1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _UAPI_HYPERV_H
26 #define _UAPI_HYPERV_H
27 
28 #include <linux/uuid.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 #define UTIL_FW_MINOR  0
34 
35 #define UTIL_WS2K8_FW_MAJOR  1
36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 #define UTIL_FW_MAJOR  3
39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40 
41 
42 /*
43  * Implementation of host controlled snapshot of the guest.
44  */
45 
46 #define VSS_OP_REGISTER 128
47 
48 /*
49   Daemon code with full handshake support.
50  */
51 #define VSS_OP_REGISTER1 129
52 
53 enum hv_vss_op {
54 	VSS_OP_CREATE = 0,
55 	VSS_OP_DELETE,
56 	VSS_OP_HOT_BACKUP,
57 	VSS_OP_GET_DM_INFO,
58 	VSS_OP_BU_COMPLETE,
59 	/*
60 	 * Following operations are only supported with IC version >= 5.0
61 	 */
62 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
63 	VSS_OP_THAW, /* Unfreeze the file systems */
64 	VSS_OP_AUTO_RECOVER,
65 	VSS_OP_COUNT /* Number of operations, must be last */
66 };
67 
68 
69 /*
70  * Header for all VSS messages.
71  */
72 struct hv_vss_hdr {
73 	__u8 operation;
74 	__u8 reserved[7];
75 } __attribute__((packed));
76 
77 
78 /*
79  * Flag values for the hv_vss_check_feature. Linux supports only
80  * one value.
81  */
82 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
83 
84 struct hv_vss_check_feature {
85 	__u32 flags;
86 } __attribute__((packed));
87 
88 struct hv_vss_check_dm_info {
89 	__u32 flags;
90 } __attribute__((packed));
91 
92 struct hv_vss_msg {
93 	union {
94 		struct hv_vss_hdr vss_hdr;
95 		int error;
96 	};
97 	union {
98 		struct hv_vss_check_feature vss_cf;
99 		struct hv_vss_check_dm_info dm_info;
100 	};
101 } __attribute__((packed));
102 
103 /*
104  * Implementation of a host to guest copy facility.
105  */
106 
107 #define FCOPY_VERSION_0 0
108 #define FCOPY_VERSION_1 1
109 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
110 #define W_MAX_PATH 260
111 
112 enum hv_fcopy_op {
113 	START_FILE_COPY = 0,
114 	WRITE_TO_FILE,
115 	COMPLETE_FCOPY,
116 	CANCEL_FCOPY,
117 };
118 
119 struct hv_fcopy_hdr {
120 	__u32 operation;
121 	uuid_le service_id0; /* currently unused */
122 	uuid_le service_id1; /* currently unused */
123 } __attribute__((packed));
124 
125 #define OVER_WRITE	0x1
126 #define CREATE_PATH	0x2
127 
128 struct hv_start_fcopy {
129 	struct hv_fcopy_hdr hdr;
130 	__u16 file_name[W_MAX_PATH];
131 	__u16 path_name[W_MAX_PATH];
132 	__u32 copy_flags;
133 	__u64 file_size;
134 } __attribute__((packed));
135 
136 /*
137  * The file is chunked into fragments.
138  */
139 #define DATA_FRAGMENT	(6 * 1024)
140 
141 struct hv_do_fcopy {
142 	struct hv_fcopy_hdr hdr;
143 	__u32   pad;
144 	__u64	offset;
145 	__u32	size;
146 	__u8	data[DATA_FRAGMENT];
147 } __attribute__((packed));
148 
149 /*
150  * An implementation of HyperV key value pair (KVP) functionality for Linux.
151  *
152  *
153  * Copyright (C) 2010, Novell, Inc.
154  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
155  *
156  */
157 
158 /*
159  * Maximum value size - used for both key names and value data, and includes
160  * any applicable NULL terminators.
161  *
162  * Note:  This limit is somewhat arbitrary, but falls easily within what is
163  * supported for all native guests (back to Win 2000) and what is reasonable
164  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
165  * limited to 255 character key names.
