1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "linker/arm64/relative_patcher_arm64.h"
18 
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "art_method.h"
22 #include "base/bit_utils.h"
23 #include "compiled_method.h"
24 #include "driver/compiler_driver.h"
25 #include "entrypoints/quick/quick_entrypoints_enum.h"
26 #include "linker/output_stream.h"
27 #include "lock_word.h"
28 #include "mirror/object.h"
29 #include "mirror/array-inl.h"
30 #include "oat.h"
31 #include "oat_quick_method_header.h"
32 #include "utils/arm64/assembler_arm64.h"
33 
34 namespace art {
35 namespace linker {
36 
37 namespace {
38 
39 // Maximum positive and negative displacement for method call measured from the patch location.
40 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
41 // the ARM64 PC pointing to the BL.)
42 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
43 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
44 
45 // Maximum positive and negative displacement for a conditional branch measured from the patch
46 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
47 // measured from the ARM64 PC pointing to the B.cond.)
48 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
49 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
50 
51 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
52 constexpr uint32_t kAdrpThunkSize = 8u;
53 
IsAdrpPatch(const LinkerPatch & patch)54 inline bool IsAdrpPatch(const LinkerPatch& patch) {
55   switch (patch.GetType()) {
56     case LinkerPatch::Type::kMethod:
57     case LinkerPatch::Type::kCall:
58     case LinkerPatch::Type::kCallRelative:
59     case LinkerPatch::Type::kType:
60     case LinkerPatch::Type::kString:
61     case LinkerPatch::Type::kBakerReadBarrierBranch:
62       return false;
63     case LinkerPatch::Type::kTypeRelative:
64     case LinkerPatch::Type::kTypeBssEntry:
65     case LinkerPatch::Type::kStringRelative:
66     case LinkerPatch::Type::kStringBssEntry:
67     case LinkerPatch::Type::kDexCacheArray:
68       return patch.LiteralOffset() == patch.PcInsnOffset();
69   }
70 }
71 
MaxExtraSpace(size_t num_adrp,size_t code_size)72 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
73   if (num_adrp == 0u) {
74     return 0u;
75   }
76   uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size;
77   return kAdrpThunkSize * num_adrp + alignment_bytes;
78 }
79 
80 }  // anonymous namespace
81 
Arm64RelativePatcher(RelativePatcherTargetProvider * provider,const Arm64InstructionSetFeatures * features)82 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
83                                            const Arm64InstructionSetFeatures* features)
84     : ArmBaseRelativePatcher(provider, kArm64),
85       fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
86       reserved_adrp_thunks_(0u),
87       processed_adrp_thunks_(0u) {
88   if (fix_cortex_a53_843419_) {
89     adrp_thunk_locations_.reserve(16u);
90     current_method_thunks_.reserve(16u * kAdrpThunkSize);
91   }
92 }
93 
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)94 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
95                                             const CompiledMethod* compiled_method,
96                                             MethodReference method_ref) {
97   if (!fix_cortex_a53_843419_) {
98     DCHECK(adrp_thunk_locations_.empty());
99     return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
100   }
101 
102   // Add thunks for previous method if any.
103   if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
104     size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
105     offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
106     reserved_adrp_thunks_ = adrp_thunk_locations_.size();
107   }
108 
109   // Count the number of ADRP insns as the upper bound on the number of thunks needed
110   // and use it to reserve space for other linker patches.
111   size_t num_adrp = 0u;
112   DCHECK(compiled_method != nullptr);
113   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
114     if (IsAdrpPatch(patch)) {
115       ++num_adrp;
116     }
117   }
118   ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
119   uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
120   offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
121   if (num_adrp == 0u) {
122     return offset;
123   }
124 
125   // Now that we have the actual offset where the code will be placed, locate the ADRP insns
126   // that actually require the thunk.
127   uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
128   uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
129   DCHECK(compiled_method != nullptr);
130   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
131     if (IsAdrpPatch(patch)) {
132       uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
133       if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
134         adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
135         thunk_offset += kAdrpThunkSize;
136       }
137     }
138   }
139   return offset;
140 }
141 
ReserveSpaceEnd(uint32_t offset)142 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
143   if (!fix_cortex_a53_843419_) {
144     DCHECK(adrp_thunk_locations_.empty());
145   } else {
146     // Add thunks for the last method if any.
