1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This file contains the CodedInputStream and CodedOutputStream classes,
36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
37 // and allow you to read or write individual pieces of data in various
38 // formats.  In particular, these implement the varint encoding for
39 // integers, a simple variable-length encoding in which smaller numbers
40 // take fewer bytes.
41 //
42 // Typically these classes will only be used internally by the protocol
43 // buffer library in order to encode and decode protocol buffers.  Clients
44 // of the library only need to know about this class if they wish to write
45 // custom message parsing or serialization procedures.
46 //
47 // CodedOutputStream example:
48 //   // Write some data to "myfile".  First we write a 4-byte "magic number"
49 //   // to identify the file type, then write a length-delimited string.  The
50 //   // string is composed of a varint giving the length followed by the raw
51 //   // bytes.
52 //   int fd = open("myfile", O_CREAT | O_WRONLY);
53 //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
54 //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
55 //
56 //   int magic_number = 1234;
57 //   char text[] = "Hello world!";
58 //   coded_output->WriteLittleEndian32(magic_number);
59 //   coded_output->WriteVarint32(strlen(text));
60 //   coded_output->WriteRaw(text, strlen(text));
61 //
62 //   delete coded_output;
63 //   delete raw_output;
64 //   close(fd);
65 //
66 // CodedInputStream example:
67 //   // Read a file created by the above code.
68 //   int fd = open("myfile", O_RDONLY);
69 //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
70 //   CodedInputStream coded_input = new CodedInputStream(raw_input);
71 //
72 //   coded_input->ReadLittleEndian32(&magic_number);
73 //   if (magic_number != 1234) {
74 //     cerr << "File not in expected format." << endl;
75 //     return;
76 //   }
77 //
78 //   uint32 size;
79 //   coded_input->ReadVarint32(&size);
80 //
81 //   char* text = new char[size + 1];
82 //   coded_input->ReadRaw(buffer, size);
83 //   text[size] = '\0';
84 //
85 //   delete coded_input;
86 //   delete raw_input;
87 //   close(fd);
88 //
89 //   cout << "Text is: " << text << endl;
90 //   delete [] text;
91 //
92 // For those who are interested, varint encoding is defined as follows:
93 //
94 // The encoding operates on unsigned integers of up to 64 bits in length.
95 // Each byte of the encoded value has the format:
96 // * bits 0-6: Seven bits of the number being encoded.
97 // * bit 7: Zero if this is the last byte in the encoding (in which
98 //   case all remaining bits of the number are zero) or 1 if
99 //   more bytes follow.
100 // The first byte contains the least-significant 7 bits of the number, the
101 // second byte (if present) contains the next-least-significant 7 bits,
102 // and so on.  So, the binary number 1011000101011 would be encoded in two
103 // bytes as "10101011 00101100".
104 //
105 // In theory, varint could be used to encode integers of any length.
106 // However, for practicality we set a limit at 64 bits.  The maximum encoded
107 // length of a number is thus 10 bytes.
108 
109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
111 
112 #include <assert.h>
113 #include <string>
114 #include <utility>
115 #ifdef _MSC_VER
116   // Assuming windows is always little-endian.
117   #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
118     #define PROTOBUF_LITTLE_ENDIAN 1
119   #endif
120   #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
121     // If MSVC has "/RTCc" set, it will complain about truncating casts at
122     // runtime.  This file contains some intentional truncating casts.
123     #pragma runtime_checks("c", off)
124   #endif
125 #else
126   #include <sys/param.h>   // __BYTE_ORDER
127   #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \
128          (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
129       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
130     #define PROTOBUF_LITTLE_ENDIAN 1
131   #endif
132 #endif
133 #include <google/protobuf/stubs/common.h>
134 
135 namespace google {
136 
137 namespace protobuf {
138 
139 class DescriptorPool;
140 class MessageFactory;
141 
142 namespace io {
143 
144 // Defined in this file.
145 class CodedInputStream;
146 class CodedOutputStream;
147 
148 // Defined in other files.
149 class ZeroCopyInputStream;           // zero_copy_stream.h
150 class ZeroCopyOutputStream;          // zero_copy_stream.h
151 
152 // Class which reads and decodes binary data which is composed of varint-
153 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
154 // Most users will not need to deal with CodedInputStream.
155 //
156 // Most methods of CodedInputStream that return a bool return false if an
157 // underlying I/O error occurs or if the data is malformed.  Once such a
158 // failure occurs, the CodedInputStream is broken and is no longer useful.
159 class LIBPROTOBUF_EXPORT CodedInputStream {
160  public:
161   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
162   explicit CodedInputStream(ZeroCopyInputStream* input);
163 
164   // Create a CodedInputStream that reads from the given flat array.  This is
165   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
166   // this constructor.
167   explicit CodedInputStream(const uint8* buffer, int size);
168 
169   // Destroy the CodedInputStream and position the underlying
170   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
171   // reading (causing a method to return false), then the exact position of
172   // the input stream may be anywhere between the last value that was read
173   // successfully and the stream's byte limit.
174   ~CodedInputStream();
175 
176   // Return true if this CodedInputStream reads from a flat array instead of
177   // a ZeroCopyInputStream.
178   inline bool IsFlat() const;
179 
180   // Skips a number of bytes.  Returns false if an underlying read error
181   // occurs.
182   bool Skip(int count);
183 
184   // Sets *data to point directly at the unread part of the CodedInputStream's
185   // underlying buffer, and *size to the size of that buffer, but does not
186   // advance the stream's current position.  This will always either produce
187   // a non-empty buffer or return false.  If the caller consumes any of
188   // this data, it should then call Skip() to skip over the consumed bytes.
189   // This may be useful for implementing external fast parsing routines for
190   // types of data not covered by the CodedInputStream interface.
191   bool GetDirectBufferPointer(const void** data, int* size);
192 
193   // Like GetDirectBufferPointer, but this method is inlined, and does not
194   // attempt to Refresh() if the buffer is currently empty.
195   GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void** data,
196                                                             int* size);
197 
198   // Read raw bytes, copying them into the given buffer.
199   bool ReadRaw(void* buffer, int size);
200 
201   // Like the above, with inlined optimizations. This should only be used
202   // by the protobuf implementation.
