1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/rsa.h>
58 
59 #include <limits.h>
60 #include <string.h>
61 
62 #include <openssl/bn.h>
63 #include <openssl/engine.h>
64 #include <openssl/err.h>
65 #include <openssl/ex_data.h>
66 #include <openssl/mem.h>
67 #include <openssl/nid.h>
68 #include <openssl/thread.h>
69 
70 #include "internal.h"
71 #include "../internal.h"
72 
73 
74 static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
75 
RSA_new(void)76 RSA *RSA_new(void) { return RSA_new_method(NULL); }
77 
RSA_new_method(const ENGINE * engine)78 RSA *RSA_new_method(const ENGINE *engine) {
79   RSA *rsa = OPENSSL_malloc(sizeof(RSA));
80   if (rsa == NULL) {
81     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
82     return NULL;
83   }
84 
85   OPENSSL_memset(rsa, 0, sizeof(RSA));
86 
87   if (engine) {
88     rsa->meth = ENGINE_get_RSA_method(engine);
89   }
90 
91   if (rsa->meth == NULL) {
92     rsa->meth = (RSA_METHOD*) &RSA_default_method;
93   }
94   METHOD_ref(rsa->meth);
95 
96   rsa->references = 1;
97   rsa->flags = rsa->meth->flags;
98   CRYPTO_MUTEX_init(&rsa->lock);
99   CRYPTO_new_ex_data(&rsa->ex_data);
100 
101   if (rsa->meth->init && !rsa->meth->init(rsa)) {
102     CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
103     CRYPTO_MUTEX_cleanup(&rsa->lock);
104     METHOD_unref(rsa->meth);
105     OPENSSL_free(rsa);
106     return NULL;
107   }
108 
109   return rsa;
110 }
111 
RSA_additional_prime_free(RSA_additional_prime * ap)112 void RSA_additional_prime_free(RSA_additional_prime *ap) {
113   if (ap == NULL) {
114     return;
115   }
116 
117   BN_clear_free(ap->prime);
118   BN_clear_free(ap->exp);
119   BN_clear_free(ap->coeff);
120   BN_clear_free(ap->r);
121   BN_MONT_CTX_free(ap->mont);
122   OPENSSL_free(ap);
123 }
124 
RSA_free(RSA * rsa)125 void RSA_free(RSA *rsa) {
126   unsigned u;
127 
128   if (rsa == NULL) {
129     return;
130   }
131 
132   if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
133     return;
134   }
135 
136   if (rsa->meth->finish) {
137     rsa->meth->finish(rsa);
138   }
139   METHOD_unref(rsa->meth);
140 
141   CRYPTO_free_ex_data(&g_ex_data_class, rsa, &rsa->ex_data);
142 
143   BN_clear_free(rsa->n);
144   BN_clear_free(rsa->e);
145   BN_clear_free(rsa->d);
146   BN_clear_free(rsa->p);
147   BN_clear_free(rsa->q);
148   BN_clear_free(rsa->dmp1);
149   BN_clear_free(rsa->dmq1);
150   BN_clear_free(rsa->iqmp);
151   BN_MONT_CTX_free(rsa->mont_n);
152   BN_MONT_CTX_free(rsa->mont_p);
153   BN_MONT_CTX_free(rsa->mont_q);
154   for (u = 0; u < rsa->num_blindings; u++) {
155     BN_BLINDING_free(rsa->blindings[u]);
156   }
157   OPENSSL_free(rsa->blindings);
158   OPENSSL_free(rsa->blindings_inuse);
159   if (rsa->additional_primes != NULL) {
160     sk_RSA_additional_prime_pop_free(rsa->additional_primes,
161                                      RSA_additional_prime_free);
162   }
163   CRYPTO_MUTEX_cleanup(&rsa->lock);
164   OPENSSL_free(rsa);
165 }
166 
RSA_up_ref(RSA * rsa)167 int RSA_up_ref(RSA *rsa) {
168   CRYPTO_refcount_inc(&rsa->references);
169   return 1;
170 }
171 
RSA_get0_key(const RSA * rsa,const BIGNUM ** out_n,const BIGNUM ** out_e,const BIGNUM ** out_d)172 void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e,
173                   const BIGNUM **out_d) {
174   if (out_n != NULL) {
175     *out_n = rsa->n;
176   }
177   if (out_e != NULL) {
178     *out_e = rsa->e;
179   }
180   if (out_d != NULL) {
181     *out_d = rsa->d;
182   }
183 }
184 
RSA_get0_factors(const RSA * rsa,const BIGNUM ** out_p,const BIGNUM ** out_q)185 void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p,
186                       const BIGNUM **out_q) {
187   if (out_p != NULL) {
188     *out_p = rsa->p;
189   }
190   if (out_q != NULL) {
191     *out_q = rsa->q;
192   }
193 }
194 
RSA_get0_crt_params(const RSA * rsa,const BIGNUM ** out_dmp1,const BIGNUM ** out_dmq1,const BIGNUM ** out_iqmp)195 void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1,
196                          const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) {
197   if (out_dmp1 != NULL) {
198     *out_dmp1 = rsa->dmp1;
199   }
200   if (out_dmq1 != NULL) {
201     *out_dmq1 = rsa->dmq1;
202   }
203   if (out_iqmp != NULL) {
204     *out_iqmp = rsa->iqmp;
205   }
206 }
207 
