1 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64PromoteConstant pass which promotes constants
11 // to global variables when this is likely to be more efficient. Currently only
12 // types related to constant vector (i.e., constant vector, array of constant
13 // vectors, constant structure with a constant vector field, etc.) are promoted
14 // to global variables. Constant vectors are likely to be lowered in target
15 // constant pool during instruction selection already; therefore, the access
16 // will remain the same (memory load), but the structure types are not split
17 // into different constant pool accesses for each field. A bonus side effect is
18 // that created globals may be merged by the global merge pass.
19 //
20 // FIXME: This pass may be useful for other targets too.
21 //===----------------------------------------------------------------------===//
22
23 #include "AArch64.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42
43 using namespace llvm;
44
45 #define DEBUG_TYPE "aarch64-promote-const"
46
47 // Stress testing mode - disable heuristics.
48 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
49 cl::desc("Promote all vector constants"));
50
51 STATISTIC(NumPromoted, "Number of promoted constants");
52 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
53
54 //===----------------------------------------------------------------------===//
55 // AArch64PromoteConstant
56 //===----------------------------------------------------------------------===//
57
58 namespace {
59 /// Promotes interesting constant into global variables.
60 /// The motivating example is:
61 /// static const uint16_t TableA[32] = {
62 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
63 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
64 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
65 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
66 /// };
67 ///
68 /// uint8x16x4_t LoadStatic(void) {
69 /// uint8x16x4_t ret;
70 /// ret.val[0] = vld1q_u16(TableA + 0);
71 /// ret.val[1] = vld1q_u16(TableA + 8);
72 /// ret.val[2] = vld1q_u16(TableA + 16);
73 /// ret.val[3] = vld1q_u16(TableA + 24);
74 /// return ret;
75 /// }
76 ///
77 /// The constants in this example are folded into the uses. Thus, 4 different
78 /// constants are created.
79 ///
80 /// As their type is vector the cheapest way to create them is to load them
81 /// for the memory.
82 ///
83 /// Therefore the final assembly final has 4 different loads. With this pass
84 /// enabled, only one load is issued for the constants.
85 class AArch64PromoteConstant : public ModulePass {
86
87 public:
88 struct PromotedConstant {
89 bool ShouldConvert = false;
90 GlobalVariable *GV = nullptr;
91 };
92 typedef SmallDenseMap<Constant *, PromotedConstant, 16> PromotionCacheTy;
93
94 struct UpdateRecord {
95 Constant *C;
96 Instruction *User;
97 unsigned Op;
98
UpdateRecord__anone48eb3b90111::AArch64PromoteConstant::UpdateRecord99 UpdateRecord(Constant *C, Instruction *User, unsigned Op)
100 : C(C), User(User), Op(Op) {}
101 };
102
103 static char ID;
AArch64PromoteConstant()104 AArch64PromoteConstant() : ModulePass(ID) {}
105
getPassName() const106 const char *getPassName() const override { return "AArch64 Promote Constant"; }
107
108 /// Iterate over the functions and promote the interesting constants into
109 /// global variables with module scope.
runOnModule(Module & M)110 bool runOnModule(Module &M) override {
111 DEBUG(dbgs() << getPassName() << '\n');
112 if (skipModule(M))
113 return false;
114 bool Changed = false;
115 PromotionCacheTy PromotionCache;
116 for (auto &MF : M) {
117 Changed |= runOnFunction(MF, PromotionCache);
118 }
119 return Changed;
120 }
121
122 private:
123 /// Look for interesting constants used within the given function.
124 /// Promote them into global variables, load these global variables within
125 /// the related function, so that the number of inserted load is minimal.
126 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
127
128 // This transformation requires dominator info
getAnalysisUsage(AnalysisUsage & AU) const129 void getAnalysisUsage(AnalysisUsage &AU) const override {
130 AU.setPreservesCFG();
131 AU.addRequired<DominatorTreeWrapperPass>();
132 AU.addPreserved<DominatorTreeWrapperPass>();
133 }
134
135 /// Type to store a list of Uses.
136 typedef SmallVector<std::pair<Instruction *, unsigned>, 4> Uses;
137 /// Map an insertion point to all the uses it dominates.
