 #define NET_ETHER_ADDR_LEN 6 30 #define NET_IFTYPE_ETHERNET 0x01 31 32 #define NET_VLAN_TAG_LEN 4 33 #define ETHER_TYPE_VLAN 0x8100 34 35 #define EFI_IP_PROTO_UDP 0x11 36 #define EFI_IP_PROTO_TCP 0x06 37 #define EFI_IP_PROTO_ICMP 0x01 38 #define IP4_PROTO_IGMP 0x02 39 #define IP6_ICMP 58 40 41 // 42 // The address classification 43 // 44 #define IP4_ADDR_CLASSA 1 45 #define IP4_ADDR_CLASSB 2 46 #define IP4_ADDR_CLASSC 3 47 #define IP4_ADDR_CLASSD 4 48 #define IP4_ADDR_CLASSE 5 49 50 #define IP4_MASK_NUM 33 51 #define IP6_PREFIX_NUM 129 52 53 #define IP6_HOP_BY_HOP 0 54 #define IP6_DESTINATION 60 55 #define IP6_ROUTING 43 56 #define IP6_FRAGMENT 44 57 #define IP6_AH 51 58 #define IP6_ESP 50 59 #define IP6_NO_NEXT_HEADER 59 60 61 #define IP_VERSION_4 4 62 #define IP_VERSION_6 6 63 64 #define IP6_PREFIX_LENGTH 64 65 66 #pragma pack(1) 67 68 // 69 // Ethernet head definition 70 // 71 typedef struct { 72 UINT8 DstMac [NET_ETHER_ADDR_LEN]; 73 UINT8 SrcMac [NET_ETHER_ADDR_LEN]; 74 UINT16 EtherType; 75 } ETHER_HEAD; 76 77 // 78 // 802.1Q VLAN Tag Control Information 79 // 80 typedef union { 81 struct { 82 UINT16 Vid : 12; // Unique VLAN identifier (0 to 4094) 83 UINT16 Cfi : 1; // Canonical Format Indicator 84 UINT16 Priority : 3; // 802.1Q priority level (0 to 7) 85 } Bits; 86 UINT16 Uint16; 87 } VLAN_TCI; 88 89 #define VLAN_TCI_CFI_CANONICAL_MAC 0 90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC 1 91 92 // 93 // The EFI_IP4_HEADER is hard to use because the source and 94 // destination address are defined as EFI_IPv4_ADDRESS, which 95 // is a structure. Two structures can't be compared or masked 96 // directly. This is why there is an internal representation. 97 // 98 typedef struct { 99 UINT8 HeadLen : 4; 100 UINT8 Ver : 4; 101 UINT8 Tos; 102 UINT16 TotalLen; 103 UINT16 Id; 104 UINT16 Fragment; 105 UINT8 Ttl; 106 UINT8 Protocol; 107 UINT16 Checksum; 108 IP4_ADDR Src; 109 IP4_ADDR Dst; 110 } IP4_HEAD; 111 112 113 // 114 // ICMP head definition. Each ICMP message is categorized as either an error 115 // message or query message. Two message types have their own head format. 116 // 117 typedef struct { 118 UINT8 Type; 119 UINT8 Code; 120 UINT16 Checksum; 121 } IP4_ICMP_HEAD; 122 123 typedef struct { 124 IP4_ICMP_HEAD Head; 125 UINT32 Fourth; // 4th filed of the head, it depends on Type. 126 IP4_HEAD IpHead; 127 } IP4_ICMP_ERROR_HEAD; 128 129 typedef struct { 130 IP4_ICMP_HEAD Head; 131 UINT16 Id; 132 UINT16 Seq; 133 } IP4_ICMP_QUERY_HEAD; 134 135 typedef struct { 136 UINT8 Type; 137 UINT8 Code; 138 UINT16 Checksum; 139 } IP6_ICMP_HEAD; 140 141 typedef struct { 142 IP6_ICMP_HEAD Head; 143 UINT32 Fourth; 144 EFI_IP6_HEADER IpHead; 145 } IP6_ICMP_ERROR_HEAD; 146 147 typedef struct { 148 IP6_ICMP_HEAD Head; 149 UINT32 Fourth; 150 } IP6_ICMP_INFORMATION_HEAD; 151 152 // 153 // UDP header definition 154 // 155 typedef struct { 156 UINT16 SrcPort; 157 UINT16 DstPort; 158 UINT16 Length; 159 UINT16 Checksum; 160 } EFI_UDP_HEADER; 161 162 // 163 // TCP header definition 164 // 165 typedef struct { 166 TCP_PORTNO SrcPort; 167 TCP_PORTNO DstPort; 168 TCP_SEQNO Seq; 169 TCP_SEQNO Ack; 170 UINT8 Res : 4; 171 UINT8 HeadLen : 4; 172 UINT8 Flag; 173 UINT16 Wnd; 174 UINT16 Checksum; 175 UINT16 Urg; 176 } TCP_HEAD; 177 178 #pragma pack() 179 180 #define NET_MAC_EQUAL(pMac1, pMac2, Len) \ 181 (CompareMem ((pMac1), (pMac2), Len) == 0) 182 183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \ 184 (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len))) 185 186 #define NTOHL(x) SwapBytes32 (x) 187 188 #define HTONL(x) NTOHL(x) 189 190 #define NTOHS(x) SwapBytes16 (x) 191 192 #define HTONS(x) NTOHS(x) 193 #define NTOHLL(x) SwapBytes64 (x) 194 #define HTONLL(x) NTOHLL(x) 195 #define NTOHLLL(x) Ip6Swap128 (x) 196 #define HTONLLL(x) NTOHLLL(x) 197 198 // 199 // Test the IP's attribute, All the IPs are in host byte order. 200 // 201 #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000) 202 #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF) 203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask))) 204 #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM) 205 206 #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF) 207 208 // 209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address. 210 // 211 #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr)) 212 #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp)))) 213 #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0) 214 215 #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0) 216 217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS))) 218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS))) 219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS))) 220 221 // 222 // The debug level definition. This value is also used as the 223 // syslog's servity level. Don't change it. 224 // 225 #define NETDEBUG_LEVEL_TRACE 5 226 #define NETDEBUG_LEVEL_WARNING 4 227 #define NETDEBUG_LEVEL_ERROR 3 228 229 // 230 // Network debug message is sent out as syslog packet. 231 // 232 #define NET_SYSLOG_FACILITY 16 // Syslog local facility local use 233 #define NET_SYSLOG_PACKET_LEN 512 234 #define NET_SYSLOG_TX_TIMEOUT (500 * 1000 * 10) // 500ms 235 #define NET_DEBUG_MSG_LEN 470 // 512 - (ether+ip4+udp4 head length) 236 237 // 238 // The debug output expects the ASCII format string, Use %a to print ASCII 239 // string, and %s to print UNICODE string. PrintArg must be enclosed in (). 240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name)); 241 // 242 #define NET_DEBUG_TRACE(Module, PrintArg) \ 243 NetDebugOutput ( \ 244 NETDEBUG_LEVEL_TRACE, \ 245 Module, \ 246 __FILE__, \ 247 __LINE__, \ 248 NetDebugASPrint PrintArg \ 249 ) 250 251 #define NET_DEBUG_WARNING(Module, PrintArg) \ 252 NetDebugOutput ( \ 253 NETDEBUG_LEVEL_WARNING, \ 254 Module, \ 255 __FILE__, \ 256 __LINE__, \ 257 NetDebugASPrint PrintArg \ 258 ) 259 260 #define NET_DEBUG_ERROR(Module, PrintArg) \ 261 NetDebugOutput ( \ 262 NETDEBUG_LEVEL_ERROR, \ 263 Module, \ 264 __FILE__, \ 265 __LINE__, \ 266 NetDebugASPrint PrintArg \ 267 ) 268 269 /** 270 Allocate a buffer, then format the message to it. This is a 271 help function for the NET_DEBUG_XXX macros. The PrintArg of 272 these macros treats the variable length print parameters as a 273 single parameter, and pass it to the NetDebugASPrint. For 274 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name)) 275 if extracted to: 276 277 NetDebugOutput ( 278 NETDEBUG_LEVEL_TRACE, 279 "Tcp", 280 __FILE__, 281 __LINE__, 282 NetDebugASPrint ("State transit to %a\n", Name) 283 ) 284 285 @param Format The ASCII format string. 286 @param ... The variable length parameter whose format is determined 287 by the Format string. 288 289 @return The buffer containing the formatted message, 290 or NULL if memory allocation failed. 291 292 **/ 293 CHAR8 * 294 EFIAPI 295 NetDebugASPrint ( 296 IN CHAR8 *Format, 297 ... 298 ); 299 300 /** 301 Builds an UDP4 syslog packet and send it using SNP. 302 303 This function will locate a instance of SNP then send the message through it. 304 Because it isn't open the SNP BY_DRIVER, apply caution when using it. 305 306 @param Level The servity level of the message. 307 @param Module The Moudle that generates the log. 308 @param File The file that contains the log. 309 @param Line The exact line that contains the log. 310 @param Message The user message to log. 311 312 @retval EFI_INVALID_PARAMETER Any input parameter is invalid. 313 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet 314 @retval EFI_SUCCESS The log is discard because that it is more verbose 315 than the mNetDebugLevelMax. Or, it has been sent out. 316 **/ 317 EFI_STATUS 318 EFIAPI 319 NetDebugOutput ( 320 IN UINT32 Level, 321 IN UINT8 *Module, 322 IN UINT8 *File, 323 IN UINT32 Line, 324 IN UINT8 *Message 325 ); 326 327 328 /** 329 Return the length of the mask. 330 331 Return the length of the mask. Valid values are 0 to 32. 