RSA_generate_key_ex(RSA * rsa,int bits,BIGNUM * e_value,BN_GENCB * cb)208 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
209   if (rsa->meth->keygen) {
210     return rsa->meth->keygen(rsa, bits, e_value, cb);
211   }
212 
213   return rsa_default_keygen(rsa, bits, e_value, cb);
214 }
215 
RSA_generate_multi_prime_key(RSA * rsa,int bits,int num_primes,BIGNUM * e_value,BN_GENCB * cb)216 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int num_primes,
217                                  BIGNUM *e_value, BN_GENCB *cb) {
218   if (rsa->meth->multi_prime_keygen) {
219     return rsa->meth->multi_prime_keygen(rsa, bits, num_primes, e_value, cb);
220   }
221 
222   return rsa_default_multi_prime_keygen(rsa, bits, num_primes, e_value, cb);
223 }
224 
RSA_encrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)225 int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
226                 const uint8_t *in, size_t in_len, int padding) {
227   if (rsa->meth->encrypt) {
228     return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding);
229   }
230 
231   return rsa_default_encrypt(rsa, out_len, out, max_out, in, in_len, padding);
232 }
233 
RSA_public_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)234 int RSA_public_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
235                        int padding) {
236   size_t out_len;
237 
238   if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
239     return -1;
240   }
241 
242   if (out_len > INT_MAX) {
243     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
244     return -1;
245   }
246   return out_len;
247 }
248 
RSA_sign_raw(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)249 int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
250                  const uint8_t *in, size_t in_len, int padding) {
251   if (rsa->meth->sign_raw) {
252     return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
253   }
254 
255   return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
256 }
257 
RSA_private_encrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)258 int RSA_private_encrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
259                         int padding) {
260   size_t out_len;
261 
262   if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
263     return -1;
264   }
265 
266   if (out_len > INT_MAX) {
267     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
268     return -1;
269   }
270   return out_len;
271 }
272 
RSA_decrypt(RSA * rsa,size_t * out_len,uint8_t * out,size_t max_out,const uint8_t * in,size_t in_len,int padding)273 int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
274                 const uint8_t *in, size_t in_len, int padding) {
275   if (rsa->meth->decrypt) {
276     return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
277   }
278 
279   return rsa_default_decrypt(rsa, out_len, out, max_out, in, in_len, padding);
280 }
281 
RSA_private_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)282 int RSA_private_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
283                         int padding) {
284   size_t out_len;
285 
286   if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
287     return -1;
288   }
289 
290   if (out_len > INT_MAX) {
291     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
292     return -1;
293   }
294   return out_len;
295 }
296 
RSA_public_decrypt(size_t flen,const uint8_t * from,uint8_t * to,RSA * rsa,int padding)297 int RSA_public_decrypt(size_t flen, const uint8_t *from, uint8_t *to, RSA *rsa,
298                        int padding) {
299   size_t out_len;
300 
301   if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
302     return -1;
303   }
304 
305   if (out_len > INT_MAX) {
306     OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
307     return -1;
308   }
309   return out_len;
310 }
311 
RSA_size(const RSA * rsa)312 unsigned RSA_size(const RSA *rsa) {
313   if (rsa->meth->size) {
314     return rsa->meth->size(rsa);
315   }
316 
317   return rsa_default_size(rsa);
318 }
319 
RSA_is_opaque(const RSA * rsa)320 int RSA_is_opaque(const RSA *rsa) {
321   return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
322 }
323 
RSA_supports_digest(const RSA * rsa,const EVP_MD * md)324 int RSA_supports_digest(const RSA *rsa, const EVP_MD *md) {
325   if (rsa->meth && rsa->meth->supports_digest) {
326     return rsa->meth->supports_digest(rsa, md);
