1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Place garbage collection safepoints at appropriate locations in the IR. This
11 // does not make relocation semantics or variable liveness explicit. That's
12 // done by RewriteStatepointsForGC.
13 //
14 // Terminology:
15 // - A call is said to be "parseable" if there is a stack map generated for the
16 // return PC of the call. A runtime can determine where values listed in the
17 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
18 // on the stack when the code is suspended inside such a call. Every parse
19 // point is represented by a call wrapped in an gc.statepoint intrinsic.
20 // - A "poll" is an explicit check in the generated code to determine if the
21 // runtime needs the generated code to cooperate by calling a helper routine
22 // and thus suspending its execution at a known state. The call to the helper
23 // routine will be parseable. The (gc & runtime specific) logic of a poll is
24 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 //
26 // We aim to insert polls such that running code can quickly be brought to a
27 // well defined state for inspection by the collector. In the current
28 // implementation, this is done via the insertion of poll sites at method entry
29 // and the backedge of most loops. We try to avoid inserting more polls than
30 // are necessary to ensure a finite period between poll sites. This is not
31 // because the poll itself is expensive in the generated code; it's not. Polls
32 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
33 // perturbing the optimization of the method as much as we can.
34 //
35 // We also need to make most call sites parseable. The callee might execute a
36 // poll (or otherwise be inspected by the GC). If so, the entire stack
37 // (including the suspended frame of the current method) must be parseable.
38 //
39 // This pass will insert:
40 // - Call parse points ("call safepoints") for any call which may need to
41 // reach a safepoint during the execution of the callee function.
42 // - Backedge safepoint polls and entry safepoint polls to ensure that
43 // executing code reaches a safepoint poll in a finite amount of time.
44 //
45 // We do not currently support return statepoints, but adding them would not
46 // be hard. They are not required for correctness - entry safepoints are an
47 // alternative - but some GCs may prefer them. Patches welcome.
48 //
49 //===----------------------------------------------------------------------===//
50
51 #include "llvm/Pass.h"
52
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LegacyPassManager.h"
61 #include "llvm/IR/Statepoint.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68
69 #define DEBUG_TYPE "safepoint-placement"
70
71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73
74 STATISTIC(CallInLoop,
75 "Number of loops without safepoints due to calls in loop");
76 STATISTIC(FiniteExecution,
77 "Number of loops without safepoints finite execution");
78
79 using namespace llvm;
80
81 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 // validation
83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84 cl::init(false));
85
86 /// How narrow does the trip count of a loop have to be to have to be considered
87 /// "counted"? Counted loops do not get safepoints at backedges.
88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89 cl::Hidden, cl::init(32));
90
91 // If true, split the backedge of a loop when placing the safepoint, otherwise
92 // split the latch block itself. Both are useful to support for
93 // experimentation, but in practice, it looks like splitting the backedge
94 // optimizes better.
95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96 cl::init(false));
97
98 namespace {
99
100 /// An analysis pass whose purpose is to identify each of the backedges in
101 /// the function which require a safepoint poll to be inserted.
102 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103 static char ID;
104
105 /// The output of the pass - gives a list of each backedge (described by
106 /// pointing at the branch) which need a poll inserted.
107 std::vector<TerminatorInst *> PollLocations;
108
109 /// True unless we're running spp-no-calls in which case we need to disable
110 /// the call-dependent placement opts.
111 bool CallSafepointsEnabled;
112
113 ScalarEvolution *SE = nullptr;
114 DominatorTree *DT = nullptr;
115 LoopInfo *LI = nullptr;
116
PlaceBackedgeSafepointsImpl__anon5fe5e7560111::PlaceBackedgeSafepointsImpl117 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
118 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
119 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
120 }
121
122 bool runOnLoop(Loop *);
runOnLoopAndSubLoops__anon5fe5e7560111::PlaceBackedgeSafepointsImpl123 void runOnLoopAndSubLoops(Loop *L) {
124 // Visit all the subloops
125 for (Loop *I : *L)
126 runOnLoopAndSubLoops(I);
127 runOnLoop(L);
128 }
129
runOnFunction__anon5fe5e7560111::PlaceBackedgeSafepointsImpl130 bool runOnFunction(Function &F) override {
131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
132 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
133 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
134 for (Loop *I : *LI) {
135 runOnLoopAndSubLoops(I);
136 }
137 return false;
138 }
139
getAnalysisUsage__anon5fe5e7560111::PlaceBackedgeSafepointsImpl140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.addRequired<DominatorTreeWrapperPass>();
142 AU.addRequired<ScalarEvolutionWrapperPass>();
143 AU.addRequired<LoopInfoWrapperPass>();
144 // We no longer modify the IR at all in this pass. Thus all
145 // analysis are preserved.