332 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM. 333 NetMask is in the host byte order. 334 335 @param[in] NetMask The netmask to get the length from. 336 337 @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid. 338 339 **/ 340 INTN 341 EFIAPI 342 NetGetMaskLength ( 343 IN IP4_ADDR NetMask 344 ); 345 346 /** 347 Return the class of the IP address, such as class A, B, C. 348 Addr is in host byte order. 349 350 The address of class A starts with 0. 351 If the address belong to class A, return IP4_ADDR_CLASSA. 352 The address of class B starts with 10. 353 If the address belong to class B, return IP4_ADDR_CLASSB. 354 The address of class C starts with 110. 355 If the address belong to class C, return IP4_ADDR_CLASSC. 356 The address of class D starts with 1110. 357 If the address belong to class D, return IP4_ADDR_CLASSD. 358 The address of class E starts with 1111. 359 If the address belong to class E, return IP4_ADDR_CLASSE. 360 361 362 @param[in] Addr The address to get the class from. 363 364 @return IP address class, such as IP4_ADDR_CLASSA. 365 366 **/ 367 INTN 368 EFIAPI 369 NetGetIpClass ( 370 IN IP4_ADDR Addr 371 ); 372 373 /** 374 Check whether the IP is a valid unicast address according to 375 the netmask. If NetMask is zero, use the IP address's class to get the default mask. 376 377 If Ip is 0, IP is not a valid unicast address. 378 Class D address is used for multicasting and class E address is reserved for future. If Ip 379 belongs to class D or class E, Ip is not a valid unicast address. 380 If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address. 381 382 @param[in] Ip The IP to check against. 383 @param[in] NetMask The mask of the IP. 384 385 @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE. 386 387 **/ 388 BOOLEAN 389 EFIAPI 390 NetIp4IsUnicast ( 391 IN IP4_ADDR Ip, 392 IN IP4_ADDR NetMask 393 ); 394 395 /** 396 Check whether the incoming IPv6 address is a valid unicast address. 397 398 If the address is a multicast address has binary 0xFF at the start, it is not 399 a valid unicast address. If the address is unspecified ::, it is not a valid 400 unicast address to be assigned to any node. If the address is loopback address 401 ::1, it is also not a valid unicast address to be assigned to any physical 402 interface. 403 404 @param[in] Ip6 The IPv6 address to check against. 405 406 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE. 407 408 **/ 409 BOOLEAN 410 EFIAPI 411 NetIp6IsValidUnicast ( 412 IN EFI_IPv6_ADDRESS *Ip6 413 ); 414 415 416 /** 417 Check whether the incoming Ipv6 address is the unspecified address or not. 418 419 @param[in] Ip6 - Ip6 address, in network order. 420 421 @retval TRUE - Yes, incoming Ipv6 address is the unspecified address. 422 @retval FALSE - The incoming Ipv6 address is not the unspecified address 423 424 **/ 425 BOOLEAN 426 EFIAPI 427 NetIp6IsUnspecifiedAddr ( 428 IN EFI_IPv6_ADDRESS *Ip6 429 ); 430 431 /** 432 Check whether the incoming Ipv6 address is a link-local address. 433 434 @param[in] Ip6 - Ip6 address, in network order. 435 436 @retval TRUE - The incoming Ipv6 address is a link-local address. 437 @retval FALSE - The incoming Ipv6 address is not a link-local address. 438 439 **/ 440 BOOLEAN 441 EFIAPI 442 NetIp6IsLinkLocalAddr ( 443 IN EFI_IPv6_ADDRESS *Ip6 444 ); 445 446 /** 447 Check whether the Ipv6 address1 and address2 are on the connected network. 448 449 @param[in] Ip1 - Ip6 address1, in network order. 450 @param[in] Ip2 - Ip6 address2, in network order. 451 @param[in] PrefixLength - The prefix length of the checking net. 452 453 @retval TRUE - Yes, the Ipv6 address1 and address2 are connected. 454 @retval FALSE - No the Ipv6 address1 and address2 are not connected. 455 456 **/ 457 BOOLEAN 458 EFIAPI 459 NetIp6IsNetEqual ( 460 EFI_IPv6_ADDRESS *Ip1, 461 EFI_IPv6_ADDRESS *Ip2, 462 UINT8 PrefixLength 463 ); 464 465 /** 466 Switches the endianess of an IPv6 address. 467 468 This function swaps the bytes in a 128-bit IPv6 address to switch the value 469 from little endian to big endian or vice versa. The byte swapped value is 470 returned. 471 472 @param Ip6 Points to an IPv6 address. 473 474 @return The byte swapped IPv6 address. 475 476 **/ 477 EFI_IPv6_ADDRESS * 478 EFIAPI 479 Ip6Swap128 ( 480 EFI_IPv6_ADDRESS *Ip6 481 ); 482 483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM]; 484 485 486 extern EFI_IPv4_ADDRESS mZeroIp4Addr; 487 488 #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9')) 489 #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1))) 490 #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z')) 491 #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z')) 492 493 #define TICKS_PER_MS 10000U 494 #define TICKS_PER_SECOND 10000000U 495 496 #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL) 497 498 /** 499 Extract a UINT32 from a byte stream. 500 501 This function copies a UINT32 from a byte stream, and then converts it from Network 502 byte order to host byte order. Use this function to avoid alignment error. 503 504 @param[in] Buf The buffer to extract the UINT32. 505 506 @return The UINT32 extracted. 507 508 **/ 509 UINT32 510 EFIAPI 511 NetGetUint32 ( 512 IN UINT8 *Buf 513 ); 514 515 /** 516 Puts a UINT32 into the byte stream in network byte order. 517 518 Converts a UINT32 from host byte order to network byte order, then copies it to the 519 byte stream. 520 521 @param[in, out] Buf The buffer in which to put the UINT32. 522 @param[in] Data The data to be converted and put into the byte stream. 523 524 **/ 525 VOID 526 EFIAPI 527 NetPutUint32 ( 528 IN OUT UINT8 *Buf, 529 IN UINT32 Data 530 ); 531 532 /** 533 Initialize a random seed using current time and monotonic count. 534 535 Get current time and monotonic count first. Then initialize a random seed 536 based on some basic mathematics operation on the hour, day, minute, second, 537 nanosecond and year of the current time and the monotonic count value. 538 539 @return The random seed initialized with current time. 540 541 **/ 542 UINT32 543 EFIAPI 544 NetRandomInitSeed ( 545 VOID 546 ); 547 548 549 #define NET_LIST_USER_STRUCT(Entry, Type, Field) \ 550 BASE_CR(Entry, Type, Field) 551 552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \ 553 CR(Entry, Type, Field, Sig) 554 555 // 556 // Iterate through the double linked list. It is NOT delete safe 557 // 558 #define NET_LIST_FOR_EACH(Entry, ListHead) \ 559 for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink) 560 561 // 562 // Iterate through the double linked list. This is delete-safe. 563 // Don't touch NextEntry. Also, don't use this macro if list 564 // entries other than the Entry may be deleted when processing 565 // the current Entry. 566 // 567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \ 568 for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \ 569 Entry != (ListHead); \ 570 Entry = NextEntry, NextEntry = Entry->ForwardLink \ 571 ) 572 573 // 574 // Make sure the list isn't empty before getting the first/last record. 575 // 576 #define NET_LIST_HEAD(ListHead, Type, Field) \ 577 NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field) 578 579 #define NET_LIST_TAIL(ListHead, Type, Field) \ 580 NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field) 581 582 583 /** 584 Remove the first node entry on the list, and return the removed node entry. 585 586 Removes the first node entry from a doubly linked list. It is up to the caller of 587 this function to release the memory used by the first node, if that is required. On 588 exit, the removed node is returned. 589 590 If Head is NULL, then ASSERT(). 591 If Head was not initialized, then ASSERT(). 592 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the 593 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, 594 then ASSERT(). 595 596 @param[in, out] Head The list header. 