1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "compile/Png.h"
18
19 #include <png.h>
20 #include <zlib.h>
21
22 #include <algorithm>
23 #include <unordered_map>
24 #include <unordered_set>
25
26 #include "android-base/errors.h"
27 #include "android-base/logging.h"
28 #include "android-base/macros.h"
29
30 namespace aapt {
31
32 // Custom deleter that destroys libpng read and info structs.
33 class PngReadStructDeleter {
34 public:
PngReadStructDeleter(png_structp read_ptr,png_infop info_ptr)35 PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
36 : read_ptr_(read_ptr), info_ptr_(info_ptr) {}
37
~PngReadStructDeleter()38 ~PngReadStructDeleter() {
39 png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
40 }
41
42 private:
43 png_structp read_ptr_;
44 png_infop info_ptr_;
45
46 DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
47 };
48
49 // Custom deleter that destroys libpng write and info structs.
50 class PngWriteStructDeleter {
51 public:
PngWriteStructDeleter(png_structp write_ptr,png_infop info_ptr)52 PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
53 : write_ptr_(write_ptr), info_ptr_(info_ptr) {}
54
~PngWriteStructDeleter()55 ~PngWriteStructDeleter() {
56 png_destroy_write_struct(&write_ptr_, &info_ptr_);
57 }
58
59 private:
60 png_structp write_ptr_;
61 png_infop info_ptr_;
62
63 DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
64 };
65
66 // Custom warning logging method that uses IDiagnostics.
LogWarning(png_structp png_ptr,png_const_charp warning_msg)67 static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
68 IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
69 diag->Warn(DiagMessage() << warning_msg);
70 }
71
72 // Custom error logging method that uses IDiagnostics.
LogError(png_structp png_ptr,png_const_charp error_msg)73 static void LogError(png_structp png_ptr, png_const_charp error_msg) {
74 IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
75 diag->Error(DiagMessage() << error_msg);
76
77 // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
78 // error handling. If this custom error handler method were to return, libpng would, by
79 // default, print the error message to stdout and call the same png_longjmp method.
80 png_longjmp(png_ptr, 1);
81 }
82
ReadDataFromStream(png_structp png_ptr,png_bytep buffer,png_size_t len)83 static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
84 io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
85
86 const void* in_buffer;
87 size_t in_len;
88 if (!in->Next(&in_buffer, &in_len)) {
89 if (in->HadError()) {
90 std::stringstream error_msg_builder;
91 error_msg_builder << "failed reading from input";
92 if (!in->GetError().empty()) {
93 error_msg_builder << ": " << in->GetError();
94 }
95 std::string err = error_msg_builder.str();
96 png_error(png_ptr, err.c_str());
97 }
98 return;
99 }
100
101 const size_t bytes_read = std::min(in_len, len);
102 memcpy(buffer, in_buffer, bytes_read);
103 if (bytes_read != in_len) {
104 in->BackUp(in_len - bytes_read);
105 }
106 }
107
WriteDataToStream(png_structp png_ptr,png_bytep buffer,png_size_t len)108 static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
109 io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
110
111 void* out_buffer;
112 size_t out_len;
113 while (len > 0) {
114 if (!out->Next(&out_buffer, &out_len)) {
115 if (out->HadError()) {
116 std::stringstream err_msg_builder;
117 err_msg_builder << "failed writing to output";
118 if (!out->GetError().empty()) {
119 err_msg_builder << ": " << out->GetError();
120 }
121 std::string err = out->GetError();
122 png_error(png_ptr, err.c_str());
123 }
124 return;
125 }
126
127 const size_t bytes_written = std::min(out_len, len);
128 memcpy(out_buffer, buffer, bytes_written);
129
130 // Advance the input buffer.
131 buffer += bytes_written;
132 len -= bytes_written;
133
134 // Advance the output buffer.
135 out_len -= bytes_written;
136 }
137
138 // If the entire output buffer wasn't used, backup.
139 if (out_len > 0) {
140 out->BackUp(out_len);
141 }
142 }
143
ReadPng(IAaptContext * context,const Source & source,io::InputStream * in)144 std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
145 // Read the first 8 bytes of the file looking for the PNG signature.