166  *
167  * MSDN recommends not storing data values larger than 2048 bytes in the
168  * registry.
169  *
170  * Note:  This value is used in defining the KVP exchange message - this value
171  * cannot be modified without affecting the message size and compatibility.
172  */
173 
174 /*
175  * bytes, including any null terminators
176  */
177 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
178 
179 
180 /*
181  * Maximum key size - the registry limit for the length of an entry name
182  * is 256 characters, including the null terminator
183  */
184 
185 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
186 
187 /*
188  * In Linux, we implement the KVP functionality in two components:
189  * 1) The kernel component which is packaged as part of the hv_utils driver
190  * is responsible for communicating with the host and responsible for
191  * implementing the host/guest protocol. 2) A user level daemon that is
192  * responsible for data gathering.
193  *
194  * Host/Guest Protocol: The host iterates over an index and expects the guest
195  * to assign a key name to the index and also return the value corresponding to
196  * the key. The host will have atmost one KVP transaction outstanding at any
197  * given point in time. The host side iteration stops when the guest returns
198  * an error. Microsoft has specified the following mapping of key names to
199  * host specified index:
200  *
201  *	Index		Key Name
202  *	0		FullyQualifiedDomainName
203  *	1		IntegrationServicesVersion
204  *	2		NetworkAddressIPv4
205  *	3		NetworkAddressIPv6
206  *	4		OSBuildNumber
207  *	5		OSName
208  *	6		OSMajorVersion
209  *	7		OSMinorVersion
210  *	8		OSVersion
211  *	9		ProcessorArchitecture
212  *
213  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
214  *
215  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
216  * data gathering functionality in a user mode daemon. The user level daemon
217  * is also responsible for binding the key name to the index as well. The
218  * kernel and user-level daemon communicate using a connector channel.
219  *
220  * The user mode component first registers with the
221  * the kernel component. Subsequently, the kernel component requests, data
222  * for the specified keys. In response to this message the user mode component
223  * fills in the value corresponding to the specified key. We overload the
224  * sequence field in the cn_msg header to define our KVP message types.
225  *
226  *
227  * The kernel component simply acts as a conduit for communication between the
228  * Windows host and the user-level daemon. The kernel component passes up the
229  * index received from the Host to the user-level daemon. If the index is
230  * valid (supported), the corresponding key as well as its
231  * value (both are strings) is returned. If the index is invalid
232  * (not supported), a NULL key string is returned.
233  */
234 
235 
236 /*
237  * Registry value types.
238  */
239 
240 #define REG_SZ 1
241 #define REG_U32 4
242 #define REG_U64 8
243 
244 /*
245  * As we look at expanding the KVP functionality to include
246  * IP injection functionality, we need to maintain binary
247  * compatibility with older daemons.
248  *
249  * The KVP opcodes are defined by the host and it was unfortunate
250  * that I chose to treat the registration operation as part of the
251  * KVP operations defined by the host.
252  * Here is the level of compatibility
253  * (between the user level daemon and the kernel KVP driver) that we
254  * will implement:
255  *
256  * An older daemon will always be supported on a newer driver.
257  * A given user level daemon will require a minimal version of the
258  * kernel driver.
259  * If we cannot handle the version differences, we will fail gracefully
260  * (this can happen when we have a user level daemon that is more
261  * advanced than the KVP driver.
262  *
263  * We will use values used in this handshake for determining if we have
264  * workable user level daemon and the kernel driver. We begin by taking the
265  * registration opcode out of the KVP opcode namespace. We will however,
266  * maintain compatibility with the existing user-level daemon code.
267  */
268 
269 /*
270  * Daemon code not supporting IP injection (legacy daemon).
271  */
272 
273 #define KVP_OP_REGISTER	4
274 
275 /*
276  * Daemon code supporting IP injection.
277  * The KVP opcode field is used to communicate the
278  * registration information; so define a namespace that
279  * will be distinct from the host defined KVP opcode.