597 598 @return The first node entry that is removed from the list, NULL if the list is empty. 599 600 **/ 601 LIST_ENTRY * 602 EFIAPI 603 NetListRemoveHead ( 604 IN OUT LIST_ENTRY *Head 605 ); 606 607 /** 608 Remove the last node entry on the list and return the removed node entry. 609 610 Removes the last node entry from a doubly linked list. It is up to the caller of 611 this function to release the memory used by the first node, if that is required. On 612 exit, the removed node is returned. 613 614 If Head is NULL, then ASSERT(). 615 If Head was not initialized, then ASSERT(). 616 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the 617 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, 618 then ASSERT(). 619 620 @param[in, out] Head The list head. 621 622 @return The last node entry that is removed from the list, NULL if the list is empty. 623 624 **/ 625 LIST_ENTRY * 626 EFIAPI 627 NetListRemoveTail ( 628 IN OUT LIST_ENTRY *Head 629 ); 630 631 /** 632 Insert a new node entry after a designated node entry of a doubly linked list. 633 634 Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry 635 of the doubly linked list. 636 637 @param[in, out] PrevEntry The entry after which to insert. 638 @param[in, out] NewEntry The new entry to insert. 639 640 **/ 641 VOID 642 EFIAPI 643 NetListInsertAfter ( 644 IN OUT LIST_ENTRY *PrevEntry, 645 IN OUT LIST_ENTRY *NewEntry 646 ); 647 648 /** 649 Insert a new node entry before a designated node entry of a doubly linked list. 650 651 Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry 652 of the doubly linked list. 653 654 @param[in, out] PostEntry The entry to insert before. 655 @param[in, out] NewEntry The new entry to insert. 656 657 **/ 658 VOID 659 EFIAPI 660 NetListInsertBefore ( 661 IN OUT LIST_ENTRY *PostEntry, 662 IN OUT LIST_ENTRY *NewEntry 663 ); 664 665 /** 666 Callback function which provided by user to remove one node in NetDestroyLinkList process. 667 668 @param[in] Entry The entry to be removed. 669 @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList. 670 671 @retval EFI_SUCCESS The entry has been removed successfully. 672 @retval Others Fail to remove the entry. 673 674 **/ 675 typedef 676 EFI_STATUS 677 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) ( 678 IN LIST_ENTRY *Entry, 679 IN VOID *Context OPTIONAL 680 ); 681 682 /** 683 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished. 684 685 Destroy network children list by list traversals is not safe due to graph dependencies between nodes. 686 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed 687 has been removed from the list or not. 688 If it has been removed, then restart the traversal from the head. 689 If it hasn't been removed, then continue with the next node directly. 690 This function will end the iterate and return the CallBack's last return value if error happens, 691 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list. 692 693 @param[in] List The head of the list. 694 @param[in] CallBack Pointer to the callback function to destroy one node in the list. 695 @param[in] Context Pointer to the callback function's context: corresponds to the 696 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK. 697 @param[out] ListLength The length of the link list if the function returns successfully. 698 699 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children. 700 @retval EFI_INVALID_PARAMETER The input parameter is invalid. 701 @retval Others Return the CallBack's last return value. 702 703 **/ 704 EFI_STATUS 705 EFIAPI 706 NetDestroyLinkList ( 707 IN LIST_ENTRY *List, 708 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack, 709 IN VOID *Context, OPTIONAL 710 OUT UINTN *ListLength OPTIONAL 711 ); 712 713 /** 714 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer. 715 716 @param[in] Handle Handle to be checked. 717 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer. 718 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL 719 if NumberOfChildren is 0. 720 721 @retval TURE Found the input Handle in ChildHandleBuffer. 722 @retval FALSE Can't find the input Handle in ChildHandleBuffer. 723 724 **/ 725 BOOLEAN 726 EFIAPI 727 NetIsInHandleBuffer ( 728 IN EFI_HANDLE Handle, 729 IN UINTN NumberOfChildren, 730 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL 731 ); 732 733 // 734 // Object container: EFI network stack spec defines various kinds of 735 // tokens. The drivers can share code to manage those objects. 736 // 737 typedef struct { 738 LIST_ENTRY Link; 739 VOID *Key; 740 VOID *Value; 741 } NET_MAP_ITEM; 742 743 typedef struct { 744 LIST_ENTRY Used; 745 LIST_ENTRY Recycled; 746 UINTN Count; 747 } NET_MAP; 748 749 #define NET_MAP_INCREAMENT 64 750 751 /** 752 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs. 753 754 Initialize the forward and backward links of two head nodes donated by Map->Used 755 and Map->Recycled of two doubly linked lists. 756 Initializes the count of the <Key, Value> pairs in the netmap to zero. 757 758 If Map is NULL, then ASSERT(). 759 If the address of Map->Used is NULL, then ASSERT(). 760 If the address of Map->Recycled is NULl, then ASSERT(). 761 762 @param[in, out] Map The netmap to initialize. 763 764 **/ 765 VOID 766 EFIAPI 767 NetMapInit ( 768 IN OUT NET_MAP *Map 769 ); 770 771 /** 772 To clean up the netmap, that is, release allocated memories. 773 774 Removes all nodes of the Used doubly linked list and frees memory of all related netmap items. 775 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items. 776 The number of the <Key, Value> pairs in the netmap is set to zero. 777 778 If Map is NULL, then ASSERT(). 779 780 @param[in, out] Map The netmap to clean up. 781 782 **/ 783 VOID 784 EFIAPI 785 NetMapClean ( 786 IN OUT NET_MAP *Map 787 ); 788 789 /** 790 Test whether the netmap is empty and return true if it is. 791 792 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE. 793 794 If Map is NULL, then ASSERT(). 795 796 797 @param[in] Map The net map to test. 798 799 @return TRUE if the netmap is empty, otherwise FALSE. 800 801 **/ 802 BOOLEAN 803 EFIAPI 804 NetMapIsEmpty ( 805 IN NET_MAP *Map 806 ); 807 808 /** 809 Return the number of the <Key, Value> pairs in the netmap. 810 811 @param[in] Map The netmap to get the entry number. 812 813 @return The entry number in the netmap. 814 815 **/ 816 UINTN 817 EFIAPI 818 NetMapGetCount ( 819 IN NET_MAP *Map 820 ); 821 822 /** 823 Allocate an item to save the <Key, Value> pair to the head of the netmap. 824 825 Allocate an item to save the <Key, Value> pair and add corresponding node entry 826 to the beginning of the Used doubly linked list. The number of the <Key, Value> 827 pairs in the netmap increase by 1. 828 829 If Map is NULL, then ASSERT(). 830 831 @param[in, out] Map The netmap to insert into. 832 @param[in] Key The user's key. 833 @param[in] Value The user's value for the key. 834 835 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. 836 @retval EFI_SUCCESS The item is inserted to the head. 837 838 **/ 839 EFI_STATUS 840 EFIAPI 841 NetMapInsertHead ( 842 IN OUT NET_MAP *Map, 843 IN VOID *Key, 844 IN VOID *Value OPTIONAL 845 ); 846 847 /** 848 Allocate an item to save the <Key, Value> pair to the tail of the netmap. 849 850 Allocate an item to save the <Key, Value> pair and add corresponding node entry 851 to the tail of the Used doubly linked list. The number of the <Key, Value> 852 pairs in the netmap increase by 1. 853 854 If Map is NULL, then ASSERT(). 855 856 @param[in, out] Map The netmap to insert into. 857 @param[in] Key The user's key. 858 @param[in] Value The user's value for the key. 859 860 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. 861 @retval EFI_SUCCESS The item is inserted to the tail. 862 863 **/ 864 EFI_STATUS 865 EFIAPI 866 NetMapInsertTail ( 867 IN OUT NET_MAP *Map, 868 IN VOID *Key, 869 IN VOID *Value OPTIONAL 870 ); 871 872 /** 873 Finds the key in the netmap and returns the point to the item containing the Key. 874 875 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every 876 item with the key to search. It returns the point to the item contains the Key if found. 