138 typedef DenseMap<Instruction *, Uses> InsertionPoints;
139
140 /// Find the closest point that dominates the given Use.
141 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
142
143 /// Check if the given insertion point is dominated by an existing
144 /// insertion point.
145 /// If true, the given use is added to the list of dominated uses for
146 /// the related existing point.
147 /// \param NewPt the insertion point to be checked
148 /// \param User the user of the constant
149 /// \param OpNo the operand number of the use
150 /// \param InsertPts existing insertion points
151 /// \pre NewPt and all instruction in InsertPts belong to the same function
152 /// \return true if one of the insertion point in InsertPts dominates NewPt,
153 /// false otherwise
154 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
155 InsertionPoints &InsertPts);
156
157 /// Check if the given insertion point can be merged with an existing
158 /// insertion point in a common dominator.
159 /// If true, the given use is added to the list of the created insertion
160 /// point.
161 /// \param NewPt the insertion point to be checked
162 /// \param User the user of the constant
163 /// \param OpNo the operand number of the use
164 /// \param InsertPts existing insertion points
165 /// \pre NewPt and all instruction in InsertPts belong to the same function
166 /// \pre isDominated returns false for the exact same parameters.
167 /// \return true if it exists an insertion point in InsertPts that could
168 /// have been merged with NewPt in a common dominator,
169 /// false otherwise
170 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
171 InsertionPoints &InsertPts);
172
173 /// Compute the minimal insertion points to dominates all the interesting
174 /// uses of value.
175 /// Insertion points are group per function and each insertion point
176 /// contains a list of all the uses it dominates within the related function
177 /// \param User the user of the constant
178 /// \param OpNo the operand number of the constant
179 /// \param[out] InsertPts output storage of the analysis
180 void computeInsertionPoint(Instruction *User, unsigned OpNo,
181 InsertionPoints &InsertPts);
182
183 /// Insert a definition of a new global variable at each point contained in
184 /// InsPtsPerFunc and update the related uses (also contained in
185 /// InsPtsPerFunc).
186 void insertDefinitions(Function &F, GlobalVariable &GV,
187 InsertionPoints &InsertPts);
188
189 /// Do the constant promotion indicated by the Updates records, keeping track
190 /// of globals in PromotionCache.
191 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
192 PromotionCacheTy &PromotionCache);
193
194 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
195 /// Append Use to this list and delete the entry of IPI in InsertPts.
appendAndTransferDominatedUses(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints::iterator & IPI,InsertionPoints & InsertPts)196 static void appendAndTransferDominatedUses(Instruction *NewPt,
197 Instruction *User, unsigned OpNo,
198 InsertionPoints::iterator &IPI,
199 InsertionPoints &InsertPts) {
200 // Record the dominated use.
201 IPI->second.emplace_back(User, OpNo);
202 // Transfer the dominated uses of IPI to NewPt
203 // Inserting into the DenseMap may invalidate existing iterator.
204 // Keep a copy of the key to find the iterator to erase. Keep a copy of the
205 // value so that we don't have to dereference IPI->second.
206 Instruction *OldInstr = IPI->first;
207 Uses OldUses = std::move(IPI->second);
208 InsertPts[NewPt] = std::move(OldUses);
209 // Erase IPI.
210 InsertPts.erase(OldInstr);
211 }
212 };
213 } // end anonymous namespace
214
215 char AArch64PromoteConstant::ID = 0;
216
217 namespace llvm {
218 void initializeAArch64PromoteConstantPass(PassRegistry &);
219 }
220
221 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
222 "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)223 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
224 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
225 "AArch64 Promote Constant Pass", false, false)
226
227 ModulePass *llvm::createAArch64PromoteConstantPass() {
228 return new AArch64PromoteConstant();
229 }
230
231 /// Check if the given type uses a vector type.
isConstantUsingVectorTy(const Type * CstTy)232 static bool isConstantUsingVectorTy(const Type *CstTy) {
233 if (CstTy->isVectorTy())
234 return true;
235 if (CstTy->isStructTy()) {
236 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
237 EltIdx < EndEltIdx; ++EltIdx)
238 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
239 return true;
240 } else if (CstTy->isArrayTy())
241 return isConstantUsingVectorTy(CstTy->getArrayElementType());
242 return false;
243 }
244
245 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
246 /// a load of a global variable initialized with Cst.
