1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // from google3/util/gtl/map_util.h
32 // Author: Anton Carver
33 
34 #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
35 #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
36 
37 #include <stddef.h>
38 #include <iterator>
39 #include <string>
40 #include <utility>
41 #include <vector>
42 
43 #include <google/protobuf/stubs/common.h>
44 
45 namespace google {
46 namespace protobuf {
47 namespace internal {
48 // Local implementation of RemoveConst to avoid including base/type_traits.h.
49 template <class T> struct RemoveConst { typedef T type; };
50 template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
51 }  // namespace internal
52 
53 //
54 // Find*()
55 //
56 
57 // Returns a const reference to the value associated with the given key if it
58 // exists. Crashes otherwise.
59 //
60 // This is intended as a replacement for operator[] as an rvalue (for reading)
61 // when the key is guaranteed to exist.
62 //
63 // operator[] for lookup is discouraged for several reasons:
64 //  * It has a side-effect of inserting missing keys
65 //  * It is not thread-safe (even when it is not inserting, it can still
66 //      choose to resize the underlying storage)
67 //  * It invalidates iterators (when it chooses to resize)
68 //  * It default constructs a value object even if it doesn't need to
69 //
70 // This version assumes the key is printable, and includes it in the fatal log
71 // message.
72 template <class Collection>
73 const typename Collection::value_type::second_type&
74 FindOrDie(const Collection& collection,
75           const typename Collection::value_type::first_type& key) {
76   typename Collection::const_iterator it = collection.find(key);
77   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
78   return it->second;
79 }
80 
81 // Same as above, but returns a non-const reference.
82 template <class Collection>
83 typename Collection::value_type::second_type&
84 FindOrDie(Collection& collection,  // NOLINT
85           const typename Collection::value_type::first_type& key) {
86   typename Collection::iterator it = collection.find(key);
87   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
88   return it->second;
89 }
90 
91 // Same as FindOrDie above, but doesn't log the key on failure.
92 template <class Collection>
93 const typename Collection::value_type::second_type&
94 FindOrDieNoPrint(const Collection& collection,
95                  const typename Collection::value_type::first_type& key) {
96   typename Collection::const_iterator it = collection.find(key);
97   GOOGLE_CHECK(it != collection.end()) << "Map key not found";
98   return it->second;
99 }
100 
101 // Same as above, but returns a non-const reference.
102 template <class Collection>
103 typename Collection::value_type::second_type&
104 FindOrDieNoPrint(Collection& collection,  // NOLINT
105                  const typename Collection::value_type::first_type& key) {
106   typename Collection::iterator it = collection.find(key);
107   GOOGLE_CHECK(it != collection.end()) << "Map key not found";
108   return it->second;
109 }
110 
111 // Returns a const reference to the value associated with the given key if it
112 // exists, otherwise returns a const reference to the provided default value.
113 //
114 // WARNING: If a temporary object is passed as the default "value,"
115 // this function will return a reference to that temporary object,
116 // which will be destroyed at the end of the statement. A common
117 // example: if you have a map with string values, and you pass a char*
118 // as the default "value," either use the returned value immediately
119 // or store it in a string (not string&).
120 // Details: http://go/findwithdefault
121 template <class Collection>
122 const typename Collection::value_type::second_type&
123 FindWithDefault(const Collection& collection,
124                 const typename Collection::value_type::first_type& key,
125                 const typename Collection::value_type::second_type& value) {
126   typename Collection::const_iterator it = collection.find(key);
127   if (it == collection.end()) {
128     return value;
129   }
130   return it->second;
131 }
132 
133 // Returns a pointer to the const value associated with the given key if it
134 // exists, or NULL otherwise.
135 template <class Collection>
136 const typename Collection::value_type::second_type*
137 FindOrNull(const Collection& collection,
138            const typename Collection::value_type::first_type& key) {
139   typename Collection::const_iterator it = collection.find(key);
140   if (it == collection.end()) {
141     return 0;
142   }
143   return &it->second;
144 }
145 
146 // Same as above but returns a pointer to the non-const value.