146 // Bail early if it does not match.
147 const png_byte* signature;
148 size_t buffer_size;
149 if (!in->Next((const void**)&signature, &buffer_size)) {
150 context->GetDiagnostics()->Error(DiagMessage()
151 << android::base::SystemErrorCodeToString(errno));
152 return {};
153 }
154
155 if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
156 context->GetDiagnostics()->Error(DiagMessage()
157 << "file signature does not match PNG signature");
158 return {};
159 }
160
161 // Start at the beginning of the first chunk.
162 in->BackUp(buffer_size - kPngSignatureSize);
163
164 // Create and initialize the png_struct with the default error and warning handlers.
165 // The header version is also passed in to ensure that this was built against the same
166 // version of libpng.
167 png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
168 if (read_ptr == nullptr) {
169 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng read png_struct");
170 return {};
171 }
172
173 // Create and initialize the memory for image header and data.
174 png_infop info_ptr = png_create_info_struct(read_ptr);
175 if (info_ptr == nullptr) {
176 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng read png_info");
177 png_destroy_read_struct(&read_ptr, nullptr, nullptr);
178 return {};
179 }
180
181 // Create a diagnostics that has the source information encoded.
182 SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
183
184 // Automatically release PNG resources at end of scope.
185 PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
186
187 // libpng uses longjmp to jump to an error handling routine.
188 // setjmp will only return true if it was jumped to, aka there was
189 // an error.
190 if (setjmp(png_jmpbuf(read_ptr))) {
191 return {};
192 }
193
194 // Handle warnings ourselves via IDiagnostics.
195 png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
196
197 // Set up the read functions which read from our custom data sources.
198 png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
199
200 // Skip the signature that we already read.
201 png_set_sig_bytes(read_ptr, kPngSignatureSize);
202
203 // Read the chunk headers.
204 png_read_info(read_ptr, info_ptr);
205
206 // Extract image meta-data from the various chunk headers.
207 uint32_t width, height;
208 int bit_depth, color_type, interlace_method, compression_method, filter_method;
209 png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
210 &interlace_method, &compression_method, &filter_method);
211
212 // When the image is read, expand it so that it is in RGBA 8888 format
213 // so that image handling is uniform.
214
215 if (color_type == PNG_COLOR_TYPE_PALETTE) {
216 png_set_palette_to_rgb(read_ptr);
217 }
218
219 if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
220 png_set_expand_gray_1_2_4_to_8(read_ptr);
221 }
222
223 if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
224 png_set_tRNS_to_alpha(read_ptr);
225 }
226
227 if (bit_depth == 16) {
228 png_set_strip_16(read_ptr);
229 }
230
231 if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
232 png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
233 }
234
235 if (color_type == PNG_COLOR_TYPE_GRAY ||
236 color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
237 png_set_gray_to_rgb(read_ptr);
238 }
239
240 if (interlace_method != PNG_INTERLACE_NONE) {
241 png_set_interlace_handling(read_ptr);
242 }
243
244 // Once all the options for reading have been set, we need to flush
245 // them to libpng.
246 png_read_update_info(read_ptr, info_ptr);
247
248 // 9-patch uses int32_t to index images, so we cap the image dimensions to
249 // something
250 // that can always be represented by 9-patch.
251 if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
252 source_diag.Error(DiagMessage()
253 << "PNG image dimensions are too large: " << width << "x" << height);
254 return {};
255 }
256
257 std::unique_ptr<Image> output_image = util::make_unique<Image>();
258 output_image->width = static_cast<int32_t>(width);
259 output_image->height = static_cast<int32_t>(height);
260
261 const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
262 CHECK(row_bytes == 4 * width); // RGBA
263
264 // Allocate one large block to hold the image.
265 output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
266
267 // Create an array of rows that index into the data block.
268 output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
269 for (uint32_t h = 0; h < height; h++) {
270 output_image->rows[h] = output_image->data.get() + (h * row_bytes);
271 }
272
273 // Actually read the image pixels.
