1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_INL_H_
6 #define V8_HEAP_HEAP_INL_H_
7 
8 #include <cmath>
9 
10 #include "src/base/platform/platform.h"
11 #include "src/counters-inl.h"
12 #include "src/heap/heap.h"
13 #include "src/heap/incremental-marking-inl.h"
14 #include "src/heap/mark-compact.h"
15 #include "src/heap/object-stats.h"
16 #include "src/heap/remembered-set.h"
17 #include "src/heap/spaces-inl.h"
18 #include "src/heap/store-buffer.h"
19 #include "src/isolate.h"
20 #include "src/list-inl.h"
21 #include "src/log.h"
22 #include "src/msan.h"
23 #include "src/objects-inl.h"
24 #include "src/type-feedback-vector-inl.h"
25 
26 namespace v8 {
27 namespace internal {
28 
RetrySpace()29 AllocationSpace AllocationResult::RetrySpace() {
30   DCHECK(IsRetry());
31   return static_cast<AllocationSpace>(Smi::cast(object_)->value());
32 }
33 
ToObjectChecked()34 HeapObject* AllocationResult::ToObjectChecked() {
35   CHECK(!IsRetry());
36   return HeapObject::cast(object_);
37 }
38 
insert(HeapObject * target,int32_t size,bool was_marked_black)39 void PromotionQueue::insert(HeapObject* target, int32_t size,
40                             bool was_marked_black) {
41   if (emergency_stack_ != NULL) {
42     emergency_stack_->Add(Entry(target, size, was_marked_black));
43     return;
44   }
45 
46   if ((rear_ - 1) < limit_) {
47     RelocateQueueHead();
48     emergency_stack_->Add(Entry(target, size, was_marked_black));
49     return;
50   }
51 
52   struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
53   entry->obj_ = target;
54   entry->size_ = size;
55   entry->was_marked_black_ = was_marked_black;
56 
57 // Assert no overflow into live objects.
58 #ifdef DEBUG
59   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
60                               reinterpret_cast<Address>(rear_));
61 #endif
62 }
63 
remove(HeapObject ** target,int32_t * size,bool * was_marked_black)64 void PromotionQueue::remove(HeapObject** target, int32_t* size,
65                             bool* was_marked_black) {
66   DCHECK(!is_empty());
67   if (front_ == rear_) {
68     Entry e = emergency_stack_->RemoveLast();
69     *target = e.obj_;
70     *size = e.size_;
71     *was_marked_black = e.was_marked_black_;
72     return;
73   }
74 
75   struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
76   *target = entry->obj_;
77   *size = entry->size_;
78   *was_marked_black = entry->was_marked_black_;
79 
80   // Assert no underflow.
81   SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
82                               reinterpret_cast<Address>(front_));
83 }
84 
GetHeadPage()85 Page* PromotionQueue::GetHeadPage() {
86   return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
87 }
88 
SetNewLimit(Address limit)89 void PromotionQueue::SetNewLimit(Address limit) {
90   // If we are already using an emergency stack, we can ignore it.
91   if (emergency_stack_) return;
92 
93   // If the limit is not on the same page, we can ignore it.
94   if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
95 
96   limit_ = reinterpret_cast<struct Entry*>(limit);
97 
98   if (limit_ <= rear_) {
99     return;
100   }
101 
102   RelocateQueueHead();
103 }
104 
IsBelowPromotionQueue(Address to_space_top)105 bool PromotionQueue::IsBelowPromotionQueue(Address to_space_top) {
106   // If an emergency stack is used, the to-space address cannot interfere
107   // with the promotion queue.
108   if (emergency_stack_) return true;
109 
110   // If the given to-space top pointer and the head of the promotion queue
111   // are not on the same page, then the to-space objects are below the
112   // promotion queue.
113   if (GetHeadPage() != Page::FromAddress(to_space_top)) {
114     return true;
115   }
116   // If the to space top pointer is smaller or equal than the promotion
117   // queue head, then the to-space objects are below the promotion queue.