877 878 If Map is NULL, then ASSERT(). 879 880 @param[in] Map The netmap to search within. 881 @param[in] Key The key to search. 882 883 @return The point to the item contains the Key, or NULL if Key isn't in the map. 884 885 **/ 886 NET_MAP_ITEM * 887 EFIAPI 888 NetMapFindKey ( 889 IN NET_MAP *Map, 890 IN VOID *Key 891 ); 892 893 /** 894 Remove the node entry of the item from the netmap and return the key of the removed item. 895 896 Remove the node entry of the item from the Used doubly linked list of the netmap. 897 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 898 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL, 899 Value will point to the value of the item. It returns the key of the removed item. 900 901 If Map is NULL, then ASSERT(). 902 If Item is NULL, then ASSERT(). 903 if item in not in the netmap, then ASSERT(). 904 905 @param[in, out] Map The netmap to remove the item from. 906 @param[in, out] Item The item to remove. 907 @param[out] Value The variable to receive the value if not NULL. 908 909 @return The key of the removed item. 910 911 **/ 912 VOID * 913 EFIAPI 914 NetMapRemoveItem ( 915 IN OUT NET_MAP *Map, 916 IN OUT NET_MAP_ITEM *Item, 917 OUT VOID **Value OPTIONAL 918 ); 919 920 /** 921 Remove the first node entry on the netmap and return the key of the removed item. 922 923 Remove the first node entry from the Used doubly linked list of the netmap. 924 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 925 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, 926 parameter Value will point to the value of the item. It returns the key of the removed item. 927 928 If Map is NULL, then ASSERT(). 929 If the Used doubly linked list is empty, then ASSERT(). 930 931 @param[in, out] Map The netmap to remove the head from. 932 @param[out] Value The variable to receive the value if not NULL. 933 934 @return The key of the item removed. 935 936 **/ 937 VOID * 938 EFIAPI 939 NetMapRemoveHead ( 940 IN OUT NET_MAP *Map, 941 OUT VOID **Value OPTIONAL 942 ); 943 944 /** 945 Remove the last node entry on the netmap and return the key of the removed item. 946 947 Remove the last node entry from the Used doubly linked list of the netmap. 948 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 949 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, 950 parameter Value will point to the value of the item. It returns the key of the removed item. 951 952 If Map is NULL, then ASSERT(). 953 If the Used doubly linked list is empty, then ASSERT(). 954 955 @param[in, out] Map The netmap to remove the tail from. 956 @param[out] Value The variable to receive the value if not NULL. 957 958 @return The key of the item removed. 959 960 **/ 961 VOID * 962 EFIAPI 963 NetMapRemoveTail ( 964 IN OUT NET_MAP *Map, 965 OUT VOID **Value OPTIONAL 966 ); 967 968 typedef 969 EFI_STATUS 970 (EFIAPI *NET_MAP_CALLBACK) ( 971 IN NET_MAP *Map, 972 IN NET_MAP_ITEM *Item, 973 IN VOID *Arg 974 ); 975 976 /** 977 Iterate through the netmap and call CallBack for each item. 978 979 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break 980 from the loop. It returns the CallBack's last return value. This function is 981 delete safe for the current item. 982 983 If Map is NULL, then ASSERT(). 984 If CallBack is NULL, then ASSERT(). 985 986 @param[in] Map The Map to iterate through. 987 @param[in] CallBack The callback function to call for each item. 988 @param[in] Arg The opaque parameter to the callback. 989 990 @retval EFI_SUCCESS There is no item in the netmap, or CallBack for each item 991 returns EFI_SUCCESS. 992 @retval Others It returns the CallBack's last return value. 993 994 **/ 995 EFI_STATUS 996 EFIAPI 997 NetMapIterate ( 998 IN NET_MAP *Map, 999 IN NET_MAP_CALLBACK CallBack, 1000 IN VOID *Arg OPTIONAL 1001 ); 1002 1003 1004 // 1005 // Helper functions to implement driver binding and service binding protocols. 1006 // 1007 /** 1008 Create a child of the service that is identified by ServiceBindingGuid. 1009 1010 Get the ServiceBinding Protocol first, then use it to create a child. 1011 1012 If ServiceBindingGuid is NULL, then ASSERT(). 1013 If ChildHandle is NULL, then ASSERT(). 1014 1015 @param[in] Controller The controller which has the service installed. 1016 @param[in] Image The image handle used to open service. 1017 @param[in] ServiceBindingGuid The service's Guid. 1018 @param[in, out] ChildHandle The handle to receive the created child. 1019 1020 @retval EFI_SUCCESS The child was successfully created. 1021 @retval Others Failed to create the child. 1022 1023 **/ 1024 EFI_STATUS 1025 EFIAPI 1026 NetLibCreateServiceChild ( 1027 IN EFI_HANDLE Controller, 1028 IN EFI_HANDLE Image, 1029 IN EFI_GUID *ServiceBindingGuid, 1030 IN OUT EFI_HANDLE *ChildHandle 1031 ); 1032 1033 /** 1034 Destroy a child of the service that is identified by ServiceBindingGuid. 1035 1036 Get the ServiceBinding Protocol first, then use it to destroy a child. 1037 1038 If ServiceBindingGuid is NULL, then ASSERT(). 1039 1040 @param[in] Controller The controller which has the service installed. 1041 @param[in] Image The image handle used to open service. 1042 @param[in] ServiceBindingGuid The service's Guid. 1043 @param[in] ChildHandle The child to destroy. 1044 1045 @retval EFI_SUCCESS The child was destroyed. 1046 @retval Others Failed to destroy the child. 1047 1048 **/ 1049 EFI_STATUS 1050 EFIAPI 1051 NetLibDestroyServiceChild ( 1052 IN EFI_HANDLE Controller, 1053 IN EFI_HANDLE Image, 1054 IN EFI_GUID *ServiceBindingGuid, 1055 IN EFI_HANDLE ChildHandle 1056 ); 1057 1058 /** 1059 Get handle with Simple Network Protocol installed on it. 1060 1061 There should be MNP Service Binding Protocol installed on the input ServiceHandle. 1062 If Simple Network Protocol is already installed on the ServiceHandle, the 1063 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle, 1064 try to find its parent handle with SNP installed. 1065 1066 @param[in] ServiceHandle The handle where network service binding protocols are 1067 installed on. 1068 @param[out] Snp The pointer to store the address of the SNP instance. 1069 This is an optional parameter that may be NULL. 1070 1071 @return The SNP handle, or NULL if not found. 1072 1073 **/ 1074 EFI_HANDLE 1075 EFIAPI 1076 NetLibGetSnpHandle ( 1077 IN EFI_HANDLE ServiceHandle, 1078 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL 1079 ); 1080 1081 /** 1082 Retrieve VLAN ID of a VLAN device handle. 1083 1084 Search VLAN device path node in Device Path of specified ServiceHandle and 1085 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle 1086 is not a VLAN device handle, and 0 will be returned. 1087 1088 @param[in] ServiceHandle The handle where network service binding protocols are 1089 installed on. 1090 1091 @return VLAN ID of the device handle, or 0 if not a VLAN device. 1092 1093 **/ 1094 UINT16 1095 EFIAPI 1096 NetLibGetVlanId ( 1097 IN EFI_HANDLE ServiceHandle 1098 ); 1099 1100 /** 1101 Find VLAN device handle with specified VLAN ID. 1102 1103 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle. 1104 This function will append VLAN device path node to the parent device path, 1105 and then use LocateDevicePath() to find the correct VLAN device handle. 1106 1107 @param[in] ControllerHandle The handle where network service binding protocols are 1108 installed on. 1109 @param[in] VlanId The configured VLAN ID for the VLAN device. 1110 1111 @return The VLAN device handle, or NULL if not found. 1112 1113 **/ 1114 EFI_HANDLE 1115 EFIAPI 1116 NetLibGetVlanHandle ( 1117 IN EFI_HANDLE ControllerHandle, 1118 IN UINT16 VlanId 1119 ); 1120 1121 /** 1122 Get MAC address associated with the network service handle. 