146 AU.setPreservesAll();
147 }
148 };
149 }
150
151 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
152 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
153 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
154
155 namespace {
156 struct PlaceSafepoints : public FunctionPass {
157 static char ID; // Pass identification, replacement for typeid
158
PlaceSafepoints__anon5fe5e7560211::PlaceSafepoints159 PlaceSafepoints() : FunctionPass(ID) {
160 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
161 }
162 bool runOnFunction(Function &F) override;
163
getAnalysisUsage__anon5fe5e7560211::PlaceSafepoints164 void getAnalysisUsage(AnalysisUsage &AU) const override {
165 // We modify the graph wholesale (inlining, block insertion, etc). We
166 // preserve nothing at the moment. We could potentially preserve dom tree
167 // if that was worth doing
168 }
169 };
170 }
171
172 // Insert a safepoint poll immediately before the given instruction. Does
173 // not handle the parsability of state at the runtime call, that's the
174 // callers job.
175 static void
176 InsertSafepointPoll(Instruction *InsertBefore,
177 std::vector<CallSite> &ParsePointsNeeded /*rval*/);
178
needsStatepoint(const CallSite & CS)179 static bool needsStatepoint(const CallSite &CS) {
180 if (callsGCLeafFunction(CS))
181 return false;
182 if (CS.isCall()) {
183 CallInst *call = cast<CallInst>(CS.getInstruction());
184 if (call->isInlineAsm())
185 return false;
186 }
187
188 return !(isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS));
189 }
190
191 /// Returns true if this loop is known to contain a call safepoint which
192 /// must unconditionally execute on any iteration of the loop which returns
193 /// to the loop header via an edge from Pred. Returns a conservative correct
194 /// answer; i.e. false is always valid.
containsUnconditionalCallSafepoint(Loop * L,BasicBlock * Header,BasicBlock * Pred,DominatorTree & DT)195 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
196 BasicBlock *Pred,
197 DominatorTree &DT) {
198 // In general, we're looking for any cut of the graph which ensures
199 // there's a call safepoint along every edge between Header and Pred.
200 // For the moment, we look only for the 'cuts' that consist of a single call
201 // instruction in a block which is dominated by the Header and dominates the
202 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
203 // of such dominating blocks gets substantially more occurrences than just
204 // checking the Pred and Header blocks themselves. This may be due to the
205 // density of loop exit conditions caused by range and null checks.
206 // TODO: structure this as an analysis pass, cache the result for subloops,
207 // avoid dom tree recalculations
208 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
209
210 BasicBlock *Current = Pred;
211 while (true) {
212 for (Instruction &I : *Current) {
213 if (auto CS = CallSite(&I))
214 // Note: Technically, needing a safepoint isn't quite the right
215 // condition here. We should instead be checking if the target method
216 // has an
217 // unconditional poll. In practice, this is only a theoretical concern
218 // since we don't have any methods with conditional-only safepoint
219 // polls.
220 if (needsStatepoint(CS))
221 return true;
222 }
223
224 if (Current == Header)
225 break;
226 Current = DT.getNode(Current)->getIDom()->getBlock();
227 }
228
229 return false;
230 }
231
232 /// Returns true if this loop is known to terminate in a finite number of
233 /// iterations. Note that this function may return false for a loop which
234 /// does actual terminate in a finite constant number of iterations due to
235 /// conservatism in the analysis.
mustBeFiniteCountedLoop(Loop * L,ScalarEvolution * SE,BasicBlock * Pred)236 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
237 BasicBlock *Pred) {
238 // A conservative bound on the loop as a whole.