118   return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
119 }
120 
121 #define ROOT_ACCESSOR(type, name, camel_name) \
122   type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
123 ROOT_LIST(ROOT_ACCESSOR)
124 #undef ROOT_ACCESSOR
125 
126 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
127   Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)128 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
129 #undef STRUCT_MAP_ACCESSOR
130 
131 #define STRING_ACCESSOR(name, str) \
132   String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
133 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
134 #undef STRING_ACCESSOR
135 
136 #define SYMBOL_ACCESSOR(name) \
137   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
138 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
139 #undef SYMBOL_ACCESSOR
140 
141 #define SYMBOL_ACCESSOR(name, description) \
142   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
143 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
144 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
145 #undef SYMBOL_ACCESSOR
146 
147 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
148   void Heap::set_##name(type* value) {                                        \
149     /* The deserializer makes use of the fact that these common roots are */  \
150     /* never in new space and never on a page that is being compacted.    */  \
151     DCHECK(!deserialization_complete() ||                                     \
152            RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex));    \
153     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
154     roots_[k##camel_name##RootIndex] = value;                                 \
155   }
156 ROOT_LIST(ROOT_ACCESSOR)
157 #undef ROOT_ACCESSOR
158 
159 PagedSpace* Heap::paged_space(int idx) {
160   DCHECK_NE(idx, LO_SPACE);
161   DCHECK_NE(idx, NEW_SPACE);
162   return static_cast<PagedSpace*>(space_[idx]);
163 }
164 
space(int idx)165 Space* Heap::space(int idx) { return space_[idx]; }
166 
NewSpaceAllocationTopAddress()167 Address* Heap::NewSpaceAllocationTopAddress() {
168   return new_space_->allocation_top_address();
169 }
170 
NewSpaceAllocationLimitAddress()171 Address* Heap::NewSpaceAllocationLimitAddress() {
172   return new_space_->allocation_limit_address();
173 }
174 
OldSpaceAllocationTopAddress()175 Address* Heap::OldSpaceAllocationTopAddress() {
176   return old_space_->allocation_top_address();
177 }
178 
OldSpaceAllocationLimitAddress()179 Address* Heap::OldSpaceAllocationLimitAddress() {
180   return old_space_->allocation_limit_address();
181 }
182 
UpdateNewSpaceAllocationCounter()183 void Heap::UpdateNewSpaceAllocationCounter() {
184   new_space_allocation_counter_ = NewSpaceAllocationCounter();
185 }
186 
NewSpaceAllocationCounter()187 size_t Heap::NewSpaceAllocationCounter() {
188   return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
189 }
190 
191 template <>
IsOneByte(Vector<const char> str,int chars)192 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
193   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
194   return chars == str.length();
195 }
196 
197 
198 template <>
IsOneByte(String * str,int chars)199 bool inline Heap::IsOneByte(String* str, int chars) {
200   return str->IsOneByteRepresentation();
201 }
202 
203 
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)204 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
205     Vector<const char> str, int chars, uint32_t hash_field) {
206   if (IsOneByte(str, chars)) {
207     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
208                                              hash_field);
209   }
210   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
211 }
212 
213 
214 template <typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)215 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
216                                                       uint32_t hash_field) {
217   if (IsOneByte(t, chars)) {
218     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
219   }
220   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
221 }
222 
223 
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)224 AllocationResult Heap::AllocateOneByteInternalizedString(
225     Vector<const uint8_t> str, uint32_t hash_field) {
226   CHECK_GE(String::kMaxLength, str.length());
227   // Compute map and object size.
228   Map* map = one_byte_internalized_string_map();
229   int size = SeqOneByteString::SizeFor(str.length());
230 
231   // Allocate string.
232   HeapObject* result = nullptr;
233   {
234     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
235     if (!allocation.To(&result)) return allocation;
236   }
237 
238   // String maps are all immortal immovable objects.
239   result->set_map_no_write_barrier(map);
240   // Set length and hash fields of the allocated string.
241   String* answer = String::cast(result);
242   answer->set_length(str.length());
243   answer->set_hash_field(hash_field);
244 
245   DCHECK_EQ(size, answer->Size());
246 
247   // Fill in the characters.
248   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
249           str.length());
250 
251   return answer;
252 }
253 
254 
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)255 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
256                                                          uint32_t hash_field) {
257   CHECK_GE(String::kMaxLength, str.length());
258   // Compute map and object size.