1123 1124 There should be MNP Service Binding Protocol installed on the input ServiceHandle. 1125 If SNP is installed on the ServiceHandle or its parent handle, MAC address will 1126 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP. 1127 1128 @param[in] ServiceHandle The handle where network service binding protocols are 1129 installed on. 1130 @param[out] MacAddress The pointer to store the returned MAC address. 1131 @param[out] AddressSize The length of returned MAC address. 1132 1133 @retval EFI_SUCCESS MAC address was returned successfully. 1134 @retval Others Failed to get SNP mode data. 1135 1136 **/ 1137 EFI_STATUS 1138 EFIAPI 1139 NetLibGetMacAddress ( 1140 IN EFI_HANDLE ServiceHandle, 1141 OUT EFI_MAC_ADDRESS *MacAddress, 1142 OUT UINTN *AddressSize 1143 ); 1144 1145 /** 1146 Convert MAC address of the NIC associated with specified Service Binding Handle 1147 to a unicode string. Callers are responsible for freeing the string storage. 1148 1149 Locate simple network protocol associated with the Service Binding Handle and 1150 get the mac address from SNP. Then convert the mac address into a unicode 1151 string. It takes 2 unicode characters to represent a 1 byte binary buffer. 1152 Plus one unicode character for the null-terminator. 1153 1154 @param[in] ServiceHandle The handle where network service binding protocol is 1155 installed. 1156 @param[in] ImageHandle The image handle used to act as the agent handle to 1157 get the simple network protocol. This parameter is 1158 optional and may be NULL. 1159 @param[out] MacString The pointer to store the address of the string 1160 representation of the mac address. 1161 1162 @retval EFI_SUCCESS Converted the mac address a unicode string successfully. 1163 @retval EFI_OUT_OF_RESOURCES There are not enough memory resources. 1164 @retval Others Failed to open the simple network protocol. 1165 1166 **/ 1167 EFI_STATUS 1168 EFIAPI 1169 NetLibGetMacString ( 1170 IN EFI_HANDLE ServiceHandle, 1171 IN EFI_HANDLE ImageHandle, OPTIONAL 1172 OUT CHAR16 **MacString 1173 ); 1174 1175 /** 1176 Detect media status for specified network device. 1177 1178 The underlying UNDI driver may or may not support reporting media status from 1179 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine 1180 will try to invoke Snp->GetStatus() to get the media status. If media is already 1181 present, it returns directly. If media is not present, it will stop SNP and then 1182 restart SNP to get the latest media status. This provides an opportunity to get 1183 the correct media status for old UNDI driver, which doesn't support reporting 1184 media status from GET_STATUS command. 1185 Note: there are two limitations for the current algorithm: 1186 1) For UNDI with this capability, when the cable is not attached, there will 1187 be an redundant Stop/Start() process. 1188 2) for UNDI without this capability, in case that network cable is attached when 1189 Snp->Initialize() is invoked while network cable is unattached later, 1190 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer 1191 apps to wait for timeout time. 1192 1193 @param[in] ServiceHandle The handle where network service binding protocols are 1194 installed. 1195 @param[out] MediaPresent The pointer to store the media status. 1196 1197 @retval EFI_SUCCESS Media detection success. 1198 @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle. 1199 @retval EFI_UNSUPPORTED The network device does not support media detection. 1200 @retval EFI_DEVICE_ERROR SNP is in an unknown state. 1201 1202 **/ 1203 EFI_STATUS 1204 EFIAPI 1205 NetLibDetectMedia ( 1206 IN EFI_HANDLE ServiceHandle, 1207 OUT BOOLEAN *MediaPresent 1208 ); 1209 1210 /** 1211 Create an IPv4 device path node. 1212 1213 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH. 1214 The header subtype of IPv4 device path node is MSG_IPv4_DP. 1215 The length of the IPv4 device path node in bytes is 19. 1216 Get other information from parameters to make up the whole IPv4 device path node. 1217 1218 @param[in, out] Node The pointer to the IPv4 device path node. 1219 @param[in] Controller The controller handle. 1220 @param[in] LocalIp The local IPv4 address. 1221 @param[in] LocalPort The local port. 1222 @param[in] RemoteIp The remote IPv4 address. 1223 @param[in] RemotePort The remote port. 1224 @param[in] Protocol The protocol type in the IP header. 1225 @param[in] UseDefaultAddress Whether this instance is using default address or not. 1226 1227 **/ 1228 VOID 1229 EFIAPI 1230 NetLibCreateIPv4DPathNode ( 1231 IN OUT IPv4_DEVICE_PATH *Node, 1232 IN EFI_HANDLE Controller, 1233 IN IP4_ADDR LocalIp, 1234 IN UINT16 LocalPort, 1235 IN IP4_ADDR RemoteIp, 1236 IN UINT16 RemotePort, 1237 IN UINT16 Protocol, 1238 IN BOOLEAN UseDefaultAddress 1239 ); 1240 1241 /** 1242 Create an IPv6 device path node. 1243 1244 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH. 1245 The header subtype of IPv6 device path node is MSG_IPv6_DP. 1246 The length of the IPv6 device path node in bytes is 43. 1247 Get other information from parameters to make up the whole IPv6 device path node. 1248 1249 @param[in, out] Node The pointer to the IPv6 device path node. 1250 @param[in] Controller The controller handle. 1251 @param[in] LocalIp The local IPv6 address. 1252 @param[in] LocalPort The local port. 1253 @param[in] RemoteIp The remote IPv6 address. 1254 @param[in] RemotePort The remote port. 1255 @param[in] Protocol The protocol type in the IP header. 1256 1257 **/ 1258 VOID 1259 EFIAPI 1260 NetLibCreateIPv6DPathNode ( 1261 IN OUT IPv6_DEVICE_PATH *Node, 1262 IN EFI_HANDLE Controller, 1263 IN EFI_IPv6_ADDRESS *LocalIp, 1264 IN UINT16 LocalPort, 1265 IN EFI_IPv6_ADDRESS *RemoteIp, 1266 IN UINT16 RemotePort, 1267 IN UINT16 Protocol 1268 ); 1269 1270 1271 /** 1272 Find the UNDI/SNP handle from controller and protocol GUID. 1273 1274 For example, IP will open an MNP child to transmit/receive 1275 packets. When MNP is stopped, IP should also be stopped. IP 1276 needs to find its own private data that is related the IP's 1277 service binding instance that is installed on the UNDI/SNP handle. 1278 The controller is then either an MNP or an ARP child handle. Note that 1279 IP opens these handles using BY_DRIVER. Use that infomation to get the 1280 UNDI/SNP handle. 1281 1282 @param[in] Controller The protocol handle to check. 1283 @param[in] ProtocolGuid The protocol that is related with the handle. 1284 1285 @return The UNDI/SNP handle or NULL for errors. 1286 1287 **/ 1288 EFI_HANDLE 1289 EFIAPI 1290 NetLibGetNicHandle ( 1291 IN EFI_HANDLE Controller, 1292 IN EFI_GUID *ProtocolGuid 1293 ); 1294 1295 /** 1296 This is the default unload handle for all the network drivers. 1297 1298 Disconnect the driver specified by ImageHandle from all the devices in the handle database. 1299 Uninstall all the protocols installed in the driver entry point. 1300 1301 @param[in] ImageHandle The drivers' driver image. 1302 1303 @retval EFI_SUCCESS The image is unloaded. 1304 @retval Others Failed to unload the image. 1305 1306 **/ 1307 EFI_STATUS 1308 EFIAPI 1309 NetLibDefaultUnload ( 1310 IN EFI_HANDLE ImageHandle 1311 ); 1312 1313 /** 1314 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS. 1315 1316 @param[in] String The pointer to the Ascii string. 1317 @param[out] Ip4Address The pointer to the converted IPv4 address. 1318 1319 @retval EFI_SUCCESS Converted to an IPv4 address successfully. 1320 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip4Address is NULL. 1321 1322 **/ 1323 EFI_STATUS 1324 EFIAPI 1325 NetLibAsciiStrToIp4 ( 1326 IN CONST CHAR8 *String, 1327 OUT EFI_IPv4_ADDRESS *Ip4Address 1328 ); 1329 1330 /** 1331 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the 1332 string is defined in RFC 4291 - Text Pepresentation of Addresses. 1333 1334 @param[in] String The pointer to the Ascii string. 1335 @param[out] Ip6Address The pointer to the converted IPv6 address. 