147 template <class Collection>
148 typename Collection::value_type::second_type*
149 FindOrNull(Collection& collection,  // NOLINT
150            const typename Collection::value_type::first_type& key) {
151   typename Collection::iterator it = collection.find(key);
152   if (it == collection.end()) {
153     return 0;
154   }
155   return &it->second;
156 }
157 
158 // Returns the pointer value associated with the given key. If none is found,
159 // NULL is returned. The function is designed to be used with a map of keys to
160 // pointers.
161 //
162 // This function does not distinguish between a missing key and a key mapped
163 // to a NULL value.
164 template <class Collection>
165 typename Collection::value_type::second_type
166 FindPtrOrNull(const Collection& collection,
167               const typename Collection::value_type::first_type& key) {
168   typename Collection::const_iterator it = collection.find(key);
169   if (it == collection.end()) {
170     return typename Collection::value_type::second_type();
171   }
172   return it->second;
173 }
174 
175 // Same as above, except takes non-const reference to collection.
176 //
177 // This function is needed for containers that propagate constness to the
178 // pointee, such as boost::ptr_map.
179 template <class Collection>
180 typename Collection::value_type::second_type
181 FindPtrOrNull(Collection& collection,  // NOLINT
182               const typename Collection::value_type::first_type& key) {
183   typename Collection::iterator it = collection.find(key);
184   if (it == collection.end()) {
185     return typename Collection::value_type::second_type();
186   }
187   return it->second;
188 }
189 
190 // Finds the pointer value associated with the given key in a map whose values
191 // are linked_ptrs. Returns NULL if key is not found.
192 template <class Collection>
193 typename Collection::value_type::second_type::element_type*
194 FindLinkedPtrOrNull(const Collection& collection,
195                     const typename Collection::value_type::first_type& key) {
196   typename Collection::const_iterator it = collection.find(key);
197   if (it == collection.end()) {
198     return 0;
199   }
200   // Since linked_ptr::get() is a const member returning a non const,
201   // we do not need a version of this function taking a non const collection.
202   return it->second.get();
203 }
204 
205 // Same as above, but dies if the key is not found.
206 template <class Collection>
207 typename Collection::value_type::second_type::element_type&
208 FindLinkedPtrOrDie(const Collection& collection,
209                    const typename Collection::value_type::first_type& key) {
210   typename Collection::const_iterator it = collection.find(key);
211   GOOGLE_CHECK(it != collection.end()) <<  "key not found: " << key;
212   // Since linked_ptr::operator*() is a const member returning a non const,
213   // we do not need a version of this function taking a non const collection.
214   return *it->second;
215 }
216 
217 // Finds the value associated with the given key and copies it to *value (if not
218 // NULL). Returns false if the key was not found, true otherwise.
219 template <class Collection, class Key, class Value>
220 bool FindCopy(const Collection& collection,
221               const Key& key,
222               Value* const value) {
223   typename Collection::const_iterator it = collection.find(key);
224   if (it == collection.end()) {
225     return false;
226   }
227   if (value) {
228     *value = it->second;
229   }
230   return true;
231 }
232 
233 //
234 // Contains*()
235 //
236 
237 // Returns true if and only if the given collection contains the given key.
238 template <class Collection, class Key>
239 bool ContainsKey(const Collection& collection, const Key& key) {
240   return collection.find(key) != collection.end();
241 }
242 
243 // Returns true if and only if the given collection contains the given key-value
244 // pair.
245 template <class Collection, class Key, class Value>
246 bool ContainsKeyValuePair(const Collection& collection,
247                           const Key& key,
248                           const Value& value) {
249   typedef typename Collection::const_iterator const_iterator;
250   std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
251   for (const_iterator it = range.first; it != range.second; ++it) {
252     if (it->second == value) {
253       return true;
254     }
255   }
256   return false;
257 }
258 
259 //
260 // Insert*()
261 //
262 
263 // Inserts the given key-value pair into the collection. Returns true if and
264 // only if the key from the given pair didn't previously exist. Otherwise, the
265 // value in the map is replaced with the value from the given pair.