239 const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
240 if (MaxTrips != SE->getCouldNotCompute() &&
241 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
242 CountedLoopTripWidth))
243 return true;
244
245 // If this is a conditional branch to the header with the alternate path
246 // being outside the loop, we can ask questions about the execution frequency
247 // of the exit block.
248 if (L->isLoopExiting(Pred)) {
249 // This returns an exact expression only. TODO: We really only need an
250 // upper bound here, but SE doesn't expose that.
251 const SCEV *MaxExec = SE->getExitCount(L, Pred);
252 if (MaxExec != SE->getCouldNotCompute() &&
253 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
254 CountedLoopTripWidth))
255 return true;
256 }
257
258 return /* not finite */ false;
259 }
260
scanOneBB(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen,std::vector<BasicBlock * > & Worklist)261 static void scanOneBB(Instruction *Start, Instruction *End,
262 std::vector<CallInst *> &Calls,
263 DenseSet<BasicBlock *> &Seen,
264 std::vector<BasicBlock *> &Worklist) {
265 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
266 BBE1 = BasicBlock::iterator(End);
267 BBI != BBE0 && BBI != BBE1; BBI++) {
268 if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
269 Calls.push_back(CI);
270
271 // FIXME: This code does not handle invokes
272 assert(!isa<InvokeInst>(&*BBI) &&
273 "support for invokes in poll code needed");
274
275 // Only add the successor blocks if we reach the terminator instruction
276 // without encountering end first
277 if (BBI->isTerminator()) {
278 BasicBlock *BB = BBI->getParent();
279 for (BasicBlock *Succ : successors(BB)) {
280 if (Seen.insert(Succ).second) {
281 Worklist.push_back(Succ);
282 }
283 }
284 }
285 }
286 }
287
scanInlinedCode(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen)288 static void scanInlinedCode(Instruction *Start, Instruction *End,
289 std::vector<CallInst *> &Calls,
290 DenseSet<BasicBlock *> &Seen) {
291 Calls.clear();
292 std::vector<BasicBlock *> Worklist;
293 Seen.insert(Start->getParent());
294 scanOneBB(Start, End, Calls, Seen, Worklist);
295 while (!Worklist.empty()) {
296 BasicBlock *BB = Worklist.back();
297 Worklist.pop_back();
298 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
299 }
300 }
301
runOnLoop(Loop * L)302 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
303 // Loop through all loop latches (branches controlling backedges). We need
304 // to place a safepoint on every backedge (potentially).
305 // Note: In common usage, there will be only one edge due to LoopSimplify
306 // having run sometime earlier in the pipeline, but this code must be correct
307 // w.r.t. loops with multiple backedges.
308 BasicBlock *Header = L->getHeader();
309 SmallVector<BasicBlock*, 16> LoopLatches;
310 L->getLoopLatches(LoopLatches);
311 for (BasicBlock *Pred : LoopLatches) {
312 assert(L->contains(Pred));
313
314 // Make a policy decision about whether this loop needs a safepoint or
315 // not. Note that this is about unburdening the optimizer in loops, not
316 // avoiding the runtime cost of the actual safepoint.
317 if (!AllBackedges) {
318 if (mustBeFiniteCountedLoop(L, SE, Pred)) {
319 DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
320 FiniteExecution++;
321 continue;
322 }
323 if (CallSafepointsEnabled &&
324 containsUnconditionalCallSafepoint(L, Header, Pred, *DT)) {
325 // Note: This is only semantically legal since we won't do any further
326 // IPO or inlining before the actual call insertion.. If we hadn't, we
327 // might latter loose this call safepoint.
328 DEBUG(dbgs() << "skipping safepoint placement due to unconditional call\n");
329 CallInLoop++;
330 continue;
331 }
332 }
333
334 // TODO: We can create an inner loop which runs a finite number of
335 // iterations with an outer loop which contains a safepoint. This would
336 // not help runtime performance that much, but it might help our ability to
337 // optimize the inner loop.