1336 1337 @retval EFI_SUCCESS Converted to an IPv6 address successfully. 1338 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL. 1339 1340 **/ 1341 EFI_STATUS 1342 EFIAPI 1343 NetLibAsciiStrToIp6 ( 1344 IN CONST CHAR8 *String, 1345 OUT EFI_IPv6_ADDRESS *Ip6Address 1346 ); 1347 1348 /** 1349 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS. 1350 1351 @param[in] String The pointer to the Ascii string. 1352 @param[out] Ip4Address The pointer to the converted IPv4 address. 1353 1354 @retval EFI_SUCCESS Converted to an IPv4 address successfully. 1355 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL. 1356 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to lack of resources. 1357 1358 **/ 1359 EFI_STATUS 1360 EFIAPI 1361 NetLibStrToIp4 ( 1362 IN CONST CHAR16 *String, 1363 OUT EFI_IPv4_ADDRESS *Ip4Address 1364 ); 1365 1366 /** 1367 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of 1368 the string is defined in RFC 4291 - Text Pepresentation of Addresses. 1369 1370 @param[in] String The pointer to the Ascii string. 1371 @param[out] Ip6Address The pointer to the converted IPv6 address. 1372 1373 @retval EFI_SUCCESS Converted to an IPv6 address successfully. 1374 @retval EFI_INVALID_PARAMETER The string is malformated or Ip6Address is NULL. 1375 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources. 1376 1377 **/ 1378 EFI_STATUS 1379 EFIAPI 1380 NetLibStrToIp6 ( 1381 IN CONST CHAR16 *String, 1382 OUT EFI_IPv6_ADDRESS *Ip6Address 1383 ); 1384 1385 /** 1386 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length. 1387 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses 1388 Prefixes: ipv6-address/prefix-length. 1389 1390 @param[in] String The pointer to the Ascii string. 1391 @param[out] Ip6Address The pointer to the converted IPv6 address. 1392 @param[out] PrefixLength The pointer to the converted prefix length. 1393 1394 @retval EFI_SUCCESS Converted to an IPv6 address successfully. 1395 @retval EFI_INVALID_PARAMETER The string is malformated, or Ip6Address is NULL. 1396 @retval EFI_OUT_OF_RESOURCES Failed to perform the operation due to a lack of resources. 1397 1398 **/ 1399 EFI_STATUS 1400 EFIAPI 1401 NetLibStrToIp6andPrefix ( 1402 IN CONST CHAR16 *String, 1403 OUT EFI_IPv6_ADDRESS *Ip6Address, 1404 OUT UINT8 *PrefixLength 1405 ); 1406 1407 /** 1408 1409 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string. 1410 The text representation of address is defined in RFC 4291. 1411 1412 @param[in] Ip6Address The pointer to the IPv6 address. 1413 @param[out] String The buffer to return the converted string. 1414 @param[in] StringSize The length in bytes of the input String. 1415 1416 @retval EFI_SUCCESS Convert to string successfully. 1417 @retval EFI_INVALID_PARAMETER The input parameter is invalid. 1418 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been 1419 updated with the size needed to complete the request. 1420 **/ 1421 EFI_STATUS 1422 EFIAPI 1423 NetLibIp6ToStr ( 1424 IN EFI_IPv6_ADDRESS *Ip6Address, 1425 OUT CHAR16 *String, 1426 IN UINTN StringSize 1427 ); 1428 1429 // 1430 // Various signatures 1431 // 1432 #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f') 1433 #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c') 1434 #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u') 1435 1436 1437 #define NET_PROTO_DATA 64 // Opaque buffer for protocols 1438 #define NET_BUF_HEAD 1 // Trim or allocate space from head 1439 #define NET_BUF_TAIL 0 // Trim or allocate space from tail 1440 #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector 1441 1442 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \ 1443 ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE))) 1444 1445 // 1446 // Single memory block in the vector. 1447 // 1448 typedef struct { 1449 UINT32 Len; // The block's length 1450 UINT8 *Bulk; // The block's Data 1451 } NET_BLOCK; 1452 1453 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg); 1454 1455 // 1456 //NET_VECTOR contains several blocks to hold all packet's 1457 //fragments and other house-keeping stuff for sharing. It 1458 //doesn't specify the where actual packet fragment begins. 1459 // 1460 typedef struct { 1461 UINT32 Signature; 1462 INTN RefCnt; // Reference count to share NET_VECTOR. 1463 NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR 1464 VOID *Arg; // opeque argument to Free 1465 UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST 1466 UINT32 Len; // Total length of the assocated BLOCKs 1467 1468 UINT32 BlockNum; 1469 NET_BLOCK Block[1]; 1470 } NET_VECTOR; 1471 1472 // 1473 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies 1474 //where the actual fragment begins and ends 1475 // 1476 typedef struct { 1477 UINT8 *BlockHead; // Block's head, or the smallest valid Head 1478 UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length 1479 UINT8 *Head; // 1st byte of the data in the block 1480 UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size 1481 UINT32 Size; // The size of the data 1482 } NET_BLOCK_OP; 1483 1484 typedef union { 1485 IP4_HEAD *Ip4; 1486 EFI_IP6_HEADER *Ip6; 1487 } NET_IP_HEAD; 1488 1489 // 1490 //NET_BUF is the buffer manage structure used by the 1491 //network stack. Every network packet may be fragmented. The Vector points to 1492 //memory blocks used by each fragment, and BlockOp 1493 //specifies where each fragment begins and ends. 1494 // 1495 //It also contains an opaque area for the protocol to store 1496 //per-packet information. Protocol must be careful not 1497 //to overwrite the members after that. 1498 // 1499 typedef struct { 1500 UINT32 Signature; 1501 INTN RefCnt; 1502 LIST_ENTRY List; // The List this NET_BUF is on 1503 1504 NET_IP_HEAD Ip; // Network layer header, for fast access 1505 TCP_HEAD *Tcp; // Transport layer header, for fast access 1506 EFI_UDP_HEADER *Udp; // User Datagram Protocol header 1507 UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data 1508 1509 NET_VECTOR *Vector; // The vector containing the packet 1510 1511 UINT32 BlockOpNum; // Total number of BlockOp in the buffer 1512 UINT32 TotalSize; // Total size of the actual packet 1513 NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet 1514 } NET_BUF; 1515 1516 // 1517 //A queue of NET_BUFs. It is a thin extension of 1518 //NET_BUF functions. 1519 // 1520 typedef struct { 1521 UINT32 Signature; 1522 INTN RefCnt; 1523 LIST_ENTRY List; // The List this buffer queue is on 1524 1525 LIST_ENTRY BufList; // list of queued buffers 1526 UINT32 BufSize; // total length of DATA in the buffers 1527 UINT32 BufNum; // total number of buffers on the chain 1528 } NET_BUF_QUEUE; 1529 1530 // 1531 // Pseudo header for TCP and UDP checksum 1532 // 1533 #pragma pack(1) 1534 typedef struct { 1535 IP4_ADDR SrcIp; 1536 IP4_ADDR DstIp; 1537 UINT8 Reserved; 1538 UINT8 Protocol; 1539 UINT16 Len; 1540 } NET_PSEUDO_HDR; 1541 1542 typedef struct { 1543 EFI_IPv6_ADDRESS SrcIp; 1544 EFI_IPv6_ADDRESS DstIp; 1545 UINT32 Len; 1546 UINT32 Reserved:24; 1547 UINT32 NextHeader:8; 1548 } NET_IP6_PSEUDO_HDR; 1549 #pragma pack() 1550 1551 // 1552 // The fragment entry table used in network interfaces. This is 1553 // the same as NET_BLOCK now. Use two different to distinguish 1554 // the two in case that NET_BLOCK be enhanced later. 1555 // 1556 typedef struct { 1557 UINT32 Len; 1558 UINT8 *Bulk; 1559 } NET_FRAGMENT; 1560 1561 #define NET_GET_REF(PData) ((PData)->RefCnt++) 1562 #define NET_PUT_REF(PData) ((PData)->RefCnt--) 1563 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData) 1564 1565 #define NET_BUF_SHARED(Buf) \ 1566 (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1)) 1567 1568 #define NET_VECTOR_SIZE(BlockNum) \ 1569 (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK)) 1570 1571 #define NET_BUF_SIZE(BlockOpNum) \ 1572 (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP)) 1573 1574 #define NET_HEADSPACE(BlockOp) \ 1575 (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead) 1576 1577 #define NET_TAILSPACE(BlockOp) \ 1578 (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail) 1579 1580 /** 1581 Allocate a single block NET_BUF. Upon allocation, all the 1582 free space is in the tail room. 1583 1584 @param[in] Len The length of the block. 