1 //===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the RewriteRope class, which is a powerful string.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Rewrite/Core/RewriteRope.h"
15 #include "clang/Basic/LLVM.h"
16 #include <algorithm>
17 using namespace clang;
18 
19 /// RewriteRope is a "strong" string class, designed to make insertions and
20 /// deletions in the middle of the string nearly constant time (really, they are
21 /// O(log N), but with a very low constant factor).
22 ///
23 /// The implementation of this datastructure is a conceptual linear sequence of
24 /// RopePiece elements.  Each RopePiece represents a view on a separately
25 /// allocated and reference counted string.  This means that splitting a very
26 /// long string can be done in constant time by splitting a RopePiece that
27 /// references the whole string into two rope pieces that reference each half.
28 /// Once split, another string can be inserted in between the two halves by
29 /// inserting a RopePiece in between the two others.  All of this is very
30 /// inexpensive: it takes time proportional to the number of RopePieces, not the
31 /// length of the strings they represent.
32 ///
33 /// While a linear sequences of RopePieces is the conceptual model, the actual
34 /// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
35 /// is a tree that keeps the values in the leaves and has where each node
36 /// contains a reasonable number of pointers to children/values) allows us to
37 /// maintain efficient operation when the RewriteRope contains a *huge* number
38 /// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
39 /// the RopePiece corresponding to some offset very efficiently, and it
40 /// automatically balances itself on insertions of RopePieces (which can happen
41 /// for both insertions and erases of string ranges).
42 ///
43 /// The one wrinkle on the theory is that we don't attempt to keep the tree
44 /// properly balanced when erases happen.  Erases of string data can both insert
45 /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46 /// which results in two rope pieces, which is just like an insert) or it can
47 /// reduce the number of RopePieces maintained by the B+Tree.  In the case when
48 /// the number of RopePieces is reduced, we don't attempt to maintain the
49 /// standard 'invariant' that each node in the tree contains at least
50 /// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
51 /// matter.
52 ///
53 /// The implementation below is primarily implemented in terms of three classes:
54 ///   RopePieceBTreeNode - Common base class for:
55 ///
56 ///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57 ///          nodes.  This directly represents a chunk of the string with those
58 ///          RopePieces contatenated.
59 ///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60 ///          up to '2*WidthFactor' other nodes in the tree.
61 
62 
63 //===----------------------------------------------------------------------===//
64 // RopePieceBTreeNode Class
65 //===----------------------------------------------------------------------===//
66 
67 namespace {
68   /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69   /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
70   /// and a flag that determines which subclass the instance is.  Also
71   /// important, this node knows the full extend of the node, including any
72   /// children that it has.  This allows efficient skipping over entire subtrees
73   /// when looking for an offset in the BTree.
74   class RopePieceBTreeNode {
75   protected:
76     /// WidthFactor - This controls the number of K/V slots held in the BTree:
77     /// how wide it is.  Each level of the BTree is guaranteed to have at least
78     /// 'WidthFactor' elements in it (either ropepieces or children), (except
79     /// the root, which may have less) and may have at most 2*WidthFactor
80     /// elements.
81     enum { WidthFactor = 8 };
82 
83     /// Size - This is the number of bytes of file this node (including any
84     /// potential children) covers.
85     unsigned Size;
86 
87     /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88     /// is an instance of RopePieceBTreeInterior.
89     bool IsLeaf;
90 
RopePieceBTreeNode(bool isLeaf)91     RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
92     ~RopePieceBTreeNode() = default;
93 
94   public:
isLeaf() const95     bool isLeaf() const { return IsLeaf; }
size() const96     unsigned size() const { return Size; }
97 
98     void Destroy();
99 
100     /// split - Split the range containing the specified offset so that we are
101     /// guaranteed that there is a place to do an insertion at the specified
102     /// offset.  The offset is relative, so "0" is the start of the node.
103     ///
104     /// If there is no space in this subtree for the extra piece, the extra tree
105     /// node is returned and must be inserted into a parent.
106     RopePieceBTreeNode *split(unsigned Offset);
107 
108     /// insert - Insert the specified ropepiece into this tree node at the
109     /// specified offset.  The offset is relative, so "0" is the start of the
110     /// node.
