1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "linker/arm64/relative_patcher_arm64.h"
18
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "art_method.h"
22 #include "base/bit_utils.h"
23 #include "compiled_method.h"
24 #include "driver/compiler_driver.h"
25 #include "entrypoints/quick/quick_entrypoints_enum.h"
26 #include "linker/output_stream.h"
27 #include "lock_word.h"
28 #include "mirror/object.h"
29 #include "mirror/array-inl.h"
30 #include "oat.h"
31 #include "oat_quick_method_header.h"
32 #include "utils/arm64/assembler_arm64.h"
33
34 namespace art {
35 namespace linker {
36
37 namespace {
38
39 // Maximum positive and negative displacement for method call measured from the patch location.
40 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
41 // the ARM64 PC pointing to the BL.)
42 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
43 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
44
45 // Maximum positive and negative displacement for a conditional branch measured from the patch
46 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
47 // measured from the ARM64 PC pointing to the B.cond.)
48 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
49 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
50
51 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
52 constexpr uint32_t kAdrpThunkSize = 8u;
53
IsAdrpPatch(const LinkerPatch & patch)54 inline bool IsAdrpPatch(const LinkerPatch& patch) {
55 switch (patch.GetType()) {
56 case LinkerPatch::Type::kMethod:
57 case LinkerPatch::Type::kCall:
58 case LinkerPatch::Type::kCallRelative:
59 case LinkerPatch::Type::kType:
60 case LinkerPatch::Type::kString:
61 case LinkerPatch::Type::kBakerReadBarrierBranch:
62 return false;
63 case LinkerPatch::Type::kTypeRelative:
64 case LinkerPatch::Type::kTypeBssEntry:
65 case LinkerPatch::Type::kStringRelative:
66 case LinkerPatch::Type::kStringBssEntry:
67 case LinkerPatch::Type::kDexCacheArray:
68 return patch.LiteralOffset() == patch.PcInsnOffset();
69 }
70 }
71
MaxExtraSpace(size_t num_adrp,size_t code_size)72 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
73 if (num_adrp == 0u) {
74 return 0u;
75 }
76 uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size;
77 return kAdrpThunkSize * num_adrp + alignment_bytes;
78 }
79
80 } // anonymous namespace
81
Arm64RelativePatcher(RelativePatcherTargetProvider * provider,const Arm64InstructionSetFeatures * features)82 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
83 const Arm64InstructionSetFeatures* features)
84 : ArmBaseRelativePatcher(provider, kArm64),
85 fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
86 reserved_adrp_thunks_(0u),
87 processed_adrp_thunks_(0u) {
88 if (fix_cortex_a53_843419_) {
89 adrp_thunk_locations_.reserve(16u);
90 current_method_thunks_.reserve(16u * kAdrpThunkSize);
91 }
92 }
93
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)94 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
95 const CompiledMethod* compiled_method,
96 MethodReference method_ref) {
97 if (!fix_cortex_a53_843419_) {
98 DCHECK(adrp_thunk_locations_.empty());
99 return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
100 }
101
102 // Add thunks for previous method if any.
103 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
104 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
105 offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
106 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
107 }
108
109 // Count the number of ADRP insns as the upper bound on the number of thunks needed
110 // and use it to reserve space for other linker patches.
111 size_t num_adrp = 0u;
112 DCHECK(compiled_method != nullptr);
113 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
114 if (IsAdrpPatch(patch)) {
115 ++num_adrp;
116 }
117 }
118 ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
119 uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
120 offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
121 if (num_adrp == 0u) {
122 return offset;
123 }
124
125 // Now that we have the actual offset where the code will be placed, locate the ADRP insns
126 // that actually require the thunk.
127 uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
128 uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
129 DCHECK(compiled_method != nullptr);
130 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
131 if (IsAdrpPatch(patch)) {
132 uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
133 if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
134 adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
135 thunk_offset += kAdrpThunkSize;
136 }
137 }
138 }
139 return offset;
140 }
141
ReserveSpaceEnd(uint32_t offset)142 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
143 if (!fix_cortex_a53_843419_) {
144 DCHECK(adrp_thunk_locations_.empty());
145 } else {
146 // Add thunks for the last method if any.
