1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2000.
3 */
4 /* ====================================================================
5 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com). */
55
56 #include <openssl/rsa.h>
57
58 #include <assert.h>
59 #include <limits.h>
60 #include <string.h>
61
62 #include <openssl/bn.h>
63 #include <openssl/bytestring.h>
64 #include <openssl/err.h>
65 #include <openssl/mem.h>
66
67 #include "internal.h"
68 #include "../bytestring/internal.h"
69 #include "../internal.h"
70
71
parse_integer_buggy(CBS * cbs,BIGNUM ** out,int buggy)72 static int parse_integer_buggy(CBS *cbs, BIGNUM **out, int buggy) {
73 assert(*out == NULL);
74 *out = BN_new();
75 if (*out == NULL) {
76 return 0;
77 }
78 if (buggy) {
79 return BN_parse_asn1_unsigned_buggy(cbs, *out);
80 }
81 return BN_parse_asn1_unsigned(cbs, *out);
82 }
83
parse_integer(CBS * cbs,BIGNUM ** out)84 static int parse_integer(CBS *cbs, BIGNUM **out) {
85 return parse_integer_buggy(cbs, out, 0 /* not buggy */);
86 }
87
marshal_integer(CBB * cbb,BIGNUM * bn)88 static int marshal_integer(CBB *cbb, BIGNUM *bn) {
89 if (bn == NULL) {
90 /* An RSA object may be missing some components. */
91 OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
92 return 0;
93 }
94 return BN_marshal_asn1(cbb, bn);
95 }
96
parse_public_key(CBS * cbs,int buggy)97 static RSA *parse_public_key(CBS *cbs, int buggy) {
98 RSA *ret = RSA_new();
99 if (ret == NULL) {
100 return NULL;
101 }
102 CBS child;
103 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
104 !parse_integer_buggy(&child, &ret->n, buggy) ||
105 !parse_integer(&child, &ret->e) ||
106 CBS_len(&child) != 0) {
107 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
108 RSA_free(ret);
109 return NULL;
110 }
111
112 if (!BN_is_odd(ret->e) ||
113 BN_num_bits(ret->e) < 2) {
114 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
115 RSA_free(ret);
116 return NULL;
117 }
118
119 return ret;
120 }
121
RSA_parse_public_key(CBS * cbs)122 RSA *RSA_parse_public_key(CBS *cbs) {
123 return parse_public_key(cbs, 0 /* not buggy */);
124 }
125
RSA_parse_public_key_buggy(CBS * cbs)126 RSA *RSA_parse_public_key_buggy(CBS *cbs) {
127 /* Estonian IDs issued between September 2014 to September 2015 are
128 * broken. See https://crbug.com/532048 and https://crbug.com/534766.
129 *
130 * TODO(davidben): Remove this code and callers in March 2016. */
131 return parse_public_key(cbs, 1 /* buggy */);
132 }
133
RSA_public_key_from_bytes(const uint8_t * in,size_t in_len)134 RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) {
135 CBS cbs;
136 CBS_init(&cbs, in, in_len);
137 RSA *ret = RSA_parse_public_key(&cbs);
138 if (ret == NULL || CBS_len(&cbs) != 0) {
139 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
140 RSA_free(ret);
141 return NULL;
142 }
143 return ret;
144 }
145
RSA_marshal_public_key(CBB * cbb,const RSA * rsa)146 int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) {
147 CBB child;
148 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
149 !marshal_integer(&child, rsa->n) ||
150 !marshal_integer(&child, rsa->e) ||
151 !CBB_flush(cbb)) {
152 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
153 return 0;
154 }
155 return 1;
156 }
157
RSA_public_key_to_bytes(uint8_t ** out_bytes,size_t * out_len,const RSA * rsa)158 int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
159 const RSA *rsa) {
160 CBB cbb;
161 CBB_zero(&cbb);
162 if (!CBB_init(&cbb, 0) ||
163 !RSA_marshal_public_key(&cbb, rsa) ||
164 !CBB_finish(&cbb, out_bytes, out_len)) {
165 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
166 CBB_cleanup(&cbb);
167 return 0;
168 }
169 return 1;
170 }
171
172 /* kVersionTwoPrime and kVersionMulti are the supported values of the version
173 * field of an RSAPrivateKey structure (RFC 3447). */
174 static const uint64_t kVersionTwoPrime = 0;
175 static const uint64_t kVersionMulti = 1;
176
177 /* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
178 * advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
