1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "indirect_reference_table-inl.h"
18
19 #include "base/dumpable-inl.h"
20 #include "base/systrace.h"
21 #include "java_vm_ext.h"
22 #include "jni_internal.h"
23 #include "nth_caller_visitor.h"
24 #include "reference_table.h"
25 #include "runtime.h"
26 #include "scoped_thread_state_change-inl.h"
27 #include "thread.h"
28 #include "utils.h"
29
30 #include <cstdlib>
31
32 namespace art {
33
34 static constexpr bool kDumpStackOnNonLocalReference = false;
35 static constexpr bool kDebugIRT = false;
36
GetIndirectRefKindString(const IndirectRefKind & kind)37 const char* GetIndirectRefKindString(const IndirectRefKind& kind) {
38 switch (kind) {
39 case kHandleScopeOrInvalid:
40 return "HandleScopeOrInvalid";
41 case kLocal:
42 return "Local";
43 case kGlobal:
44 return "Global";
45 case kWeakGlobal:
46 return "WeakGlobal";
47 }
48 return "IndirectRefKind Error";
49 }
50
AbortIfNoCheckJNI(const std::string & msg)51 void IndirectReferenceTable::AbortIfNoCheckJNI(const std::string& msg) {
52 // If -Xcheck:jni is on, it'll give a more detailed error before aborting.
53 JavaVMExt* vm = Runtime::Current()->GetJavaVM();
54 if (!vm->IsCheckJniEnabled()) {
55 // Otherwise, we want to abort rather than hand back a bad reference.
56 LOG(FATAL) << msg;
57 } else {
58 LOG(ERROR) << msg;
59 }
60 }
61
IndirectReferenceTable(size_t max_count,IndirectRefKind desired_kind,ResizableCapacity resizable,std::string * error_msg)62 IndirectReferenceTable::IndirectReferenceTable(size_t max_count,
63 IndirectRefKind desired_kind,
64 ResizableCapacity resizable,
65 std::string* error_msg)
66 : segment_state_(kIRTFirstSegment),
67 kind_(desired_kind),
68 max_entries_(max_count),
69 current_num_holes_(0),
70 resizable_(resizable) {
71 CHECK(error_msg != nullptr);
72 CHECK_NE(desired_kind, kHandleScopeOrInvalid);
73
74 const size_t table_bytes = max_count * sizeof(IrtEntry);
75 table_mem_map_.reset(MemMap::MapAnonymous("indirect ref table", nullptr, table_bytes,
76 PROT_READ | PROT_WRITE, false, false, error_msg));
77 if (table_mem_map_.get() == nullptr && error_msg->empty()) {
78 *error_msg = "Unable to map memory for indirect ref table";
79 }
80
81 if (table_mem_map_.get() != nullptr) {
82 table_ = reinterpret_cast<IrtEntry*>(table_mem_map_->Begin());
83 } else {
84 table_ = nullptr;
85 }
86 segment_state_ = kIRTFirstSegment;
87 last_known_previous_state_ = kIRTFirstSegment;
88 }
89
~IndirectReferenceTable()90 IndirectReferenceTable::~IndirectReferenceTable() {
91 }
92
ConstexprChecks()93 void IndirectReferenceTable::ConstexprChecks() {
94 // Use this for some assertions. They can't be put into the header as C++ wants the class
95 // to be complete.
96
97 // Check kind.
98 static_assert((EncodeIndirectRefKind(kLocal) & (~kKindMask)) == 0, "Kind encoding error");
99 static_assert((EncodeIndirectRefKind(kGlobal) & (~kKindMask)) == 0, "Kind encoding error");
100 static_assert((EncodeIndirectRefKind(kWeakGlobal) & (~kKindMask)) == 0, "Kind encoding error");
101 static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kLocal)) == kLocal,
102 "Kind encoding error");
103 static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kGlobal)) == kGlobal,
104 "Kind encoding error");
105 static_assert(DecodeIndirectRefKind(EncodeIndirectRefKind(kWeakGlobal)) == kWeakGlobal,
106 "Kind encoding error");
107
108 // Check serial.
