1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/rand.h>
16 
17 #include <assert.h>
18 #include <limits.h>
19 #include <string.h>
20 
21 #include <openssl/chacha.h>
22 #include <openssl/cpu.h>
23 #include <openssl/mem.h>
24 
25 #include "internal.h"
26 #include "../internal.h"
27 
28 
29 /* It's assumed that the operating system always has an unfailing source of
30  * entropy which is accessed via |CRYPTO_sysrand|. (If the operating system
31  * entropy source fails, it's up to |CRYPTO_sysrand| to abort the process—we
32  * don't try to handle it.)
33  *
34  * In addition, the hardware may provide a low-latency RNG. Intel's rdrand
35  * instruction is the canonical example of this. When a hardware RNG is
36  * available we don't need to worry about an RNG failure arising from fork()ing
37  * the process or moving a VM, so we can keep thread-local RNG state and XOR
38  * the hardware entropy in.
39  *
40  * (We assume that the OS entropy is safe from fork()ing and VM duplication.
41  * This might be a bit of a leap of faith, esp on Windows, but there's nothing
42  * that we can do about it.) */
43 
44 /* rand_thread_state contains the per-thread state for the RNG. This is only
45  * used if the system has support for a hardware RNG. */
46 struct rand_thread_state {
47   uint8_t key[32];
48   uint64_t calls_used;
49   size_t bytes_used;
50   uint8_t partial_block[64];
51   unsigned partial_block_used;
52 };
53 
54 /* kMaxCallsPerRefresh is the maximum number of |RAND_bytes| calls that we'll
55  * serve before reading a new key from the operating system. This only applies
56  * if we have a hardware RNG. */
57 static const unsigned kMaxCallsPerRefresh = 1024;
58 
59 /* kMaxBytesPerRefresh is the maximum number of bytes that we'll return from
60  * |RAND_bytes| before reading a new key from the operating system. This only
61  * applies if we have a hardware RNG. */
62 static const uint64_t kMaxBytesPerRefresh = 1024 * 1024;
63 
64 /* rand_thread_state_free frees a |rand_thread_state|. This is called when a
65  * thread exits. */
rand_thread_state_free(void * state)66 static void rand_thread_state_free(void *state) {
67   if (state == NULL) {
68     return;
69   }
70 
71   OPENSSL_cleanse(state, sizeof(struct rand_thread_state));
72   OPENSSL_free(state);
73 }
74 
75 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
76     !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
77 
78 /* These functions are defined in asm/rdrand-x86_64.pl */
79 extern int CRYPTO_rdrand(uint8_t out[8]);
80 extern int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len);
81 
have_rdrand(void)82 static int have_rdrand(void) {
83   return (OPENSSL_ia32cap_P[1] & (1u << 30)) != 0;
84 }
85 
hwrand(uint8_t * buf,size_t len)86 static int hwrand(uint8_t *buf, size_t len) {
87   if (!have_rdrand()) {
88     return 0;
89   }
90 
91   const size_t len_multiple8 = len & ~7;
92   if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
93     return 0;
94   }
95   len -= len_multiple8;
96 
97   if (len != 0) {
98     assert(len < 8);
99 
100     uint8_t rand_buf[8];
101     if (!CRYPTO_rdrand(rand_buf)) {
102       return 0;
103     }
104     OPENSSL_memcpy(buf + len_multiple8, rand_buf, len);
105   }
106 
107   return 1;
108 }
109 
110 #else
111 
hwrand(uint8_t * buf,size_t len)112 static int hwrand(uint8_t *buf, size_t len) {
113   return 0;
114 }
115 
116 #endif
117 
RAND_bytes(uint8_t * buf,size_t len)118 int RAND_bytes(uint8_t *buf, size_t len) {
119   if (len == 0) {
120     return 1;
121   }
122 
123   if (!hwrand(buf, len)) {
124     /* Without a hardware RNG to save us from address-space duplication, the OS
125      * entropy is used directly. */
126     CRYPTO_sysrand(buf, len);
127     return 1;
128   }
129 
130   struct rand_thread_state *state =
131       CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