179 * success or NULL on error. The |r| and |mont| fields of the result are set to
180 * NULL. */
rsa_parse_additional_prime(CBS * cbs)181 static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
182 RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
183 if (ret == NULL) {
184 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
185 return 0;
186 }
187 OPENSSL_memset(ret, 0, sizeof(RSA_additional_prime));
188
189 CBS child;
190 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
191 !parse_integer(&child, &ret->prime) ||
192 !parse_integer(&child, &ret->exp) ||
193 !parse_integer(&child, &ret->coeff) ||
194 CBS_len(&child) != 0) {
195 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
196 RSA_additional_prime_free(ret);
197 return NULL;
198 }
199
200 return ret;
201 }
202
RSA_parse_private_key(CBS * cbs)203 RSA *RSA_parse_private_key(CBS *cbs) {
204 BN_CTX *ctx = NULL;
205 BIGNUM *product_of_primes_so_far = NULL;
206 RSA *ret = RSA_new();
207 if (ret == NULL) {
208 return NULL;
209 }
210
211 CBS child;
212 uint64_t version;
213 if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
214 !CBS_get_asn1_uint64(&child, &version)) {
215 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
216 goto err;
217 }
218
219 if (version != kVersionTwoPrime && version != kVersionMulti) {
220 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION);
221 goto err;
222 }
223
224 if (!parse_integer(&child, &ret->n) ||
225 !parse_integer(&child, &ret->e) ||
226 !parse_integer(&child, &ret->d) ||
227 !parse_integer(&child, &ret->p) ||
228 !parse_integer(&child, &ret->q) ||
229 !parse_integer(&child, &ret->dmp1) ||
230 !parse_integer(&child, &ret->dmq1) ||
231 !parse_integer(&child, &ret->iqmp)) {
232 goto err;
233 }
234
235 if (version == kVersionMulti) {
236 /* Although otherPrimeInfos is written as OPTIONAL in RFC 3447, it later
237 * says "[otherPrimeInfos] shall be omitted if version is 0 and shall
238 * contain at least one instance of OtherPrimeInfo if version is 1." The
239 * OPTIONAL is just so both versions share a single definition. */
240 CBS other_prime_infos;
241 if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
242 CBS_len(&other_prime_infos) == 0) {
243 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
244 goto err;
245 }
246 ret->additional_primes = sk_RSA_additional_prime_new_null();
247 if (ret->additional_primes == NULL) {
248 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
249 goto err;
250 }
251
252 ctx = BN_CTX_new();
253 product_of_primes_so_far = BN_new();
254 if (ctx == NULL ||
255 product_of_primes_so_far == NULL ||
256 !BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
257 goto err;
258 }
259
260 while (CBS_len(&other_prime_infos) > 0) {
261 RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
262 if (ap == NULL) {
263 goto err;
264 }
265 if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
266 OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
267 RSA_additional_prime_free(ap);
268 goto err;
269 }
270 ap->r = BN_dup(product_of_primes_so_far);
271 if (ap->r == NULL ||
272 !BN_mul(product_of_primes_so_far, product_of_primes_so_far,
273 ap->prime, ctx)) {
274 goto err;
275 }
276 }
277 }
278
279 if (CBS_len(&child) != 0) {
280 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
281 goto err;
282 }
283
284 if (!RSA_check_key(ret)) {
285 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
286 goto err;
287 }
288
289 BN_CTX_free(ctx);
290 BN_free(product_of_primes_so_far);
291 return ret;
292
293 err:
294 BN_CTX_free(ctx);
295 BN_free(product_of_primes_so_far);
296 RSA_free(ret);
297 return NULL;
298 }
299
RSA_private_key_from_bytes(const uint8_t * in,size_t in_len)300 RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
301 CBS cbs;
302 CBS_init(&cbs, in, in_len);
303 RSA *ret = RSA_parse_private_key(&cbs);
304 if (ret == NULL || CBS_len(&cbs) != 0) {
305 OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
306 RSA_free(ret);
307 return NULL;
308 }
309 return ret;
310 }
311
RSA_marshal_private_key(CBB * cbb,const RSA * rsa)312 int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