266 template <class Collection>
267 bool InsertOrUpdate(Collection* const collection,
268                     const typename Collection::value_type& vt) {
269   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
270   if (!ret.second) {
271     // update
272     ret.first->second = vt.second;
273     return false;
274   }
275   return true;
276 }
277 
278 // Same as above, except that the key and value are passed separately.
279 template <class Collection>
280 bool InsertOrUpdate(Collection* const collection,
281                     const typename Collection::value_type::first_type& key,
282                     const typename Collection::value_type::second_type& value) {
283   return InsertOrUpdate(
284       collection, typename Collection::value_type(key, value));
285 }
286 
287 // Inserts/updates all the key-value pairs from the range defined by the
288 // iterators "first" and "last" into the given collection.
289 template <class Collection, class InputIterator>
290 void InsertOrUpdateMany(Collection* const collection,
291                         InputIterator first, InputIterator last) {
292   for (; first != last; ++first) {
293     InsertOrUpdate(collection, *first);
294   }
295 }
296 
297 // Change the value associated with a particular key in a map or hash_map
298 // of the form map<Key, Value*> which owns the objects pointed to by the
299 // value pointers.  If there was an existing value for the key, it is deleted.
300 // True indicates an insert took place, false indicates an update + delete.
301 template <class Collection>
302 bool InsertAndDeleteExisting(
303     Collection* const collection,
304     const typename Collection::value_type::first_type& key,
305     const typename Collection::value_type::second_type& value) {
306   std::pair<typename Collection::iterator, bool> ret =
307       collection->insert(typename Collection::value_type(key, value));
308   if (!ret.second) {
309     delete ret.first->second;
310     ret.first->second = value;
311     return false;
312   }
313   return true;
314 }
315 
316 // Inserts the given key and value into the given collection if and only if the
317 // given key did NOT already exist in the collection. If the key previously
318 // existed in the collection, the value is not changed. Returns true if the
319 // key-value pair was inserted; returns false if the key was already present.
320 template <class Collection>
321 bool InsertIfNotPresent(Collection* const collection,
322                         const typename Collection::value_type& vt) {
323   return collection->insert(vt).second;
324 }
325 
326 // Same as above except the key and value are passed separately.
327 template <class Collection>
328 bool InsertIfNotPresent(
329     Collection* const collection,
330     const typename Collection::value_type::first_type& key,
331     const typename Collection::value_type::second_type& value) {
332   return InsertIfNotPresent(
333       collection, typename Collection::value_type(key, value));
334 }
335 
336 // Same as above except dies if the key already exists in the collection.
337 template <class Collection>
338 void InsertOrDie(Collection* const collection,
339                  const typename Collection::value_type& value) {
340   GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value;
341 }
342 
343 // Same as above except doesn't log the value on error.
344 template <class Collection>
345 void InsertOrDieNoPrint(Collection* const collection,
346                         const typename Collection::value_type& value) {
347   GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
348 }
349 
350 // Inserts the key-value pair into the collection. Dies if key was already
351 // present.
352 template <class Collection>
353 void InsertOrDie(Collection* const collection,
354                  const typename Collection::value_type::first_type& key,
355                  const typename Collection::value_type::second_type& data) {
356   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
357       << "duplicate key: " << key;
358 }
359 
360 // Same as above except doesn't log the key on error.