259   Map* map = internalized_string_map();
260   int size = SeqTwoByteString::SizeFor(str.length());
261 
262   // Allocate string.
263   HeapObject* result = nullptr;
264   {
265     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
266     if (!allocation.To(&result)) return allocation;
267   }
268 
269   result->set_map(map);
270   // Set length and hash fields of the allocated string.
271   String* answer = String::cast(result);
272   answer->set_length(str.length());
273   answer->set_hash_field(hash_field);
274 
275   DCHECK_EQ(size, answer->Size());
276 
277   // Fill in the characters.
278   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
279           str.length() * kUC16Size);
280 
281   return answer;
282 }
283 
CopyFixedArray(FixedArray * src)284 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
285   if (src->length() == 0) return src;
286   return CopyFixedArrayWithMap(src, src->map());
287 }
288 
289 
CopyFixedDoubleArray(FixedDoubleArray * src)290 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
291   if (src->length() == 0) return src;
292   return CopyFixedDoubleArrayWithMap(src, src->map());
293 }
294 
295 
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationAlignment alignment)296 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
297                                    AllocationAlignment alignment) {
298   DCHECK(AllowHandleAllocation::IsAllowed());
299   DCHECK(AllowHeapAllocation::IsAllowed());
300   DCHECK(gc_state_ == NOT_IN_GC);
301 #ifdef DEBUG
302   if (FLAG_gc_interval >= 0 && !always_allocate() &&
303       Heap::allocation_timeout_-- <= 0) {
304     return AllocationResult::Retry(space);
305   }
306   isolate_->counters()->objs_since_last_full()->Increment();
307   isolate_->counters()->objs_since_last_young()->Increment();
308 #endif
309 
310   bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
311   HeapObject* object = nullptr;
312   AllocationResult allocation;
313   if (NEW_SPACE == space) {
314     if (large_object) {
315       space = LO_SPACE;
316     } else {
317       allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
318       if (allocation.To(&object)) {
319         OnAllocationEvent(object, size_in_bytes);
320       }
321       return allocation;
322     }
323   }
324 
325   // Here we only allocate in the old generation.
326   if (OLD_SPACE == space) {
327     if (large_object) {
328       allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
329     } else {
330       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
331     }
332   } else if (CODE_SPACE == space) {
333     if (size_in_bytes <= code_space()->AreaSize()) {
334       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
335     } else {
336       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
337     }
338   } else if (LO_SPACE == space) {
339     DCHECK(large_object);
340     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
341   } else if (MAP_SPACE == space) {
342     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
343   } else {
344     // NEW_SPACE is not allowed here.
345     UNREACHABLE();
346   }
347   if (allocation.To(&object)) {
348     OnAllocationEvent(object, size_in_bytes);
349   }
350 
351   return allocation;
352 }
353 
354 
OnAllocationEvent(HeapObject * object,int size_in_bytes)355 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
356   HeapProfiler* profiler = isolate_->heap_profiler();
357   if (profiler->is_tracking_allocations()) {
358     profiler->AllocationEvent(object->address(), size_in_bytes);
359   }
360 
361   if (FLAG_verify_predictable) {
362     ++allocations_count_;
363     // Advance synthetic time by making a time request.
364     MonotonicallyIncreasingTimeInMs();
365 
366     UpdateAllocationsHash(object);
367     UpdateAllocationsHash(size_in_bytes);
368 
369     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
370       PrintAlloctionsHash();
371     }
372   }
373 
374   if (FLAG_trace_allocation_stack_interval > 0) {
375     if (!FLAG_verify_predictable) ++allocations_count_;
376     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
377       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
378     }
379   }
380 }
381 
382 
OnMoveEvent(HeapObject * target,HeapObject * source,int size_in_bytes)383 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
384                        int size_in_bytes) {
385   HeapProfiler* heap_profiler = isolate_->heap_profiler();
386   if (heap_profiler->is_tracking_object_moves()) {
387     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
388                                    size_in_bytes);
389   }
390   if (target->IsSharedFunctionInfo()) {
391     LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
392                                                          target->address()));
393   }
394 
395   if (FLAG_verify_predictable) {
396     ++allocations_count_;
397     // Advance synthetic time by making a time request.