338
339 // Safepoint insertion would involve creating a new basic block (as the
340 // target of the current backedge) which does the safepoint (of all live
341 // variables) and branches to the true header
342 TerminatorInst *Term = Pred->getTerminator();
343
344 DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
345
346 PollLocations.push_back(Term);
347 }
348
349 return false;
350 }
351
352 /// Returns true if an entry safepoint is not required before this callsite in
353 /// the caller function.
doesNotRequireEntrySafepointBefore(const CallSite & CS)354 static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
355 Instruction *Inst = CS.getInstruction();
356 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
357 switch (II->getIntrinsicID()) {
358 case Intrinsic::experimental_gc_statepoint:
359 case Intrinsic::experimental_patchpoint_void:
360 case Intrinsic::experimental_patchpoint_i64:
361 // The can wrap an actual call which may grow the stack by an unbounded
362 // amount or run forever.
363 return false;
364 default:
365 // Most LLVM intrinsics are things which do not expand to actual calls, or
366 // at least if they do, are leaf functions that cause only finite stack
367 // growth. In particular, the optimizer likes to form things like memsets
368 // out of stores in the original IR. Another important example is
369 // llvm.localescape which must occur in the entry block. Inserting a
370 // safepoint before it is not legal since it could push the localescape
371 // out of the entry block.
372 return true;
373 }
374 }
375 return false;
376 }
377
findLocationForEntrySafepoint(Function & F,DominatorTree & DT)378 static Instruction *findLocationForEntrySafepoint(Function &F,
379 DominatorTree &DT) {
380
381 // Conceptually, this poll needs to be on method entry, but in
382 // practice, we place it as late in the entry block as possible. We
383 // can place it as late as we want as long as it dominates all calls
384 // that can grow the stack. This, combined with backedge polls,
385 // give us all the progress guarantees we need.
386
387 // hasNextInstruction and nextInstruction are used to iterate
388 // through a "straight line" execution sequence.
389
390 auto HasNextInstruction = [](Instruction *I) {
391 if (!I->isTerminator())
392 return true;
393
394 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
395 return nextBB && (nextBB->getUniquePredecessor() != nullptr);
396 };
397
398 auto NextInstruction = [&](Instruction *I) {
399 assert(HasNextInstruction(I) &&
400 "first check if there is a next instruction!");
401
402 if (I->isTerminator())
403 return &I->getParent()->getUniqueSuccessor()->front();
404 return &*++I->getIterator();
405 };
406
407 Instruction *Cursor = nullptr;
408 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
409 Cursor = NextInstruction(Cursor)) {
410
411 // We need to ensure a safepoint poll occurs before any 'real' call. The
412 // easiest way to ensure finite execution between safepoints in the face of
413 // recursive and mutually recursive functions is to enforce that each take
414 // a safepoint. Additionally, we need to ensure a poll before any call
415 // which can grow the stack by an unbounded amount. This isn't required
416 // for GC semantics per se, but is a common requirement for languages
417 // which detect stack overflow via guard pages and then throw exceptions.
418 if (auto CS = CallSite(Cursor)) {
419 if (doesNotRequireEntrySafepointBefore(CS))
420 continue;
421 break;
422 }
423 }
424
425 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
426 "either we stopped because of a call, or because of terminator");
427
428 return Cursor;
429 }
430
431 static const char *const GCSafepointPollName = "gc.safepoint_poll";
432
isGCSafepointPoll(Function & F)433 static bool isGCSafepointPoll(Function &F) {
434 return F.getName().equals(GCSafepointPollName);
435 }
436
437 /// Returns true if this function should be rewritten to include safepoint
438 /// polls and parseable call sites. The main point of this function is to be
439 /// an extension point for custom logic.
shouldRewriteFunction(Function & F)440 static bool shouldRewriteFunction(Function &F) {
441 // TODO: This should check the GCStrategy
442 if (F.hasGC()) {
443 const auto &FunctionGCName = F.getGC();
444 const StringRef StatepointExampleName("statepoint-example");
445 const StringRef CoreCLRName("coreclr");
446 return (StatepointExampleName == FunctionGCName) ||
447 (CoreCLRName == FunctionGCName);
448 } else
449 return false;
450 }
451
452 // TODO: These should become properties of the GCStrategy, possibly with
453 // command line overrides.