203   GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadRawInline(void* buffer, int size);
204 
205   // Like ReadRaw, but reads into a string.
206   //
207   // Implementation Note:  ReadString() grows the string gradually as it
208   // reads in the data, rather than allocating the entire requested size
209   // upfront.  This prevents denial-of-service attacks in which a client
210   // could claim that a string is going to be MAX_INT bytes long in order to
211   // crash the server because it can't allocate this much space at once.
212   bool ReadString(string* buffer, int size);
213   // Like the above, with inlined optimizations. This should only be used
214   // by the protobuf implementation.
215   GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadStringInline(string* buffer,
216                                                         int size);
217 
218 
219   // Read a 32-bit little-endian integer.
220   bool ReadLittleEndian32(uint32* value);
221   // Read a 64-bit little-endian integer.
222   bool ReadLittleEndian64(uint64* value);
223 
224   // These methods read from an externally provided buffer. The caller is
225   // responsible for ensuring that the buffer has sufficient space.
226   // Read a 32-bit little-endian integer.
227   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
228                                                    uint32* value);
229   // Read a 64-bit little-endian integer.
230   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
231                                                    uint64* value);
232 
233   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
234   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
235   // it to uint32, but may be more efficient.
236   bool ReadVarint32(uint32* value);
237   // Read an unsigned integer with Varint encoding.
238   bool ReadVarint64(uint64* value);
239 
240   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
241   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
242   // the last tag value, which can be checked with LastTagWas().
243   // Always inline because this is only called in one place per parse loop
244   // but it is called for every iteration of said loop, so it should be fast.
245   // GCC doesn't want to inline this by default.
246   GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint32 ReadTag();
247 
248   // This usually a faster alternative to ReadTag() when cutoff is a manifest
249   // constant.  It does particularly well for cutoff >= 127.  The first part
250   // of the return value is the tag that was read, though it can also be 0 in
251   // the cases where ReadTag() would return 0.  If the second part is true
252   // then the tag is known to be in [0, cutoff].  If not, the tag either is
253   // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
254   // because that can arise in several ways, and for best performance we want
255   // to avoid an extra "is tag == 0?" check here.)
256   GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair<uint32, bool> ReadTagWithCutoff(
257       uint32 cutoff);
258 
259   // Usually returns true if calling ReadVarint32() now would produce the given
260   // value.  Will always return false if ReadVarint32() would not return the
261   // given value.  If ExpectTag() returns true, it also advances past
262   // the varint.  For best performance, use a compile-time constant as the
263   // parameter.
264   // Always inline because this collapses to a small number of instructions
265   // when given a constant parameter, but GCC doesn't want to inline by default.
266   GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool ExpectTag(uint32 expected);
267 
268   // Like above, except this reads from the specified buffer. The caller is
269   // responsible for ensuring that the buffer is large enough to read a varint
270   // of the expected size. For best performance, use a compile-time constant as
271   // the expected tag parameter.
272   //
273   // Returns a pointer beyond the expected tag if it was found, or NULL if it
274   // was not.
275   GOOGLE_ATTRIBUTE_ALWAYS_INLINE static const uint8* ExpectTagFromArray(
276       const uint8* buffer,
277       uint32 expected);
278 
279   // Usually returns true if no more bytes can be read.  Always returns false
280   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
281   // call to LastTagWas() will act as if ReadTag() had been called and returned
282   // zero, and ConsumedEntireMessage() will return true.
283   bool ExpectAtEnd();
284 
285   // If the last call to ReadTag() or ReadTagWithCutoff() returned the
286   // given value, returns true.  Otherwise, returns false;
287   //
288   // This is needed because parsers for some types of embedded messages
289   // (with field type TYPE_GROUP) don't actually know that they've reached the
290   // end of a message until they see an ENDGROUP tag, which was actually part
291   // of the enclosing message.  The enclosing message would like to check that
292   // tag to make sure it had the right number, so it calls LastTagWas() on
293   // return from the embedded parser to check.
294   bool LastTagWas(uint32 expected);
295 
296   // When parsing message (but NOT a group), this method must be called
297   // immediately after MergeFromCodedStream() returns (if it returns true)
298   // to further verify that the message ended in a legitimate way.  For
299   // example, this verifies that parsing did not end on an end-group tag.
300   // It also checks for some cases where, due to optimizations,
301   // MergeFromCodedStream() can incorrectly return true.
302   bool ConsumedEntireMessage();
303 
304   // Limits ----------------------------------------------------------
305   // Limits are used when parsing length-delimited embedded messages.
306   // After the message's length is read, PushLimit() is used to prevent
307   // the CodedInputStream from reading beyond that length.  Once the
308   // embedded message has been parsed, PopLimit() is called to undo the
309   // limit.
310 
311   // Opaque type used with PushLimit() and PopLimit().  Do not modify
312   // values of this type yourself.  The only reason that this isn't a
313   // struct with private internals is for efficiency.
314   typedef int Limit;
315 
316   // Places a limit on the number of bytes that the stream may read,
317   // starting from the current position.  Once the stream hits this limit,
318   // it will act like the end of the input has been reached until PopLimit()
319   // is called.
320   //
321   // As the names imply, the stream conceptually has a stack of limits.  The
322   // shortest limit on the stack is always enforced, even if it is not the
323   // top limit.
324   //
325   // The value returned by PushLimit() is opaque to the caller, and must
326   // be passed unchanged to the corresponding call to PopLimit().
327   Limit PushLimit(int byte_limit);
328 
329   // Pops the last limit pushed by PushLimit().  The input must be the value
330   // returned by that call to PushLimit().
331   void PopLimit(Limit limit);
332 
333   // Returns the number of bytes left until the nearest limit on the
334   // stack is hit, or -1 if no limits are in place.
335   int BytesUntilLimit() const;
336 
337   // Returns current position relative to the beginning of the input stream.
338   int CurrentPosition() const;
339 
340   // Total Bytes Limit -----------------------------------------------
341   // To prevent malicious users from sending excessively large messages
342   // and causing integer overflows or memory exhaustion, CodedInputStream
343   // imposes a hard limit on the total number of bytes it will read.