313 const int is_multiprime =
314 sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
315
316 CBB child;
317 if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
318 !CBB_add_asn1_uint64(&child,
319 is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
320 !marshal_integer(&child, rsa->n) ||
321 !marshal_integer(&child, rsa->e) ||
322 !marshal_integer(&child, rsa->d) ||
323 !marshal_integer(&child, rsa->p) ||
324 !marshal_integer(&child, rsa->q) ||
325 !marshal_integer(&child, rsa->dmp1) ||
326 !marshal_integer(&child, rsa->dmq1) ||
327 !marshal_integer(&child, rsa->iqmp)) {
328 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
329 return 0;
330 }
331
332 CBB other_prime_infos;
333 if (is_multiprime) {
334 if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
335 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
336 return 0;
337 }
338 for (size_t i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes);
339 i++) {
340 RSA_additional_prime *ap =
341 sk_RSA_additional_prime_value(rsa->additional_primes, i);
342 CBB other_prime_info;
343 if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
344 CBS_ASN1_SEQUENCE) ||
345 !marshal_integer(&other_prime_info, ap->prime) ||
346 !marshal_integer(&other_prime_info, ap->exp) ||
347 !marshal_integer(&other_prime_info, ap->coeff) ||
348 !CBB_flush(&other_prime_infos)) {
349 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
350 return 0;
351 }
352 }
353 }
354
355 if (!CBB_flush(cbb)) {
356 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
357 return 0;
358 }
359 return 1;
360 }
361
RSA_private_key_to_bytes(uint8_t ** out_bytes,size_t * out_len,const RSA * rsa)362 int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
363 const RSA *rsa) {
364 CBB cbb;
365 CBB_zero(&cbb);
366 if (!CBB_init(&cbb, 0) ||
367 !RSA_marshal_private_key(&cbb, rsa) ||
368 !CBB_finish(&cbb, out_bytes, out_len)) {
369 OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
370 CBB_cleanup(&cbb);
371 return 0;
372 }
373 return 1;
374 }
375
d2i_RSAPublicKey(RSA ** out,const uint8_t ** inp,long len)376 RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
377 if (len < 0) {
378 return NULL;
379 }
380 CBS cbs;
381 CBS_init(&cbs, *inp, (size_t)len);
382 RSA *ret = RSA_parse_public_key(&cbs);
383 if (ret == NULL) {
384 return NULL;
385 }
386 if (out != NULL) {
387 RSA_free(*out);
388 *out = ret;
389 }
390 *inp = CBS_data(&cbs);
391 return ret;
392 }
393
i2d_RSAPublicKey(const RSA * in,uint8_t ** outp)394 int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
395 CBB cbb;
396 if (!CBB_init(&cbb, 0) ||
397 !RSA_marshal_public_key(&cbb, in)) {
398 CBB_cleanup(&cbb);
399 return -1;
400 }
401 return CBB_finish_i2d(&cbb, outp);
402 }
403
d2i_RSAPrivateKey(RSA ** out,const uint8_t ** inp,long len)404 RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
405 if (len < 0) {
406 return NULL;
407 }
408 CBS cbs;
409 CBS_init(&cbs, *inp, (size_t)len);
410 RSA *ret = RSA_parse_private_key(&cbs);
411 if (ret == NULL) {
412 return NULL;
413 }
414 if (out != NULL) {
415 RSA_free(*out);
416 *out = ret;
417 }
418 *inp = CBS_data(&cbs);
419 return ret;
420 }
421
i2d_RSAPrivateKey(const RSA * in,uint8_t ** outp)422 int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
423 CBB cbb;
424 if (!CBB_init(&cbb, 0) ||
425 !RSA_marshal_private_key(&cbb, in)) {
426 CBB_cleanup(&cbb);
427 return -1;
428 }
429 return CBB_finish_i2d(&cbb, outp);
430 }
431
RSAPublicKey_dup(const RSA * rsa)432 RSA *RSAPublicKey_dup(const RSA *rsa) {
433 uint8_t *der;
434 size_t der_len;
435 if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) {
436 return NULL;
437 }
438 RSA *ret = RSA_public_key_from_bytes(der, der_len);
439 OPENSSL_free(der);
440 return ret;
441 }
442
RSAPrivateKey_dup(const RSA * rsa)443 RSA *RSAPrivateKey_dup(const RSA *rsa) {
444 uint8_t *der;
445 size_t der_len;
446 if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
447 return NULL;
448 }
449 RSA *ret = RSA_private_key_from_bytes(der, der_len);
450 OPENSSL_free(der);
451 return ret;
452 }
453