1585 1586 @return The pointer to the allocated NET_BUF, or NULL if the 1587 allocation failed due to resource limitations. 1588 1589 **/ 1590 NET_BUF * 1591 EFIAPI 1592 NetbufAlloc ( 1593 IN UINT32 Len 1594 ); 1595 1596 /** 1597 Free the net buffer and its associated NET_VECTOR. 1598 1599 Decrease the reference count of the net buffer by one. Free the associated net 1600 vector and itself if the reference count of the net buffer is decreased to 0. 1601 The net vector free operation decreases the reference count of the net 1602 vector by one, and performs the resource free operation when the reference count 1603 of the net vector is 0. 1604 1605 @param[in] Nbuf The pointer to the NET_BUF to be freed. 1606 1607 **/ 1608 VOID 1609 EFIAPI 1610 NetbufFree ( 1611 IN NET_BUF *Nbuf 1612 ); 1613 1614 /** 1615 Get the index of NET_BLOCK_OP that contains the byte at Offset in the net 1616 buffer. 1617 1618 For example, this function can be used to retrieve the IP header in the packet. It 1619 also can be used to get the fragment that contains the byte used 1620 mainly by the library implementation itself. 1621 1622 @param[in] Nbuf The pointer to the net buffer. 1623 @param[in] Offset The offset of the byte. 1624 @param[out] Index Index of the NET_BLOCK_OP that contains the byte at 1625 Offset. 1626 1627 @return The pointer to the Offset'th byte of data in the net buffer, or NULL 1628 if there is no such data in the net buffer. 1629 1630 **/ 1631 UINT8 * 1632 EFIAPI 1633 NetbufGetByte ( 1634 IN NET_BUF *Nbuf, 1635 IN UINT32 Offset, 1636 OUT UINT32 *Index OPTIONAL 1637 ); 1638 1639 /** 1640 Create a copy of the net buffer that shares the associated net vector. 1641 1642 The reference count of the newly created net buffer is set to 1. The reference 1643 count of the associated net vector is increased by one. 1644 1645 @param[in] Nbuf The pointer to the net buffer to be cloned. 1646 1647 @return The pointer to the cloned net buffer, or NULL if the 1648 allocation failed due to resource limitations. 1649 1650 **/ 1651 NET_BUF * 1652 EFIAPI 1653 NetbufClone ( 1654 IN NET_BUF *Nbuf 1655 ); 1656 1657 /** 1658 Create a duplicated copy of the net buffer with data copied and HeadSpace 1659 bytes of head space reserved. 1660 1661 The duplicated net buffer will allocate its own memory to hold the data of the 1662 source net buffer. 1663 1664 @param[in] Nbuf The pointer to the net buffer to be duplicated from. 1665 @param[in, out] Duplicate The pointer to the net buffer to duplicate to. If 1666 NULL, a new net buffer is allocated. 1667 @param[in] HeadSpace The length of the head space to reserve. 1668 1669 @return The pointer to the duplicated net buffer, or NULL if 1670 the allocation failed due to resource limitations. 1671 1672 **/ 1673 NET_BUF * 1674 EFIAPI 1675 NetbufDuplicate ( 1676 IN NET_BUF *Nbuf, 1677 IN OUT NET_BUF *Duplicate OPTIONAL, 1678 IN UINT32 HeadSpace 1679 ); 1680 1681 /** 1682 Create a NET_BUF structure which contains Len byte data of Nbuf starting from 1683 Offset. 1684 1685 A new NET_BUF structure will be created but the associated data in NET_VECTOR 1686 is shared. This function exists to perform IP packet fragmentation. 1687 1688 @param[in] Nbuf The pointer to the net buffer to be extracted. 1689 @param[in] Offset Starting point of the data to be included in the new 1690 net buffer. 1691 @param[in] Len The bytes of data to be included in the new net buffer. 1692 @param[in] HeadSpace The bytes of the head space to reserve for the protocol header. 1693 1694 @return The pointer to the cloned net buffer, or NULL if the 1695 allocation failed due to resource limitations. 1696 1697 **/ 1698 NET_BUF * 1699 EFIAPI 1700 NetbufGetFragment ( 1701 IN NET_BUF *Nbuf, 1702 IN UINT32 Offset, 1703 IN UINT32 Len, 1704 IN UINT32 HeadSpace 1705 ); 1706 1707 /** 1708 Reserve some space in the header room of the net buffer. 1709 1710 Upon allocation, all the space is in the tail room of the buffer. Call this 1711 function to move space to the header room. This function is quite limited 1712 in that it can only reserve space from the first block of an empty NET_BUF not 1713 built from the external. However, it should be enough for the network stack. 1714 1715 @param[in, out] Nbuf The pointer to the net buffer. 1716 @param[in] Len The length of buffer to be reserved from the header. 1717 1718 **/ 1719 VOID 1720 EFIAPI 1721 NetbufReserve ( 1722 IN OUT NET_BUF *Nbuf, 1723 IN UINT32 Len 1724 ); 1725 1726 /** 1727 Allocate Len bytes of space from the header or tail of the buffer. 1728 1729 @param[in, out] Nbuf The pointer to the net buffer. 1730 @param[in] Len The length of the buffer to be allocated. 1731 @param[in] FromHead The flag to indicate whether to reserve the data 1732 from head (TRUE) or tail (FALSE). 1733 1734 @return The pointer to the first byte of the allocated buffer, 1735 or NULL, if there is no sufficient space. 1736 1737 **/ 1738 UINT8* 1739 EFIAPI 1740 NetbufAllocSpace ( 1741 IN OUT NET_BUF *Nbuf, 1742 IN UINT32 Len, 1743 IN BOOLEAN FromHead 1744 ); 1745 1746 /** 1747 Trim Len bytes from the header or the tail of the net buffer. 1748 1749 @param[in, out] Nbuf The pointer to the net buffer. 1750 @param[in] Len The length of the data to be trimmed. 1751 @param[in] FromHead The flag to indicate whether trim data is from the 1752 head (TRUE) or the tail (FALSE). 1753 1754 @return The length of the actual trimmed data, which may be less 1755 than Len if the TotalSize of Nbuf is less than Len. 1756 1757 **/ 1758 UINT32 1759 EFIAPI 1760 NetbufTrim ( 1761 IN OUT NET_BUF *Nbuf, 1762 IN UINT32 Len, 1763 IN BOOLEAN FromHead 1764 ); 1765 1766 /** 1767 Copy Len bytes of data from the specific offset of the net buffer to the 1768 destination memory. 1769 1770 The Len bytes of data may cross several fragments of the net buffer. 1771 1772 @param[in] Nbuf The pointer to the net buffer. 1773 @param[in] Offset The sequence number of the first byte to copy. 1774 @param[in] Len The length of the data to copy. 1775 @param[in] Dest The destination of the data to copy to. 1776 1777 @return The length of the actual copied data, or 0 if the offset 1778 specified exceeds the total size of net buffer. 1779 1780 **/ 1781 UINT32 1782 EFIAPI 1783 NetbufCopy ( 1784 IN NET_BUF *Nbuf, 1785 IN UINT32 Offset, 1786 IN UINT32 Len, 1787 IN UINT8 *Dest 1788 ); 1789 1790 /** 1791 Build a NET_BUF from external blocks. 1792 1793 A new NET_BUF structure will be created from external blocks. An additional block 1794 of memory will be allocated to hold reserved HeadSpace bytes of header room 1795 and existing HeadLen bytes of header, but the external blocks are shared by the 1796 net buffer to avoid data copying. 1797 1798 @param[in] ExtFragment The pointer to the data block. 1799 @param[in] ExtNum The number of the data blocks. 1800 @param[in] HeadSpace The head space to be reserved. 1801 @param[in] HeadLen The length of the protocol header. The function 1802 pulls this amount of data into a linear block. 1803 @param[in] ExtFree The pointer to the caller-provided free function. 1804 @param[in] Arg The argument passed to ExtFree when ExtFree is 1805 called. 1806 1807 @return The pointer to the net buffer built from the data blocks, 1808 or NULL if the allocation failed due to resource 1809 limit. 1810 1811 **/ 1812 NET_BUF * 1813 EFIAPI 1814 NetbufFromExt ( 1815 IN NET_FRAGMENT *ExtFragment, 1816 IN UINT32 ExtNum, 1817 IN UINT32 HeadSpace, 1818 IN UINT32 HeadLen, 1819 IN NET_VECTOR_EXT_FREE ExtFree, 1820 IN VOID *Arg OPTIONAL 1821 ); 1822 1823 /** 1824 Build a fragment table to contain the fragments in the net buffer. This is the 1825 opposite operation of the NetbufFromExt. 