274 png_read_image(read_ptr, output_image->rows.get());
275
276 // Finish reading. This will read any other chunks after the image data.
277 png_read_end(read_ptr, info_ptr);
278
279 return output_image;
280 }
281
282 // Experimentally chosen constant to be added to the overhead of using color type
283 // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
284 // Without this, many small PNGs encoded with palettes are larger after compression than
285 // the same PNGs encoded as RGBA.
286 constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
287
288 // Pick a color type by which to encode the image, based on which color type will take
289 // the least amount of disk space.
290 //
291 // 9-patch images traditionally have not been encoded with palettes.
292 // The original rationale was to avoid dithering until after scaling,
293 // but I don't think this would be an issue with palettes. Either way,
294 // our naive size estimation tends to be wrong for small images like 9-patches
295 // and using palettes balloons the size of the resulting 9-patch.
296 // In order to not regress in size, restrict 9-patch to not use palettes.
297
298 // The options are:
299 //
300 // - RGB
301 // - RGBA
302 // - RGB + cheap alpha
303 // - Color palette
304 // - Color palette + cheap alpha
305 // - Color palette + alpha palette
306 // - Grayscale
307 // - Grayscale + cheap alpha
308 // - Grayscale + alpha
309 //
PickColorType(int32_t width,int32_t height,bool grayscale,bool convertible_to_grayscale,bool has_nine_patch,size_t color_palette_size,size_t alpha_palette_size)310 static int PickColorType(int32_t width, int32_t height, bool grayscale,
311 bool convertible_to_grayscale, bool has_nine_patch,
312 size_t color_palette_size, size_t alpha_palette_size) {
313 const size_t palette_chunk_size = 16 + color_palette_size * 3;
314 const size_t alpha_chunk_size = 16 + alpha_palette_size;
315 const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
316 const size_t color_data_chunk_size = 16 + 3 * width * height;
317 const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
318 const size_t palette_data_chunk_size = 16 + width * height;
319
320 if (grayscale) {
321 if (alpha_palette_size == 0) {
322 // This is the smallest the data can be.
323 return PNG_COLOR_TYPE_GRAY;
324 } else if (color_palette_size <= 256 && !has_nine_patch) {
325 // This grayscale has alpha and can fit within a palette.
326 // See if it is worth fitting into a palette.
327 const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
328 palette_data_chunk_size +
329 kPaletteOverheadConstant;
330 if (grayscale_alpha_data_chunk_size > palette_threshold) {
331 return PNG_COLOR_TYPE_PALETTE;
332 }
333 }
334 return PNG_COLOR_TYPE_GRAY_ALPHA;
335 }
336
337 if (color_palette_size <= 256 && !has_nine_patch) {
338 // This image can fit inside a palette. Let's see if it is worth it.
339 size_t total_size_with_palette =
340 palette_data_chunk_size + palette_chunk_size;
341 size_t total_size_without_palette = color_data_chunk_size;
342 if (alpha_palette_size > 0) {
343 total_size_with_palette += alpha_palette_size;
344 total_size_without_palette = color_alpha_data_chunk_size;
345 }
346
347 if (total_size_without_palette >
348 total_size_with_palette + kPaletteOverheadConstant) {
349 return PNG_COLOR_TYPE_PALETTE;
350 }
351 }
352
353 if (convertible_to_grayscale) {
354 if (alpha_palette_size == 0) {
355 return PNG_COLOR_TYPE_GRAY;
356 } else {
357 return PNG_COLOR_TYPE_GRAY_ALPHA;
358 }
359 }
360
361 if (alpha_palette_size == 0) {
362 return PNG_COLOR_TYPE_RGB;
363 }
364 return PNG_COLOR_TYPE_RGBA;
365 }
366
367 // Assigns indices to the color and alpha palettes, encodes them, and then invokes
368 // png_set_PLTE/png_set_tRNS.
369 // This must be done before writing image data.
370 // Image data must be transformed to use the indices assigned within the palette.