147 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
148 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
149 offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
150 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
151 }
152 }
153 return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
154 }
155
WriteThunks(OutputStream * out,uint32_t offset)156 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
157 if (fix_cortex_a53_843419_) {
158 if (!current_method_thunks_.empty()) {
159 uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
160 if (kIsDebugBuild) {
161 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
162 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
163 CHECK_LE(num_thunks, processed_adrp_thunks_);
164 for (size_t i = 0u; i != num_thunks; ++i) {
165 const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
166 CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
167 }
168 }
169 uint32_t aligned_code_delta = aligned_offset - offset;
170 if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
171 return 0u;
172 }
173 if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
174 return 0u;
175 }
176 offset = aligned_offset + current_method_thunks_.size();
177 current_method_thunks_.clear();
178 }
179 }
180 return ArmBaseRelativePatcher::WriteThunks(out, offset);
181 }
182
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)183 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
184 uint32_t literal_offset,
185 uint32_t patch_offset, uint32_t
186 target_offset) {
187 DCHECK_LE(literal_offset + 4u, code->size());
188 DCHECK_EQ(literal_offset & 3u, 0u);
189 DCHECK_EQ(patch_offset & 3u, 0u);
190 DCHECK_EQ(target_offset & 3u, 0u);
191 uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
192 DCHECK_EQ(displacement & 3u, 0u);
193 DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
194 uint32_t insn = (displacement & 0x0fffffffu) >> 2;
195 insn |= 0x94000000; // BL
196
197 // Check that we're just overwriting an existing BL.
198 DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
199 // Write the new BL.
200 SetInsn(code, literal_offset, insn);
201 }
202
PatchPcRelativeReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)203 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
204 const LinkerPatch& patch,
205 uint32_t patch_offset,
206 uint32_t target_offset) {
207 DCHECK_EQ(patch_offset & 3u, 0u);
208 DCHECK_EQ(target_offset & 3u, 0u);
209 uint32_t literal_offset = patch.LiteralOffset();
210 uint32_t insn = GetInsn(code, literal_offset);
211 uint32_t pc_insn_offset = patch.PcInsnOffset();
212 uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
213 bool wide = (insn & 0x40000000) != 0;
214 uint32_t shift = wide ? 3u : 2u;
215 if (literal_offset == pc_insn_offset) {
216 // Check it's an ADRP with imm == 0 (unset).
217 DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
218 << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
219 if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
220 adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
221 DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
222 literal_offset, patch_offset));
223 uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
224 uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
225 uint32_t adrp = PatchAdrp(insn, adrp_disp);
226
227 uint32_t out_disp = thunk_offset - patch_offset;
228 DCHECK_EQ(out_disp & 3u, 0u);
229 DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed.
230 insn = (out_disp & 0x0fffffffu) >> shift;
231 insn |= 0x14000000; // B <thunk>
232
233 uint32_t back_disp = -out_disp;
234 DCHECK_EQ(back_disp & 3u, 0u);
235 DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed.
236 uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
237 b_back |= 0x14000000; // B <back>
238 size_t thunks_code_offset = current_method_thunks_.size();
239 current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
240 SetInsn(¤t_method_thunks_, thunks_code_offset, adrp);
241 SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back);
242 static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
243
244 processed_adrp_thunks_ += 1u;
245 } else {
246 insn = PatchAdrp(insn, disp);
247 }
248 // Write the new ADRP (or B to the erratum 843419 thunk).
249 SetInsn(code, literal_offset, insn);
250 } else {
251 if ((insn & 0xfffffc00) == 0x91000000) {
252 // ADD immediate, 64-bit with imm12 == 0 (unset).
253 if (!kEmitCompilerReadBarrier) {
254 DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
255 patch.GetType() == LinkerPatch::Type::kTypeRelative) << patch.GetType();
256 } else {
257 // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
258 DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
259 patch.GetType() == LinkerPatch::Type::kTypeRelative ||
260 patch.GetType() == LinkerPatch::Type::kStringBssEntry ||
261 patch.GetType() == LinkerPatch::Type::kTypeBssEntry) << patch.GetType();
262 }
263 shift = 0u; // No shift for ADD.