344 
345   // Sets the maximum number of bytes that this CodedInputStream will read
346   // before refusing to continue.  To prevent integer overflows in the
347   // protocol buffers implementation, as well as to prevent servers from
348   // allocating enormous amounts of memory to hold parsed messages, the
349   // maximum message length should be limited to the shortest length that
350   // will not harm usability.  The theoretical shortest message that could
351   // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
352   // should set shorter limits if possible.  If warning_threshold is not -1,
353   // a warning will be printed to stderr after warning_threshold bytes are
354   // read.  For backwards compatibility all negative values get squashed to -1,
355   // as other negative values might have special internal meanings.
356   // An error will always be printed to stderr if the limit is reached.
357   //
358   // This is unrelated to PushLimit()/PopLimit().
359   //
360   // Hint:  If you are reading this because your program is printing a
361   //   warning about dangerously large protocol messages, you may be
362   //   confused about what to do next.  The best option is to change your
363   //   design such that excessively large messages are not necessary.
364   //   For example, try to design file formats to consist of many small
365   //   messages rather than a single large one.  If this is infeasible,
366   //   you will need to increase the limit.  Chances are, though, that
367   //   your code never constructs a CodedInputStream on which the limit
368   //   can be set.  You probably parse messages by calling things like
369   //   Message::ParseFromString().  In this case, you will need to change
370   //   your code to instead construct some sort of ZeroCopyInputStream
371   //   (e.g. an ArrayInputStream), construct a CodedInputStream around
372   //   that, then call Message::ParseFromCodedStream() instead.  Then
373   //   you can adjust the limit.  Yes, it's more work, but you're doing
374   //   something unusual.
375   void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
376 
377   // The Total Bytes Limit minus the Current Position, or -1 if there
378   // is no Total Bytes Limit.
379   int BytesUntilTotalBytesLimit() const;
380 
381   // Recursion Limit -------------------------------------------------
382   // To prevent corrupt or malicious messages from causing stack overflows,
383   // we must keep track of the depth of recursion when parsing embedded
384   // messages and groups.  CodedInputStream keeps track of this because it
385   // is the only object that is passed down the stack during parsing.
386 
387   // Sets the maximum recursion depth.  The default is 100.
388   void SetRecursionLimit(int limit);
389 
390 
391   // Increments the current recursion depth.  Returns true if the depth is
392   // under the limit, false if it has gone over.
393   bool IncrementRecursionDepth();
394 
395   // Decrements the recursion depth if possible.
396   void DecrementRecursionDepth();
397 
398   // Decrements the recursion depth blindly.  This is faster than
399   // DecrementRecursionDepth().  It should be used only if all previous
400   // increments to recursion depth were successful.
401   void UnsafeDecrementRecursionDepth();
402 
403   // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
404   // Using this can reduce code size and complexity in some cases.  The caller
405   // is expected to check that the second part of the result is non-negative (to
406   // bail out if the depth of recursion is too high) and, if all is well, to
407   // later pass the first part of the result to PopLimit() or similar.
408   std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
409       int byte_limit);
410 
411   // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
412   Limit ReadLengthAndPushLimit();
413 
414   // Helper that is equivalent to: {
415   //  bool result = ConsumedEntireMessage();
416   //  PopLimit(limit);
417   //  UnsafeDecrementRecursionDepth();
418   //  return result; }
419   // Using this can reduce code size and complexity in some cases.
420   // Do not use unless the current recursion depth is greater than zero.
421   bool DecrementRecursionDepthAndPopLimit(Limit limit);
422 
423   // Helper that is equivalent to: {
424   //  bool result = ConsumedEntireMessage();
425   //  PopLimit(limit);
426   //  return result; }
427   // Using this can reduce code size and complexity in some cases.
428   bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
429 
430   // Extension Registry ----------------------------------------------
431   // ADVANCED USAGE:  99.9% of people can ignore this section.
432   //
433   // By default, when parsing extensions, the parser looks for extension
434   // definitions in the pool which owns the outer message's Descriptor.
435   // However, you may call SetExtensionRegistry() to provide an alternative
436   // pool instead.  This makes it possible, for example, to parse a message
437   // using a generated class, but represent some extensions using
438   // DynamicMessage.
439 
440   // Set the pool used to look up extensions.  Most users do not need to call
441   // this as the correct pool will be chosen automatically.
442   //
443   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
444   //   below.  Do not use this unless you are sure you need it.  Almost no one
445   //   does.
446   //
447   // Let's say you are parsing a message into message object m, and you want
448   // to take advantage of SetExtensionRegistry().  You must follow these
449   // requirements:
450   //
451   // The given DescriptorPool must contain m->GetDescriptor().  It is not
452   // sufficient for it to simply contain a descriptor that has the same name
453   // and content -- it must be the *exact object*.  In other words:
454   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
455   //          m->GetDescriptor());
456   // There are two ways to satisfy this requirement:
457   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
458   //    because this is the pool that would be used anyway if you didn't call
459   //    SetExtensionRegistry() at all.
460   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
461   //    "underlay".  Read the documentation for DescriptorPool for more
462   //    information about underlays.
463   //
464   // You must also provide a MessageFactory.  This factory will be used to
465   // construct Message objects representing extensions.  The factory's
466   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
467   // through the provided pool.
468   //
469   // If the provided factory might return instances of protocol-compiler-
470   // generated (i.e. compiled-in) types, or if the outer message object m is
471   // a generated type, then the given factory MUST have this property:  If
472   // GetPrototype() is given a Descriptor which resides in
473   // DescriptorPool::generated_pool(), the factory MUST return the same
474   // prototype which MessageFactory::generated_factory() would return.  That
475   // is, given a descriptor for a generated type, the factory must return an
476   // instance of the generated class (NOT DynamicMessage).  However, when
477   // given a descriptor for a type that is NOT in generated_pool, the factory
478   // is free to return any implementation.
479   //
480   // The reason for this requirement is that generated sub-objects may be
481   // accessed via the standard (non-reflection) extension accessor methods,
482   // and these methods will down-cast the object to the generated class type.
483   // If the object is not actually of that type, the results would be undefined.