327   }
328   return 1;
329 }
330 
RSA_get_ex_new_index(long argl,void * argp,CRYPTO_EX_unused * unused,CRYPTO_EX_dup * dup_func,CRYPTO_EX_free * free_func)331 int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
332                          CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
333   int index;
334   if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func,
335                                free_func)) {
336     return -1;
337   }
338   return index;
339 }
340 
RSA_set_ex_data(RSA * d,int idx,void * arg)341 int RSA_set_ex_data(RSA *d, int idx, void *arg) {
342   return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
343 }
344 
RSA_get_ex_data(const RSA * d,int idx)345 void *RSA_get_ex_data(const RSA *d, int idx) {
346   return CRYPTO_get_ex_data(&d->ex_data, idx);
347 }
348 
349 /* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
350  * the length of an MD5 and SHA1 hash. */
351 static const unsigned SSL_SIG_LENGTH = 36;
352 
353 /* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
354  * to be signed with PKCS#1. */
355 struct pkcs1_sig_prefix {
356   /* nid identifies the hash function. */
357   int nid;
358   /* len is the number of bytes of |bytes| which are valid. */
359   uint8_t len;
360   /* bytes contains the DER bytes. */
361   uint8_t bytes[19];
362 };
363 
364 /* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
365  * different hash functions. */
366 static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
367     {
368      NID_md5,
369      18,
370      {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
371       0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
372     },
373     {
374      NID_sha1,
375      15,
376      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
377       0x00, 0x04, 0x14},
378     },
379     {
380      NID_sha224,
381      19,
382      {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
383       0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
384     },
385     {
386      NID_sha256,
387      19,
388      {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
389       0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
390     },
391     {
392      NID_sha384,
393      19,
394      {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
395       0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
396     },
397     {
398      NID_sha512,
399      19,
400      {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
401       0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
402     },
403     {
404      NID_undef, 0, {0},
405     },
406 };
407 
RSA_add_pkcs1_prefix(uint8_t ** out_msg,size_t * out_msg_len,int * is_alloced,int hash_nid,const uint8_t * msg,size_t msg_len)408 int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len,
409                          int *is_alloced, int hash_nid, const uint8_t *msg,
410                          size_t msg_len) {
411   unsigned i;
412 
413   if (hash_nid == NID_md5_sha1) {
414     /* Special case: SSL signature, just check the length. */
415     if (msg_len != SSL_SIG_LENGTH) {
416       OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
417       return 0;
418     }
419 
420     *out_msg = (uint8_t*) msg;
421     *out_msg_len = SSL_SIG_LENGTH;
422     *is_alloced = 0;
423     return 1;
424   }
425 
426   for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
427     const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
428     if (sig_prefix->nid != hash_nid) {
429       continue;
430     }
431 
432     const uint8_t* prefix = sig_prefix->bytes;
433     unsigned prefix_len = sig_prefix->len;
434     unsigned signed_msg_len;
435     uint8_t *signed_msg;
436 
437     signed_msg_len = prefix_len + msg_len;
438     if (signed_msg_len < prefix_len) {
439       OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG);
440       return 0;
441     }
442 
443     signed_msg = OPENSSL_malloc(signed_msg_len);
444     if (!signed_msg) {
445       OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
446       return 0;
447     }
448 
449     OPENSSL_memcpy(signed_msg, prefix, prefix_len);
450     OPENSSL_memcpy(signed_msg + prefix_len, msg, msg_len);
451 
452     *out_msg = signed_msg;
453     *out_msg_len = signed_msg_len;
454     *is_alloced = 1;
455 
456     return 1;
457   }
458 