109 static_assert(DecodeSerial(EncodeSerial(0u)) == 0u, "Serial encoding error");
110 static_assert(DecodeSerial(EncodeSerial(1u)) == 1u, "Serial encoding error");
111 static_assert(DecodeSerial(EncodeSerial(2u)) == 2u, "Serial encoding error");
112 static_assert(DecodeSerial(EncodeSerial(3u)) == 3u, "Serial encoding error");
113
114 // Table index.
115 static_assert(DecodeIndex(EncodeIndex(0u)) == 0u, "Index encoding error");
116 static_assert(DecodeIndex(EncodeIndex(1u)) == 1u, "Index encoding error");
117 static_assert(DecodeIndex(EncodeIndex(2u)) == 2u, "Index encoding error");
118 static_assert(DecodeIndex(EncodeIndex(3u)) == 3u, "Index encoding error");
119 }
120
IsValid() const121 bool IndirectReferenceTable::IsValid() const {
122 return table_mem_map_.get() != nullptr;
123 }
124
125 // Holes:
126 //
127 // To keep the IRT compact, we want to fill "holes" created by non-stack-discipline Add & Remove
128 // operation sequences. For simplicity and lower memory overhead, we do not use a free list or
129 // similar. Instead, we scan for holes, with the expectation that we will find holes fast as they
130 // are usually near the end of the table (see the header, TODO: verify this assumption). To avoid
131 // scans when there are no holes, the number of known holes should be tracked.
132 //
133 // A previous implementation stored the top index and the number of holes as the segment state.
134 // This constraints the maximum number of references to 16-bit. We want to relax this, as it
135 // is easy to require more references (e.g., to list all classes in large applications). Thus,
136 // the implicitly stack-stored state, the IRTSegmentState, is only the top index.
137 //
138 // Thus, hole count is a local property of the current segment, and needs to be recovered when
139 // (or after) a frame is pushed or popped. To keep JNI transitions simple (and inlineable), we
140 // cannot do work when the segment changes. Thus, Add and Remove need to ensure the current
141 // hole count is correct.
142 //
143 // To be able to detect segment changes, we require an additional local field that can describe
144 // the known segment. This is last_known_previous_state_. The requirement will become clear with
145 // the following (some non-trivial) cases that have to be supported:
146 //
147 // 1) Segment with holes (current_num_holes_ > 0), push new segment, add/remove reference
148 // 2) Segment with holes (current_num_holes_ > 0), pop segment, add/remove reference
149 // 3) Segment with holes (current_num_holes_ > 0), push new segment, pop segment, add/remove
150 // reference
151 // 4) Empty segment, push new segment, create a hole, pop a segment, add/remove a reference
152 // 5) Base segment, push new segment, create a hole, pop a segment, push new segment, add/remove
153 // reference
154 //
155 // Storing the last known *previous* state (bottom index) allows conservatively detecting all the
156 // segment changes above. The condition is simply that the last known state is greater than or
157 // equal to the current previous state, and smaller than the current state (top index). The
158 // condition is conservative as it adds O(1) overhead to operations on an empty segment.