484   // On the other hand, if an extension is not compiled in, then there is no
485   // way the code could end up accessing it via the standard accessors -- the
486   // only way to access the extension is via reflection.  When using reflection,
487   // DynamicMessage and generated messages are indistinguishable, so it's fine
488   // if these objects are represented using DynamicMessage.
489   //
490   // Using DynamicMessageFactory on which you have called
491   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
492   // above requirement.
493   //
494   // If either pool or factory is NULL, both must be NULL.
495   //
496   // Note that this feature is ignored when parsing "lite" messages as they do
497   // not have descriptors.
498   void SetExtensionRegistry(const DescriptorPool* pool,
499                             MessageFactory* factory);
500 
501   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
502   // has been provided.
503   const DescriptorPool* GetExtensionPool();
504 
505   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
506   // factory has been provided.
507   MessageFactory* GetExtensionFactory();
508 
509  private:
510   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
511 
512   const uint8* buffer_;
513   const uint8* buffer_end_;     // pointer to the end of the buffer.
514   ZeroCopyInputStream* input_;
515   int total_bytes_read_;  // total bytes read from input_, including
516                           // the current buffer
517 
518   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
519   // so that we can BackUp() on destruction.
520   int overflow_bytes_;
521 
522   // LastTagWas() stuff.
523   uint32 last_tag_;         // result of last ReadTag() or ReadTagWithCutoff().
524 
525   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
526   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
527   // reach the end of a message and attempt to read another tag.
528   bool legitimate_message_end_;
529 
530   // See EnableAliasing().
531   bool aliasing_enabled_;
532 
533   // Limits
534   Limit current_limit_;   // if position = -1, no limit is applied
535 
536   // For simplicity, if the current buffer crosses a limit (either a normal
537   // limit created by PushLimit() or the total bytes limit), buffer_size_
538   // only tracks the number of bytes before that limit.  This field
539   // contains the number of bytes after it.  Note that this implies that if
540   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
541   // hit a limit.  However, if both are zero, it doesn't necessarily mean
542   // we aren't at a limit -- the buffer may have ended exactly at the limit.
543   int buffer_size_after_limit_;
544 
545   // Maximum number of bytes to read, period.  This is unrelated to
546   // current_limit_.  Set using SetTotalBytesLimit().
547   int total_bytes_limit_;
548 
549   // If positive/0: Limit for bytes read after which a warning due to size
550   // should be logged.
551   // If -1: Printing of warning disabled. Can be set by client.
552   // If -2: Internal: Limit has been reached, print full size when destructing.
553   int total_bytes_warning_threshold_;
554 
555   // Current recursion budget, controlled by IncrementRecursionDepth() and
556   // similar.  Starts at recursion_limit_ and goes down: if this reaches
557   // -1 we are over budget.
558   int recursion_budget_;
559   // Recursion depth limit, set by SetRecursionLimit().
560   int recursion_limit_;
561 
562   // See SetExtensionRegistry().
563   const DescriptorPool* extension_pool_;
564   MessageFactory* extension_factory_;
565 
566   // Private member functions.
567 
568   // Advance the buffer by a given number of bytes.
569   void Advance(int amount);
570 
571   // Back up input_ to the current buffer position.
572   void BackUpInputToCurrentPosition();
573 
574   // Recomputes the value of buffer_size_after_limit_.  Must be called after
575   // current_limit_ or total_bytes_limit_ changes.
576   void RecomputeBufferLimits();
577 
578   // Writes an error message saying that we hit total_bytes_limit_.
579   void PrintTotalBytesLimitError();
580 
581   // Called when the buffer runs out to request more data.  Implies an
582   // Advance(BufferSize()).
583   bool Refresh();
584 
585   // When parsing varints, we optimize for the common case of small values, and
586   // then optimize for the case when the varint fits within the current buffer
587   // piece. The Fallback method is used when we can't use the one-byte
588   // optimization. The Slow method is yet another fallback when the buffer is
589   // not large enough. Making the slow path out-of-line speeds up the common
590   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
591   // message crosses multiple buffers.  Note: ReadVarint32Fallback() and
592   // ReadVarint64Fallback() are called frequently and generally not inlined, so
593   // they have been optimized to avoid "out" parameters.  The former returns -1
594   // if it fails and the uint32 it read otherwise.  The latter has a bool
595   // indicating success or failure as part of its return type.
596   int64 ReadVarint32Fallback(uint32 first_byte_or_zero);
597   std::pair<uint64, bool> ReadVarint64Fallback();
598   bool ReadVarint32Slow(uint32* value);
599   bool ReadVarint64Slow(uint64* value);
600   bool ReadLittleEndian32Fallback(uint32* value);
601   bool ReadLittleEndian64Fallback(uint64* value);
602   // Fallback/slow methods for reading tags. These do not update last_tag_,
603   // but will set legitimate_message_end_ if we are at the end of the input
604   // stream.
605   uint32 ReadTagFallback(uint32 first_byte_or_zero);
606   uint32 ReadTagSlow();
607   bool ReadStringFallback(string* buffer, int size);
608 
609   // Return the size of the buffer.
610   int BufferSize() const;
611 
612   static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
613 
614   static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
615 
616   static int default_recursion_limit_;  // 100 by default.
617 };
618 
619 // Class which encodes and writes binary data which is composed of varint-
620 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
621 // Most users will not need to deal with CodedOutputStream.
622 //
623 // Most methods of CodedOutputStream which return a bool return false if an
624 // underlying I/O error occurs.  Once such a failure occurs, the
625 // CodedOutputStream is broken and is no longer useful. The Write* methods do
626 // not return the stream status, but will invalidate the stream if an error
627 // occurs. The client can probe HadError() to determine the status.
628 //
629 // Note that every method of CodedOutputStream which writes some data has
630 // a corresponding static "ToArray" version. These versions write directly
631 // to the provided buffer, returning a pointer past the last written byte.
632 // They require that the buffer has sufficient capacity for the encoded data.
633 // This allows an optimization where we check if an output stream has enough
634 // space for an entire message before we start writing and, if there is, we
635 // call only the ToArray methods to avoid doing bound checks for each
636 // individual value.