147     if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
148       size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
149       offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
150       reserved_adrp_thunks_ = adrp_thunk_locations_.size();
151     }
152   }
153   return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
154 }
155 
WriteThunks(OutputStream * out,uint32_t offset)156 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
157   if (fix_cortex_a53_843419_) {
158     if (!current_method_thunks_.empty()) {
159       uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
160       if (kIsDebugBuild) {
161         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
162         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
163         CHECK_LE(num_thunks, processed_adrp_thunks_);
164         for (size_t i = 0u; i != num_thunks; ++i) {
165           const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
166           CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
167         }
168       }
169       uint32_t aligned_code_delta = aligned_offset - offset;
170       if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
171         return 0u;
172       }
173       if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
174         return 0u;
175       }
176       offset = aligned_offset + current_method_thunks_.size();
177       current_method_thunks_.clear();
178     }
179   }
180   return ArmBaseRelativePatcher::WriteThunks(out, offset);
181 }
182 
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)183 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
184                                      uint32_t literal_offset,
185                                      uint32_t patch_offset, uint32_t
186                                      target_offset) {
187   DCHECK_LE(literal_offset + 4u, code->size());
188   DCHECK_EQ(literal_offset & 3u, 0u);
189   DCHECK_EQ(patch_offset & 3u, 0u);
190   DCHECK_EQ(target_offset & 3u, 0u);
191   uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
192   DCHECK_EQ(displacement & 3u, 0u);
193   DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u);  // 28-bit signed.
194   uint32_t insn = (displacement & 0x0fffffffu) >> 2;
195   insn |= 0x94000000;  // BL
196 
197   // Check that we're just overwriting an existing BL.
198   DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
199   // Write the new BL.
200   SetInsn(code, literal_offset, insn);
201 }
202 
PatchPcRelativeReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)203 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
204                                                     const LinkerPatch& patch,
205                                                     uint32_t patch_offset,
206                                                     uint32_t target_offset) {
207   DCHECK_EQ(patch_offset & 3u, 0u);
208   DCHECK_EQ(target_offset & 3u, 0u);
209   uint32_t literal_offset = patch.LiteralOffset();
210   uint32_t insn = GetInsn(code, literal_offset);
211   uint32_t pc_insn_offset = patch.PcInsnOffset();
212   uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
213   bool wide = (insn & 0x40000000) != 0;
214   uint32_t shift = wide ? 3u : 2u;
215   if (literal_offset == pc_insn_offset) {
216     // Check it's an ADRP with imm == 0 (unset).
217     DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
218         << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
219     if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
220         adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
221       DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
222                                      literal_offset, patch_offset));
223       uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
224       uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
225       uint32_t adrp = PatchAdrp(insn, adrp_disp);
226 
227       uint32_t out_disp = thunk_offset - patch_offset;
228       DCHECK_EQ(out_disp & 3u, 0u);
229       DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u);  // 28-bit signed.
230       insn = (out_disp & 0x0fffffffu) >> shift;
231       insn |= 0x14000000;  // B <thunk>
232 
233       uint32_t back_disp = -out_disp;
234       DCHECK_EQ(back_disp & 3u, 0u);
235       DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u);  // 28-bit signed.
236       uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
237       b_back |= 0x14000000;  // B <back>
238       size_t thunks_code_offset = current_method_thunks_.size();
239       current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
240       SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
241       SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
242       static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
243 
244       processed_adrp_thunks_ += 1u;
245     } else {
246       insn = PatchAdrp(insn, disp);
247     }
248     // Write the new ADRP (or B to the erratum 843419 thunk).
249     SetInsn(code, literal_offset, insn);
250   } else {
251     if ((insn & 0xfffffc00) == 0x91000000) {
252       // ADD immediate, 64-bit with imm12 == 0 (unset).
253       if (!kEmitCompilerReadBarrier) {
254         DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
255                patch.GetType() == LinkerPatch::Type::kTypeRelative) << patch.GetType();
256       } else {
257         // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
258         DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative ||
259                patch.GetType() == LinkerPatch::Type::kTypeRelative ||
260                patch.GetType() == LinkerPatch::Type::kStringBssEntry ||
261                patch.GetType() == LinkerPatch::Type::kTypeBssEntry) << patch.GetType();
262       }
263       shift = 0u;  // No shift for ADD.