459   OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
460   return 0;
461 }
462 
RSA_sign(int hash_nid,const uint8_t * in,unsigned in_len,uint8_t * out,unsigned * out_len,RSA * rsa)463 int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
464              unsigned *out_len, RSA *rsa) {
465   const unsigned rsa_size = RSA_size(rsa);
466   int ret = 0;
467   uint8_t *signed_msg;
468   size_t signed_msg_len;
469   int signed_msg_is_alloced = 0;
470   size_t size_t_out_len;
471 
472   if (rsa->meth->sign) {
473     return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
474   }
475 
476   if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
477                             &signed_msg_is_alloced, hash_nid, in, in_len)) {
478     return 0;
479   }
480 
481   if (rsa_size < RSA_PKCS1_PADDING_SIZE ||
482       signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) {
483     OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
484     goto finish;
485   }
486 
487   if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
488                    signed_msg_len, RSA_PKCS1_PADDING)) {
489     *out_len = size_t_out_len;
490     ret = 1;
491   }
492 
493 finish:
494   if (signed_msg_is_alloced) {
495     OPENSSL_free(signed_msg);
496   }
497   return ret;
498 }
499 
RSA_verify(int hash_nid,const uint8_t * msg,size_t msg_len,const uint8_t * sig,size_t sig_len,RSA * rsa)500 int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
501                const uint8_t *sig, size_t sig_len, RSA *rsa) {
502   if (rsa->n == NULL || rsa->e == NULL) {
503     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
504     return 0;
505   }
506 
507   const size_t rsa_size = RSA_size(rsa);
508   uint8_t *buf = NULL;
509   int ret = 0;
510   uint8_t *signed_msg = NULL;
511   size_t signed_msg_len, len;
512   int signed_msg_is_alloced = 0;
513 
514   if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
515     OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
516     return 0;
517   }
518 
519   buf = OPENSSL_malloc(rsa_size);
520   if (!buf) {
521     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
522     return 0;
523   }
524 
525   if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
526                       RSA_PKCS1_PADDING)) {
527     goto out;
528   }
529 
530   if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
531                             &signed_msg_is_alloced, hash_nid, msg, msg_len)) {
532     goto out;
533   }
534 
535   if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) {
536     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
537     goto out;
538   }
539 
540   ret = 1;
541 
542 out:
543   OPENSSL_free(buf);
544   if (signed_msg_is_alloced) {
545     OPENSSL_free(signed_msg);
546   }
547   return ret;
548 }
549 
bn_free_and_null(BIGNUM ** bn)550 static void bn_free_and_null(BIGNUM **bn) {
551   BN_free(*bn);
552   *bn = NULL;
553 }
554 
RSA_check_key(const RSA * key)555 int RSA_check_key(const RSA *key) {
556   BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp_times_q;
557   BN_CTX *ctx;
558   int ok = 0, has_crt_values;
559 
560   if (RSA_is_opaque(key)) {
561     /* Opaque keys can't be checked. */
562     return 1;
563   }
564 
565   if ((key->p != NULL) != (key->q != NULL)) {
566     OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
567     return 0;
568   }
569 
570   if (!key->n || !key->e) {
571     OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
572     return 0;
573   }
574 
575   if (!key->d || !key->p) {
576     /* For a public key, or without p and q, there's nothing that can be
577      * checked. */
578     return 1;
579   }
580 
581   ctx = BN_CTX_new();
582   if (ctx == NULL) {
583     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
584     return 0;
585   }
586 
587   BN_init(&n);
588   BN_init(&pm1);
589   BN_init(&qm1);
590   BN_init(&lcm);
591   BN_init(&gcd);
592   BN_init(&de);
593   BN_init(&dmp1);
594   BN_init(&dmq1);
595   BN_init(&iqmp_times_q);
596 
597   if (!BN_mul(&n, key->p, key->q, ctx) ||
598       /* lcm = lcm(prime-1, for all primes) */
599       !BN_sub(&pm1, key->p, BN_value_one()) ||
600       !BN_sub(&qm1, key->q, BN_value_one()) ||
601       !BN_mul(&lcm, &pm1, &qm1, ctx) ||
602       !BN_gcd(&gcd, &pm1, &qm1, ctx)) {
603     OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
604     goto out;