159
CountNullEntries(const IrtEntry * table,size_t from,size_t to)160 static size_t CountNullEntries(const IrtEntry* table, size_t from, size_t to) {
161 size_t count = 0;
162 for (size_t index = from; index != to; ++index) {
163 if (table[index].GetReference()->IsNull()) {
164 count++;
165 }
166 }
167 return count;
168 }
169
RecoverHoles(IRTSegmentState prev_state)170 void IndirectReferenceTable::RecoverHoles(IRTSegmentState prev_state) {
171 if (last_known_previous_state_.top_index >= segment_state_.top_index ||
172 last_known_previous_state_.top_index < prev_state.top_index) {
173 const size_t top_index = segment_state_.top_index;
174 size_t count = CountNullEntries(table_, prev_state.top_index, top_index);
175
176 if (kDebugIRT) {
177 LOG(INFO) << "+++ Recovered holes: "
178 << " Current prev=" << prev_state.top_index
179 << " Current top_index=" << top_index
180 << " Old num_holes=" << current_num_holes_
181 << " New num_holes=" << count;
182 }
183
184 current_num_holes_ = count;
185 last_known_previous_state_ = prev_state;
186 } else if (kDebugIRT) {
187 LOG(INFO) << "No need to recover holes";
188 }
189 }
190
191 ALWAYS_INLINE
CheckHoleCount(IrtEntry * table,size_t exp_num_holes,IRTSegmentState prev_state,IRTSegmentState cur_state)192 static inline void CheckHoleCount(IrtEntry* table,
193 size_t exp_num_holes,
194 IRTSegmentState prev_state,
195 IRTSegmentState cur_state) {
196 if (kIsDebugBuild) {
197 size_t count = CountNullEntries(table, prev_state.top_index, cur_state.top_index);
198 CHECK_EQ(exp_num_holes, count) << "prevState=" << prev_state.top_index
199 << " topIndex=" << cur_state.top_index;
200 }
201 }
202
Resize(size_t new_size,std::string * error_msg)203 bool IndirectReferenceTable::Resize(size_t new_size, std::string* error_msg) {
204 CHECK_GT(new_size, max_entries_);
205
206 const size_t table_bytes = new_size * sizeof(IrtEntry);
207 std::unique_ptr<MemMap> new_map(MemMap::MapAnonymous("indirect ref table",
208 nullptr,
209 table_bytes,
210 PROT_READ | PROT_WRITE,
211 false,
212 false,
213 error_msg));
214 if (new_map == nullptr) {
215 return false;
216 }
217
218 memcpy(new_map->Begin(), table_mem_map_->Begin(), table_mem_map_->Size());
219 table_mem_map_ = std::move(new_map);
220 table_ = reinterpret_cast<IrtEntry*>(table_mem_map_->Begin());
221 max_entries_ = new_size;
222
223 return true;
224 }
225
Add(IRTSegmentState previous_state,ObjPtr<mirror::Object> obj)226 IndirectRef IndirectReferenceTable::Add(IRTSegmentState previous_state,
227 ObjPtr<mirror::Object> obj) {
228 if (kDebugIRT) {
229 LOG(INFO) << "+++ Add: previous_state=" << previous_state.top_index
230 << " top_index=" << segment_state_.top_index
231 << " last_known_prev_top_index=" << last_known_previous_state_.top_index
232 << " holes=" << current_num_holes_;
233 }
234
235 size_t top_index = segment_state_.top_index;
236
237 CHECK(obj != nullptr);
238 VerifyObject(obj);
239 DCHECK(table_ != nullptr);
240
241 if (top_index == max_entries_) {
242 if (resizable_ == ResizableCapacity::kNo) {
243 LOG(FATAL) << "JNI ERROR (app bug): " << kind_ << " table overflow "
244 << "(max=" << max_entries_ << ")\n"
245 << MutatorLockedDumpable<IndirectReferenceTable>(*this);
246 UNREACHABLE();
247 }
248
249 // Try to double space.
250 std::string error_msg;
251 if (!Resize(max_entries_ * 2, &error_msg)) {
252 LOG(FATAL) << "JNI ERROR (app bug): " << kind_ << " table overflow "
253 << "(max=" << max_entries_ << ")" << std::endl
254 << MutatorLockedDumpable<IndirectReferenceTable>(*this)
255 << " Resizing failed: " << error_msg;
256 UNREACHABLE();
257 }
258 }
259
260 RecoverHoles(previous_state);
261 CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
262
263 // We know there's enough room in the table. Now we just need to find
264 // the right spot. If there's a hole, find it and fill it; otherwise,
265 // add to the end of the list.
