• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compile/Png.h"
18 
19 #include <png.h>
20 #include <zlib.h>
21 
22 #include <algorithm>
23 #include <unordered_map>
24 #include <unordered_set>
25 
26 #include "android-base/errors.h"
27 #include "android-base/logging.h"
28 #include "android-base/macros.h"
29 
30 namespace aapt {
31 
32 // Custom deleter that destroys libpng read and info structs.
33 class PngReadStructDeleter {
34  public:
PngReadStructDeleter(png_structp read_ptr,png_infop info_ptr)35   PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
36       : read_ptr_(read_ptr), info_ptr_(info_ptr) {}
37 
~PngReadStructDeleter()38   ~PngReadStructDeleter() {
39     png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
40   }
41 
42  private:
43   png_structp read_ptr_;
44   png_infop info_ptr_;
45 
46   DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
47 };
48 
49 // Custom deleter that destroys libpng write and info structs.
50 class PngWriteStructDeleter {
51  public:
PngWriteStructDeleter(png_structp write_ptr,png_infop info_ptr)52   PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
53       : write_ptr_(write_ptr), info_ptr_(info_ptr) {}
54 
~PngWriteStructDeleter()55   ~PngWriteStructDeleter() {
56     png_destroy_write_struct(&write_ptr_, &info_ptr_);
57   }
58 
59  private:
60   png_structp write_ptr_;
61   png_infop info_ptr_;
62 
63   DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
64 };
65 
66 // Custom warning logging method that uses IDiagnostics.
LogWarning(png_structp png_ptr,png_const_charp warning_msg)67 static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
68   IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
69   diag->Warn(DiagMessage() << warning_msg);
70 }
71 
72 // Custom error logging method that uses IDiagnostics.
LogError(png_structp png_ptr,png_const_charp error_msg)73 static void LogError(png_structp png_ptr, png_const_charp error_msg) {
74   IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
75   diag->Error(DiagMessage() << error_msg);
76 
77   // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
78   // error handling. If this custom error handler method were to return, libpng would, by
79   // default, print the error message to stdout and call the same png_longjmp method.
80   png_longjmp(png_ptr, 1);
81 }
82 
ReadDataFromStream(png_structp png_ptr,png_bytep buffer,png_size_t len)83 static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
84   io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
85 
86   const void* in_buffer;
87   size_t in_len;
88   if (!in->Next(&in_buffer, &in_len)) {
89     if (in->HadError()) {
90       std::stringstream error_msg_builder;
91       error_msg_builder << "failed reading from input";
92       if (!in->GetError().empty()) {
93         error_msg_builder << ": " << in->GetError();
94       }
95       std::string err = error_msg_builder.str();
96       png_error(png_ptr, err.c_str());
97     }
98     return;
99   }
100 
101   const size_t bytes_read = std::min(in_len, len);
102   memcpy(buffer, in_buffer, bytes_read);
103   if (bytes_read != in_len) {
104     in->BackUp(in_len - bytes_read);
105   }
106 }
107 
WriteDataToStream(png_structp png_ptr,png_bytep buffer,png_size_t len)108 static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
109   io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
110 
111   void* out_buffer;
112   size_t out_len;
113   while (len > 0) {
114     if (!out->Next(&out_buffer, &out_len)) {
115       if (out->HadError()) {
116         std::stringstream err_msg_builder;
117         err_msg_builder << "failed writing to output";
118         if (!out->GetError().empty()) {
119           err_msg_builder << ": " << out->GetError();
120         }
121         std::string err = out->GetError();
122         png_error(png_ptr, err.c_str());
123       }
124       return;
125     }
126 
127     const size_t bytes_written = std::min(out_len, len);
128     memcpy(out_buffer, buffer, bytes_written);
129 
130     // Advance the input buffer.
131     buffer += bytes_written;
132     len -= bytes_written;
133 
134     // Advance the output buffer.
135     out_len -= bytes_written;
136   }
137 
138   // If the entire output buffer wasn't used, backup.
139   if (out_len > 0) {
140     out->BackUp(out_len);
141   }
142 }
143 
ReadPng(IAaptContext * context,const Source & source,io::InputStream * in)144 std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
145   // Read the first 8 bytes of the file looking for the PNG signature.