361 template <class Collection>
362 void InsertOrDieNoPrint(
363     Collection* const collection,
364     const typename Collection::value_type::first_type& key,
365     const typename Collection::value_type::second_type& data) {
366   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
367 }
368 
369 // Inserts a new key and default-initialized value. Dies if the key was already
370 // present. Returns a reference to the value. Example usage:
371 //
372 // map<int, SomeProto> m;
373 // SomeProto& proto = InsertKeyOrDie(&m, 3);
374 // proto.set_field("foo");
375 template <class Collection>
376 typename Collection::value_type::second_type& InsertKeyOrDie(
377     Collection* const collection,
378     const typename Collection::value_type::first_type& key) {
379   typedef typename Collection::value_type value_type;
380   std::pair<typename Collection::iterator, bool> res =
381       collection->insert(value_type(key, typename value_type::second_type()));
382   GOOGLE_CHECK(res.second) << "duplicate key: " << key;
383   return res.first->second;
384 }
385 
386 //
387 // Lookup*()
388 //
389 
390 // Looks up a given key and value pair in a collection and inserts the key-value
391 // pair if it's not already present. Returns a reference to the value associated
392 // with the key.
393 template <class Collection>
394 typename Collection::value_type::second_type&
395 LookupOrInsert(Collection* const collection,
396                const typename Collection::value_type& vt) {
397   return collection->insert(vt).first->second;
398 }
399 
400 // Same as above except the key-value are passed separately.
401 template <class Collection>
402 typename Collection::value_type::second_type&
403 LookupOrInsert(Collection* const collection,
404                const typename Collection::value_type::first_type& key,
405                const typename Collection::value_type::second_type& value) {
406   return LookupOrInsert(
407       collection, typename Collection::value_type(key, value));
408 }
409 
410 // Counts the number of equivalent elements in the given "sequence", and stores
411 // the results in "count_map" with element as the key and count as the value.
412 //
413 // Example:
414 //   vector<string> v = {"a", "b", "c", "a", "b"};
415 //   map<string, int> m;
416 //   AddTokenCounts(v, 1, &m);
417 //   assert(m["a"] == 2);
418 //   assert(m["b"] == 2);
419 //   assert(m["c"] == 1);
420 template <typename Sequence, typename Collection>
421 void AddTokenCounts(
422     const Sequence& sequence,
423     const typename Collection::value_type::second_type& increment,
424     Collection* const count_map) {
425   for (typename Sequence::const_iterator it = sequence.begin();
426        it != sequence.end(); ++it) {
427     typename Collection::value_type::second_type& value =
428         LookupOrInsert(count_map, *it,
429                        typename Collection::value_type::second_type());
430     value += increment;
431   }
432 }
433 
434 // Returns a reference to the value associated with key. If not found, a value
435 // is default constructed on the heap and added to the map.
436 //
437 // This function is useful for containers of the form map<Key, Value*>, where
438 // inserting a new key, value pair involves constructing a new heap-allocated
439 // Value, and storing a pointer to that in the collection.
440 template <class Collection>
441 typename Collection::value_type::second_type&
442 LookupOrInsertNew(Collection* const collection,
443                   const typename Collection::value_type::first_type& key) {
444   typedef typename std::iterator_traits<
445     typename Collection::value_type::second_type>::value_type Element;
446   std::pair<typename Collection::iterator, bool> ret =
447       collection->insert(typename Collection::value_type(
448           key,
449           static_cast<typename Collection::value_type::second_type>(NULL)));
450   if (ret.second) {
451     ret.first->second = new Element();
452   }
453   return ret.first->second;
454 }
455 
456 // Same as above but constructs the value using the single-argument constructor
457 // and the given "arg".
458 template <class Collection, class Arg>
459 typename Collection::value_type::second_type&
460 LookupOrInsertNew(Collection* const collection,
461                   const typename Collection::value_type::first_type& key,
462                   const Arg& arg) {
463   typedef typename std::iterator_traits<
464     typename Collection::value_type::second_type>::value_type Element;
465   std::pair<typename Collection::iterator, bool> ret =
466       collection->insert(typename Collection::value_type(
467           key,
468           static_cast<typename Collection::value_type::second_type>(NULL)));
469   if (ret.second) {
470     ret.first->second = new Element(arg);
471   }
472   return ret.first->second;
473 }
474 
475 // Lookup of linked/shared pointers is used in two scenarios:
476 //
477 // Use LookupOrInsertNewLinkedPtr if the container owns the elements.