266 IndirectRef result;
267 size_t index;
268 if (current_num_holes_ > 0) {
269 DCHECK_GT(top_index, 1U);
270 // Find the first hole; likely to be near the end of the list.
271 IrtEntry* p_scan = &table_[top_index - 1];
272 DCHECK(!p_scan->GetReference()->IsNull());
273 --p_scan;
274 while (!p_scan->GetReference()->IsNull()) {
275 DCHECK_GE(p_scan, table_ + previous_state.top_index);
276 --p_scan;
277 }
278 index = p_scan - table_;
279 current_num_holes_--;
280 } else {
281 // Add to the end.
282 index = top_index++;
283 segment_state_.top_index = top_index;
284 }
285 table_[index].Add(obj);
286 result = ToIndirectRef(index);
287 if (kDebugIRT) {
288 LOG(INFO) << "+++ added at " << ExtractIndex(result) << " top=" << segment_state_.top_index
289 << " holes=" << current_num_holes_;
290 }
291
292 DCHECK(result != nullptr);
293 return result;
294 }
295
AssertEmpty()296 void IndirectReferenceTable::AssertEmpty() {
297 for (size_t i = 0; i < Capacity(); ++i) {
298 if (!table_[i].GetReference()->IsNull()) {
299 LOG(FATAL) << "Internal Error: non-empty local reference table\n"
300 << MutatorLockedDumpable<IndirectReferenceTable>(*this);
301 UNREACHABLE();
302 }
303 }
304 }
305
306 // Removes an object. We extract the table offset bits from "iref"
307 // and zap the corresponding entry, leaving a hole if it's not at the top.
308 // If the entry is not between the current top index and the bottom index
309 // specified by the cookie, we don't remove anything. This is the behavior
310 // required by JNI's DeleteLocalRef function.
311 // This method is not called when a local frame is popped; this is only used
312 // for explicit single removals.
313 // Returns "false" if nothing was removed.
Remove(IRTSegmentState previous_state,IndirectRef iref)314 bool IndirectReferenceTable::Remove(IRTSegmentState previous_state, IndirectRef iref) {
315 if (kDebugIRT) {
316 LOG(INFO) << "+++ Remove: previous_state=" << previous_state.top_index
317 << " top_index=" << segment_state_.top_index
318 << " last_known_prev_top_index=" << last_known_previous_state_.top_index
319 << " holes=" << current_num_holes_;
320 }
321
322 const uint32_t top_index = segment_state_.top_index;
323 const uint32_t bottom_index = previous_state.top_index;
324
325 DCHECK(table_ != nullptr);
326
327 if (GetIndirectRefKind(iref) == kHandleScopeOrInvalid) {
328 auto* self = Thread::Current();
329 if (self->HandleScopeContains(reinterpret_cast<jobject>(iref))) {
330 auto* env = self->GetJniEnv();
331 DCHECK(env != nullptr);
332 if (env->check_jni) {
333 ScopedObjectAccess soa(self);
334 LOG(WARNING) << "Attempt to remove non-JNI local reference, dumping thread";
335 if (kDumpStackOnNonLocalReference) {
336 self->Dump(LOG_STREAM(WARNING));
337 }
338 }
339 return true;
340 }
341 }
342 const uint32_t idx = ExtractIndex(iref);
343 if (idx < bottom_index) {
344 // Wrong segment.
345 LOG(WARNING) << "Attempt to remove index outside index area (" << idx
346 << " vs " << bottom_index << "-" << top_index << ")";
347 return false;
348 }
349 if (idx >= top_index) {
350 // Bad --- stale reference?
351 LOG(WARNING) << "Attempt to remove invalid index " << idx
352 << " (bottom=" << bottom_index << " top=" << top_index << ")";
353 return false;
354 }
355
356 RecoverHoles(previous_state);
357 CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
358
359 if (idx == top_index - 1) {
360 // Top-most entry. Scan up and consume holes.