247 /// A use should be converted if it is legal to do so.
248 /// For instance, it is not legal to turn the mask operand of a shuffle vector
249 /// into a load of a global variable.
shouldConvertUse(const Constant * Cst,const Instruction * Instr,unsigned OpIdx)250 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
251 unsigned OpIdx) {
252 // shufflevector instruction expects a const for the mask argument, i.e., the
253 // third argument. Do not promote this use in that case.
254 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
255 return false;
256
257 // extractvalue instruction expects a const idx.
258 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
259 return false;
260
261 // extractvalue instruction expects a const idx.
262 if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
263 return false;
264
265 if (isa<const AllocaInst>(Instr) && OpIdx > 0)
266 return false;
267
268 // Alignment argument must be constant.
269 if (isa<const LoadInst>(Instr) && OpIdx > 0)
270 return false;
271
272 // Alignment argument must be constant.
273 if (isa<const StoreInst>(Instr) && OpIdx > 1)
274 return false;
275
276 // Index must be constant.
277 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
278 return false;
279
280 // Personality function and filters must be constant.
281 // Give up on that instruction.
282 if (isa<const LandingPadInst>(Instr))
283 return false;
284
285 // Switch instruction expects constants to compare to.
286 if (isa<const SwitchInst>(Instr))
287 return false;
288
289 // Expected address must be a constant.
290 if (isa<const IndirectBrInst>(Instr))
291 return false;
292
293 // Do not mess with intrinsics.
294 if (isa<const IntrinsicInst>(Instr))
295 return false;
296
297 // Do not mess with inline asm.
298 const CallInst *CI = dyn_cast<const CallInst>(Instr);
299 return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
300 }
301
302 /// Check if the given Cst should be converted into
303 /// a load of a global variable initialized with Cst.
304 /// A constant should be converted if it is likely that the materialization of
305 /// the constant will be tricky. Thus, we give up on zero or undef values.
306 ///
307 /// \todo Currently, accept only vector related types.
308 /// Also we give up on all simple vector type to keep the existing
309 /// behavior. Otherwise, we should push here all the check of the lowering of
310 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
311 /// constant via global merge and the fact that the same constant is stored
312 /// only once with this method (versus, as many function that uses the constant
313 /// for the regular approach, even for float).
314 /// Again, the simplest solution would be to promote every
315 /// constant and rematerialize them when they are actually cheap to create.
shouldConvertImpl(const Constant * Cst)316 static bool shouldConvertImpl(const Constant *Cst) {
317 if (isa<const UndefValue>(Cst))
318 return false;
319
320 // FIXME: In some cases, it may be interesting to promote in memory
321 // a zero initialized constant.
322 // E.g., when the type of Cst require more instructions than the
323 // adrp/add/load sequence or when this sequence can be shared by several
324 // instances of Cst.
325 // Ideally, we could promote this into a global and rematerialize the constant
326 // when it was a bad idea.
327 if (Cst->isZeroValue())
328 return false;
329
330 if (Stress)
331 return true;
332
333 // FIXME: see function \todo
334 if (Cst->getType()->isVectorTy())
335 return false;
336 return isConstantUsingVectorTy(Cst->getType());
337 }
338
339 static bool
shouldConvert(Constant & C,AArch64PromoteConstant::PromotionCacheTy & PromotionCache)340 shouldConvert(Constant &C,
341 AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
342 auto Converted = PromotionCache.insert(
343 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
344 if (Converted.second)
345 Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
346 return Converted.first->second.ShouldConvert;
347 }
348
findInsertionPoint(Instruction & User,unsigned OpNo)349 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
350 unsigned OpNo) {
351 // If this user is a phi, the insertion point is in the related
352 // incoming basic block.