398     MonotonicallyIncreasingTimeInMs();
399 
400     UpdateAllocationsHash(source);
401     UpdateAllocationsHash(target);
402     UpdateAllocationsHash(size_in_bytes);
403 
404     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
405       PrintAlloctionsHash();
406     }
407   }
408 }
409 
410 
UpdateAllocationsHash(HeapObject * object)411 void Heap::UpdateAllocationsHash(HeapObject* object) {
412   Address object_address = object->address();
413   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
414   AllocationSpace allocation_space = memory_chunk->owner()->identity();
415 
416   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
417   uint32_t value =
418       static_cast<uint32_t>(object_address - memory_chunk->address()) |
419       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
420 
421   UpdateAllocationsHash(value);
422 }
423 
424 
UpdateAllocationsHash(uint32_t value)425 void Heap::UpdateAllocationsHash(uint32_t value) {
426   uint16_t c1 = static_cast<uint16_t>(value);
427   uint16_t c2 = static_cast<uint16_t>(value >> 16);
428   raw_allocations_hash_ =
429       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
430   raw_allocations_hash_ =
431       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
432 }
433 
434 
RegisterExternalString(String * string)435 void Heap::RegisterExternalString(String* string) {
436   external_string_table_.AddString(string);
437 }
438 
439 
FinalizeExternalString(String * string)440 void Heap::FinalizeExternalString(String* string) {
441   DCHECK(string->IsExternalString());
442   v8::String::ExternalStringResourceBase** resource_addr =
443       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
444           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
445           kHeapObjectTag);
446 
447   // Dispose of the C++ object if it has not already been disposed.
448   if (*resource_addr != NULL) {
449     (*resource_addr)->Dispose();
450     *resource_addr = NULL;
451   }
452 }
453 
NewSpaceTop()454 Address Heap::NewSpaceTop() { return new_space_->top(); }
455 
DeoptMaybeTenuredAllocationSites()456 bool Heap::DeoptMaybeTenuredAllocationSites() {
457   return new_space_->IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
458 }
459 
InNewSpace(Object * object)460 bool Heap::InNewSpace(Object* object) {
461   // Inlined check from NewSpace::Contains.
462   bool result =
463       object->IsHeapObject() &&
464       Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace();
465   DCHECK(!result ||                 // Either not in new space
466          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
467          InToSpace(object));        // ... or in to-space (where we allocate).
468   return result;
469 }
470 
InFromSpace(Object * object)471 bool Heap::InFromSpace(Object* object) {
472   return object->IsHeapObject() &&
473          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
474              ->IsFlagSet(Page::IN_FROM_SPACE);
475 }
476 
477 
InToSpace(Object * object)478 bool Heap::InToSpace(Object* object) {
479   return object->IsHeapObject() &&
480          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
481              ->IsFlagSet(Page::IN_TO_SPACE);
482 }
483 
InOldSpace(Object * object)484 bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
485 
InNewSpaceSlow(Address address)486 bool Heap::InNewSpaceSlow(Address address) {
487   return new_space_->ContainsSlow(address);
488 }
489 
InOldSpaceSlow(Address address)490 bool Heap::InOldSpaceSlow(Address address) {
491   return old_space_->ContainsSlow(address);
492 }
493 
ShouldBePromoted(Address old_address,int object_size)494 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
495   Page* page = Page::FromAddress(old_address);
496   Address age_mark = new_space_->age_mark();
497   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
498          (!page->ContainsLimit(age_mark) || old_address < age_mark);
499 }
500 
RecordWrite(Object * object,int offset,Object * o)501 void Heap::RecordWrite(Object* object, int offset, Object* o) {
502   if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
503     return;
504   }
505   store_buffer()->InsertEntry(HeapObject::cast(object)->address() + offset);
506 }
507 
RecordWriteIntoCode(Code * host,RelocInfo * rinfo,Object * value)508 void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) {
509   if (InNewSpace(value)) {
510     RecordWriteIntoCodeSlow(host, rinfo, value);
511   }
512 }
513 
RecordFixedArrayElements(FixedArray * array,int offset,int length)514 void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
515   if (InNewSpace(array)) return;
516   for (int i = 0; i < length; i++) {
517     if (!InNewSpace(array->get(offset + i))) continue;
518     store_buffer()->InsertEntry(
519         reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
520   }
521 }
522 
store_buffer_top_address()523 Address* Heap::store_buffer_top_address() {
524   return store_buffer()->top_address();
525 }
526 
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)527 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
528   // Object migration is governed by the following rules:
529   //
530   // 1) Objects in new-space can be migrated to the old space
531   //    that matches their target space or they stay in new-space.