146   // Bail early if it does not match.
147   const png_byte* signature;
148   size_t buffer_size;
149   if (!in->Next((const void**)&signature, &buffer_size)) {
150     context->GetDiagnostics()->Error(DiagMessage()
151                                      << android::base::SystemErrorCodeToString(errno));
152     return {};
153   }
154 
155   if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
156     context->GetDiagnostics()->Error(DiagMessage()
157                                      << "file signature does not match PNG signature");
158     return {};
159   }
160 
161   // Start at the beginning of the first chunk.
162   in->BackUp(buffer_size - kPngSignatureSize);
163 
164   // Create and initialize the png_struct with the default error and warning handlers.
165   // The header version is also passed in to ensure that this was built against the same
166   // version of libpng.
167   png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
168   if (read_ptr == nullptr) {
169     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng read png_struct");
170     return {};
171   }
172 
173   // Create and initialize the memory for image header and data.
174   png_infop info_ptr = png_create_info_struct(read_ptr);
175   if (info_ptr == nullptr) {
176     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng read png_info");
177     png_destroy_read_struct(&read_ptr, nullptr, nullptr);
178     return {};
179   }
180 
181   // Create a diagnostics that has the source information encoded.
182   SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
183 
184   // Automatically release PNG resources at end of scope.
185   PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
186 
187   // libpng uses longjmp to jump to an error handling routine.
188   // setjmp will only return true if it was jumped to, aka there was
189   // an error.
190   if (setjmp(png_jmpbuf(read_ptr))) {
191     return {};
192   }
193 
194   // Handle warnings ourselves via IDiagnostics.
195   png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
196 
197   // Set up the read functions which read from our custom data sources.
198   png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
199 
200   // Skip the signature that we already read.
201   png_set_sig_bytes(read_ptr, kPngSignatureSize);
202 
203   // Read the chunk headers.
204   png_read_info(read_ptr, info_ptr);
205 
206   // Extract image meta-data from the various chunk headers.
207   uint32_t width, height;
208   int bit_depth, color_type, interlace_method, compression_method, filter_method;
209   png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
210                &interlace_method, &compression_method, &filter_method);
211 
212   // When the image is read, expand it so that it is in RGBA 8888 format
213   // so that image handling is uniform.
214 
215   if (color_type == PNG_COLOR_TYPE_PALETTE) {
216     png_set_palette_to_rgb(read_ptr);
217   }
218 
219   if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
220     png_set_expand_gray_1_2_4_to_8(read_ptr);
221   }
222 
223   if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
224     png_set_tRNS_to_alpha(read_ptr);
225   }
226 
227   if (bit_depth == 16) {
228     png_set_strip_16(read_ptr);
229   }
230 
231   if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
232     png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
233   }
234 
235   if (color_type == PNG_COLOR_TYPE_GRAY ||
236       color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
237     png_set_gray_to_rgb(read_ptr);
238   }
239 
240   if (interlace_method != PNG_INTERLACE_NONE) {
241     png_set_interlace_handling(read_ptr);
242   }
243 
244   // Once all the options for reading have been set, we need to flush
245   // them to libpng.
246   png_read_update_info(read_ptr, info_ptr);
247 
248   // 9-patch uses int32_t to index images, so we cap the image dimensions to
249   // something
250   // that can always be represented by 9-patch.
251   if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
252     source_diag.Error(DiagMessage()
253                       << "PNG image dimensions are too large: " << width << "x" << height);
254     return {};
255   }
256 
257   std::unique_ptr<Image> output_image = util::make_unique<Image>();
258   output_image->width = static_cast<int32_t>(width);
259   output_image->height = static_cast<int32_t>(height);
260 
261   const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
262   CHECK(row_bytes == 4 * width);  // RGBA
263 
264   // Allocate one large block to hold the image.
265   output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
266 
267   // Create an array of rows that index into the data block.
268   output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
269   for (uint32_t h = 0; h < height; h++) {
270     output_image->rows[h] = output_image->data.get() + (h * row_bytes);
271   }
272 
273   // Actually read the image pixels.