enableEntrySafepoints(Function & F)454 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
enableBackedgeSafepoints(Function & F)455 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
enableCallSafepoints(Function & F)456 static bool enableCallSafepoints(Function &F) { return !NoCall; }
457
runOnFunction(Function & F)458 bool PlaceSafepoints::runOnFunction(Function &F) {
459 if (F.isDeclaration() || F.empty()) {
460 // This is a declaration, nothing to do. Must exit early to avoid crash in
461 // dom tree calculation
462 return false;
463 }
464
465 if (isGCSafepointPoll(F)) {
466 // Given we're inlining this inside of safepoint poll insertion, this
467 // doesn't make any sense. Note that we do make any contained calls
468 // parseable after we inline a poll.
469 return false;
470 }
471
472 if (!shouldRewriteFunction(F))
473 return false;
474
475 bool Modified = false;
476
477 // In various bits below, we rely on the fact that uses are reachable from
478 // defs. When there are basic blocks unreachable from the entry, dominance
479 // and reachablity queries return non-sensical results. Thus, we preprocess
480 // the function to ensure these properties hold.
481 Modified |= removeUnreachableBlocks(F);
482
483 // STEP 1 - Insert the safepoint polling locations. We do not need to
484 // actually insert parse points yet. That will be done for all polls and
485 // calls in a single pass.
486
487 DominatorTree DT;
488 DT.recalculate(F);
489
490 SmallVector<Instruction *, 16> PollsNeeded;
491 std::vector<CallSite> ParsePointNeeded;
492
493 if (enableBackedgeSafepoints(F)) {
494 // Construct a pass manager to run the LoopPass backedge logic. We
495 // need the pass manager to handle scheduling all the loop passes
496 // appropriately. Doing this by hand is painful and just not worth messing
497 // with for the moment.
498 legacy::FunctionPassManager FPM(F.getParent());
499 bool CanAssumeCallSafepoints = enableCallSafepoints(F);
500 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
501 FPM.add(PBS);
502 FPM.run(F);
503
504 // We preserve dominance information when inserting the poll, otherwise
505 // we'd have to recalculate this on every insert
506 DT.recalculate(F);
507
508 auto &PollLocations = PBS->PollLocations;
509
510 auto OrderByBBName = [](Instruction *a, Instruction *b) {
511 return a->getParent()->getName() < b->getParent()->getName();
512 };
513 // We need the order of list to be stable so that naming ends up stable
514 // when we split edges. This makes test cases much easier to write.
515 std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
516
517 // We can sometimes end up with duplicate poll locations. This happens if
518 // a single loop is visited more than once. The fact this happens seems
519 // wrong, but it does happen for the split-backedge.ll test case.
520 PollLocations.erase(std::unique(PollLocations.begin(),
521 PollLocations.end()),
522 PollLocations.end());
523
524 // Insert a poll at each point the analysis pass identified
525 // The poll location must be the terminator of a loop latch block.
526 for (TerminatorInst *Term : PollLocations) {
527 // We are inserting a poll, the function is modified
528 Modified = true;
529
530 if (SplitBackedge) {
531 // Split the backedge of the loop and insert the poll within that new
532 // basic block. This creates a loop with two latches per original
533 // latch (which is non-ideal), but this appears to be easier to
534 // optimize in practice than inserting the poll immediately before the
535 // latch test.
536
537 // Since this is a latch, at least one of the successors must dominate
538 // it. Its possible that we have a) duplicate edges to the same header
539 // and b) edges to distinct loop headers. We need to insert pools on
540 // each.
541 SetVector<BasicBlock *> Headers;
542 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
543 BasicBlock *Succ = Term->getSuccessor(i);
544 if (DT.dominates(Succ, Term->getParent())) {
545 Headers.insert(Succ);
546 }
547 }
548 assert(!Headers.empty() && "poll location is not a loop latch?");
549
550 // The split loop structure here is so that we only need to recalculate
551 // the dominator tree once. Alternatively, we could just keep it up to
552 // date and use a more natural merged loop.
553 SetVector<BasicBlock *> SplitBackedges;
554 for (BasicBlock *Header : Headers) {
555 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
556 PollsNeeded.push_back(NewBB->getTerminator());
557 NumBackedgeSafepoints++;
558 }
559 } else {
560 // Split the latch block itself, right before the terminator.