WritePalette(png_structp write_ptr,png_infop write_info_ptr,std::unordered_map<uint32_t,int> * color_palette,std::unordered_set<uint32_t> * alpha_palette)371 static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
372 std::unordered_map<uint32_t, int>* color_palette,
373 std::unordered_set<uint32_t>* alpha_palette) {
374 CHECK(color_palette->size() <= 256);
375 CHECK(alpha_palette->size() <= 256);
376
377 // Populate the PNG palette struct and assign indices to the color palette.
378
379 // Colors in the alpha palette should have smaller indices.
380 // This will ensure that we can truncate the alpha palette if it is
381 // smaller than the color palette.
382 int index = 0;
383 for (uint32_t color : *alpha_palette) {
384 (*color_palette)[color] = index++;
385 }
386
387 // Assign the rest of the entries.
388 for (auto& entry : *color_palette) {
389 if (entry.second == -1) {
390 entry.second = index++;
391 }
392 }
393
394 // Create the PNG color palette struct.
395 auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
396
397 std::unique_ptr<png_byte[]> alpha_palette_bytes;
398 if (!alpha_palette->empty()) {
399 alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
400 }
401
402 for (const auto& entry : *color_palette) {
403 const uint32_t color = entry.first;
404 const int index = entry.second;
405 CHECK(index >= 0);
406 CHECK(static_cast<size_t>(index) < color_palette->size());
407
408 png_colorp slot = color_palette_bytes.get() + index;
409 slot->red = color >> 24;
410 slot->green = color >> 16;
411 slot->blue = color >> 8;
412
413 const png_byte alpha = color & 0x000000ff;
414 if (alpha != 0xff && alpha_palette_bytes) {
415 CHECK(static_cast<size_t>(index) < alpha_palette->size());
416 alpha_palette_bytes[index] = alpha;
417 }
418 }
419
420 // The bytes get copied here, so it is safe to release color_palette_bytes at
421 // the end of function
422 // scope.
423 png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
424
425 if (alpha_palette_bytes) {
426 png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
427 nullptr);
428 }
429 }
430
431 // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
432 // before writing image data.
WriteNinePatch(png_structp write_ptr,png_infop write_info_ptr,const NinePatch * nine_patch)433 static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
434 const NinePatch* nine_patch) {
435 // The order of the chunks is important.
436 // 9-patch code in older platforms expects the 9-patch chunk to be last.
437
438 png_unknown_chunk unknown_chunks[3];
439 memset(unknown_chunks, 0, sizeof(unknown_chunks));
440
441 size_t index = 0;
442 size_t chunk_len = 0;
443
444 std::unique_ptr<uint8_t[]> serialized_outline =
445 nine_patch->SerializeRoundedRectOutline(&chunk_len);
446 strcpy((char*)unknown_chunks[index].name, "npOl");
447 unknown_chunks[index].size = chunk_len;
448 unknown_chunks[index].data = (png_bytep)serialized_outline.get();
449 unknown_chunks[index].location = PNG_HAVE_PLTE;
450 index++;
451
452 std::unique_ptr<uint8_t[]> serialized_layout_bounds;
453 if (nine_patch->layout_bounds.nonZero()) {
454 serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
455 strcpy((char*)unknown_chunks[index].name, "npLb");
456 unknown_chunks[index].size = chunk_len;
457 unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
458 unknown_chunks[index].location = PNG_HAVE_PLTE;
459 index++;
460 }
461
462 std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
463 strcpy((char*)unknown_chunks[index].name, "npTc");
464 unknown_chunks[index].size = chunk_len;
465 unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
466 unknown_chunks[index].location = PNG_HAVE_PLTE;
467 index++;
468
469 // Handle all unknown chunks. We are manually setting the chunks here,
470 // so we will only ever handle our custom chunks.
471 png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
472
473 // Set the actual chunks here. The data gets copied, so our buffers can
474 // safely go out of scope.
475 png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
476 }
477
WritePng(IAaptContext * context,const Image * image,const NinePatch * nine_patch,io::OutputStream * out,const PngOptions & options)478 bool WritePng(IAaptContext* context, const Image* image,
479 const NinePatch* nine_patch, io::OutputStream* out,
480 const PngOptions& options) {
481 // Create and initialize the write png_struct with the default error and
482 // warning handlers.