637 // i.e., in the example above:
638 //
639 //   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
640 //   int magic_number = 1234;
641 //   char text[] = "Hello world!";
642 //
643 //   int coded_size = sizeof(magic_number) +
644 //                    CodedOutputStream::VarintSize32(strlen(text)) +
645 //                    strlen(text);
646 //
647 //   uint8* buffer =
648 //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
649 //   if (buffer != NULL) {
650 //     // The output stream has enough space in the buffer: write directly to
651 //     // the array.
652 //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
653 //                                                            buffer);
654 //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
655 //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
656 //   } else {
657 //     // Make bound-checked writes, which will ask the underlying stream for
658 //     // more space as needed.
659 //     coded_output->WriteLittleEndian32(magic_number);
660 //     coded_output->WriteVarint32(strlen(text));
661 //     coded_output->WriteRaw(text, strlen(text));
662 //   }
663 //
664 //   delete coded_output;
665 class LIBPROTOBUF_EXPORT CodedOutputStream {
666  public:
667   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
668   explicit CodedOutputStream(ZeroCopyOutputStream* output);
669   CodedOutputStream(ZeroCopyOutputStream* output, bool do_eager_refresh);
670 
671   // Destroy the CodedOutputStream and position the underlying
672   // ZeroCopyOutputStream immediately after the last byte written.
673   ~CodedOutputStream();
674 
675   // Trims any unused space in the underlying buffer so that its size matches
676   // the number of bytes written by this stream. The underlying buffer will
677   // automatically be trimmed when this stream is destroyed; this call is only
678   // necessary if the underlying buffer is accessed *before* the stream is
679   // destroyed.
680   void Trim();
681 
682   // Skips a number of bytes, leaving the bytes unmodified in the underlying
683   // buffer.  Returns false if an underlying write error occurs.  This is
684   // mainly useful with GetDirectBufferPointer().
685   bool Skip(int count);
686 
687   // Sets *data to point directly at the unwritten part of the
688   // CodedOutputStream's underlying buffer, and *size to the size of that
689   // buffer, but does not advance the stream's current position.  This will
690   // always either produce a non-empty buffer or return false.  If the caller
691   // writes any data to this buffer, it should then call Skip() to skip over
692   // the consumed bytes.  This may be useful for implementing external fast
693   // serialization routines for types of data not covered by the
694   // CodedOutputStream interface.
695   bool GetDirectBufferPointer(void** data, int* size);
696 
697   // If there are at least "size" bytes available in the current buffer,
698   // returns a pointer directly into the buffer and advances over these bytes.
699   // The caller may then write directly into this buffer (e.g. using the
700   // *ToArray static methods) rather than go through CodedOutputStream.  If
701   // there are not enough bytes available, returns NULL.  The return pointer is
702   // invalidated as soon as any other non-const method of CodedOutputStream
703   // is called.
704   inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
705 
706   // Write raw bytes, copying them from the given buffer.
707   void WriteRaw(const void* buffer, int size);
708   // Like WriteRaw()  but will try to write aliased data if aliasing is
709   // turned on.
710   void WriteRawMaybeAliased(const void* data, int size);
711   // Like WriteRaw()  but writing directly to the target array.
712   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
713   // copy loops. Since this gets called by every field with string or bytes
714   // type, inlining may lead to a significant amount of code bloat, with only a
715   // minor performance gain.
716   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
717 
718   // Equivalent to WriteRaw(str.data(), str.size()).
719   void WriteString(const string& str);
720   // Like WriteString()  but writing directly to the target array.
721   static uint8* WriteStringToArray(const string& str, uint8* target);
722   // Write the varint-encoded size of str followed by str.
723   static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
724 
725 
726   // Instructs the CodedOutputStream to allow the underlying
727   // ZeroCopyOutputStream to hold pointers to the original structure instead of
728   // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
729   // underlying stream does not support aliasing, then enabling it has no
730   // affect.  For now, this only affects the behavior of
731   // WriteRawMaybeAliased().
732   //
733   // NOTE: It is caller's responsibility to ensure that the chunk of memory
734   // remains live until all of the data has been consumed from the stream.
735   void EnableAliasing(bool enabled);
736 
737   // Write a 32-bit little-endian integer.
738   void WriteLittleEndian32(uint32 value);
739   // Like WriteLittleEndian32()  but writing directly to the target array.
740   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
741   // Write a 64-bit little-endian integer.
742   void WriteLittleEndian64(uint64 value);
743   // Like WriteLittleEndian64()  but writing directly to the target array.
744   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
745 
746   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
747   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
748   // but may be more efficient.
749   void WriteVarint32(uint32 value);
750   // Like WriteVarint32()  but writing directly to the target array.
751   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
752   // Write an unsigned integer with Varint encoding.
753   void WriteVarint64(uint64 value);
754   // Like WriteVarint64()  but writing directly to the target array.
755   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
756 
757   // Equivalent to WriteVarint32() except when the value is negative,
758   // in which case it must be sign-extended to a full 10 bytes.
759   void WriteVarint32SignExtended(int32 value);
760   // Like WriteVarint32SignExtended()  but writing directly to the target array.
761   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
762 
763   // This is identical to WriteVarint32(), but optimized for writing tags.
764   // In particular, if the input is a compile-time constant, this method
765   // compiles down to a couple instructions.
766   // Always inline because otherwise the aformentioned optimization can't work,
767   // but GCC by default doesn't want to inline this.
768   void WriteTag(uint32 value);
769   // Like WriteTag()  but writing directly to the target array.
770   GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteTagToArray(uint32 value,
771                                                         uint8* target);
772 
773   // Returns the number of bytes needed to encode the given value as a varint.
774   static int VarintSize32(uint32 value);
775   // Returns the number of bytes needed to encode the given value as a varint.
776   static int VarintSize64(uint64 value);
777 
778   // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
779   static int VarintSize32SignExtended(int32 value);
780 
781   // Compile-time equivalent of VarintSize32().