264 } else {
265 // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
266 DCHECK(patch.GetType() == LinkerPatch::Type::kDexCacheArray ||
267 patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
268 patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
269 DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
270 }
271 if (kIsDebugBuild) {
272 uint32_t adrp = GetInsn(code, pc_insn_offset);
273 if ((adrp & 0x9f000000u) != 0x90000000u) {
274 CHECK(fix_cortex_a53_843419_);
275 CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk>
276 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
277 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
278 CHECK_LE(num_thunks, processed_adrp_thunks_);
279 uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
280 for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
281 CHECK_NE(i, processed_adrp_thunks_);
282 if (adrp_thunk_locations_[i].first == b_offset) {
283 size_t idx = num_thunks - (processed_adrp_thunks_ - i);
284 adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize);
285 break;
286 }
287 }
288 }
289 CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points
290 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register.
291 }
292 uint32_t imm12 = (disp & 0xfffu) >> shift;
293 insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
294 SetInsn(code, literal_offset, insn);
295 }
296 }
297
PatchBakerReadBarrierBranch(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)298 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
299 const LinkerPatch& patch,
300 uint32_t patch_offset) {
301 DCHECK_ALIGNED(patch_offset, 4u);
302 uint32_t literal_offset = patch.LiteralOffset();
303 DCHECK_ALIGNED(literal_offset, 4u);
304 DCHECK_LT(literal_offset, code->size());
305 uint32_t insn = GetInsn(code, literal_offset);
306 DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched)
307 ThunkKey key = GetBakerReadBarrierKey(patch);
308 if (kIsDebugBuild) {
309 // Check that the next instruction matches the expected LDR.
310 switch (key.GetType()) {
311 case ThunkType::kBakerReadBarrierField: {
312 DCHECK_GE(code->size() - literal_offset, 8u);
313 uint32_t next_insn = GetInsn(code, literal_offset + 4u);
314 // LDR (immediate) with correct base_reg.
315 CheckValidReg(next_insn & 0x1fu); // Check destination register.
316 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (key.GetOffsetParams().base_reg << 5));
317 break;
318 }
319 case ThunkType::kBakerReadBarrierRoot: {
320 DCHECK_GE(literal_offset, 4u);
321 uint32_t prev_insn = GetInsn(code, literal_offset - 4u);
322 // LDR (immediate) with correct root_reg.
323 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | key.GetRootParams().root_reg);
324 break;
325 }
326 default:
327 LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(key.GetType());
328 UNREACHABLE();
329 }
330 }
331 uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
332 DCHECK_ALIGNED(target_offset, 4u);
333 uint32_t disp = target_offset - patch_offset;
334 DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed.
335 insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23.
336 SetInsn(code, literal_offset, insn);
337 }
338
GetBakerReadBarrierKey(const LinkerPatch & patch)339 ArmBaseRelativePatcher::ThunkKey Arm64RelativePatcher::GetBakerReadBarrierKey(
340 const LinkerPatch& patch) {
341 DCHECK_EQ(patch.GetType(), LinkerPatch::Type::kBakerReadBarrierBranch);
342 uint32_t value = patch.GetBakerCustomValue1();
343 BakerReadBarrierKind type = BakerReadBarrierKindField::Decode(value);
344 ThunkParams params;
345 switch (type) {
346 case BakerReadBarrierKind::kField:
347 params.offset_params.base_reg = BakerReadBarrierFirstRegField::Decode(value);
348 CheckValidReg(params.offset_params.base_reg);
349 params.offset_params.holder_reg = BakerReadBarrierSecondRegField::Decode(value);
350 CheckValidReg(params.offset_params.holder_reg);
351 break;
352 case BakerReadBarrierKind::kGcRoot:
353 params.root_params.root_reg = BakerReadBarrierFirstRegField::Decode(value);
354 CheckValidReg(params.root_params.root_reg);
355 params.root_params.dummy = 0u;
356 DCHECK_EQ(BakerReadBarrierSecondRegField::Decode(value), kInvalidEncodedReg);
357 break;
358 default:
359 LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(type);
360 UNREACHABLE();
361 }
362 constexpr uint8_t kTypeTranslationOffset = 1u;
363 static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kField) + kTypeTranslationOffset ==
364 static_cast<uint32_t>(ThunkType::kBakerReadBarrierField),
365 "Thunk type translation check.");
366 static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kGcRoot) + kTypeTranslationOffset ==
367 static_cast<uint32_t>(ThunkType::kBakerReadBarrierRoot),
368 "Thunk type translation check.");
369 return ThunkKey(static_cast<ThunkType>(static_cast<uint32_t>(type) + kTypeTranslationOffset),
370 params);
371 }
372
373 #define __ assembler.GetVIXLAssembler()->
374
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path)375 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
376 vixl::aarch64::Register base_reg,
377 vixl::aarch64::MemOperand& lock_word,
378 vixl::aarch64::Label* slow_path) {
379 using namespace vixl::aarch64; // NOLINT(build/namespaces)
380 // Load the lock word containing the rb_state.