264     } else {
265       // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
266       DCHECK(patch.GetType() == LinkerPatch::Type::kDexCacheArray ||
267              patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
268              patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
269       DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
270     }
271     if (kIsDebugBuild) {
272       uint32_t adrp = GetInsn(code, pc_insn_offset);
273       if ((adrp & 0x9f000000u) != 0x90000000u) {
274         CHECK(fix_cortex_a53_843419_);
275         CHECK_EQ(adrp & 0xfc000000u, 0x14000000u);  // B <thunk>
276         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
277         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
278         CHECK_LE(num_thunks, processed_adrp_thunks_);
279         uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
280         for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
281           CHECK_NE(i, processed_adrp_thunks_);
282           if (adrp_thunk_locations_[i].first == b_offset) {
283             size_t idx = num_thunks - (processed_adrp_thunks_ - i);
284             adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
285             break;
286           }
287         }
288       }
289       CHECK_EQ(adrp & 0x9f00001fu,                    // Check that pc_insn_offset points
290                0x90000000 | ((insn >> 5) & 0x1fu));   // to ADRP with matching register.
291     }
292     uint32_t imm12 = (disp & 0xfffu) >> shift;
293     insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
294     SetInsn(code, literal_offset, insn);
295   }
296 }
297 
PatchBakerReadBarrierBranch(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)298 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
299                                                        const LinkerPatch& patch,
300                                                        uint32_t patch_offset) {
301   DCHECK_ALIGNED(patch_offset, 4u);
302   uint32_t literal_offset = patch.LiteralOffset();
303   DCHECK_ALIGNED(literal_offset, 4u);
304   DCHECK_LT(literal_offset, code->size());
305   uint32_t insn = GetInsn(code, literal_offset);
306   DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000);  // CBNZ Xt, +0 (unpatched)
307   ThunkKey key = GetBakerReadBarrierKey(patch);
308   if (kIsDebugBuild) {
309     // Check that the next instruction matches the expected LDR.
310     switch (key.GetType()) {
311       case ThunkType::kBakerReadBarrierField: {
312         DCHECK_GE(code->size() - literal_offset, 8u);
313         uint32_t next_insn = GetInsn(code, literal_offset + 4u);
314         // LDR (immediate) with correct base_reg.
315         CheckValidReg(next_insn & 0x1fu);  // Check destination register.
316         CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (key.GetOffsetParams().base_reg << 5));
317         break;
318       }
319       case ThunkType::kBakerReadBarrierRoot: {
320         DCHECK_GE(literal_offset, 4u);
321         uint32_t prev_insn = GetInsn(code, literal_offset - 4u);
322         // LDR (immediate) with correct root_reg.
323         CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | key.GetRootParams().root_reg);
324         break;
325       }
326       default:
327         LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(key.GetType());
328         UNREACHABLE();
329     }
330   }
331   uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
332   DCHECK_ALIGNED(target_offset, 4u);
333   uint32_t disp = target_offset - patch_offset;
334   DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u);  // 21-bit signed.
335   insn |= (disp << (5 - 2)) & 0x00ffffe0u;              // Shift bits 2-20 to 5-23.
336   SetInsn(code, literal_offset, insn);
337 }
338 
GetBakerReadBarrierKey(const LinkerPatch & patch)339 ArmBaseRelativePatcher::ThunkKey Arm64RelativePatcher::GetBakerReadBarrierKey(
340     const LinkerPatch& patch) {
341   DCHECK_EQ(patch.GetType(), LinkerPatch::Type::kBakerReadBarrierBranch);
342   uint32_t value = patch.GetBakerCustomValue1();
343   BakerReadBarrierKind type = BakerReadBarrierKindField::Decode(value);
344   ThunkParams params;
345   switch (type) {
346     case BakerReadBarrierKind::kField:
347       params.offset_params.base_reg = BakerReadBarrierFirstRegField::Decode(value);
348       CheckValidReg(params.offset_params.base_reg);
349       params.offset_params.holder_reg = BakerReadBarrierSecondRegField::Decode(value);
350       CheckValidReg(params.offset_params.holder_reg);
351       break;
352     case BakerReadBarrierKind::kGcRoot:
353       params.root_params.root_reg = BakerReadBarrierFirstRegField::Decode(value);
354       CheckValidReg(params.root_params.root_reg);
355       params.root_params.dummy = 0u;
356       DCHECK_EQ(BakerReadBarrierSecondRegField::Decode(value), kInvalidEncodedReg);
357       break;
358     default:
359       LOG(FATAL) << "Unexpected type: " << static_cast<uint32_t>(type);
360       UNREACHABLE();
361   }
362   constexpr uint8_t kTypeTranslationOffset = 1u;
363   static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kField) + kTypeTranslationOffset ==
364                 static_cast<uint32_t>(ThunkType::kBakerReadBarrierField),
365                 "Thunk type translation check.");
366   static_assert(static_cast<uint32_t>(BakerReadBarrierKind::kGcRoot) + kTypeTranslationOffset ==
367                 static_cast<uint32_t>(ThunkType::kBakerReadBarrierRoot),
368                 "Thunk type translation check.");
369   return ThunkKey(static_cast<ThunkType>(static_cast<uint32_t>(type) + kTypeTranslationOffset),
370                   params);
371 }
372 
373 #define __ assembler.GetVIXLAssembler()->
374 
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path)375 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
376                                      vixl::aarch64::Register base_reg,
377                                      vixl::aarch64::MemOperand& lock_word,
378                                      vixl::aarch64::Label* slow_path) {
379   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
380   // Load the lock word containing the rb_state.