605   }
606 
607   size_t num_additional_primes = 0;
608   if (key->additional_primes != NULL) {
609     num_additional_primes = sk_RSA_additional_prime_num(key->additional_primes);
610   }
611 
612   for (size_t i = 0; i < num_additional_primes; i++) {
613     const RSA_additional_prime *ap =
614         sk_RSA_additional_prime_value(key->additional_primes, i);
615     if (!BN_mul(&n, &n, ap->prime, ctx) ||
616         !BN_sub(&pm1, ap->prime, BN_value_one()) ||
617         !BN_mul(&lcm, &lcm, &pm1, ctx) ||
618         !BN_gcd(&gcd, &gcd, &pm1, ctx)) {
619       OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
620       goto out;
621     }
622   }
623 
624   if (!BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
625       !BN_gcd(&gcd, &pm1, &qm1, ctx) ||
626       /* de = d*e mod lcm(prime-1, for all primes). */
627       !BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
628     OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
629     goto out;
630   }
631 
632   if (BN_cmp(&n, key->n) != 0) {
633     OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
634     goto out;
635   }
636 
637   if (!BN_is_one(&de)) {
638     OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
639     goto out;
640   }
641 
642   has_crt_values = key->dmp1 != NULL;
643   if (has_crt_values != (key->dmq1 != NULL) ||
644       has_crt_values != (key->iqmp != NULL)) {
645     OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
646     goto out;
647   }
648 
649   if (has_crt_values && num_additional_primes == 0) {
650     if (/* dmp1 = d mod (p-1) */
651         !BN_mod(&dmp1, key->d, &pm1, ctx) ||
652         /* dmq1 = d mod (q-1) */
653         !BN_mod(&dmq1, key->d, &qm1, ctx) ||
654         /* iqmp = q^-1 mod p */
655         !BN_mod_mul(&iqmp_times_q, key->iqmp, key->q, key->p, ctx)) {
656       OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
657       goto out;
658     }
659 
660     if (BN_cmp(&dmp1, key->dmp1) != 0 ||
661         BN_cmp(&dmq1, key->dmq1) != 0 ||
662         BN_cmp(key->iqmp, key->p) >= 0 ||
663         !BN_is_one(&iqmp_times_q)) {
664       OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT);
665       goto out;
666     }
667   }
668 
669   ok = 1;
670 
671 out:
672   BN_free(&n);
673   BN_free(&pm1);
674   BN_free(&qm1);
675   BN_free(&lcm);
676   BN_free(&gcd);
677   BN_free(&de);
678   BN_free(&dmp1);
679   BN_free(&dmq1);
680   BN_free(&iqmp_times_q);
681   BN_CTX_free(ctx);
682 
683   return ok;
684 }
685 
RSA_recover_crt_params(RSA * rsa)686 int RSA_recover_crt_params(RSA *rsa) {
687   BN_CTX *ctx;
688   BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q;
689   int ok = 0;
690 
691   if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) {
692     OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY);
693     return 0;
694   }
695 
696   if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) {
697     OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_PARAMS_ALREADY_GIVEN);
698     return 0;
699   }
700 
701   if (rsa->additional_primes != NULL) {
702     OPENSSL_PUT_ERROR(RSA, RSA_R_CANNOT_RECOVER_MULTI_PRIME_KEY);
703     return 0;
704   }
705 
706   /* This uses the algorithm from section 9B of the RSA paper:
707    * http://people.csail.mit.edu/rivest/Rsapaper.pdf */
708 
709   ctx = BN_CTX_new();
710   if (ctx == NULL) {
711     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
712     return 0;
713   }
714 
715   BN_CTX_start(ctx);
716   totient = BN_CTX_get(ctx);
717   rem = BN_CTX_get(ctx);
718   multiple = BN_CTX_get(ctx);
719   p_plus_q = BN_CTX_get(ctx);
720   p_minus_q = BN_CTX_get(ctx);
721 
722   if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL ||
723       p_minus_q == NULL) {
724     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
725     goto err;
726   }
727 
728   /* ed-1 is a small multiple of φ(n). */
729   if (!BN_mul(totient, rsa->e, rsa->d, ctx) ||
730       !BN_sub_word(totient, 1) ||
731       /* φ(n) =
732        * pq - p - q + 1 =
733        * n - (p + q) + 1
734        *
735        * Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very
736        * close. But, when we calculate the quotient, we'll be truncating it
737        * because we discard the remainder. Thus (ed-1)/multiple will be >= n,
738        * which the totient cannot be. So we add one to the estimate.