353 if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
354 return PhiInst->getIncomingBlock(OpNo)->getTerminator();
355
356 return &User;
357 }
358
isDominated(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)359 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
360 unsigned OpNo,
361 InsertionPoints &InsertPts) {
362
363 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
364 *NewPt->getParent()->getParent()).getDomTree();
365
366 // Traverse all the existing insertion points and check if one is dominating
367 // NewPt. If it is, remember that.
368 for (auto &IPI : InsertPts) {
369 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
370 // When IPI.first is a terminator instruction, DT may think that
371 // the result is defined on the edge.
372 // Here we are testing the insertion point, not the definition.
373 (IPI.first->getParent() != NewPt->getParent() &&
374 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
375 // No need to insert this point. Just record the dominated use.
376 DEBUG(dbgs() << "Insertion point dominated by:\n");
377 DEBUG(IPI.first->print(dbgs()));
378 DEBUG(dbgs() << '\n');
379 IPI.second.emplace_back(User, OpNo);
380 return true;
381 }
382 }
383 return false;
384 }
385
tryAndMerge(Instruction * NewPt,Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)386 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
387 unsigned OpNo,
388 InsertionPoints &InsertPts) {
389 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
390 *NewPt->getParent()->getParent()).getDomTree();
391 BasicBlock *NewBB = NewPt->getParent();
392
393 // Traverse all the existing insertion point and check if one is dominated by
394 // NewPt and thus useless or can be combined with NewPt into a common
395 // dominator.
396 for (InsertionPoints::iterator IPI = InsertPts.begin(),
397 EndIPI = InsertPts.end();
398 IPI != EndIPI; ++IPI) {
399 BasicBlock *CurBB = IPI->first->getParent();
400 if (NewBB == CurBB) {
401 // Instructions are in the same block.
402 // By construction, NewPt is dominating the other.
403 // Indeed, isDominated returned false with the exact same arguments.
404 DEBUG(dbgs() << "Merge insertion point with:\n");
405 DEBUG(IPI->first->print(dbgs()));
406 DEBUG(dbgs() << "\nat considered insertion point.\n");
407 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
408 return true;
409 }
410
411 // Look for a common dominator
412 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
413 // If none exists, we cannot merge these two points.
414 if (!CommonDominator)
415 continue;
416
417 if (CommonDominator != NewBB) {
418 // By construction, the CommonDominator cannot be CurBB.
419 assert(CommonDominator != CurBB &&
420 "Instruction has not been rejected during isDominated check!");
421 // Take the last instruction of the CommonDominator as insertion point
422 NewPt = CommonDominator->getTerminator();
423 }
424 // else, CommonDominator is the block of NewBB, hence NewBB is the last
425 // possible insertion point in that block.
426 DEBUG(dbgs() << "Merge insertion point with:\n");
427 DEBUG(IPI->first->print(dbgs()));
428 DEBUG(dbgs() << '\n');
429 DEBUG(NewPt->print(dbgs()));
430 DEBUG(dbgs() << '\n');
431 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
432 return true;
433 }
434 return false;
435 }
436
computeInsertionPoint(Instruction * User,unsigned OpNo,InsertionPoints & InsertPts)437 void AArch64PromoteConstant::computeInsertionPoint(
438 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
439 DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
440 DEBUG(User->print(dbgs()));
441 DEBUG(dbgs() << '\n');
442
443 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
444
445 DEBUG(dbgs() << "Considered insertion point:\n");
446 DEBUG(InsertionPoint->print(dbgs()));
447 DEBUG(dbgs() << '\n');
448
449 if (isDominated(InsertionPoint, User, OpNo, InsertPts))
450 return;
451 // This insertion point is useful, check if we can merge some insertion
452 // point in a common dominator or if NewPt dominates an existing one.