381   __ Ldr(ip0.W(), lock_word);
382   // Given the numeric representation, it's enough to check the low bit of the rb_state.
383   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
384   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
385   __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
386   static_assert(
387       BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
388       "Field and array LDR offsets must be the same to reuse the same code.");
389   // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
390   static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
391                 "Field LDR must be 1 instruction (4B) before the return address label; "
392                 " 2 instructions (8B) for heap poisoning.");
393   __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
394   // Introduce a dependency on the lock_word including rb_state,
395   // to prevent load-load reordering, and without using
396   // a memory barrier (which would be more expensive).
397   __ Add(base_reg, base_reg, Operand(vixl::aarch64::ip0, LSR, 32));
398   __ Br(lr);          // And return back to the function.
399   // Note: The fake dependency is unnecessary for the slow path.
400 }
401 
CompileThunk(const ThunkKey & key)402 std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) {
403   using namespace vixl::aarch64;  // NOLINT(build/namespaces)
404   ArenaPool pool;
405   ArenaAllocator arena(&pool);
406   arm64::Arm64Assembler assembler(&arena);
407 
408   switch (key.GetType()) {
409     case ThunkType::kMethodCall: {
410       // The thunk just uses the entry point in the ArtMethod. This works even for calls
411       // to the generic JNI and interpreter trampolines.
412       Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
413           kArm64PointerSize).Int32Value());
414       assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
415       break;
416     }
417     case ThunkType::kBakerReadBarrierField: {
418       // Check if the holder is gray and, if not, add fake dependency to the base register
419       // and return to the LDR instruction to load the reference. Otherwise, use introspection
420       // to load the reference and call the entrypoint (in IP1) that performs further checks
421       // on the reference and marks it if needed.
422       auto holder_reg = Register::GetXRegFromCode(key.GetOffsetParams().holder_reg);
423       auto base_reg = Register::GetXRegFromCode(key.GetOffsetParams().base_reg);
424       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
425       temps.Exclude(ip0, ip1);
426       // If base_reg differs from holder_reg, the offset was too large and we must have
427       // emitted an explicit null check before the load. Otherwise, we need to null-check
428       // the holder as we do not necessarily do that check before going to the thunk.
429       vixl::aarch64::Label throw_npe;
430       if (holder_reg.Is(base_reg)) {
431         __ Cbz(holder_reg.W(), &throw_npe);
432       }
433       vixl::aarch64::Label slow_path;
434       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
435       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
436       __ Bind(&slow_path);
437       MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
438       __ Ldr(ip0.W(), ldr_address);         // Load the LDR (immediate) unsigned offset.
439       __ Ubfx(ip0.W(), ip0.W(), 10, 12);    // Extract the offset.
440       __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2));   // Load the reference.
441       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
442       __ Br(ip1);                           // Jump to the entrypoint.
443       if (holder_reg.Is(base_reg)) {
444         // Add null check slow path. The stack map is at the address pointed to by LR.
445         __ Bind(&throw_npe);
446         int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value();
447         __ Ldr(ip0, MemOperand(vixl::aarch64::x19, offset));
448         __ Br(ip0);
449       }
450       break;
451     }
452     case ThunkType::kBakerReadBarrierRoot: {
453       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
454       // and it does not have a forwarding address), call the correct introspection entrypoint;
455       // otherwise return the reference (or the extracted forwarding address).
456       // There is no gray bit check for GC roots.
457       auto root_reg = Register::GetWRegFromCode(key.GetRootParams().root_reg);
458       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
459       temps.Exclude(ip0, ip1);
460       vixl::aarch64::Label return_label, not_marked, forwarding_address;
461       __ Cbz(root_reg, &return_label);
462       MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
463       __ Ldr(ip0.W(), lock_word);
464       __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, &not_marked);
465       __ Bind(&return_label);
466       __ Br(lr);
467       __ Bind(&not_marked);
468       __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
469       __ B(&forwarding_address, mi);
470       // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
471       // art_quick_read_barrier_mark_introspection_gc_roots.