739        *
740        * Consider ed-1 as:
741        *
742        * multiple * (n - (p+q) + 1) =
743        * multiple*n - multiple*(p+q) + multiple
744        *
745        * When we divide by n, the first term becomes multiple and, since
746        * multiple and p+q is tiny compared to n, the second and third terms can
747        * be ignored. Thus I claim that subtracting one from the estimate is
748        * sufficient. */
749       !BN_div(multiple, NULL, totient, rsa->n, ctx) ||
750       !BN_add_word(multiple, 1) ||
751       !BN_div(totient, rem, totient, multiple, ctx)) {
752     OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
753     goto err;
754   }
755 
756   if (!BN_is_zero(rem)) {
757     OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
758     goto err;
759   }
760 
761   rsa->p = BN_new();
762   rsa->q = BN_new();
763   rsa->dmp1 = BN_new();
764   rsa->dmq1 = BN_new();
765   rsa->iqmp = BN_new();
766   if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 ==
767       NULL || rsa->iqmp == NULL) {
768     OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
769     goto err;
770   }
771 
772   /* φ(n) = n - (p + q) + 1 =>
773    * n - totient + 1 = p + q */
774   if (!BN_sub(p_plus_q, rsa->n, totient) ||
775       !BN_add_word(p_plus_q, 1) ||
776       /* p - q = sqrt((p+q)^2 - 4n) */
777       !BN_sqr(rem, p_plus_q, ctx) ||
778       !BN_lshift(multiple, rsa->n, 2) ||
779       !BN_sub(rem, rem, multiple) ||
780       !BN_sqrt(p_minus_q, rem, ctx) ||
781       /* q is 1/2 (p+q)-(p-q) */
782       !BN_sub(rsa->q, p_plus_q, p_minus_q) ||
783       !BN_rshift1(rsa->q, rsa->q) ||
784       !BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) ||
785       !BN_mul(multiple, rsa->p, rsa->q, ctx)) {
786     OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
787     goto err;
788   }
789 
790   if (BN_cmp(multiple, rsa->n) != 0) {
791     OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
792     goto err;
793   }
794 
795   if (!BN_sub(rem, rsa->p, BN_value_one()) ||
796       !BN_mod(rsa->dmp1, rsa->d, rem, ctx) ||
797       !BN_sub(rem, rsa->q, BN_value_one()) ||
798       !BN_mod(rsa->dmq1, rsa->d, rem, ctx) ||
799       !BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
800     OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
801     goto err;
802   }
803 
804   ok = 1;
805 
806 err:
807   BN_CTX_end(ctx);
808   BN_CTX_free(ctx);
809   if (!ok) {
810     bn_free_and_null(&rsa->p);
811     bn_free_and_null(&rsa->q);
812     bn_free_and_null(&rsa->dmp1);
813     bn_free_and_null(&rsa->dmq1);
814     bn_free_and_null(&rsa->iqmp);
815   }
816   return ok;
817 }
818 
RSA_private_transform(RSA * rsa,uint8_t * out,const uint8_t * in,size_t len)819 int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
820                           size_t len) {
821   if (rsa->meth->private_transform) {
822     return rsa->meth->private_transform(rsa, out, in, len);
823   }
824 
825   return rsa_default_private_transform(rsa, out, in, len);
826 }
827 
RSA_blinding_on(RSA * rsa,BN_CTX * ctx)828 int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
829   return 1;
830 }
831