478 // In this case it is fine working with the raw pointer as long as it is
479 // guaranteed that no other thread can delete/update an accessed element.
480 // A mutex will need to lock the container operation as well as the use
481 // of the returned elements. Finding an element may be performed using
482 // FindLinkedPtr*().
483 //
484 // Use LookupOrInsertNewSharedPtr if the container does not own the elements
485 // for their whole lifetime. This is typically the case when a reader allows
486 // parallel updates to the container. In this case a Mutex only needs to lock
487 // container operations, but all element operations must be performed on the
488 // shared pointer. Finding an element must be performed using FindPtr*() and
489 // cannot be done with FindLinkedPtr*() even though it compiles.
490 
491 // Lookup a key in a map or hash_map whose values are linked_ptrs.  If it is
492 // missing, set collection[key].reset(new Value::element_type) and return that.
493 // Value::element_type must be default constructable.
494 template <class Collection>
495 typename Collection::value_type::second_type::element_type*
496 LookupOrInsertNewLinkedPtr(
497     Collection* const collection,
498     const typename Collection::value_type::first_type& key) {
499   typedef typename Collection::value_type::second_type Value;
500   std::pair<typename Collection::iterator, bool> ret =
501       collection->insert(typename Collection::value_type(key, Value()));
502   if (ret.second) {
503     ret.first->second.reset(new typename Value::element_type);
504   }
505   return ret.first->second.get();
506 }
507 
508 // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
509 // a single-parameter constructor.  Note: the constructor argument is computed
510 // even if it will not be used, so only values cheap to compute should be passed
511 // here.  On the other hand it does not matter how expensive the construction of
512 // the actual stored value is, as that only occurs if necessary.
513 template <class Collection, class Arg>
514 typename Collection::value_type::second_type::element_type*
515 LookupOrInsertNewLinkedPtr(
516     Collection* const collection,
517     const typename Collection::value_type::first_type& key,
518     const Arg& arg) {
519   typedef typename Collection::value_type::second_type Value;
520   std::pair<typename Collection::iterator, bool> ret =
521       collection->insert(typename Collection::value_type(key, Value()));
522   if (ret.second) {
523     ret.first->second.reset(new typename Value::element_type(arg));
524   }
525   return ret.first->second.get();
526 }
527 
528 // Lookup a key in a map or hash_map whose values are shared_ptrs.  If it is
529 // missing, set collection[key].reset(new Value::element_type). Unlike
530 // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
531 // the raw pointer. Value::element_type must be default constructable.
532 template <class Collection>
533 typename Collection::value_type::second_type&
534 LookupOrInsertNewSharedPtr(
535     Collection* const collection,
536     const typename Collection::value_type::first_type& key) {
537   typedef typename Collection::value_type::second_type SharedPtr;
538   typedef typename Collection::value_type::second_type::element_type Element;
539   std::pair<typename Collection::iterator, bool> ret =
540       collection->insert(typename Collection::value_type(key, SharedPtr()));
541   if (ret.second) {
542     ret.first->second.reset(new Element());
543   }
544   return ret.first->second;
545 }
546 
547 // A variant of LookupOrInsertNewSharedPtr where the value is constructed using
548 // a single-parameter constructor.  Note: the constructor argument is computed
549 // even if it will not be used, so only values cheap to compute should be passed
550 // here.  On the other hand it does not matter how expensive the construction of
551 // the actual stored value is, as that only occurs if necessary.