111     ///
112     /// If there is no space in this subtree for the extra piece, the extra tree
113     /// node is returned and must be inserted into a parent.
114     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115 
116     /// erase - Remove NumBytes from this node at the specified offset.  We are
117     /// guaranteed that there is a split at Offset.
118     void erase(unsigned Offset, unsigned NumBytes);
119 
120   };
121 } // end anonymous namespace
122 
123 //===----------------------------------------------------------------------===//
124 // RopePieceBTreeLeaf Class
125 //===----------------------------------------------------------------------===//
126 
127 namespace {
128   /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129   /// nodes.  This directly represents a chunk of the string with those
130   /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
131   /// instances of RopePiece) are stored in leaves like this.  To make iteration
132   /// over the leaves efficient, they maintain a singly linked list through the
133   /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
134   /// time for all increments.
135   class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136     /// NumPieces - This holds the number of rope pieces currently active in the
137     /// Pieces array.
138     unsigned char NumPieces;
139 
140     /// Pieces - This tracks the file chunks currently in this leaf.
141     ///
142     RopePiece Pieces[2*WidthFactor];
143 
144     /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
145     /// efficient in-order forward iteration of the tree without traversal.
146     RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
147   public:
RopePieceBTreeLeaf()148     RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
149                            PrevLeaf(nullptr), NextLeaf(nullptr) {}
~RopePieceBTreeLeaf()150     ~RopePieceBTreeLeaf() {
151       if (PrevLeaf || NextLeaf)
152         removeFromLeafInOrder();
153       clear();
154     }
155 
isFull() const156     bool isFull() const { return NumPieces == 2*WidthFactor; }
157 
158     /// clear - Remove all rope pieces from this leaf.
clear()159     void clear() {
160       while (NumPieces)
161         Pieces[--NumPieces] = RopePiece();
162       Size = 0;
163     }
164 
getNumPieces() const165     unsigned getNumPieces() const { return NumPieces; }
166 
getPiece(unsigned i) const167     const RopePiece &getPiece(unsigned i) const {
168       assert(i < getNumPieces() && "Invalid piece ID");
169       return Pieces[i];
170     }
171 
getNextLeafInOrder() const172     const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
insertAfterLeafInOrder(RopePieceBTreeLeaf * Node)173     void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
174       assert(!PrevLeaf && !NextLeaf && "Already in ordering");
175 
176       NextLeaf = Node->NextLeaf;
177       if (NextLeaf)
178         NextLeaf->PrevLeaf = &NextLeaf;
179       PrevLeaf = &Node->NextLeaf;
180       Node->NextLeaf = this;
181     }
182 
removeFromLeafInOrder()183     void removeFromLeafInOrder() {
184       if (PrevLeaf) {
185         *PrevLeaf = NextLeaf;
186         if (NextLeaf)
187           NextLeaf->PrevLeaf = PrevLeaf;
188       } else if (NextLeaf) {
189         NextLeaf->PrevLeaf = nullptr;
190       }
191     }
192 
193     /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
194     /// summing the size of all RopePieces.
FullRecomputeSizeLocally()195     void FullRecomputeSizeLocally() {
196       Size = 0;
197       for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
198         Size += getPiece(i).size();
199     }
200 
201     /// split - Split the range containing the specified offset so that we are
202     /// guaranteed that there is a place to do an insertion at the specified
203     /// offset.  The offset is relative, so "0" is the start of the node.
204     ///
205     /// If there is no space in this subtree for the extra piece, the extra tree
206     /// node is returned and must be inserted into a parent.
207     RopePieceBTreeNode *split(unsigned Offset);
208 
209     /// insert - Insert the specified ropepiece into this tree node at the
210     /// specified offset.  The offset is relative, so "0" is the start of the
211     /// node.
212     ///
213     /// If there is no space in this subtree for the extra piece, the extra tree
214     /// node is returned and must be inserted into a parent.
215     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
216 
217 
218     /// erase - Remove NumBytes from this node at the specified offset.  We are
219     /// guaranteed that there is a split at Offset.