274   png_read_image(read_ptr, output_image->rows.get());
275 
276   // Finish reading. This will read any other chunks after the image data.
277   png_read_end(read_ptr, info_ptr);
278 
279   return output_image;
280 }
281 
282 // Experimentally chosen constant to be added to the overhead of using color type
283 // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
284 // Without this, many small PNGs encoded with palettes are larger after compression than
285 // the same PNGs encoded as RGBA.
286 constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
287 
288 // Pick a color type by which to encode the image, based on which color type will take
289 // the least amount of disk space.
290 //
291 // 9-patch images traditionally have not been encoded with palettes.
292 // The original rationale was to avoid dithering until after scaling,
293 // but I don't think this would be an issue with palettes. Either way,
294 // our naive size estimation tends to be wrong for small images like 9-patches
295 // and using palettes balloons the size of the resulting 9-patch.
296 // In order to not regress in size, restrict 9-patch to not use palettes.
297 
298 // The options are:
299 //
300 // - RGB
301 // - RGBA
302 // - RGB + cheap alpha
303 // - Color palette
304 // - Color palette + cheap alpha
305 // - Color palette + alpha palette
306 // - Grayscale
307 // - Grayscale + cheap alpha
308 // - Grayscale + alpha
309 //
PickColorType(int32_t width,int32_t height,bool grayscale,bool convertible_to_grayscale,bool has_nine_patch,size_t color_palette_size,size_t alpha_palette_size)310 static int PickColorType(int32_t width, int32_t height, bool grayscale,
311                          bool convertible_to_grayscale, bool has_nine_patch,
312                          size_t color_palette_size, size_t alpha_palette_size) {
313   const size_t palette_chunk_size = 16 + color_palette_size * 3;
314   const size_t alpha_chunk_size = 16 + alpha_palette_size;
315   const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
316   const size_t color_data_chunk_size = 16 + 3 * width * height;
317   const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
318   const size_t palette_data_chunk_size = 16 + width * height;
319 
320   if (grayscale) {
321     if (alpha_palette_size == 0) {
322       // This is the smallest the data can be.
323       return PNG_COLOR_TYPE_GRAY;
324     } else if (color_palette_size <= 256 && !has_nine_patch) {
325       // This grayscale has alpha and can fit within a palette.
326       // See if it is worth fitting into a palette.
327       const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
328                                        palette_data_chunk_size +
329                                        kPaletteOverheadConstant;
330       if (grayscale_alpha_data_chunk_size > palette_threshold) {
331         return PNG_COLOR_TYPE_PALETTE;
332       }
333     }
334     return PNG_COLOR_TYPE_GRAY_ALPHA;
335   }
336 
337   if (color_palette_size <= 256 && !has_nine_patch) {
338     // This image can fit inside a palette. Let's see if it is worth it.
339     size_t total_size_with_palette =
340         palette_data_chunk_size + palette_chunk_size;
341     size_t total_size_without_palette = color_data_chunk_size;
342     if (alpha_palette_size > 0) {
343       total_size_with_palette += alpha_palette_size;
344       total_size_without_palette = color_alpha_data_chunk_size;
345     }
346 
347     if (total_size_without_palette >
348         total_size_with_palette + kPaletteOverheadConstant) {
349       return PNG_COLOR_TYPE_PALETTE;
350     }
351   }
352 
353   if (convertible_to_grayscale) {
354     if (alpha_palette_size == 0) {
355       return PNG_COLOR_TYPE_GRAY;
356     } else {
357       return PNG_COLOR_TYPE_GRAY_ALPHA;
358     }
359   }
360 
361   if (alpha_palette_size == 0) {
362     return PNG_COLOR_TYPE_RGB;
363   }
364   return PNG_COLOR_TYPE_RGBA;
365 }
366 
367 // Assigns indices to the color and alpha palettes, encodes them, and then invokes
368 // png_set_PLTE/png_set_tRNS.
369 // This must be done before writing image data.
370 // Image data must be transformed to use the indices assigned within the palette.