532   // 2) Objects in old-space stay in the same space when migrating.
533   // 3) Fillers (two or more words) can migrate due to left-trimming of
534   //    fixed arrays in new-space or old space.
535   // 4) Fillers (one word) can never migrate, they are skipped by
536   //    incremental marking explicitly to prevent invalid pattern.
537   //
538   // Since this function is used for debugging only, we do not place
539   // asserts here, but check everything explicitly.
540   if (obj->map() == one_pointer_filler_map()) return false;
541   InstanceType type = obj->map()->instance_type();
542   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
543   AllocationSpace src = chunk->owner()->identity();
544   switch (src) {
545     case NEW_SPACE:
546       return dst == src || dst == OLD_SPACE;
547     case OLD_SPACE:
548       return dst == src &&
549              (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
550     case CODE_SPACE:
551       return dst == src && type == CODE_TYPE;
552     case MAP_SPACE:
553     case LO_SPACE:
554       return false;
555   }
556   UNREACHABLE();
557   return false;
558 }
559 
CopyBlock(Address dst,Address src,int byte_size)560 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
561   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
562             static_cast<size_t>(byte_size / kPointerSize));
563 }
564 
565 template <Heap::FindMementoMode mode>
FindAllocationMemento(HeapObject * object)566 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
567   Address object_address = object->address();
568   Address memento_address = object_address + object->Size();
569   Address last_memento_word_address = memento_address + kPointerSize;
570   // If the memento would be on another page, bail out immediately.
571   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
572     return nullptr;
573   }
574   HeapObject* candidate = HeapObject::FromAddress(memento_address);
575   Map* candidate_map = candidate->map();
576   // This fast check may peek at an uninitialized word. However, the slow check
577   // below (memento_address == top) ensures that this is safe. Mark the word as
578   // initialized to silence MemorySanitizer warnings.
579   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
580   if (candidate_map != allocation_memento_map()) {
581     return nullptr;
582   }
583 
584   // Bail out if the memento is below the age mark, which can happen when
585   // mementos survived because a page got moved within new space.
586   Page* object_page = Page::FromAddress(object_address);
587   if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
588     Address age_mark =
589         reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
590     if (!object_page->Contains(age_mark)) {
591       return nullptr;
592     }
593     // Do an exact check in the case where the age mark is on the same page.
594     if (object_address < age_mark) {
595       return nullptr;
596     }
597   }
598 
599   AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
600 
601   // Depending on what the memento is used for, we might need to perform
602   // additional checks.
603   Address top;
604   switch (mode) {
605     case Heap::kForGC:
606       return memento_candidate;
607     case Heap::kForRuntime:
608       if (memento_candidate == nullptr) return nullptr;
609       // Either the object is the last object in the new space, or there is
610       // another object of at least word size (the header map word) following
611       // it, so suffices to compare ptr and top here.
612       top = NewSpaceTop();
613       DCHECK(memento_address == top ||
614              memento_address + HeapObject::kHeaderSize <= top ||
615              !Page::OnSamePage(memento_address, top - 1));
616       if ((memento_address != top) && memento_candidate->IsValid()) {
617         return memento_candidate;
618       }
619       return nullptr;
620     default:
621       UNREACHABLE();
622   }
623   UNREACHABLE();
624   return nullptr;
625 }
626 
627 template <Heap::UpdateAllocationSiteMode mode>
UpdateAllocationSite(HeapObject * object,base::HashMap * pretenuring_feedback)628 void Heap::UpdateAllocationSite(HeapObject* object,
629                                 base::HashMap* pretenuring_feedback) {
630   DCHECK(InFromSpace(object) ||
631          (InToSpace(object) &&
632           Page::FromAddress(object->address())
633               ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) ||
634          (!InNewSpace(object) &&
635           Page::FromAddress(object->address())
636               ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION)));
637   if (!FLAG_allocation_site_pretenuring ||
638       !AllocationSite::CanTrack(object->map()->instance_type()))
639     return;
640   AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
641   if (memento_candidate == nullptr) return;
642 
643   if (mode == kGlobal) {
644     DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
645     // Entering global pretenuring feedback is only used in the scavenger, where
646     // we are allowed to actually touch the allocation site.