220     void erase(unsigned Offset, unsigned NumBytes);
221 
classof(const RopePieceBTreeNode * N)222     static inline bool classof(const RopePieceBTreeNode *N) {
223       return N->isLeaf();
224     }
225   };
226 } // end anonymous namespace
227 
228 /// split - Split the range containing the specified offset so that we are
229 /// guaranteed that there is a place to do an insertion at the specified
230 /// offset.  The offset is relative, so "0" is the start of the node.
231 ///
232 /// If there is no space in this subtree for the extra piece, the extra tree
233 /// node is returned and must be inserted into a parent.
split(unsigned Offset)234 RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
235   // Find the insertion point.  We are guaranteed that there is a split at the
236   // specified offset so find it.
237   if (Offset == 0 || Offset == size()) {
238     // Fastpath for a common case.  There is already a splitpoint at the end.
239     return nullptr;
240   }
241 
242   // Find the piece that this offset lands in.
243   unsigned PieceOffs = 0;
244   unsigned i = 0;
245   while (Offset >= PieceOffs+Pieces[i].size()) {
246     PieceOffs += Pieces[i].size();
247     ++i;
248   }
249 
250   // If there is already a split point at the specified offset, just return
251   // success.
252   if (PieceOffs == Offset)
253     return nullptr;
254 
255   // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
256   // to being Piece relative.
257   unsigned IntraPieceOffset = Offset-PieceOffs;
258 
259   // We do this by shrinking the RopePiece and then doing an insert of the tail.
260   RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
261                  Pieces[i].EndOffs);
262   Size -= Pieces[i].size();
263   Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
264   Size += Pieces[i].size();
265 
266   return insert(Offset, Tail);
267 }
268 
269 
270 /// insert - Insert the specified RopePiece into this tree node at the
271 /// specified offset.  The offset is relative, so "0" is the start of the node.
272 ///
273 /// If there is no space in this subtree for the extra piece, the extra tree
274 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)275 RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
276                                                const RopePiece &R) {
277   // If this node is not full, insert the piece.
278   if (!isFull()) {
279     // Find the insertion point.  We are guaranteed that there is a split at the
280     // specified offset so find it.
281     unsigned i = 0, e = getNumPieces();
282     if (Offset == size()) {
283       // Fastpath for a common case.
284       i = e;
285     } else {
286       unsigned SlotOffs = 0;
287       for (; Offset > SlotOffs; ++i)
288         SlotOffs += getPiece(i).size();
289       assert(SlotOffs == Offset && "Split didn't occur before insertion!");
290     }
291 
292     // For an insertion into a non-full leaf node, just insert the value in
293     // its sorted position.  This requires moving later values over.
294     for (; i != e; --e)
295       Pieces[e] = Pieces[e-1];
296     Pieces[i] = R;
297     ++NumPieces;
298     Size += R.size();
299     return nullptr;
300   }
301 
302   // Otherwise, if this is leaf is full, split it in two halves.  Since this
303   // node is full, it contains 2*WidthFactor values.  We move the first
304   // 'WidthFactor' values to the LHS child (which we leave in this node) and
305   // move the last 'WidthFactor' values into the RHS child.
306 
307   // Create the new node.
308   RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
309 
310   // Move over the last 'WidthFactor' values from here to NewNode.
311   std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
312             &NewNode->Pieces[0]);
313   // Replace old pieces with null RopePieces to drop refcounts.
314   std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
315 
316   // Decrease the number of values in the two nodes.
317   NewNode->NumPieces = NumPieces = WidthFactor;
318 
319   // Recompute the two nodes' size.
320   NewNode->FullRecomputeSizeLocally();
321   FullRecomputeSizeLocally();
322 
323   // Update the list of leaves.
324   NewNode->insertAfterLeafInOrder(this);
325 
326   // These insertions can't fail.
327   if (this->size() >= Offset)
328     this->insert(Offset, R);
329   else
330     NewNode->insert(Offset - this->size(), R);
331   return NewNode;
332 }
333 
334 /// erase - Remove NumBytes from this node at the specified offset.  We are
335 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)336 void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
337   // Since we are guaranteed that there is a split at Offset, we start by
338   // finding the Piece that starts there.