782   template <uint32 Value>
783   struct StaticVarintSize32 {
784     static const int value =
785         (Value < (1 << 7))
786             ? 1
787             : (Value < (1 << 14))
788                 ? 2
789                 : (Value < (1 << 21))
790                     ? 3
791                     : (Value < (1 << 28))
792                         ? 4
793                         : 5;
794   };
795 
796   // Returns the total number of bytes written since this object was created.
797   inline int ByteCount() const;
798 
799   // Returns true if there was an underlying I/O error since this object was
800   // created.
HadError()801   bool HadError() const { return had_error_; }
802 
803  private:
804   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
805 
806   ZeroCopyOutputStream* output_;
807   uint8* buffer_;
808   int buffer_size_;
809   int total_bytes_;  // Sum of sizes of all buffers seen so far.
810   bool had_error_;   // Whether an error occurred during output.
811   bool aliasing_enabled_;  // See EnableAliasing().
812 
813   // Advance the buffer by a given number of bytes.
814   void Advance(int amount);
815 
816   // Called when the buffer runs out to request more data.  Implies an
817   // Advance(buffer_size_).
818   bool Refresh();
819 
820   // Like WriteRaw() but may avoid copying if the underlying
821   // ZeroCopyOutputStream supports it.
822   void WriteAliasedRaw(const void* buffer, int size);
823 
824   // If this write might cross the end of the buffer, we compose the bytes first
825   // then use WriteRaw().
826   void WriteVarint32SlowPath(uint32 value);
827 
828   // Always-inlined versions of WriteVarint* functions so that code can be
829   // reused, while still controlling size. For instance, WriteVarint32ToArray()
830   // should not directly call this: since it is inlined itself, doing so
831   // would greatly increase the size of generated code. Instead, it should call
832   // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
833   // out-of-line, so it should just invoke this directly to avoid any extra
834   // function call overhead.
835   GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteVarint64ToArrayInline(
836       uint64 value, uint8* target);
837 
838   static int VarintSize32Fallback(uint32 value);
839 };
840 
841 // inline methods ====================================================
842 // The vast majority of varints are only one byte.  These inline
843 // methods optimize for that case.
844 
ReadVarint32(uint32 * value)845 inline bool CodedInputStream::ReadVarint32(uint32* value) {
846   uint32 v = 0;
847   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
848     v = *buffer_;
849     if (v < 0x80) {
850       *value = v;
851       Advance(1);
852       return true;
853     }
854   }
855   int64 result = ReadVarint32Fallback(v);
856   *value = static_cast<uint32>(result);
857   return result >= 0;
858 }
859 
ReadVarint64(uint64 * value)860 inline bool CodedInputStream::ReadVarint64(uint64* value) {
861   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
862     *value = *buffer_;
863     Advance(1);
864     return true;
865   }
866   std::pair<uint64, bool> p = ReadVarint64Fallback();
867   *value = p.first;
868   return p.second;
869 }
870 
871 // static
ReadLittleEndian32FromArray(const uint8 * buffer,uint32 * value)872 inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
873     const uint8* buffer,
874     uint32* value) {
875 #if defined(PROTOBUF_LITTLE_ENDIAN)
876   memcpy(value, buffer, sizeof(*value));
877   return buffer + sizeof(*value);
878 #else
879   *value = (static_cast<uint32>(buffer[0])      ) |
880            (static_cast<uint32>(buffer[1]) <<  8) |
881            (static_cast<uint32>(buffer[2]) << 16) |
882            (static_cast<uint32>(buffer[3]) << 24);
883   return buffer + sizeof(*value);
884 #endif
885 }
886 // static
ReadLittleEndian64FromArray(const uint8 * buffer,uint64 * value)887 inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
888     const uint8* buffer,
889     uint64* value) {
890 #if defined(PROTOBUF_LITTLE_ENDIAN)
891   memcpy(value, buffer, sizeof(*value));
892   return buffer + sizeof(*value);
893 #else
894   uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
895                  (static_cast<uint32>(buffer[1]) <<  8) |
896                  (static_cast<uint32>(buffer[2]) << 16) |
897                  (static_cast<uint32>(buffer[3]) << 24);
898   uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
899                  (static_cast<uint32>(buffer[5]) <<  8) |
900                  (static_cast<uint32>(buffer[6]) << 16) |
901                  (static_cast<uint32>(buffer[7]) << 24);
902   *value = static_cast<uint64>(part0) |
903           (static_cast<uint64>(part1) << 32);
904   return buffer + sizeof(*value);
905 #endif
906 }
907 
ReadLittleEndian32(uint32 * value)908 inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
909 #if defined(PROTOBUF_LITTLE_ENDIAN)
910   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
911     memcpy(value, buffer_, sizeof(*value));
912     Advance(sizeof(*value));
913     return true;
914   } else {
915     return ReadLittleEndian32Fallback(value);
916   }
917 #else
918   return ReadLittleEndian32Fallback(value);
919 #endif
920 }
921 
ReadLittleEndian64(uint64 * value)922 inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
923 #if defined(PROTOBUF_LITTLE_ENDIAN)
924   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
925     memcpy(value, buffer_, sizeof(*value));
926     Advance(sizeof(*value));
927     return true;
928   } else {
929     return ReadLittleEndian64Fallback(value);
930   }
931 #else
932   return ReadLittleEndian64Fallback(value);
933 #endif
934 }
935 
ReadTag()936 inline uint32 CodedInputStream::ReadTag() {
937   uint32 v = 0;
938   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
939     v = *buffer_;
940     if (v < 0x80) {
941       last_tag_ = v;
942       Advance(1);
943       return v;
944     }
945   }
946   last_tag_ = ReadTagFallback(v);
947   return last_tag_;
948 }
949 
ReadTagWithCutoff(uint32 cutoff)950 inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
951     uint32 cutoff) {
952   // In performance-sensitive code we can expect cutoff to be a compile-time
953   // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
954   // compile time.
955   uint32 first_byte_or_zero = 0;
956   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
957     // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
958     // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
959     // is large enough then is it better to check for the two-byte case first?
960     first_byte_or_zero = buffer_[0];
961     if (static_cast<int8>(buffer_[0]) > 0) {
962       const uint32 kMax1ByteVarint = 0x7f;
963       uint32 tag = last_tag_ = buffer_[0];
964       Advance(1);
965       return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
966     }
967     // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
968     // and tag is two bytes.  The latter is tested by bitwise-and-not of the
969     // first byte and the second byte.