280  */
281 
282 #define KVP_OP_REGISTER1 100
283 
284 enum hv_kvp_exchg_op {
285 	KVP_OP_GET = 0,
286 	KVP_OP_SET,
287 	KVP_OP_DELETE,
288 	KVP_OP_ENUMERATE,
289 	KVP_OP_GET_IP_INFO,
290 	KVP_OP_SET_IP_INFO,
291 	KVP_OP_COUNT /* Number of operations, must be last. */
292 };
293 
294 enum hv_kvp_exchg_pool {
295 	KVP_POOL_EXTERNAL = 0,
296 	KVP_POOL_GUEST,
297 	KVP_POOL_AUTO,
298 	KVP_POOL_AUTO_EXTERNAL,
299 	KVP_POOL_AUTO_INTERNAL,
300 	KVP_POOL_COUNT /* Number of pools, must be last. */
301 };
302 
303 /*
304  * Some Hyper-V status codes.
305  */
306 
307 #define HV_S_OK				0x00000000
308 #define HV_E_FAIL			0x80004005
309 #define HV_S_CONT			0x80070103
310 #define HV_ERROR_NOT_SUPPORTED		0x80070032
311 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
312 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
313 #define HV_INVALIDARG			0x80070057
314 #define HV_GUID_NOTFOUND		0x80041002
315 #define HV_ERROR_ALREADY_EXISTS		0x80070050
316 #define HV_ERROR_DISK_FULL		0x80070070
317 
318 #define ADDR_FAMILY_NONE	0x00
319 #define ADDR_FAMILY_IPV4	0x01
320 #define ADDR_FAMILY_IPV6	0x02
321 
322 #define MAX_ADAPTER_ID_SIZE	128
323 #define MAX_IP_ADDR_SIZE	1024
324 #define MAX_GATEWAY_SIZE	512
325 
326 
327 struct hv_kvp_ipaddr_value {
328 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
329 	__u8	addr_family;
330 	__u8	dhcp_enabled;
331 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
332 	__u16	sub_net[MAX_IP_ADDR_SIZE];
333 	__u16	gate_way[MAX_GATEWAY_SIZE];
334 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
335 } __attribute__((packed));
336 
337 
338 struct hv_kvp_hdr {
339 	__u8 operation;
340 	__u8 pool;
341 	__u16 pad;
342 } __attribute__((packed));
343 
344 struct hv_kvp_exchg_msg_value {
345 	__u32 value_type;
346 	__u32 key_size;
347 	__u32 value_size;
348 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
349 	union {
350 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
351 		__u32 value_u32;
352 		__u64 value_u64;
353 	};
354 } __attribute__((packed));
355 
356 struct hv_kvp_msg_enumerate {
357 	__u32 index;
358 	struct hv_kvp_exchg_msg_value data;
359 } __attribute__((packed));
360 
361 struct hv_kvp_msg_get {
362 	struct hv_kvp_exchg_msg_value data;
363 };
364 
365 struct hv_kvp_msg_set {
366 	struct hv_kvp_exchg_msg_value data;
367 };
368 
369 struct hv_kvp_msg_delete {
370 	__u32 key_size;
371 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
372 };
373 
374 struct hv_kvp_register {
375 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
376 };
377 
378 struct hv_kvp_msg {
379 	union {
380 		struct hv_kvp_hdr	kvp_hdr;
381 		int error;
382 	};
383 	union {
384 		struct hv_kvp_msg_get		kvp_get;
385 		struct hv_kvp_msg_set		kvp_set;
386 		struct hv_kvp_msg_delete	kvp_delete;
387 		struct hv_kvp_msg_enumerate	kvp_enum_data;
388 		struct hv_kvp_ipaddr_value      kvp_ip_val;
389 		struct hv_kvp_register		kvp_register;
390 	} body;
391 } __attribute__((packed));
392 
393 struct hv_kvp_ip_msg {
394 	__u8 operation;
395 	__u8 pool;
396 	struct hv_kvp_ipaddr_value      kvp_ip_val;
397 } __attribute__((packed));
398 
399 #endif /* _UAPI_HYPERV_H */
400