339   unsigned PieceOffs = 0;
340   unsigned i = 0;
341   for (; Offset > PieceOffs; ++i)
342     PieceOffs += getPiece(i).size();
343   assert(PieceOffs == Offset && "Split didn't occur before erase!");
344 
345   unsigned StartPiece = i;
346 
347   // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
348   // all of them.
349   for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
350     PieceOffs += getPiece(i).size();
351 
352   // If we exactly include the last one, include it in the region to delete.
353   if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
354     PieceOffs += getPiece(i).size();
355     ++i;
356   }
357 
358   // If we completely cover some RopePieces, erase them now.
359   if (i != StartPiece) {
360     unsigned NumDeleted = i-StartPiece;
361     for (; i != getNumPieces(); ++i)
362       Pieces[i-NumDeleted] = Pieces[i];
363 
364     // Drop references to dead rope pieces.
365     std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
366               RopePiece());
367     NumPieces -= NumDeleted;
368 
369     unsigned CoverBytes = PieceOffs-Offset;
370     NumBytes -= CoverBytes;
371     Size -= CoverBytes;
372   }
373 
374   // If we completely removed some stuff, we could be done.
375   if (NumBytes == 0) return;
376 
377   // Okay, now might be erasing part of some Piece.  If this is the case, then
378   // move the start point of the piece.
379   assert(getPiece(StartPiece).size() > NumBytes);
380   Pieces[StartPiece].StartOffs += NumBytes;
381 
382   // The size of this node just shrunk by NumBytes.
383   Size -= NumBytes;
384 }
385 
386 //===----------------------------------------------------------------------===//
387 // RopePieceBTreeInterior Class
388 //===----------------------------------------------------------------------===//
389 
390 namespace {
391   /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
392   /// which holds up to 2*WidthFactor pointers to child nodes.
393   class RopePieceBTreeInterior : public RopePieceBTreeNode {
394     /// NumChildren - This holds the number of children currently active in the
395     /// Children array.
396     unsigned char NumChildren;
397     RopePieceBTreeNode *Children[2*WidthFactor];
398   public:
RopePieceBTreeInterior()399     RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
400 
RopePieceBTreeInterior(RopePieceBTreeNode * LHS,RopePieceBTreeNode * RHS)401     RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
402     : RopePieceBTreeNode(false) {
403       Children[0] = LHS;
404       Children[1] = RHS;
405       NumChildren = 2;
406       Size = LHS->size() + RHS->size();
407     }
408 
~RopePieceBTreeInterior()409     ~RopePieceBTreeInterior() {
410       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
411         Children[i]->Destroy();
412     }
413 
isFull() const414     bool isFull() const { return NumChildren == 2*WidthFactor; }
415 
getNumChildren() const416     unsigned getNumChildren() const { return NumChildren; }
getChild(unsigned i) const417     const RopePieceBTreeNode *getChild(unsigned i) const {
418       assert(i < NumChildren && "invalid child #");
419       return Children[i];
420     }
getChild(unsigned i)421     RopePieceBTreeNode *getChild(unsigned i) {
422       assert(i < NumChildren && "invalid child #");
423       return Children[i];
424     }
425 
426     /// FullRecomputeSizeLocally - Recompute the Size field of this node by
427     /// summing up the sizes of the child nodes.
FullRecomputeSizeLocally()428     void FullRecomputeSizeLocally() {
429       Size = 0;
430       for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
431         Size += getChild(i)->size();
432     }
433 
434 
435     /// split - Split the range containing the specified offset so that we are
436     /// guaranteed that there is a place to do an insertion at the specified
437     /// offset.  The offset is relative, so "0" is the start of the node.
438     ///
439     /// If there is no space in this subtree for the extra piece, the extra tree
440     /// node is returned and must be inserted into a parent.
441     RopePieceBTreeNode *split(unsigned Offset);
442 
443 
444     /// insert - Insert the specified ropepiece into this tree node at the
445     /// specified offset.  The offset is relative, so "0" is the start of the
446     /// node.
447     ///
448     /// If there is no space in this subtree for the extra piece, the extra tree
449     /// node is returned and must be inserted into a parent.