381 __ Ldr(ip0.W(), lock_word);
382 // Given the numeric representation, it's enough to check the low bit of the rb_state.
383 static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
384 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
385 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
386 static_assert(
387 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
388 "Field and array LDR offsets must be the same to reuse the same code.");
389 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
390 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
391 "Field LDR must be 1 instruction (4B) before the return address label; "
392 " 2 instructions (8B) for heap poisoning.");
393 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
394 // Introduce a dependency on the lock_word including rb_state,
395 // to prevent load-load reordering, and without using
396 // a memory barrier (which would be more expensive).
397 __ Add(base_reg, base_reg, Operand(vixl::aarch64::ip0, LSR, 32));
398 __ Br(lr); // And return back to the function.
399 // Note: The fake dependency is unnecessary for the slow path.
400 }
401
CompileThunk(const ThunkKey & key)402 std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) {
403 using namespace vixl::aarch64; // NOLINT(build/namespaces)
404 ArenaPool pool;
405 ArenaAllocator arena(&pool);
406 arm64::Arm64Assembler assembler(&arena);
407
408 switch (key.GetType()) {
409 case ThunkType::kMethodCall: {
410 // The thunk just uses the entry point in the ArtMethod. This works even for calls
411 // to the generic JNI and interpreter trampolines.
412 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
413 kArm64PointerSize).Int32Value());
414 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
415 break;
416 }
417 case ThunkType::kBakerReadBarrierField: {
418 // Check if the holder is gray and, if not, add fake dependency to the base register
419 // and return to the LDR instruction to load the reference. Otherwise, use introspection
420 // to load the reference and call the entrypoint (in IP1) that performs further checks
421 // on the reference and marks it if needed.
422 auto holder_reg = Register::GetXRegFromCode(key.GetOffsetParams().holder_reg);
423 auto base_reg = Register::GetXRegFromCode(key.GetOffsetParams().base_reg);
424 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
425 temps.Exclude(ip0, ip1);
426 // If base_reg differs from holder_reg, the offset was too large and we must have
427 // emitted an explicit null check before the load. Otherwise, we need to null-check
428 // the holder as we do not necessarily do that check before going to the thunk.
429 vixl::aarch64::Label throw_npe;
430 if (holder_reg.Is(base_reg)) {
431 __ Cbz(holder_reg.W(), &throw_npe);
432 }
433 vixl::aarch64::Label slow_path;
434 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
435 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
436 __ Bind(&slow_path);
437 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
438 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
439 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
440 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
441 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
442 __ Br(ip1); // Jump to the entrypoint.
443 if (holder_reg.Is(base_reg)) {
444 // Add null check slow path. The stack map is at the address pointed to by LR.
445 __ Bind(&throw_npe);
446 int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value();
447 __ Ldr(ip0, MemOperand(vixl::aarch64::x19, offset));
448 __ Br(ip0);
449 }
450 break;
451 }
452 case ThunkType::kBakerReadBarrierRoot: {
453 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
454 // and it does not have a forwarding address), call the correct introspection entrypoint;
455 // otherwise return the reference (or the extracted forwarding address).
456 // There is no gray bit check for GC roots.
457 auto root_reg = Register::GetWRegFromCode(key.GetRootParams().root_reg);
458 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
459 temps.Exclude(ip0, ip1);
460 vixl::aarch64::Label return_label, not_marked, forwarding_address;
461 __ Cbz(root_reg, &return_label);
462 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
463 __ Ldr(ip0.W(), lock_word);
464 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
465 __ Bind(&return_label);
466 __ Br(lr);
467 __ Bind(¬_marked);
468 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
469 __ B(&forwarding_address, mi);
470 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
471 // art_quick_read_barrier_mark_introspection_gc_roots.