561 PollsNeeded.push_back(Term);
562 NumBackedgeSafepoints++;
563 }
564 }
565 }
566
567 if (enableEntrySafepoints(F)) {
568 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
569 PollsNeeded.push_back(Location);
570 Modified = true;
571 NumEntrySafepoints++;
572 }
573 // TODO: else we should assert that there was, in fact, a policy choice to
574 // not insert a entry safepoint poll.
575 }
576
577 // Now that we've identified all the needed safepoint poll locations, insert
578 // safepoint polls themselves.
579 for (Instruction *PollLocation : PollsNeeded) {
580 std::vector<CallSite> RuntimeCalls;
581 InsertSafepointPoll(PollLocation, RuntimeCalls);
582 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
583 RuntimeCalls.end());
584 }
585
586 return Modified;
587 }
588
589 char PlaceBackedgeSafepointsImpl::ID = 0;
590 char PlaceSafepoints::ID = 0;
591
createPlaceSafepointsPass()592 FunctionPass *llvm::createPlaceSafepointsPass() {
593 return new PlaceSafepoints();
594 }
595
596 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
597 "place-backedge-safepoints-impl",
598 "Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)599 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
600 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
601 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
602 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
603 "place-backedge-safepoints-impl",
604 "Place Backedge Safepoints", false, false)
605
606 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
607 false, false)
608 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
609 false, false)
610
611 static void
612 InsertSafepointPoll(Instruction *InsertBefore,
613 std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
614 BasicBlock *OrigBB = InsertBefore->getParent();
615 Module *M = InsertBefore->getModule();
616 assert(M && "must be part of a module");
617
618 // Inline the safepoint poll implementation - this will get all the branch,
619 // control flow, etc.. Most importantly, it will introduce the actual slow
620 // path call - where we need to insert a safepoint (parsepoint).
621
622 auto *F = M->getFunction(GCSafepointPollName);
623 assert(F && "gc.safepoint_poll function is missing");
624 assert(F->getValueType() ==
625 FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
626 "gc.safepoint_poll declared with wrong type");
627 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
628 CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
629
630 // Record some information about the call site we're replacing
631 BasicBlock::iterator Before(PollCall), After(PollCall);
632 bool IsBegin = false;
633 if (Before == OrigBB->begin())
634 IsBegin = true;
635 else
636 Before--;
637
638 After++;
639 assert(After != OrigBB->end() && "must have successor");
640
641 // Do the actual inlining
642 InlineFunctionInfo IFI;
643 bool InlineStatus = InlineFunction(PollCall, IFI);
644 assert(InlineStatus && "inline must succeed");
645 (void)InlineStatus; // suppress warning in release-asserts
646
647 // Check post-conditions
648 assert(IFI.StaticAllocas.empty() && "can't have allocs");
649
650 std::vector<CallInst *> Calls; // new calls
651 DenseSet<BasicBlock *> BBs; // new BBs + insertee
652
653 // Include only the newly inserted instructions, Note: begin may not be valid
654 // if we inserted to the beginning of the basic block
655 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
656
657 // If your poll function includes an unreachable at the end, that's not
658 // valid. Bugpoint likes to create this, so check for it.
659 assert(isPotentiallyReachable(&*Start, &*After) &&
660 "malformed poll function");
661
662 scanInlinedCode(&*Start, &*After, Calls, BBs);
663 assert(!Calls.empty() && "slow path not found for safepoint poll");
664
665 // Record the fact we need a parsable state at the runtime call contained in
666 // the poll function. This is required so that the runtime knows how to
667 // parse the last frame when we actually take the safepoint (i.e. execute
668 // the slow path)
669 assert(ParsePointsNeeded.empty());
670 for (auto *CI : Calls) {
671 // No safepoint needed or wanted
672 if (!needsStatepoint(CI))
673 continue;
674
675 // These are likely runtime calls. Should we assert that via calling
676 // convention or something?
677 ParsePointsNeeded.push_back(CallSite(CI));
678 }
679 assert(ParsePointsNeeded.size() <= Calls.size());
680 }
681