132   if (state == NULL) {
133     state = OPENSSL_malloc(sizeof(struct rand_thread_state));
134     if (state == NULL ||
135         !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
136                                  rand_thread_state_free)) {
137       CRYPTO_sysrand(buf, len);
138       return 1;
139     }
140 
141     OPENSSL_memset(state->partial_block, 0, sizeof(state->partial_block));
142     state->calls_used = kMaxCallsPerRefresh;
143   }
144 
145   if (state->calls_used >= kMaxCallsPerRefresh ||
146       state->bytes_used >= kMaxBytesPerRefresh) {
147     CRYPTO_sysrand(state->key, sizeof(state->key));
148     state->calls_used = 0;
149     state->bytes_used = 0;
150     state->partial_block_used = sizeof(state->partial_block);
151   }
152 
153   if (len >= sizeof(state->partial_block)) {
154     size_t remaining = len;
155     while (remaining > 0) {
156       /* kMaxBytesPerCall is only 2GB, while ChaCha can handle 256GB. But this
157        * is sufficient and easier on 32-bit. */
158       static const size_t kMaxBytesPerCall = 0x80000000;
159       size_t todo = remaining;
160       if (todo > kMaxBytesPerCall) {
161         todo = kMaxBytesPerCall;
162       }
163       uint8_t nonce[12];
164       OPENSSL_memset(nonce, 0, 4);
165       OPENSSL_memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used));
166       CRYPTO_chacha_20(buf, buf, todo, state->key, nonce, 0);
167       buf += todo;
168       remaining -= todo;
169       state->calls_used++;
170     }
171   } else {
172     if (sizeof(state->partial_block) - state->partial_block_used < len) {
173       uint8_t nonce[12];
174       OPENSSL_memset(nonce, 0, 4);
175       OPENSSL_memcpy(nonce + 4, &state->calls_used, sizeof(state->calls_used));
176       CRYPTO_chacha_20(state->partial_block, state->partial_block,
177                        sizeof(state->partial_block), state->key, nonce, 0);
178       state->partial_block_used = 0;
179     }
180 
181     unsigned i;
182     for (i = 0; i < len; i++) {
183       buf[i] ^= state->partial_block[state->partial_block_used++];
184     }
185     state->calls_used++;
186   }
187   state->bytes_used += len;
188 
189   return 1;
190 }
191 
RAND_pseudo_bytes(uint8_t * buf,size_t len)192 int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
193   return RAND_bytes(buf, len);
194 }
195 
RAND_seed(const void * buf,int num)196 void RAND_seed(const void *buf, int num) {
197   /* OpenSSH calls |RAND_seed| before jailing on the assumption that any needed
198    * file descriptors etc will be opened. */
199   uint8_t unused;
200   RAND_bytes(&unused, sizeof(unused));
201 }
202 
RAND_load_file(const char * path,long num)203 int RAND_load_file(const char *path, long num) {
204   if (num < 0) {  /* read the "whole file" */
205     return 1;
206   } else if (num <= INT_MAX) {
207     return (int) num;
208   } else {
209     return INT_MAX;
210   }
211 }
212 
RAND_file_name(char * buf,size_t num)213 const char *RAND_file_name(char *buf, size_t num) { return NULL; }
214 
RAND_add(const void * buf,int num,double entropy)215 void RAND_add(const void *buf, int num, double entropy) {}
216 
RAND_egd(const char * path)217 int RAND_egd(const char *path) {
218   return 255;
219 }
220 
RAND_poll(void)221 int RAND_poll(void) {
222   return 1;
223 }
224 
RAND_status(void)225 int RAND_status(void) {
226   return 1;
227 }
228 
229 static const struct rand_meth_st kSSLeayMethod = {
230   RAND_seed,
231   RAND_bytes,
232   RAND_cleanup,
233   RAND_add,
234   RAND_pseudo_bytes,
235   RAND_status,
236 };
237 
RAND_SSLeay(void)238 RAND_METHOD *RAND_SSLeay(void) {
239   return (RAND_METHOD*) &kSSLeayMethod;
240 }
241 
RAND_set_rand_method(const RAND_METHOD * method)242 void RAND_set_rand_method(const RAND_METHOD *method) {}
243 
RAND_cleanup(void)244 void RAND_cleanup(void) {}
245