1826 1827 @param[in] Nbuf Points to the net buffer. 1828 @param[in, out] ExtFragment The pointer to the data block. 1829 @param[in, out] ExtNum The number of the data blocks. 1830 1831 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than 1832 ExtNum. 1833 @retval EFI_SUCCESS The fragment table was built successfully. 1834 1835 **/ 1836 EFI_STATUS 1837 EFIAPI 1838 NetbufBuildExt ( 1839 IN NET_BUF *Nbuf, 1840 IN OUT NET_FRAGMENT *ExtFragment, 1841 IN OUT UINT32 *ExtNum 1842 ); 1843 1844 /** 1845 Build a net buffer from a list of net buffers. 1846 1847 All the fragments will be collected from the list of NEW_BUF, and then a new 1848 net buffer will be created through NetbufFromExt. 1849 1850 @param[in] BufList A List of the net buffer. 1851 @param[in] HeadSpace The head space to be reserved. 1852 @param[in] HeaderLen The length of the protocol header. The function 1853 pulls this amount of data into a linear block. 1854 @param[in] ExtFree The pointer to the caller provided free function. 1855 @param[in] Arg The argument passed to ExtFree when ExtFree is called. 1856 1857 @return The pointer to the net buffer built from the list of net 1858 buffers. 1859 1860 **/ 1861 NET_BUF * 1862 EFIAPI 1863 NetbufFromBufList ( 1864 IN LIST_ENTRY *BufList, 1865 IN UINT32 HeadSpace, 1866 IN UINT32 HeaderLen, 1867 IN NET_VECTOR_EXT_FREE ExtFree, 1868 IN VOID *Arg OPTIONAL 1869 ); 1870 1871 /** 1872 Free a list of net buffers. 1873 1874 @param[in, out] Head The pointer to the head of linked net buffers. 1875 1876 **/ 1877 VOID 1878 EFIAPI 1879 NetbufFreeList ( 1880 IN OUT LIST_ENTRY *Head 1881 ); 1882 1883 /** 1884 Initiate the net buffer queue. 1885 1886 @param[in, out] NbufQue The pointer to the net buffer queue to be initialized. 1887 1888 **/ 1889 VOID 1890 EFIAPI 1891 NetbufQueInit ( 1892 IN OUT NET_BUF_QUEUE *NbufQue 1893 ); 1894 1895 /** 1896 Allocate and initialize a net buffer queue. 1897 1898 @return The pointer to the allocated net buffer queue, or NULL if the 1899 allocation failed due to resource limit. 1900 1901 **/ 1902 NET_BUF_QUEUE * 1903 EFIAPI 1904 NetbufQueAlloc ( 1905 VOID 1906 ); 1907 1908 /** 1909 Free a net buffer queue. 1910 1911 Decrease the reference count of the net buffer queue by one. The real resource 1912 free operation isn't performed until the reference count of the net buffer 1913 queue is decreased to 0. 1914 1915 @param[in] NbufQue The pointer to the net buffer queue to be freed. 1916 1917 **/ 1918 VOID 1919 EFIAPI 1920 NetbufQueFree ( 1921 IN NET_BUF_QUEUE *NbufQue 1922 ); 1923 1924 /** 1925 Remove a net buffer from the head in the specific queue and return it. 1926 1927 @param[in, out] NbufQue The pointer to the net buffer queue. 1928 1929 @return The pointer to the net buffer removed from the specific queue, 1930 or NULL if there is no net buffer in the specific queue. 1931 1932 **/ 1933 NET_BUF * 1934 EFIAPI 1935 NetbufQueRemove ( 1936 IN OUT NET_BUF_QUEUE *NbufQue 1937 ); 1938 1939 /** 1940 Append a net buffer to the net buffer queue. 1941 1942 @param[in, out] NbufQue The pointer to the net buffer queue. 1943 @param[in, out] Nbuf The pointer to the net buffer to be appended. 1944 1945 **/ 1946 VOID 1947 EFIAPI 1948 NetbufQueAppend ( 1949 IN OUT NET_BUF_QUEUE *NbufQue, 1950 IN OUT NET_BUF *Nbuf 1951 ); 1952 1953 /** 1954 Copy Len bytes of data from the net buffer queue at the specific offset to the 1955 destination memory. 1956 1957 The copying operation is the same as NetbufCopy, but applies to the net buffer 1958 queue instead of the net buffer. 1959 1960 @param[in] NbufQue The pointer to the net buffer queue. 1961 @param[in] Offset The sequence number of the first byte to copy. 1962 @param[in] Len The length of the data to copy. 1963 @param[out] Dest The destination of the data to copy to. 1964 1965 @return The length of the actual copied data, or 0 if the offset 1966 specified exceeds the total size of net buffer queue. 1967 1968 **/ 1969 UINT32 1970 EFIAPI 1971 NetbufQueCopy ( 1972 IN NET_BUF_QUEUE *NbufQue, 1973 IN UINT32 Offset, 1974 IN UINT32 Len, 1975 OUT UINT8 *Dest 1976 ); 1977 1978 /** 1979 Trim Len bytes of data from the buffer queue and free any net buffer 1980 that is completely trimmed. 1981 1982 The trimming operation is the same as NetbufTrim but applies to the net buffer 1983 queue instead of the net buffer. 1984 1985 @param[in, out] NbufQue The pointer to the net buffer queue. 1986 @param[in] Len The length of the data to trim. 1987 1988 @return The actual length of the data trimmed. 1989 1990 **/ 1991 UINT32 1992 EFIAPI 1993 NetbufQueTrim ( 1994 IN OUT NET_BUF_QUEUE *NbufQue, 1995 IN UINT32 Len 1996 ); 1997 1998 1999 /** 2000 Flush the net buffer queue. 2001 2002 @param[in, out] NbufQue The pointer to the queue to be flushed. 2003 2004 **/ 2005 VOID 2006 EFIAPI 2007 NetbufQueFlush ( 2008 IN OUT NET_BUF_QUEUE *NbufQue 2009 ); 2010 2011 /** 2012 Compute the checksum for a bulk of data. 2013 2014 @param[in] Bulk The pointer to the data. 2015 @param[in] Len The length of the data, in bytes. 2016 2017 @return The computed checksum. 2018 2019 **/ 2020 UINT16 2021 EFIAPI 2022 NetblockChecksum ( 2023 IN UINT8 *Bulk, 2024 IN UINT32 Len 2025 ); 2026 2027 /** 2028 Add two checksums. 2029 2030 @param[in] Checksum1 The first checksum to be added. 2031 @param[in] Checksum2 The second checksum to be added. 2032 2033 @return The new checksum. 2034 2035 **/ 2036 UINT16 2037 EFIAPI 2038 NetAddChecksum ( 2039 IN UINT16 Checksum1, 2040 IN UINT16 Checksum2 2041 ); 2042 2043 /** 2044 Compute the checksum for a NET_BUF. 2045 2046 @param[in] Nbuf The pointer to the net buffer. 2047 2048 @return The computed checksum. 2049 2050 **/ 2051 UINT16 2052 EFIAPI 2053 NetbufChecksum ( 2054 IN NET_BUF *Nbuf 2055 ); 2056 2057 /** 2058 Compute the checksum for TCP/UDP pseudo header. 2059 2060 Src and Dst are in network byte order, and Len is in host byte order. 2061 2062 @param[in] Src The source address of the packet. 2063 @param[in] Dst The destination address of the packet. 2064 @param[in] Proto The protocol type of the packet. 2065 @param[in] Len The length of the packet. 2066 2067 @return The computed checksum. 2068 2069 **/ 2070 UINT16 2071 EFIAPI 2072 NetPseudoHeadChecksum ( 2073 IN IP4_ADDR Src, 2074 IN IP4_ADDR Dst, 2075 IN UINT8 Proto, 2076 IN UINT16 Len 2077 ); 2078 2079 /** 2080 Compute the checksum for the TCP6/UDP6 pseudo header. 2081 2082 Src and Dst are in network byte order, and Len is in host byte order. 2083 2084 @param[in] Src The source address of the packet. 2085 @param[in] Dst The destination address of the packet. 2086 @param[in] NextHeader The protocol type of the packet. 2087 @param[in] Len The length of the packet. 2088 2089 @return The computed checksum. 2090 2091 **/ 2092 UINT16 2093 EFIAPI 2094 NetIp6PseudoHeadChecksum ( 2095 IN EFI_IPv6_ADDRESS *Src, 2096 IN EFI_IPv6_ADDRESS *Dst, 2097 IN UINT8 NextHeader, 2098 IN UINT32 Len 2099 ); 2100 2101 /** 2102 The function frees the net buffer which allocated by the IP protocol. It releases 2103 only the net buffer and doesn't call the external free function. 2104 2105 This function should be called after finishing the process of mIpSec->ProcessExt() 2106 for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new 2107 buffer for the ESP, so there needs a function to free the old net buffer. 2108 2109 @param[in] Nbuf The network buffer to be freed. 2110 2111 **/ 2112 VOID 2113 NetIpSecNetbufFree ( 2114 NET_BUF *Nbuf 2115 ); 2116 2117 /** 2118 This function obtains the system guid from the smbios table. 2119 2120 @param[out] SystemGuid The pointer of the returned system guid. 2121 2122 @retval EFI_SUCCESS Successfully obtained the system guid. 2123 @retval EFI_NOT_FOUND Did not find the SMBIOS table. 2124 2125 **/ 2126 EFI_STATUS 2127 EFIAPI 2128 NetLibGetSystemGuid ( 2129 OUT EFI_GUID *SystemGuid 2130 ); 2131 2132 #endif 2133