552 template <class Collection, class Arg>
553 typename Collection::value_type::second_type&
554 LookupOrInsertNewSharedPtr(
555     Collection* const collection,
556     const typename Collection::value_type::first_type& key,
557     const Arg& arg) {
558   typedef typename Collection::value_type::second_type SharedPtr;
559   typedef typename Collection::value_type::second_type::element_type Element;
560   std::pair<typename Collection::iterator, bool> ret =
561       collection->insert(typename Collection::value_type(key, SharedPtr()));
562   if (ret.second) {
563     ret.first->second.reset(new Element(arg));
564   }
565   return ret.first->second;
566 }
567 
568 //
569 // Misc Utility Functions
570 //
571 
572 // Updates the value associated with the given key. If the key was not already
573 // present, then the key-value pair are inserted and "previous" is unchanged. If
574 // the key was already present, the value is updated and "*previous" will
575 // contain a copy of the old value.
576 //
577 // InsertOrReturnExisting has complementary behavior that returns the
578 // address of an already existing value, rather than updating it.
579 template <class Collection>
580 bool UpdateReturnCopy(Collection* const collection,
581                       const typename Collection::value_type::first_type& key,
582                       const typename Collection::value_type::second_type& value,
583                       typename Collection::value_type::second_type* previous) {
584   std::pair<typename Collection::iterator, bool> ret =
585       collection->insert(typename Collection::value_type(key, value));
586   if (!ret.second) {
587     // update
588     if (previous) {
589       *previous = ret.first->second;
590     }
591     ret.first->second = value;
592     return true;
593   }
594   return false;
595 }
596 
597 // Same as above except that the key and value are passed as a pair.
598 template <class Collection>
599 bool UpdateReturnCopy(Collection* const collection,
600                       const typename Collection::value_type& vt,
601                       typename Collection::value_type::second_type* previous) {
602   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
603   if (!ret.second) {
604     // update
605     if (previous) {
606       *previous = ret.first->second;
607     }
608     ret.first->second = vt.second;
609     return true;
610   }
611   return false;
612 }
613 
614 // Tries to insert the given key-value pair into the collection. Returns NULL if
615 // the insert succeeds. Otherwise, returns a pointer to the existing value.
616 //
617 // This complements UpdateReturnCopy in that it allows to update only after
618 // verifying the old value and still insert quickly without having to look up
619 // twice. Unlike UpdateReturnCopy this also does not come with the issue of an
620 // undefined previous* in case new data was inserted.
621 template <class Collection>
622 typename Collection::value_type::second_type* const
623 InsertOrReturnExisting(Collection* const collection,
624                        const typename Collection::value_type& vt) {
625   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
626   if (ret.second) {
627     return NULL;  // Inserted, no existing previous value.
628   } else {
629     return &ret.first->second;  // Return address of already existing value.
630   }
631 }
632 
633 // Same as above, except for explicit key and data.
634 template <class Collection>
635 typename Collection::value_type::second_type* const
636 InsertOrReturnExisting(
637     Collection* const collection,
638     const typename Collection::value_type::first_type& key,
639     const typename Collection::value_type::second_type& data) {
640   return InsertOrReturnExisting(collection,
641                                 typename Collection::value_type(key, data));
642 }
643 
644 // Erases the collection item identified by the given key, and returns the value
645 // associated with that key. It is assumed that the value (i.e., the
646 // mapped_type) is a pointer. Returns NULL if the key was not found in the
647 // collection.
648 //
649 // Examples:
650 //   map<string, MyType*> my_map;
651 //
652 // One line cleanup:
653 //     delete EraseKeyReturnValuePtr(&my_map, "abc");
654 //
655 // Use returned value:
656 //     scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc"));
657 //     if (value_ptr.get())
658 //       value_ptr->DoSomething();
659 //
660 template <class Collection>
661 typename Collection::value_type::second_type EraseKeyReturnValuePtr(
662     Collection* const collection,
663     const typename Collection::value_type::first_type& key) {
664   typename Collection::iterator it = collection->find(key);
665   if (it == collection->end()) {
666     return NULL;
667   }
668   typename Collection::value_type::second_type v = it->second;
669   collection->erase(it);
670   return v;
671 }
672 
673 // Inserts all the keys from map_container into key_container, which must
674 // support insert(MapContainer::key_type).
675 //
676 // Note: any initial contents of the key_container are not cleared.