450     RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
451 
452     /// HandleChildPiece - A child propagated an insertion result up to us.
453     /// Insert the new child, and/or propagate the result further up the tree.
454     RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
455 
456     /// erase - Remove NumBytes from this node at the specified offset.  We are
457     /// guaranteed that there is a split at Offset.
458     void erase(unsigned Offset, unsigned NumBytes);
459 
classof(const RopePieceBTreeNode * N)460     static inline bool classof(const RopePieceBTreeNode *N) {
461       return !N->isLeaf();
462     }
463   };
464 } // end anonymous namespace
465 
466 /// split - Split the range containing the specified offset so that we are
467 /// guaranteed that there is a place to do an insertion at the specified
468 /// offset.  The offset is relative, so "0" is the start of the node.
469 ///
470 /// If there is no space in this subtree for the extra piece, the extra tree
471 /// node is returned and must be inserted into a parent.
split(unsigned Offset)472 RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
473   // Figure out which child to split.
474   if (Offset == 0 || Offset == size())
475     return nullptr; // If we have an exact offset, we're already split.
476 
477   unsigned ChildOffset = 0;
478   unsigned i = 0;
479   for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
480     ChildOffset += getChild(i)->size();
481 
482   // If already split there, we're done.
483   if (ChildOffset == Offset)
484     return nullptr;
485 
486   // Otherwise, recursively split the child.
487   if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
488     return HandleChildPiece(i, RHS);
489   return nullptr; // Done!
490 }
491 
492 /// insert - Insert the specified ropepiece into this tree node at the
493 /// specified offset.  The offset is relative, so "0" is the start of the
494 /// node.
495 ///
496 /// If there is no space in this subtree for the extra piece, the extra tree
497 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)498 RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
499                                                    const RopePiece &R) {
500   // Find the insertion point.  We are guaranteed that there is a split at the
501   // specified offset so find it.
502   unsigned i = 0, e = getNumChildren();
503 
504   unsigned ChildOffs = 0;
505   if (Offset == size()) {
506     // Fastpath for a common case.  Insert at end of last child.
507     i = e-1;
508     ChildOffs = size()-getChild(i)->size();
509   } else {
510     for (; Offset > ChildOffs+getChild(i)->size(); ++i)
511       ChildOffs += getChild(i)->size();
512   }
513 
514   Size += R.size();
515 
516   // Insert at the end of this child.
517   if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
518     return HandleChildPiece(i, RHS);
519 
520   return nullptr;
521 }
522 
523 /// HandleChildPiece - A child propagated an insertion result up to us.
524 /// Insert the new child, and/or propagate the result further up the tree.
525 RopePieceBTreeNode *
HandleChildPiece(unsigned i,RopePieceBTreeNode * RHS)526 RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
527   // Otherwise the child propagated a subtree up to us as a new child.  See if
528   // we have space for it here.
529   if (!isFull()) {
530     // Insert RHS after child 'i'.
531     if (i + 1 != getNumChildren())
532       memmove(&Children[i+2], &Children[i+1],
533               (getNumChildren()-i-1)*sizeof(Children[0]));
534     Children[i+1] = RHS;
535     ++NumChildren;
536     return nullptr;
537   }
538 
539   // Okay, this node is full.  Split it in half, moving WidthFactor children to
540   // a newly allocated interior node.
541 
542   // Create the new node.
543   RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
544 
545   // Move over the last 'WidthFactor' values from here to NewNode.
546   memcpy(&NewNode->Children[0], &Children[WidthFactor],
547          WidthFactor*sizeof(Children[0]));
548 
549   // Decrease the number of values in the two nodes.
550   NewNode->NumChildren = NumChildren = WidthFactor;
551 
552   // Finally, insert the two new children in the side the can (now) hold them.
553   // These insertions can't fail.
554   if (i < WidthFactor)
555     this->HandleChildPiece(i, RHS);
556   else
557     NewNode->HandleChildPiece(i-WidthFactor, RHS);
558 
559   // Recompute the two nodes' size.
560   NewNode->FullRecomputeSizeLocally();
561   FullRecomputeSizeLocally();
562   return NewNode;
563 }
564 
565 /// erase - Remove NumBytes from this node at the specified offset.  We are
566 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)567 void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
568   // This will shrink this node by NumBytes.
