1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
6 #define BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
7 
8 #include <stddef.h>
9 
10 #include "base/base_export.h"
11 #include "base/macros.h"
12 #include "build/build_config.h"
13 
14 #if defined(OS_WIN)
15 #include "base/win/scoped_handle.h"
16 #endif
17 
18 #if defined(OS_POSIX)
19 #include <list>
20 #include <utility>
21 #include "base/memory/ref_counted.h"
22 #include "base/synchronization/lock.h"
23 #endif
24 
25 namespace base {
26 
27 class TimeDelta;
28 
29 // A WaitableEvent can be a useful thread synchronization tool when you want to
30 // allow one thread to wait for another thread to finish some work. For
31 // non-Windows systems, this can only be used from within a single address
32 // space.
33 //
34 // Use a WaitableEvent when you would otherwise use a Lock+ConditionVariable to
35 // protect a simple boolean value.  However, if you find yourself using a
36 // WaitableEvent in conjunction with a Lock to wait for a more complex state
37 // change (e.g., for an item to be added to a queue), then you should probably
38 // be using a ConditionVariable instead of a WaitableEvent.
39 //
40 // NOTE: On Windows, this class provides a subset of the functionality afforded
41 // by a Windows event object.  This is intentional.  If you are writing Windows
42 // specific code and you need other features of a Windows event, then you might
43 // be better off just using an Windows event directly.
44 class BASE_EXPORT WaitableEvent {
45  public:
46   // Indicates whether a WaitableEvent should automatically reset the event
47   // state after a single waiting thread has been released or remain signaled
48   // until Reset() is manually invoked.
49   enum class ResetPolicy { MANUAL, AUTOMATIC };
50 
51   // Indicates whether a new WaitableEvent should start in a signaled state or
52   // not.
53   enum class InitialState { SIGNALED, NOT_SIGNALED };
54 
55   // Constructs a WaitableEvent with policy and initial state as detailed in
56   // the above enums.
57   WaitableEvent(ResetPolicy reset_policy, InitialState initial_state);
58 
59 #if defined(OS_WIN)
60   // Create a WaitableEvent from an Event HANDLE which has already been
61   // created. This objects takes ownership of the HANDLE and will close it when
62   // deleted.
63   explicit WaitableEvent(win::ScopedHandle event_handle);
64 #endif
65 
66   ~WaitableEvent();
67 
68   // Put the event in the un-signaled state.
69   void Reset();
70 
71   // Put the event in the signaled state.  Causing any thread blocked on Wait
72   // to be woken up.
73   void Signal();
74 
75   // Returns true if the event is in the signaled state, else false.  If this
76   // is not a manual reset event, then this test will cause a reset.
77   bool IsSignaled();
78 
79   // Wait indefinitely for the event to be signaled. Wait's return "happens
80   // after" |Signal| has completed. This means that it's safe for a
81   // WaitableEvent to synchronise its own destruction, like this:
82   //
83   //   WaitableEvent *e = new WaitableEvent;
84   //   SendToOtherThread(e);
85   //   e->Wait();
86   //   delete e;
87   void Wait();
88 
89   // Wait up until max_time has passed for the event to be signaled.  Returns
90   // true if the event was signaled.  If this method returns false, then it
91   // does not necessarily mean that max_time was exceeded.
92   //
93   // TimedWait can synchronise its own destruction like |Wait|.
94   bool TimedWait(const TimeDelta& max_time);
95 
96 #if defined(OS_WIN)
handle()97   HANDLE handle() const { return handle_.Get(); }
98 #endif
99 
100   // Wait, synchronously, on multiple events.
101   //   waitables: an array of WaitableEvent pointers
102   //   count: the number of elements in @waitables
103   //
104   // returns: the index of a WaitableEvent which has been signaled.
105   //
106   // You MUST NOT delete any of the WaitableEvent objects while this wait is
107   // happening, however WaitMany's return "happens after" the |Signal| call
108   // that caused it has completed, like |Wait|.
109   static size_t WaitMany(WaitableEvent** waitables, size_t count);
110 
111   // For asynchronous waiting, see WaitableEventWatcher
112 
113   // This is a private helper class. It's here because it's used by friends of
114   // this class (such as WaitableEventWatcher) to be able to enqueue elements
115   // of the wait-list
116   class Waiter {
117    public:
118     // Signal the waiter to wake up.
119     //
120     // Consider the case of a Waiter which is in multiple WaitableEvent's
121     // wait-lists. Each WaitableEvent is automatic-reset and two of them are
122     // signaled at the same time. Now, each will wake only the first waiter in
123     // the wake-list before resetting. However, if those two waiters happen to
124     // be the same object (as can happen if another thread didn't have a chance
125     // to dequeue the waiter from the other wait-list in time), two auto-resets
126     // will have happened, but only one waiter has been signaled!
127     //
128     // Because of this, a Waiter may "reject" a wake by returning false. In
129     // this case, the auto-reset WaitableEvent shouldn't act as if anything has
130     // been notified.
131     virtual bool Fire(WaitableEvent* signaling_event) = 0;
132 
133     // Waiters may implement this in order to provide an extra condition for
134     // two Waiters to be considered equal. In WaitableEvent::Dequeue, if the
135     // pointers match then this function is called as a final check. See the
136     // comments in ~Handle for why.
137     virtual bool Compare(void* tag) = 0;
138 
139    protected:
~Waiter()140     virtual ~Waiter() {}
141   };
142 
143  private:
144   friend class WaitableEventWatcher;
145 
146 #if defined(OS_WIN)
147   win::ScopedHandle handle_;
148 #else
149   // On Windows, one can close a HANDLE which is currently being waited on. The
150   // MSDN documentation says that the resulting behaviour is 'undefined', but
151   // it doesn't crash. However, if we were to include the following members
152   // directly then, on POSIX, one couldn't use WaitableEventWatcher to watch an
153   // event which gets deleted. This mismatch has bitten us several times now,
154   // so we have a kernel of the WaitableEvent, which is reference counted.
155   // WaitableEventWatchers may then take a reference and thus match the Windows
156   // behaviour.
157   struct WaitableEventKernel :
158       public RefCountedThreadSafe<WaitableEventKernel> {
159    public:
160     WaitableEventKernel(ResetPolicy reset_policy, InitialState initial_state);
161 
162     bool Dequeue(Waiter* waiter, void* tag);
163 
164     base::Lock lock_;
165     const bool manual_reset_;
166     bool signaled_;
167     std::list<Waiter*> waiters_;
168 
169    private:
170     friend class RefCountedThreadSafe<WaitableEventKernel>;
171     ~WaitableEventKernel();
172   };
173 
174   typedef std::pair<WaitableEvent*, size_t> WaiterAndIndex;
175 
176   // When dealing with arrays of WaitableEvent*, we want to sort by the address
177   // of the WaitableEvent in order to have a globally consistent locking order.
178   // In that case we keep them, in sorted order, in an array of pairs where the
179   // second element is the index of the WaitableEvent in the original,
180   // unsorted, array.
181   static size_t EnqueueMany(WaiterAndIndex* waitables,
182                             size_t count, Waiter* waiter);
183 
184   bool SignalAll();
185   bool SignalOne();
186   void Enqueue(Waiter* waiter);
187 
188   scoped_refptr<WaitableEventKernel> kernel_;
189 #endif
190 
191   DISALLOW_COPY_AND_ASSIGN(WaitableEvent);
192 };
193 
194 }  // namespace base
195 
196 #endif  // BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
197