453 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
454 return;
455
456 DEBUG(dbgs() << "Keep considered insertion point\n");
457
458 // It is definitely useful by its own
459 InsertPts[InsertionPoint].emplace_back(User, OpNo);
460 }
461
ensurePromotedGV(Function & F,Constant & C,AArch64PromoteConstant::PromotedConstant & PC)462 static void ensurePromotedGV(Function &F, Constant &C,
463 AArch64PromoteConstant::PromotedConstant &PC) {
464 assert(PC.ShouldConvert &&
465 "Expected that we should convert this to a global");
466 if (PC.GV)
467 return;
468 PC.GV = new GlobalVariable(
469 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
470 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
471 PC.GV->setInitializer(&C);
472 DEBUG(dbgs() << "Global replacement: ");
473 DEBUG(PC.GV->print(dbgs()));
474 DEBUG(dbgs() << '\n');
475 ++NumPromoted;
476 }
477
insertDefinitions(Function & F,GlobalVariable & PromotedGV,InsertionPoints & InsertPts)478 void AArch64PromoteConstant::insertDefinitions(Function &F,
479 GlobalVariable &PromotedGV,
480 InsertionPoints &InsertPts) {
481 #ifndef NDEBUG
482 // Do more checking for debug purposes.
483 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
484 #endif
485 assert(!InsertPts.empty() && "Empty uses does not need a definition");
486
487 for (const auto &IPI : InsertPts) {
488 // Create the load of the global variable.
489 IRBuilder<> Builder(IPI.first);
490 LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV);
491 DEBUG(dbgs() << "**********\n");
492 DEBUG(dbgs() << "New def: ");
493 DEBUG(LoadedCst->print(dbgs()));
494 DEBUG(dbgs() << '\n');
495
496 // Update the dominated uses.
497 for (auto Use : IPI.second) {
498 #ifndef NDEBUG
499 assert(DT.dominates(LoadedCst,
500 findInsertionPoint(*Use.first, Use.second)) &&
501 "Inserted definition does not dominate all its uses!");
502 #endif
503 DEBUG({
504 dbgs() << "Use to update " << Use.second << ":";
505 Use.first->print(dbgs());
506 dbgs() << '\n';
507 });
508 Use.first->setOperand(Use.second, LoadedCst);
509 ++NumPromotedUses;
510 }
511 }
512 }
513
promoteConstants(Function & F,SmallVectorImpl<UpdateRecord> & Updates,PromotionCacheTy & PromotionCache)514 void AArch64PromoteConstant::promoteConstants(
515 Function &F, SmallVectorImpl<UpdateRecord> &Updates,
516 PromotionCacheTy &PromotionCache) {
517 // Promote the constants.
518 for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
519 DEBUG(dbgs() << "** Compute insertion points **\n");
520 auto First = U;
521 Constant *C = First->C;
522 InsertionPoints InsertPts;
523 do {
524 computeInsertionPoint(U->User, U->Op, InsertPts);
525 } while (++U != E && U->C == C);
526
527 auto &Promotion = PromotionCache[C];
528 ensurePromotedGV(F, *C, Promotion);
529 insertDefinitions(F, *Promotion.GV, InsertPts);
530 }
531 }
532
runOnFunction(Function & F,PromotionCacheTy & PromotionCache)533 bool AArch64PromoteConstant::runOnFunction(Function &F,
534 PromotionCacheTy &PromotionCache) {
535 // Look for instructions using constant vector. Promote that constant to a
536 // global variable. Create as few loads of this variable as possible and
537 // update the uses accordingly.
538 SmallVector<UpdateRecord, 64> Updates;
539 for (Instruction &I : instructions(&F)) {
540 // Traverse the operand, looking for constant vectors. Replace them by a
541 // load of a global variable of constant vector type.
542 for (Use &U : I.operands()) {
543 Constant *Cst = dyn_cast<Constant>(U);
544 // There is no point in promoting global values as they are already
545 // global. Do not promote constant expressions either, as they may
546 // require some code expansion.
547 if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
548 continue;
549
550 // Check if this constant is worth promoting.
551 if (!shouldConvert(*Cst, PromotionCache))
552 continue;
553
554 // Check if this use should be promoted.
555 unsigned OpNo = &U - I.op_begin();
556 if (!shouldConvertUse(Cst, &I, OpNo))
557 continue;
558
559 Updates.emplace_back(Cst, &I, OpNo);
560 }
561 }
562
563 if (Updates.empty())
564 return false;
565
566 promoteConstants(F, Updates, PromotionCache);
567 return true;
568 }
569