569   Size -= NumBytes;
570 
571   // Find the first child that overlaps with Offset.
572   unsigned i = 0;
573   for (; Offset >= getChild(i)->size(); ++i)
574     Offset -= getChild(i)->size();
575 
576   // Propagate the delete request into overlapping children, or completely
577   // delete the children as appropriate.
578   while (NumBytes) {
579     RopePieceBTreeNode *CurChild = getChild(i);
580 
581     // If we are deleting something contained entirely in the child, pass on the
582     // request.
583     if (Offset+NumBytes < CurChild->size()) {
584       CurChild->erase(Offset, NumBytes);
585       return;
586     }
587 
588     // If this deletion request starts somewhere in the middle of the child, it
589     // must be deleting to the end of the child.
590     if (Offset) {
591       unsigned BytesFromChild = CurChild->size()-Offset;
592       CurChild->erase(Offset, BytesFromChild);
593       NumBytes -= BytesFromChild;
594       // Start at the beginning of the next child.
595       Offset = 0;
596       ++i;
597       continue;
598     }
599 
600     // If the deletion request completely covers the child, delete it and move
601     // the rest down.
602     NumBytes -= CurChild->size();
603     CurChild->Destroy();
604     --NumChildren;
605     if (i != getNumChildren())
606       memmove(&Children[i], &Children[i+1],
607               (getNumChildren()-i)*sizeof(Children[0]));
608   }
609 }
610 
611 //===----------------------------------------------------------------------===//
612 // RopePieceBTreeNode Implementation
613 //===----------------------------------------------------------------------===//
614 
Destroy()615 void RopePieceBTreeNode::Destroy() {
616   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
617     delete Leaf;
618   else
619     delete cast<RopePieceBTreeInterior>(this);
620 }
621 
622 /// split - Split the range containing the specified offset so that we are
623 /// guaranteed that there is a place to do an insertion at the specified
624 /// offset.  The offset is relative, so "0" is the start of the node.
625 ///
626 /// If there is no space in this subtree for the extra piece, the extra tree
627 /// node is returned and must be inserted into a parent.
split(unsigned Offset)628 RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
629   assert(Offset <= size() && "Invalid offset to split!");
630   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
631     return Leaf->split(Offset);
632   return cast<RopePieceBTreeInterior>(this)->split(Offset);
633 }
634 
635 /// insert - Insert the specified ropepiece into this tree node at the
636 /// specified offset.  The offset is relative, so "0" is the start of the
637 /// node.
638 ///
639 /// If there is no space in this subtree for the extra piece, the extra tree
640 /// node is returned and must be inserted into a parent.
insert(unsigned Offset,const RopePiece & R)641 RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
642                                                const RopePiece &R) {
643   assert(Offset <= size() && "Invalid offset to insert!");
644   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
645     return Leaf->insert(Offset, R);
646   return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
647 }
648 
649 /// erase - Remove NumBytes from this node at the specified offset.  We are
650 /// guaranteed that there is a split at Offset.
erase(unsigned Offset,unsigned NumBytes)651 void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
652   assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
653   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
654     return Leaf->erase(Offset, NumBytes);
655   return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
656 }
657 
658 
659 //===----------------------------------------------------------------------===//
660 // RopePieceBTreeIterator Implementation
661 //===----------------------------------------------------------------------===//
662 
getCN(const void * P)663 static const RopePieceBTreeLeaf *getCN(const void *P) {
664   return static_cast<const RopePieceBTreeLeaf*>(P);
665 }
666 
667 // begin iterator.
RopePieceBTreeIterator(const void * n)668 RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
669   const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
670 
671   // Walk down the left side of the tree until we get to a leaf.
672   while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
673     N = IN->getChild(0);
674 
675   // We must have at least one leaf.
676   CurNode = cast<RopePieceBTreeLeaf>(N);
677 
678   // If we found a leaf that happens to be empty, skip over it until we get
679   // to something full.