970     if (cutoff >= 0x80 &&
971         GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
972         GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
973       const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
974       uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
975       Advance(2);
976       // It might make sense to test for tag == 0 now, but it is so rare that
977       // that we don't bother.  A varint-encoded 0 should be one byte unless
978       // the encoder lost its mind.  The second part of the return value of
979       // this function is allowed to be either true or false if the tag is 0,
980       // so we don't have to check for tag == 0.  We may need to check whether
981       // it exceeds cutoff.
982       bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
983       return std::make_pair(tag, at_or_below_cutoff);
984     }
985   }
986   // Slow path
987   last_tag_ = ReadTagFallback(first_byte_or_zero);
988   return std::make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
989 }
990 
LastTagWas(uint32 expected)991 inline bool CodedInputStream::LastTagWas(uint32 expected) {
992   return last_tag_ == expected;
993 }
994 
ConsumedEntireMessage()995 inline bool CodedInputStream::ConsumedEntireMessage() {
996   return legitimate_message_end_;
997 }
998 
ExpectTag(uint32 expected)999 inline bool CodedInputStream::ExpectTag(uint32 expected) {
1000   if (expected < (1 << 7)) {
1001     if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
1002       Advance(1);
1003       return true;
1004     } else {
1005       return false;
1006     }
1007   } else if (expected < (1 << 14)) {
1008     if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
1009         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
1010         buffer_[1] == static_cast<uint8>(expected >> 7)) {
1011       Advance(2);
1012       return true;
1013     } else {
1014       return false;
1015     }
1016   } else {
1017     // Don't bother optimizing for larger values.
1018     return false;
1019   }
1020 }
1021 
ExpectTagFromArray(const uint8 * buffer,uint32 expected)1022 inline const uint8* CodedInputStream::ExpectTagFromArray(
1023     const uint8* buffer, uint32 expected) {
1024   if (expected < (1 << 7)) {
1025     if (buffer[0] == expected) {
1026       return buffer + 1;
1027     }
1028   } else if (expected < (1 << 14)) {
1029     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
1030         buffer[1] == static_cast<uint8>(expected >> 7)) {
1031       return buffer + 2;
1032     }
1033   }
1034   return NULL;
1035 }
1036 
GetDirectBufferPointerInline(const void ** data,int * size)1037 inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
1038                                                            int* size) {
1039   *data = buffer_;
1040   *size = static_cast<int>(buffer_end_ - buffer_);
1041 }
1042 
ExpectAtEnd()1043 inline bool CodedInputStream::ExpectAtEnd() {
1044   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
1045   // hard to say without calling Refresh(), and we'd rather not do that.
1046 
1047   if (buffer_ == buffer_end_ &&
1048       ((buffer_size_after_limit_ != 0) ||
1049        (total_bytes_read_ == current_limit_))) {
1050     last_tag_ = 0;                   // Pretend we called ReadTag()...
1051     legitimate_message_end_ = true;  // ... and it hit EOF.
1052     return true;
1053   } else {
1054     return false;
1055   }
1056 }
1057 
CurrentPosition()1058 inline int CodedInputStream::CurrentPosition() const {
1059   return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
1060 }
1061 
GetDirectBufferForNBytesAndAdvance(int size)1062 inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
1063   if (buffer_size_ < size) {
1064     return NULL;
1065   } else {
1066     uint8* result = buffer_;
1067     Advance(size);
1068     return result;
1069   }
1070 }
1071 
WriteVarint32ToArray(uint32 value,uint8 * target)1072 inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
1073                                                       uint8* target) {
1074   while (value >= 0x80) {
1075     *target = static_cast<uint8>(value | 0x80);
1076     value >>= 7;
1077     ++target;
1078   }
1079   *target = static_cast<uint8>(value);
1080   return target + 1;
1081 }
1082 
WriteVarint32SignExtended(int32 value)1083 inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
1084   if (value < 0) {
1085     WriteVarint64(static_cast<uint64>(value));
1086   } else {
1087     WriteVarint32(static_cast<uint32>(value));
1088   }
1089 }
1090 
WriteVarint32SignExtendedToArray(int32 value,uint8 * target)1091 inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
1092     int32 value, uint8* target) {
1093   if (value < 0) {
1094     return WriteVarint64ToArray(static_cast<uint64>(value), target);
1095   } else {
1096     return WriteVarint32ToArray(static_cast<uint32>(value), target);
1097   }
1098 }
1099 
WriteLittleEndian32ToArray(uint32 value,uint8 * target)1100 inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
1101                                                             uint8* target) {
1102 #if defined(PROTOBUF_LITTLE_ENDIAN)
1103   memcpy(target, &value, sizeof(value));
1104 #else
1105   target[0] = static_cast<uint8>(value);
1106   target[1] = static_cast<uint8>(value >>  8);
1107   target[2] = static_cast<uint8>(value >> 16);
1108   target[3] = static_cast<uint8>(value >> 24);
1109 #endif
1110   return target + sizeof(value);
1111 }
1112 
WriteLittleEndian64ToArray(uint64 value,uint8 * target)1113 inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
1114                                                             uint8* target) {
1115 #if defined(PROTOBUF_LITTLE_ENDIAN)
1116   memcpy(target, &value, sizeof(value));
1117 #else
1118   uint32 part0 = static_cast<uint32>(value);
1119   uint32 part1 = static_cast<uint32>(value >> 32);
1120 
1121   target[0] = static_cast<uint8>(part0);
1122   target[1] = static_cast<uint8>(part0 >>  8);
1123   target[2] = static_cast<uint8>(part0 >> 16);
1124   target[3] = static_cast<uint8>(part0 >> 24);
1125   target[4] = static_cast<uint8>(part1);
1126   target[5] = static_cast<uint8>(part1 >>  8);
1127   target[6] = static_cast<uint8>(part1 >> 16);
1128   target[7] = static_cast<uint8>(part1 >> 24);
1129 #endif
1130   return target + sizeof(value);
1131 }
1132 
WriteVarint32(uint32 value)1133 inline void CodedOutputStream::WriteVarint32(uint32 value) {
1134   if (buffer_size_ >= 5) {
1135     // Fast path:  We have enough bytes left in the buffer to guarantee that
1136     // this write won't cross the end, so we can skip the checks.