647     if (!memento_candidate->IsValid()) return;
648     AllocationSite* site = memento_candidate->GetAllocationSite();
649     DCHECK(!site->IsZombie());
650     // For inserting in the global pretenuring storage we need to first
651     // increment the memento found count on the allocation site.
652     if (site->IncrementMementoFoundCount()) {
653       global_pretenuring_feedback_->LookupOrInsert(site,
654                                                    ObjectHash(site->address()));
655     }
656   } else {
657     DCHECK_EQ(mode, kCached);
658     DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
659     // Entering cached feedback is used in the parallel case. We are not allowed
660     // to dereference the allocation site and rather have to postpone all checks
661     // till actually merging the data.
662     Address key = memento_candidate->GetAllocationSiteUnchecked();
663     base::HashMap::Entry* e =
664         pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
665     DCHECK(e != nullptr);
666     (*bit_cast<intptr_t*>(&e->value))++;
667   }
668 }
669 
670 
RemoveAllocationSitePretenuringFeedback(AllocationSite * site)671 void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
672   global_pretenuring_feedback_->Remove(
673       site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
674 }
675 
CollectGarbage(AllocationSpace space,GarbageCollectionReason gc_reason,const v8::GCCallbackFlags callbackFlags)676 bool Heap::CollectGarbage(AllocationSpace space,
677                           GarbageCollectionReason gc_reason,
678                           const v8::GCCallbackFlags callbackFlags) {
679   const char* collector_reason = NULL;
680   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
681   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
682 }
683 
684 
isolate()685 Isolate* Heap::isolate() {
686   return reinterpret_cast<Isolate*>(
687       reinterpret_cast<intptr_t>(this) -
688       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
689 }
690 
691 
AddString(String * string)692 void Heap::ExternalStringTable::AddString(String* string) {
693   DCHECK(string->IsExternalString());
694   if (heap_->InNewSpace(string)) {
695     new_space_strings_.Add(string);
696   } else {
697     old_space_strings_.Add(string);
698   }
699 }
700 
701 
Iterate(ObjectVisitor * v)702 void Heap::ExternalStringTable::Iterate(ObjectVisitor* v) {
703   if (!new_space_strings_.is_empty()) {
704     Object** start = &new_space_strings_[0];
705     v->VisitPointers(start, start + new_space_strings_.length());
706   }
707   if (!old_space_strings_.is_empty()) {
708     Object** start = &old_space_strings_[0];
709     v->VisitPointers(start, start + old_space_strings_.length());
710   }
711 }
712 
713 
714 // Verify() is inline to avoid ifdef-s around its calls in release
715 // mode.