680   while (CurNode && getCN(CurNode)->getNumPieces() == 0)
681     CurNode = getCN(CurNode)->getNextLeafInOrder();
682 
683   if (CurNode)
684     CurPiece = &getCN(CurNode)->getPiece(0);
685   else  // Empty tree, this is an end() iterator.
686     CurPiece = nullptr;
687   CurChar = 0;
688 }
689 
MoveToNextPiece()690 void RopePieceBTreeIterator::MoveToNextPiece() {
691   if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
692     CurChar = 0;
693     ++CurPiece;
694     return;
695   }
696 
697   // Find the next non-empty leaf node.
698   do
699     CurNode = getCN(CurNode)->getNextLeafInOrder();
700   while (CurNode && getCN(CurNode)->getNumPieces() == 0);
701 
702   if (CurNode)
703     CurPiece = &getCN(CurNode)->getPiece(0);
704   else // Hit end().
705     CurPiece = nullptr;
706   CurChar = 0;
707 }
708 
709 //===----------------------------------------------------------------------===//
710 // RopePieceBTree Implementation
711 //===----------------------------------------------------------------------===//
712 
getRoot(void * P)713 static RopePieceBTreeNode *getRoot(void *P) {
714   return static_cast<RopePieceBTreeNode*>(P);
715 }
716 
RopePieceBTree()717 RopePieceBTree::RopePieceBTree() {
718   Root = new RopePieceBTreeLeaf();
719 }
RopePieceBTree(const RopePieceBTree & RHS)720 RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
721   assert(RHS.empty() && "Can't copy non-empty tree yet");
722   Root = new RopePieceBTreeLeaf();
723 }
~RopePieceBTree()724 RopePieceBTree::~RopePieceBTree() {
725   getRoot(Root)->Destroy();
726 }
727 
size() const728 unsigned RopePieceBTree::size() const {
729   return getRoot(Root)->size();
730 }
731 
clear()732 void RopePieceBTree::clear() {
733   if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
734     Leaf->clear();
735   else {
736     getRoot(Root)->Destroy();
737     Root = new RopePieceBTreeLeaf();
738   }
739 }
740 
insert(unsigned Offset,const RopePiece & R)741 void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
742   // #1. Split at Offset.
743   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
744     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
745 
746   // #2. Do the insertion.
747   if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
748     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
749 }
750 
erase(unsigned Offset,unsigned NumBytes)751 void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
752   // #1. Split at Offset.
753   if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
754     Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
755 
756   // #2. Do the erasing.
757   getRoot(Root)->erase(Offset, NumBytes);
758 }
759 
760 //===----------------------------------------------------------------------===//
761 // RewriteRope Implementation
762 //===----------------------------------------------------------------------===//
763 
764 /// MakeRopeString - This copies the specified byte range into some instance of
765 /// RopeRefCountString, and return a RopePiece that represents it.  This uses
766 /// the AllocBuffer object to aggregate requests for small strings into one
767 /// allocation instead of doing tons of tiny allocations.
MakeRopeString(const char * Start,const char * End)768 RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
769   unsigned Len = End-Start;
770   assert(Len && "Zero length RopePiece is invalid!");
771 
772   // If we have space for this string in the current alloc buffer, use it.
773   if (AllocOffs+Len <= AllocChunkSize) {
774     memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
775     AllocOffs += Len;
776     return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
777   }
778 
779   // If we don't have enough room because this specific allocation is huge,
780   // just allocate a new rope piece for it alone.
781   if (Len > AllocChunkSize) {
782     unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
783     RopeRefCountString *Res =
784       reinterpret_cast<RopeRefCountString *>(new char[Size]);
785     Res->RefCount = 0;
786     memcpy(Res->Data, Start, End-Start);
787     return RopePiece(Res, 0, End-Start);
788   }
789 
790   // Otherwise, this was a small request but we just don't have space for it
791   // Make a new chunk and share it with later allocations.
792 
793   unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
794   RopeRefCountString *Res =
795       reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
796   Res->RefCount = 0;
797   memcpy(Res->Data, Start, Len);
798   AllocBuffer = Res;
799   AllocOffs = Len;
800 
801   return RopePiece(AllocBuffer, 0, Len);
802 }
803 
804 
805