WritePalette(png_structp write_ptr,png_infop write_info_ptr,std::unordered_map<uint32_t,int> * color_palette,std::unordered_set<uint32_t> * alpha_palette)371 static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
372                          std::unordered_map<uint32_t, int>* color_palette,
373                          std::unordered_set<uint32_t>* alpha_palette) {
374   CHECK(color_palette->size() <= 256);
375   CHECK(alpha_palette->size() <= 256);
376 
377   // Populate the PNG palette struct and assign indices to the color palette.
378 
379   // Colors in the alpha palette should have smaller indices.
380   // This will ensure that we can truncate the alpha palette if it is
381   // smaller than the color palette.
382   int index = 0;
383   for (uint32_t color : *alpha_palette) {
384     (*color_palette)[color] = index++;
385   }
386 
387   // Assign the rest of the entries.
388   for (auto& entry : *color_palette) {
389     if (entry.second == -1) {
390       entry.second = index++;
391     }
392   }
393 
394   // Create the PNG color palette struct.
395   auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
396 
397   std::unique_ptr<png_byte[]> alpha_palette_bytes;
398   if (!alpha_palette->empty()) {
399     alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
400   }
401 
402   for (const auto& entry : *color_palette) {
403     const uint32_t color = entry.first;
404     const int index = entry.second;
405     CHECK(index >= 0);
406     CHECK(static_cast<size_t>(index) < color_palette->size());
407 
408     png_colorp slot = color_palette_bytes.get() + index;
409     slot->red = color >> 24;
410     slot->green = color >> 16;
411     slot->blue = color >> 8;
412 
413     const png_byte alpha = color & 0x000000ff;
414     if (alpha != 0xff && alpha_palette_bytes) {
415       CHECK(static_cast<size_t>(index) < alpha_palette->size());
416       alpha_palette_bytes[index] = alpha;
417     }
418   }
419 
420   // The bytes get copied here, so it is safe to release color_palette_bytes at
421   // the end of function
422   // scope.
423   png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
424 
425   if (alpha_palette_bytes) {
426     png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
427                  nullptr);
428   }
429 }
430 
431 // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
432 // before writing image data.
WriteNinePatch(png_structp write_ptr,png_infop write_info_ptr,const NinePatch * nine_patch)433 static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
434                            const NinePatch* nine_patch) {
435   // The order of the chunks is important.
436   // 9-patch code in older platforms expects the 9-patch chunk to be last.
437 
438   png_unknown_chunk unknown_chunks[3];
439   memset(unknown_chunks, 0, sizeof(unknown_chunks));
440 
441   size_t index = 0;
442   size_t chunk_len = 0;
443 
444   std::unique_ptr<uint8_t[]> serialized_outline =
445       nine_patch->SerializeRoundedRectOutline(&chunk_len);
446   strcpy((char*)unknown_chunks[index].name, "npOl");
447   unknown_chunks[index].size = chunk_len;
448   unknown_chunks[index].data = (png_bytep)serialized_outline.get();
449   unknown_chunks[index].location = PNG_HAVE_PLTE;
450   index++;
451 
452   std::unique_ptr<uint8_t[]> serialized_layout_bounds;
453   if (nine_patch->layout_bounds.nonZero()) {
454     serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
455     strcpy((char*)unknown_chunks[index].name, "npLb");
456     unknown_chunks[index].size = chunk_len;
457     unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
458     unknown_chunks[index].location = PNG_HAVE_PLTE;
459     index++;
460   }
461 
462   std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
463   strcpy((char*)unknown_chunks[index].name, "npTc");
464   unknown_chunks[index].size = chunk_len;
465   unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
466   unknown_chunks[index].location = PNG_HAVE_PLTE;
467   index++;
468 
469   // Handle all unknown chunks. We are manually setting the chunks here,
470   // so we will only ever handle our custom chunks.
471   png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
472 
473   // Set the actual chunks here. The data gets copied, so our buffers can
474   // safely go out of scope.
475   png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
476 }
477 
WritePng(IAaptContext * context,const Image * image,const NinePatch * nine_patch,io::OutputStream * out,const PngOptions & options)478 bool WritePng(IAaptContext* context, const Image* image,
479               const NinePatch* nine_patch, io::OutputStream* out,
480               const PngOptions& options) {
481   // Create and initialize the write png_struct with the default error and
482   // warning handlers.