Verify()716 void Heap::ExternalStringTable::Verify() {
717 #ifdef DEBUG
718   for (int i = 0; i < new_space_strings_.length(); ++i) {
719     Object* obj = Object::cast(new_space_strings_[i]);
720     DCHECK(heap_->InNewSpace(obj));
721     DCHECK(!obj->IsTheHole(heap_->isolate()));
722   }
723   for (int i = 0; i < old_space_strings_.length(); ++i) {
724     Object* obj = Object::cast(old_space_strings_[i]);
725     DCHECK(!heap_->InNewSpace(obj));
726     DCHECK(!obj->IsTheHole(heap_->isolate()));
727   }
728 #endif
729 }
730 
731 
AddOldString(String * string)732 void Heap::ExternalStringTable::AddOldString(String* string) {
733   DCHECK(string->IsExternalString());
734   DCHECK(!heap_->InNewSpace(string));
735   old_space_strings_.Add(string);
736 }
737 
738 
ShrinkNewStrings(int position)739 void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
740   new_space_strings_.Rewind(position);
741 #ifdef VERIFY_HEAP
742   if (FLAG_verify_heap) {
743     Verify();
744   }
745 #endif
746 }
747 
ClearInstanceofCache()748 void Heap::ClearInstanceofCache() { set_instanceof_cache_function(Smi::kZero); }
749 
ToBoolean(bool condition)750 Oddball* Heap::ToBoolean(bool condition) {
751   return condition ? true_value() : false_value();
752 }
753 
754 
CompletelyClearInstanceofCache()755 void Heap::CompletelyClearInstanceofCache() {
756   set_instanceof_cache_map(Smi::kZero);
757   set_instanceof_cache_function(Smi::kZero);
758 }
759 
760 
HashSeed()761 uint32_t Heap::HashSeed() {
762   uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
763   DCHECK(FLAG_randomize_hashes || seed == 0);
764   return seed;
765 }
766 
767 
NextScriptId()768 int Heap::NextScriptId() {
769   int last_id = last_script_id()->value();
770   if (last_id == Smi::kMaxValue) {
771     last_id = 1;
772   } else {
773     last_id++;
774   }
775   set_last_script_id(Smi::FromInt(last_id));
776   return last_id;
777 }
778 
SetArgumentsAdaptorDeoptPCOffset(int pc_offset)779 void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
780   DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::kZero);
781   set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
782 }
783 
SetConstructStubDeoptPCOffset(int pc_offset)784 void Heap::SetConstructStubDeoptPCOffset(int pc_offset) {
785   DCHECK(construct_stub_deopt_pc_offset() == Smi::kZero);
786   set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
787 }
788 
SetGetterStubDeoptPCOffset(int pc_offset)789 void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
790   DCHECK(getter_stub_deopt_pc_offset() == Smi::kZero);
791   set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
792 }
793 
SetSetterStubDeoptPCOffset(int pc_offset)794 void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
795   DCHECK(setter_stub_deopt_pc_offset() == Smi::kZero);
796   set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
797 }
798 
SetInterpreterEntryReturnPCOffset(int pc_offset)799 void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) {
800   DCHECK(interpreter_entry_return_pc_offset() == Smi::kZero);
801   set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset));
802 }
803 
GetNextTemplateSerialNumber()804 int Heap::GetNextTemplateSerialNumber() {
805   int next_serial_number = next_template_serial_number()->value() + 1;
806   set_next_template_serial_number(Smi::FromInt(next_serial_number));
807   return next_serial_number;
808 }
809 
SetSerializedTemplates(FixedArray * templates)810 void Heap::SetSerializedTemplates(FixedArray* templates) {
811   DCHECK_EQ(empty_fixed_array(), serialized_templates());
812   set_serialized_templates(templates);
813 }
814 
CreateObjectStats()815 void Heap::CreateObjectStats() {
816   if (V8_LIKELY(FLAG_gc_stats == 0)) return;
817   if (!live_object_stats_) {
818     live_object_stats_ = new ObjectStats(this);
819   }
820   if (!dead_object_stats_) {
821     dead_object_stats_ = new ObjectStats(this);
822   }
823 }
824 
AlwaysAllocateScope(Isolate * isolate)825 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
826     : heap_(isolate->heap()) {
827   heap_->always_allocate_scope_count_.Increment(1);
828 }
829 
830 
~AlwaysAllocateScope()831 AlwaysAllocateScope::~AlwaysAllocateScope() {
832   heap_->always_allocate_scope_count_.Increment(-1);
833 }
834 
835 
VisitPointers(Object ** start,Object ** end)836 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
837   for (Object** current = start; current < end; current++) {
838     if ((*current)->IsHeapObject()) {
839       HeapObject* object = HeapObject::cast(*current);
840       CHECK(object->GetIsolate()->heap()->Contains(object));
841       CHECK(object->map()->IsMap());
842     }
843   }
844 }
845 
846 
VisitPointers(Object ** start,Object ** end)847 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
848   for (Object** current = start; current < end; current++) {
849     CHECK((*current)->IsSmi());
850   }
851 }
852 }  // namespace internal
853 }  // namespace v8
854 
855 #endif  // V8_HEAP_HEAP_INL_H_
856