483 // The header version is also passed in to ensure that this was built against the same
484 // version of libpng.
485 png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
486 if (write_ptr == nullptr) {
487 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
488 return false;
489 }
490
491 // Allocate memory to store image header data.
492 png_infop write_info_ptr = png_create_info_struct(write_ptr);
493 if (write_info_ptr == nullptr) {
494 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
495 png_destroy_write_struct(&write_ptr, nullptr);
496 return false;
497 }
498
499 // Automatically release PNG resources at end of scope.
500 PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
501
502 // libpng uses longjmp to jump to error handling routines.
503 // setjmp will return true only if it was jumped to, aka, there was an error.
504 if (setjmp(png_jmpbuf(write_ptr))) {
505 return false;
506 }
507
508 // Handle warnings with our IDiagnostics.
509 png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
510
511 // Set up the write functions which write to our custom data sources.
512 png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
513
514 // We want small files and can take the performance hit to achieve this goal.
515 png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
516
517 // Begin analysis of the image data.
518 // Scan the entire image and determine if:
519 // 1. Every pixel has R == G == B (grayscale)
520 // 2. Every pixel has A == 255 (opaque)
521 // 3. There are no more than 256 distinct RGBA colors (palette).
522 std::unordered_map<uint32_t, int> color_palette;
523 std::unordered_set<uint32_t> alpha_palette;
524 bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
525 bool grayscale = true;
526 int max_gray_deviation = 0;
527
528 for (int32_t y = 0; y < image->height; y++) {
529 const uint8_t* row = image->rows[y];
530 for (int32_t x = 0; x < image->width; x++) {
531 int red = *row++;
532 int green = *row++;
533 int blue = *row++;
534 int alpha = *row++;
535
536 if (alpha == 0) {
537 // The color is completely transparent.
538 // For purposes of palettes and grayscale optimization,
539 // treat all channels as 0x00.
540 needs_to_zero_rgb_channels_of_transparent_pixels =
541 needs_to_zero_rgb_channels_of_transparent_pixels ||
542 (red != 0 || green != 0 || blue != 0);
543 red = green = blue = 0;
544 }
545
546 // Insert the color into the color palette.
547 const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
548 color_palette[color] = -1;
549
550 // If the pixel has non-opaque alpha, insert it into the
551 // alpha palette.
552 if (alpha != 0xff) {
553 alpha_palette.insert(color);
554 }
555
556 // Check if the image is indeed grayscale.
557 if (grayscale) {
558 if (red != green || red != blue) {
559 grayscale = false;
560 }
561 }
562
563 // Calculate the gray scale deviation so that it can be compared
564 // with the threshold.
565 max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
566 max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
567 max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
568 }
569 }
570
571 if (context->IsVerbose()) {
572 DiagMessage msg;
573 msg << " paletteSize=" << color_palette.size()
574 << " alphaPaletteSize=" << alpha_palette.size()
575 << " maxGrayDeviation=" << max_gray_deviation
576 << " grayScale=" << (grayscale ? "true" : "false");
577 context->GetDiagnostics()->Note(msg);
578 }
579
580 const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
581
582 const int new_color_type = PickColorType(
583 image->width, image->height, grayscale, convertible_to_grayscale,
584 nine_patch != nullptr, color_palette.size(), alpha_palette.size());
585
586 if (context->IsVerbose()) {
587 DiagMessage msg;
588 msg << "encoding PNG ";
589 if (nine_patch) {
590 msg << "(with 9-patch) as ";
591 }
592 switch (new_color_type) {
593 case PNG_COLOR_TYPE_GRAY:
594 msg << "GRAY";
595 break;
596 case PNG_COLOR_TYPE_GRAY_ALPHA:
597 msg << "GRAY + ALPHA";
598 break;
599 case PNG_COLOR_TYPE_RGB:
600 msg << "RGB";
601 break;
602 case PNG_COLOR_TYPE_RGB_ALPHA:
603 msg << "RGBA";
604 break;
605 case PNG_COLOR_TYPE_PALETTE:
606 msg << "PALETTE";
607 break;
608 default:
609 msg << "unknown type " << new_color_type;
610 break;
611 }
612 context->GetDiagnostics()->Note(msg);
613 }
614
615 png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
616 new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
617 PNG_FILTER_TYPE_DEFAULT);
618
619 if (new_color_type & PNG_COLOR_MASK_PALETTE) {
620 // Assigns indices to the palette, and writes the encoded palette to the
621 // libpng writePtr.