483   // The header version is also passed in to ensure that this was built against the same
484   // version of libpng.
485   png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
486   if (write_ptr == nullptr) {
487     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
488     return false;
489   }
490 
491   // Allocate memory to store image header data.
492   png_infop write_info_ptr = png_create_info_struct(write_ptr);
493   if (write_info_ptr == nullptr) {
494     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
495     png_destroy_write_struct(&write_ptr, nullptr);
496     return false;
497   }
498 
499   // Automatically release PNG resources at end of scope.
500   PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
501 
502   // libpng uses longjmp to jump to error handling routines.
503   // setjmp will return true only if it was jumped to, aka, there was an error.
504   if (setjmp(png_jmpbuf(write_ptr))) {
505     return false;
506   }
507 
508   // Handle warnings with our IDiagnostics.
509   png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
510 
511   // Set up the write functions which write to our custom data sources.
512   png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
513 
514   // We want small files and can take the performance hit to achieve this goal.
515   png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
516 
517   // Begin analysis of the image data.
518   // Scan the entire image and determine if:
519   // 1. Every pixel has R == G == B (grayscale)
520   // 2. Every pixel has A == 255 (opaque)
521   // 3. There are no more than 256 distinct RGBA colors (palette).
522   std::unordered_map<uint32_t, int> color_palette;
523   std::unordered_set<uint32_t> alpha_palette;
524   bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
525   bool grayscale = true;
526   int max_gray_deviation = 0;
527 
528   for (int32_t y = 0; y < image->height; y++) {
529     const uint8_t* row = image->rows[y];
530     for (int32_t x = 0; x < image->width; x++) {
531       int red = *row++;
532       int green = *row++;
533       int blue = *row++;
534       int alpha = *row++;
535 
536       if (alpha == 0) {
537         // The color is completely transparent.
538         // For purposes of palettes and grayscale optimization,
539         // treat all channels as 0x00.
540         needs_to_zero_rgb_channels_of_transparent_pixels =
541             needs_to_zero_rgb_channels_of_transparent_pixels ||
542             (red != 0 || green != 0 || blue != 0);
543         red = green = blue = 0;
544       }
545 
546       // Insert the color into the color palette.
547       const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
548       color_palette[color] = -1;
549 
550       // If the pixel has non-opaque alpha, insert it into the
551       // alpha palette.
552       if (alpha != 0xff) {
553         alpha_palette.insert(color);
554       }
555 
556       // Check if the image is indeed grayscale.
557       if (grayscale) {
558         if (red != green || red != blue) {
559           grayscale = false;
560         }
561       }
562 
563       // Calculate the gray scale deviation so that it can be compared
564       // with the threshold.
565       max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
566       max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
567       max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
568     }
569   }
570 
571   if (context->IsVerbose()) {
572     DiagMessage msg;
573     msg << " paletteSize=" << color_palette.size()
574         << " alphaPaletteSize=" << alpha_palette.size()
575         << " maxGrayDeviation=" << max_gray_deviation
576         << " grayScale=" << (grayscale ? "true" : "false");
577     context->GetDiagnostics()->Note(msg);
578   }
579 
580   const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
581 
582   const int new_color_type = PickColorType(
583       image->width, image->height, grayscale, convertible_to_grayscale,
584       nine_patch != nullptr, color_palette.size(), alpha_palette.size());
585 
586   if (context->IsVerbose()) {
587     DiagMessage msg;
588     msg << "encoding PNG ";
589     if (nine_patch) {
590       msg << "(with 9-patch) as ";
591     }
592     switch (new_color_type) {
593       case PNG_COLOR_TYPE_GRAY:
594         msg << "GRAY";
595         break;
596       case PNG_COLOR_TYPE_GRAY_ALPHA:
597         msg << "GRAY + ALPHA";
598         break;
599       case PNG_COLOR_TYPE_RGB:
600         msg << "RGB";
601         break;
602       case PNG_COLOR_TYPE_RGB_ALPHA:
603         msg << "RGBA";
604         break;
605       case PNG_COLOR_TYPE_PALETTE:
606         msg << "PALETTE";
607         break;
608       default:
609         msg << "unknown type " << new_color_type;
610         break;
611     }
612     context->GetDiagnostics()->Note(msg);
613   }
614 
615   png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
616                new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
617                PNG_FILTER_TYPE_DEFAULT);
618 
619   if (new_color_type & PNG_COLOR_MASK_PALETTE) {
620     // Assigns indices to the palette, and writes the encoded palette to the
621     // libpng writePtr.