1137     uint8* target = buffer_;
1138     uint8* end = WriteVarint32ToArray(value, target);
1139     int size = static_cast<int>(end - target);
1140     Advance(size);
1141   } else {
1142     WriteVarint32SlowPath(value);
1143   }
1144 }
1145 
WriteTag(uint32 value)1146 inline void CodedOutputStream::WriteTag(uint32 value) {
1147   WriteVarint32(value);
1148 }
1149 
WriteTagToArray(uint32 value,uint8 * target)1150 inline uint8* CodedOutputStream::WriteTagToArray(
1151     uint32 value, uint8* target) {
1152   return WriteVarint32ToArray(value, target);
1153 }
1154 
VarintSize32(uint32 value)1155 inline int CodedOutputStream::VarintSize32(uint32 value) {
1156   if (value < (1 << 7)) {
1157     return 1;
1158   } else  {
1159     return VarintSize32Fallback(value);
1160   }
1161 }
1162 
VarintSize32SignExtended(int32 value)1163 inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
1164   if (value < 0) {
1165     return 10;     // TODO(kenton):  Make this a symbolic constant.
1166   } else {
1167     return VarintSize32(static_cast<uint32>(value));
1168   }
1169 }
1170 
WriteString(const string & str)1171 inline void CodedOutputStream::WriteString(const string& str) {
1172   WriteRaw(str.data(), static_cast<int>(str.size()));
1173 }
1174 
WriteRawMaybeAliased(const void * data,int size)1175 inline void CodedOutputStream::WriteRawMaybeAliased(
1176     const void* data, int size) {
1177   if (aliasing_enabled_) {
1178     WriteAliasedRaw(data, size);
1179   } else {
1180     WriteRaw(data, size);
1181   }
1182 }
1183 
WriteStringToArray(const string & str,uint8 * target)1184 inline uint8* CodedOutputStream::WriteStringToArray(
1185     const string& str, uint8* target) {
1186   return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
1187 }
1188 
ByteCount()1189 inline int CodedOutputStream::ByteCount() const {
1190   return total_bytes_ - buffer_size_;
1191 }
1192 
Advance(int amount)1193 inline void CodedInputStream::Advance(int amount) {
1194   buffer_ += amount;
1195 }
1196 
Advance(int amount)1197 inline void CodedOutputStream::Advance(int amount) {
1198   buffer_ += amount;
1199   buffer_size_ -= amount;
1200 }
1201 
SetRecursionLimit(int limit)1202 inline void CodedInputStream::SetRecursionLimit(int limit) {
1203   recursion_budget_ += limit - recursion_limit_;
1204   recursion_limit_ = limit;
1205 }
1206 
IncrementRecursionDepth()1207 inline bool CodedInputStream::IncrementRecursionDepth() {
1208   --recursion_budget_;
1209   return recursion_budget_ >= 0;
1210 }
1211 
DecrementRecursionDepth()1212 inline void CodedInputStream::DecrementRecursionDepth() {
1213   if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
1214 }
1215 
UnsafeDecrementRecursionDepth()1216 inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
1217   assert(recursion_budget_ < recursion_limit_);
1218   ++recursion_budget_;
1219 }
1220 
SetExtensionRegistry(const DescriptorPool * pool,MessageFactory * factory)1221 inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
1222                                                    MessageFactory* factory) {
1223   extension_pool_ = pool;
1224   extension_factory_ = factory;
1225 }
1226 
GetExtensionPool()1227 inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
1228   return extension_pool_;
1229 }
1230 
GetExtensionFactory()1231 inline MessageFactory* CodedInputStream::GetExtensionFactory() {
1232   return extension_factory_;
1233 }
1234 
BufferSize()1235 inline int CodedInputStream::BufferSize() const {
1236   return static_cast<int>(buffer_end_ - buffer_);
1237 }
1238 
CodedInputStream(ZeroCopyInputStream * input)1239 inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
1240   : buffer_(NULL),
1241     buffer_end_(NULL),
1242     input_(input),
1243     total_bytes_read_(0),
1244     overflow_bytes_(0),
1245     last_tag_(0),
1246     legitimate_message_end_(false),
1247     aliasing_enabled_(false),
1248     current_limit_(kint32max),
1249     buffer_size_after_limit_(0),
1250     total_bytes_limit_(kDefaultTotalBytesLimit),
1251     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1252     recursion_budget_(default_recursion_limit_),
1253     recursion_limit_(default_recursion_limit_),
1254     extension_pool_(NULL),
1255     extension_factory_(NULL) {
1256   // Eagerly Refresh() so buffer space is immediately available.
1257   Refresh();
1258 }
1259 
CodedInputStream(const uint8 * buffer,int size)1260 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
1261   : buffer_(buffer),
1262     buffer_end_(buffer + size),
1263     input_(NULL),
1264     total_bytes_read_(size),
1265     overflow_bytes_(0),
1266     last_tag_(0),
1267     legitimate_message_end_(false),
1268     aliasing_enabled_(false),
1269     current_limit_(size),
1270     buffer_size_after_limit_(0),
1271     total_bytes_limit_(kDefaultTotalBytesLimit),
1272     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1273     recursion_budget_(default_recursion_limit_),
1274     recursion_limit_(default_recursion_limit_),
1275     extension_pool_(NULL),
1276     extension_factory_(NULL) {
1277   // Note that setting current_limit_ == size is important to prevent some
1278   // code paths from trying to access input_ and segfaulting.
1279 }
1280 
IsFlat()1281 inline bool CodedInputStream::IsFlat() const {
1282   return input_ == NULL;
1283 }
1284 
1285 }  // namespace io
1286 }  // namespace protobuf
1287 
1288 
1289 #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
1290   #pragma runtime_checks("c", restore)
1291 #endif  // _MSC_VER && !defined(__INTEL_COMPILER)
1292 
1293 }  // namespace google
1294 #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
1295