361
362 if (!CheckEntry("remove", iref, idx)) {
363 return false;
364 }
365
366 *table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr);
367 if (current_num_holes_ != 0) {
368 uint32_t collapse_top_index = top_index;
369 while (--collapse_top_index > bottom_index && current_num_holes_ != 0) {
370 if (kDebugIRT) {
371 ScopedObjectAccess soa(Thread::Current());
372 LOG(INFO) << "+++ checking for hole at " << collapse_top_index - 1
373 << " (previous_state=" << bottom_index << ") val="
374 << table_[collapse_top_index - 1].GetReference()->Read<kWithoutReadBarrier>();
375 }
376 if (!table_[collapse_top_index - 1].GetReference()->IsNull()) {
377 break;
378 }
379 if (kDebugIRT) {
380 LOG(INFO) << "+++ ate hole at " << (collapse_top_index - 1);
381 }
382 current_num_holes_--;
383 }
384 segment_state_.top_index = collapse_top_index;
385
386 CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
387 } else {
388 segment_state_.top_index = top_index - 1;
389 if (kDebugIRT) {
390 LOG(INFO) << "+++ ate last entry " << top_index - 1;
391 }
392 }
393 } else {
394 // Not the top-most entry. This creates a hole. We null out the entry to prevent somebody
395 // from deleting it twice and screwing up the hole count.
396 if (table_[idx].GetReference()->IsNull()) {
397 LOG(INFO) << "--- WEIRD: removing null entry " << idx;
398 return false;
399 }
400 if (!CheckEntry("remove", iref, idx)) {
401 return false;
402 }
403
404 *table_[idx].GetReference() = GcRoot<mirror::Object>(nullptr);
405 current_num_holes_++;
406 CheckHoleCount(table_, current_num_holes_, previous_state, segment_state_);
407 if (kDebugIRT) {
408 LOG(INFO) << "+++ left hole at " << idx << ", holes=" << current_num_holes_;
409 }
410 }
411
412 return true;
413 }
414
Trim()415 void IndirectReferenceTable::Trim() {
416 ScopedTrace trace(__PRETTY_FUNCTION__);
417 const size_t top_index = Capacity();
418 auto* release_start = AlignUp(reinterpret_cast<uint8_t*>(&table_[top_index]), kPageSize);
419 uint8_t* release_end = table_mem_map_->End();
420 madvise(release_start, release_end - release_start, MADV_DONTNEED);
421 }
422
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)423 void IndirectReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
424 BufferedRootVisitor<kDefaultBufferedRootCount> root_visitor(visitor, root_info);
425 for (auto ref : *this) {
426 if (!ref->IsNull()) {
427 root_visitor.VisitRoot(*ref);
428 DCHECK(!ref->IsNull());
429 }
430 }
431 }
432
Dump(std::ostream & os) const433 void IndirectReferenceTable::Dump(std::ostream& os) const {
434 os << kind_ << " table dump:\n";
435 ReferenceTable::Table entries;
436 for (size_t i = 0; i < Capacity(); ++i) {
437 ObjPtr<mirror::Object> obj = table_[i].GetReference()->Read<kWithoutReadBarrier>();
438 if (obj != nullptr) {
439 obj = table_[i].GetReference()->Read();
440 entries.push_back(GcRoot<mirror::Object>(obj));
441 }
442 }
443 ReferenceTable::Dump(os, entries);
444 }
445
SetSegmentState(IRTSegmentState new_state)446 void IndirectReferenceTable::SetSegmentState(IRTSegmentState new_state) {
447 if (kDebugIRT) {
448 LOG(INFO) << "Setting segment state: "
449 << segment_state_.top_index
450 << " -> "
451 << new_state.top_index;
452 }
453 segment_state_ = new_state;
454 }
455
456 } // namespace art
457