677 template <class MapContainer, class KeyContainer>
678 void InsertKeysFromMap(const MapContainer& map_container,
679                        KeyContainer* key_container) {
680   GOOGLE_CHECK(key_container != NULL);
681   for (typename MapContainer::const_iterator it = map_container.begin();
682        it != map_container.end(); ++it) {
683     key_container->insert(it->first);
684   }
685 }
686 
687 // Appends all the keys from map_container into key_container, which must
688 // support push_back(MapContainer::key_type).
689 //
690 // Note: any initial contents of the key_container are not cleared.
691 template <class MapContainer, class KeyContainer>
692 void AppendKeysFromMap(const MapContainer& map_container,
693                        KeyContainer* key_container) {
694   GOOGLE_CHECK(key_container != NULL);
695   for (typename MapContainer::const_iterator it = map_container.begin();
696        it != map_container.end(); ++it) {
697     key_container->push_back(it->first);
698   }
699 }
700 
701 // A more specialized overload of AppendKeysFromMap to optimize reallocations
702 // for the common case in which we're appending keys to a vector and hence can
703 // (and sometimes should) call reserve() first.
704 //
705 // (It would be possible to play SFINAE games to call reserve() for any
706 // container that supports it, but this seems to get us 99% of what we need
707 // without the complexity of a SFINAE-based solution.)
708 template <class MapContainer, class KeyType>
709 void AppendKeysFromMap(const MapContainer& map_container,
710                        vector<KeyType>* key_container) {
711   GOOGLE_CHECK(key_container != NULL);
712   // We now have the opportunity to call reserve(). Calling reserve() every
713   // time is a bad idea for some use cases: libstdc++'s implementation of
714   // vector<>::reserve() resizes the vector's backing store to exactly the
715   // given size (unless it's already at least that big). Because of this,
716   // the use case that involves appending a lot of small maps (total size
717   // N) one by one to a vector would be O(N^2). But never calling reserve()
718   // loses the opportunity to improve the use case of adding from a large
719   // map to an empty vector (this improves performance by up to 33%). A
720   // number of heuristics are possible; see the discussion in
721   // cl/34081696. Here we use the simplest one.
722   if (key_container->empty()) {
723     key_container->reserve(map_container.size());
724   }
725   for (typename MapContainer::const_iterator it = map_container.begin();
726        it != map_container.end(); ++it) {
727     key_container->push_back(it->first);
728   }
729 }
730 
731 // Inserts all the values from map_container into value_container, which must
732 // support push_back(MapContainer::mapped_type).
733 //
734 // Note: any initial contents of the value_container are not cleared.
735 template <class MapContainer, class ValueContainer>
736 void AppendValuesFromMap(const MapContainer& map_container,
737                          ValueContainer* value_container) {
738   GOOGLE_CHECK(value_container != NULL);
739   for (typename MapContainer::const_iterator it = map_container.begin();
740        it != map_container.end(); ++it) {
741     value_container->push_back(it->second);
742   }
743 }
744 
745 // A more specialized overload of AppendValuesFromMap to optimize reallocations
746 // for the common case in which we're appending values to a vector and hence
747 // can (and sometimes should) call reserve() first.
748 //
749 // (It would be possible to play SFINAE games to call reserve() for any
750 // container that supports it, but this seems to get us 99% of what we need
751 // without the complexity of a SFINAE-based solution.)
752 template <class MapContainer, class ValueType>
753 void AppendValuesFromMap(const MapContainer& map_container,
754                          vector<ValueType>* value_container) {
755   GOOGLE_CHECK(value_container != NULL);
756   // See AppendKeysFromMap for why this is done.
757   if (value_container->empty()) {
758     value_container->reserve(map_container.size());
759   }
760   for (typename MapContainer::const_iterator it = map_container.begin();
761        it != map_container.end(); ++it) {
762     value_container->push_back(it->second);
763   }
764 }
765 
766 }  // namespace protobuf
767 }  // namespace google
768 
769 #endif  // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
770