622     WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
623     png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
624   } else {
625     png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
626   }
627 
628   if (nine_patch) {
629     WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
630   }
631 
632   // Flush our updates to the header.
633   png_write_info(write_ptr, write_info_ptr);
634 
635   // Write out each row of image data according to its encoding.
636   if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
637     // 1 byte/pixel.
638     auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
639 
640     for (int32_t y = 0; y < image->height; y++) {
641       png_const_bytep in_row = image->rows[y];
642       for (int32_t x = 0; x < image->width; x++) {
643         int rr = *in_row++;
644         int gg = *in_row++;
645         int bb = *in_row++;
646         int aa = *in_row++;
647         if (aa == 0) {
648           // Zero out color channels when transparent.
649           rr = gg = bb = 0;
650         }
651 
652         const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
653         const int idx = color_palette[color];
654         CHECK(idx != -1);
655         out_row[x] = static_cast<png_byte>(idx);
656       }
657       png_write_row(write_ptr, out_row.get());
658     }
659   } else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
660              new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
661     const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
662     auto out_row =
663         std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
664 
665     for (int32_t y = 0; y < image->height; y++) {
666       png_const_bytep in_row = image->rows[y];
667       for (int32_t x = 0; x < image->width; x++) {
668         int rr = in_row[x * 4];
669         int gg = in_row[x * 4 + 1];
670         int bb = in_row[x * 4 + 2];
671         int aa = in_row[x * 4 + 3];
672         if (aa == 0) {
673           // Zero out the gray channel when transparent.
674           rr = gg = bb = 0;
675         }
676 
677         if (grayscale) {
678           // The image was already grayscale, red == green == blue.
679           out_row[x * bpp] = in_row[x * 4];
680         } else {
681           // The image is convertible to grayscale, use linear-luminance of
682           // sRGB colorspace:
683           // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
684           out_row[x * bpp] =
685               (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
686         }
687 
688         if (bpp == 2) {
689           // Write out alpha if we have it.
690           out_row[x * bpp + 1] = aa;
691         }
692       }
693       png_write_row(write_ptr, out_row.get());
694     }
695   } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
696     const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
697     if (needs_to_zero_rgb_channels_of_transparent_pixels) {
698       // The source RGBA data can't be used as-is, because we need to zero out
699       // the RGB values of transparent pixels.
700       auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
701 
702       for (int32_t y = 0; y < image->height; y++) {
703         png_const_bytep in_row = image->rows[y];
704         for (int32_t x = 0; x < image->width; x++) {
705           int rr = *in_row++;
706           int gg = *in_row++;
707           int bb = *in_row++;
708           int aa = *in_row++;
709           if (aa == 0) {
710             // Zero out the RGB channels when transparent.
711             rr = gg = bb = 0;
712           }
713           out_row[x * bpp] = rr;
714           out_row[x * bpp + 1] = gg;
715           out_row[x * bpp + 2] = bb;
716           if (bpp == 4) {
717             out_row[x * bpp + 3] = aa;
718           }
719         }
720         png_write_row(write_ptr, out_row.get());
721       }
722     } else {
723       // The source image can be used as-is, just tell libpng whether or not to
724       // ignore the alpha channel.
725       if (new_color_type == PNG_COLOR_TYPE_RGB) {
726         // Delete the extraneous alpha values that we appended to our buffer
727         // when reading the original values.
728         png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
729       }
730       png_write_image(write_ptr, image->rows.get());
731     }
732   } else {
733     LOG(FATAL) << "unreachable";
734   }
735 
736   png_write_end(write_ptr, write_info_ptr);
737   return true;
738 }
739 
740 }  // namespace aapt
741