472 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
473 __ Mov(ip0.W(), root_reg);
474 __ Br(ip1);
475 __ Bind(&forwarding_address);
476 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
477 __ Br(lr);
478 break;
479 }
480 }
481
482 // Ensure we emit the literal pool.
483 assembler.FinalizeCode();
484 std::vector<uint8_t> thunk_code(assembler.CodeSize());
485 MemoryRegion code(thunk_code.data(), thunk_code.size());
486 assembler.FinalizeInstructions(code);
487 return thunk_code;
488 }
489
490 #undef __
491
MaxPositiveDisplacement(ThunkType type)492 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(ThunkType type) {
493 switch (type) {
494 case ThunkType::kMethodCall:
495 return kMaxMethodCallPositiveDisplacement;
496 case ThunkType::kBakerReadBarrierField:
497 case ThunkType::kBakerReadBarrierRoot:
498 return kMaxBcondPositiveDisplacement;
499 }
500 }
501
MaxNegativeDisplacement(ThunkType type)502 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(ThunkType type) {
503 switch (type) {
504 case ThunkType::kMethodCall:
505 return kMaxMethodCallNegativeDisplacement;
506 case ThunkType::kBakerReadBarrierField:
507 case ThunkType::kBakerReadBarrierRoot:
508 return kMaxBcondNegativeDisplacement;
509 }
510 }
511
PatchAdrp(uint32_t adrp,uint32_t disp)512 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
513 return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg.
514 // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
515 ((disp & 0x00003000u) << (29 - 12)) |
516 // The next 16 bits are encoded in bits 5-22.
517 ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
518 // Since the target_offset is based on the beginning of the oat file and the
519 // image space precedes the oat file, the target_offset into image space will
520 // be negative yet passed as uint32_t. Therefore we limit the displacement
521 // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
522 // the highest bit of the displacement. This is encoded in bit 23.
523 ((disp & 0x80000000u) >> (31 - 23));
524 }
525
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)526 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
527 uint32_t literal_offset,
528 uint32_t patch_offset) {
529 DCHECK_EQ(patch_offset & 0x3u, 0u);
530 if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc
531 uint32_t adrp = GetInsn(code, literal_offset);
532 DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
533 uint32_t next_offset = patch_offset + 4u;
534 uint32_t next_insn = GetInsn(code, literal_offset + 4u);
535
536 // Below we avoid patching sequences where the adrp is followed by a load which can easily
537 // be proved to be aligned.
538
539 // First check if the next insn is the LDR using the result of the ADRP.
540 // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
541 if ((next_insn & 0xffc00000) == 0xb9400000 &&
542 (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
543 return false;
544 }
545
546 // And since LinkerPatch::Type::kStringRelative is using the result of the ADRP
547 // for an ADD immediate, check for that as well. We generalize a bit to include
548 // ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination or stores
549 // the result to a different register.
550 if ((next_insn & 0x1f000000) == 0x11000000 &&
551 ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
552 return false;
553 }
554
555 // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
556 if ((next_insn & 0xff000000) == 0x18000000) {
557 return false;
558 }
559
560 // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
561 if ((next_insn & 0xff000000) == 0x58000000) {
562 bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
563 return !is_aligned_load;
564 }
565
566 // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
567 // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
568 if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
569 return false;
570 }
571 return true;
572 }
573 return false;
574 }
575
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)576 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
577 DCHECK_LE(offset + 4u, code->size());
578 DCHECK_EQ(offset & 3u, 0u);
579 uint8_t* addr = &(*code)[offset];
580 addr[0] = (value >> 0) & 0xff;
581 addr[1] = (value >> 8) & 0xff;
582 addr[2] = (value >> 16) & 0xff;
583 addr[3] = (value >> 24) & 0xff;
584 }
585
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)586 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
587 DCHECK_LE(offset + 4u, code.size());
588 DCHECK_EQ(offset & 3u, 0u);
589 const uint8_t* addr = &code[offset];
590 return
591 (static_cast<uint32_t>(addr[0]) << 0) +
592 (static_cast<uint32_t>(addr[1]) << 8) +
593 (static_cast<uint32_t>(addr[2]) << 16)+
594 (static_cast<uint32_t>(addr[3]) << 24);
595 }
596
597 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)598 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
599 return GetInsn(ArrayRef<const uint8_t>(*code), offset);
600 }
601
602 } // namespace linker
603 } // namespace art
604