472       __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
473       __ Mov(ip0.W(), root_reg);
474       __ Br(ip1);
475       __ Bind(&forwarding_address);
476       __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
477       __ Br(lr);
478       break;
479     }
480   }
481 
482   // Ensure we emit the literal pool.
483   assembler.FinalizeCode();
484   std::vector<uint8_t> thunk_code(assembler.CodeSize());
485   MemoryRegion code(thunk_code.data(), thunk_code.size());
486   assembler.FinalizeInstructions(code);
487   return thunk_code;
488 }
489 
490 #undef __
491 
MaxPositiveDisplacement(ThunkType type)492 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(ThunkType type) {
493   switch (type) {
494     case ThunkType::kMethodCall:
495       return kMaxMethodCallPositiveDisplacement;
496     case ThunkType::kBakerReadBarrierField:
497     case ThunkType::kBakerReadBarrierRoot:
498       return kMaxBcondPositiveDisplacement;
499   }
500 }
501 
MaxNegativeDisplacement(ThunkType type)502 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(ThunkType type) {
503   switch (type) {
504     case ThunkType::kMethodCall:
505       return kMaxMethodCallNegativeDisplacement;
506     case ThunkType::kBakerReadBarrierField:
507     case ThunkType::kBakerReadBarrierRoot:
508       return kMaxBcondNegativeDisplacement;
509   }
510 }
511 
PatchAdrp(uint32_t adrp,uint32_t disp)512 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
513   return (adrp & 0x9f00001fu) |  // Clear offset bits, keep ADRP with destination reg.
514       // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
515       ((disp & 0x00003000u) << (29 - 12)) |
516       // The next 16 bits are encoded in bits 5-22.
517       ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
518       // Since the target_offset is based on the beginning of the oat file and the
519       // image space precedes the oat file, the target_offset into image space will
520       // be negative yet passed as uint32_t. Therefore we limit the displacement
521       // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
522       // the highest bit of the displacement. This is encoded in bit 23.
523       ((disp & 0x80000000u) >> (31 - 23));
524 }
525 
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)526 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
527                                                    uint32_t literal_offset,
528                                                    uint32_t patch_offset) {
529   DCHECK_EQ(patch_offset & 0x3u, 0u);
530   if ((patch_offset & 0xff8) == 0xff8) {  // ...ff8 or ...ffc
531     uint32_t adrp = GetInsn(code, literal_offset);
532     DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
533     uint32_t next_offset = patch_offset + 4u;
534     uint32_t next_insn = GetInsn(code, literal_offset + 4u);
535 
536     // Below we avoid patching sequences where the adrp is followed by a load which can easily
537     // be proved to be aligned.
538 
539     // First check if the next insn is the LDR using the result of the ADRP.
540     // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
541     if ((next_insn & 0xffc00000) == 0xb9400000 &&
542         (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
543       return false;
544     }
545 
546     // And since LinkerPatch::Type::kStringRelative is using the result of the ADRP
547     // for an ADD immediate, check for that as well. We generalize a bit to include
548     // ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination or stores
549     // the result to a different register.
550     if ((next_insn & 0x1f000000) == 0x11000000 &&
551         ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
552       return false;
553     }
554 
555     // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
556     if ((next_insn & 0xff000000) == 0x18000000) {
557       return false;
558     }
559 
560     // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
561     if ((next_insn & 0xff000000) == 0x58000000) {
562       bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
563       return !is_aligned_load;
564     }
565 
566     // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
567     // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
568     if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
569       return false;
570     }
571     return true;
572   }
573   return false;
574 }
575 
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)576 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
577   DCHECK_LE(offset + 4u, code->size());
578   DCHECK_EQ(offset & 3u, 0u);
579   uint8_t* addr = &(*code)[offset];
580   addr[0] = (value >> 0) & 0xff;
581   addr[1] = (value >> 8) & 0xff;
582   addr[2] = (value >> 16) & 0xff;
583   addr[3] = (value >> 24) & 0xff;
584 }
585 
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)586 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
587   DCHECK_LE(offset + 4u, code.size());
588   DCHECK_EQ(offset & 3u, 0u);
589   const uint8_t* addr = &code[offset];
590   return
591       (static_cast<uint32_t>(addr[0]) << 0) +
592       (static_cast<uint32_t>(addr[1]) << 8) +
593       (static_cast<uint32_t>(addr[2]) << 16)+
594       (static_cast<uint32_t>(addr[3]) << 24);
595 }
596 
597 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)598 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
599   return GetInsn(ArrayRef<const uint8_t>(*code), offset);
600 }
601 
602 }  // namespace linker
603 }  // namespace art
604