622 WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
623 png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
624 } else {
625 png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
626 }
627
628 if (nine_patch) {
629 WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
630 }
631
632 // Flush our updates to the header.
633 png_write_info(write_ptr, write_info_ptr);
634
635 // Write out each row of image data according to its encoding.
636 if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
637 // 1 byte/pixel.
638 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
639
640 for (int32_t y = 0; y < image->height; y++) {
641 png_const_bytep in_row = image->rows[y];
642 for (int32_t x = 0; x < image->width; x++) {
643 int rr = *in_row++;
644 int gg = *in_row++;
645 int bb = *in_row++;
646 int aa = *in_row++;
647 if (aa == 0) {
648 // Zero out color channels when transparent.
649 rr = gg = bb = 0;
650 }
651
652 const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
653 const int idx = color_palette[color];
654 CHECK(idx != -1);
655 out_row[x] = static_cast<png_byte>(idx);
656 }
657 png_write_row(write_ptr, out_row.get());
658 }
659 } else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
660 new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
661 const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
662 auto out_row =
663 std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
664
665 for (int32_t y = 0; y < image->height; y++) {
666 png_const_bytep in_row = image->rows[y];
667 for (int32_t x = 0; x < image->width; x++) {
668 int rr = in_row[x * 4];
669 int gg = in_row[x * 4 + 1];
670 int bb = in_row[x * 4 + 2];
671 int aa = in_row[x * 4 + 3];
672 if (aa == 0) {
673 // Zero out the gray channel when transparent.
674 rr = gg = bb = 0;
675 }
676
677 if (grayscale) {
678 // The image was already grayscale, red == green == blue.
679 out_row[x * bpp] = in_row[x * 4];
680 } else {
681 // The image is convertible to grayscale, use linear-luminance of
682 // sRGB colorspace:
683 // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
684 out_row[x * bpp] =
685 (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
686 }
687
688 if (bpp == 2) {
689 // Write out alpha if we have it.
690 out_row[x * bpp + 1] = aa;
691 }
692 }
693 png_write_row(write_ptr, out_row.get());
694 }
695 } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
696 const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
697 if (needs_to_zero_rgb_channels_of_transparent_pixels) {
698 // The source RGBA data can't be used as-is, because we need to zero out
699 // the RGB values of transparent pixels.
700 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
701
702 for (int32_t y = 0; y < image->height; y++) {
703 png_const_bytep in_row = image->rows[y];
704 for (int32_t x = 0; x < image->width; x++) {
705 int rr = *in_row++;
706 int gg = *in_row++;
707 int bb = *in_row++;
708 int aa = *in_row++;
709 if (aa == 0) {
710 // Zero out the RGB channels when transparent.
711 rr = gg = bb = 0;
712 }
713 out_row[x * bpp] = rr;
714 out_row[x * bpp + 1] = gg;
715 out_row[x * bpp + 2] = bb;
716 if (bpp == 4) {
717 out_row[x * bpp + 3] = aa;
718 }
719 }
720 png_write_row(write_ptr, out_row.get());
721 }
722 } else {
723 // The source image can be used as-is, just tell libpng whether or not to
724 // ignore the alpha channel.
725 if (new_color_type == PNG_COLOR_TYPE_RGB) {
726 // Delete the extraneous alpha values that we appended to our buffer
727 // when reading the original values.
728 png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
729 }
730 png_write_image(write_ptr, image->rows.get());
731 }
732 } else {
733 LOG(FATAL) << "unreachable";
734 }
735
736 png_write_end(write_ptr, write_info_ptr);
737 return true;
738 }
739
740 } // namespace aapt
741