1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "nodes.h"
17
18 #include <cfloat>
19
20 #include "art_method-inl.h"
21 #include "class_linker-inl.h"
22 #include "code_generator.h"
23 #include "common_dominator.h"
24 #include "ssa_builder.h"
25 #include "base/bit_vector-inl.h"
26 #include "base/bit_utils.h"
27 #include "base/stl_util.h"
28 #include "intrinsics.h"
29 #include "mirror/class-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31
32 namespace art {
33
34 // Enable floating-point static evaluation during constant folding
35 // only if all floating-point operations and constants evaluate in the
36 // range and precision of the type used (i.e., 32-bit float, 64-bit
37 // double).
38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41 ScopedObjectAccess soa(Thread::Current());
42 // Create the inexact Object reference type and store it in the HGraph.
43 ClassLinker* linker = Runtime::Current()->GetClassLinker();
44 inexact_object_rti_ = ReferenceTypeInfo::Create(
45 handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46 /* is_exact */ false);
47 }
48
AddBlock(HBasicBlock * block)49 void HGraph::AddBlock(HBasicBlock* block) {
50 block->SetBlockId(blocks_.size());
51 blocks_.push_back(block);
52 }
53
FindBackEdges(ArenaBitVector * visited)54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
55 // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56 DCHECK_EQ(visited->GetHighestBitSet(), -1);
57
58 // Nodes that we're currently visiting, indexed by block id.
59 ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
60 // Number of successors visited from a given node, indexed by block id.
61 ArenaVector<size_t> successors_visited(blocks_.size(),
62 0u,
63 arena_->Adapter(kArenaAllocGraphBuilder));
64 // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
65 ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
66 constexpr size_t kDefaultWorklistSize = 8;
67 worklist.reserve(kDefaultWorklistSize);
68 visited->SetBit(entry_block_->GetBlockId());
69 visiting.SetBit(entry_block_->GetBlockId());
70 worklist.push_back(entry_block_);
71
72 while (!worklist.empty()) {
73 HBasicBlock* current = worklist.back();
74 uint32_t current_id = current->GetBlockId();
75 if (successors_visited[current_id] == current->GetSuccessors().size()) {
76 visiting.ClearBit(current_id);
77 worklist.pop_back();
78 } else {
79 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
80 uint32_t successor_id = successor->GetBlockId();
81 if (visiting.IsBitSet(successor_id)) {
82 DCHECK(ContainsElement(worklist, successor));
83 successor->AddBackEdge(current);
84 } else if (!visited->IsBitSet(successor_id)) {
85 visited->SetBit(successor_id);
86 visiting.SetBit(successor_id);
87 worklist.push_back(successor);
88 }
89 }
90 }
91 }
92
RemoveEnvironmentUses(HInstruction * instruction)93 static void RemoveEnvironmentUses(HInstruction* instruction) {
94 for (HEnvironment* environment = instruction->GetEnvironment();
95 environment != nullptr;
96 environment = environment->GetParent()) {
97 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
98 if (environment->GetInstructionAt(i) != nullptr) {
99 environment->RemoveAsUserOfInput(i);
100 }
101 }
102 }
103 }
104
RemoveAsUser(HInstruction * instruction)105 static void RemoveAsUser(HInstruction* instruction) {
106 instruction->RemoveAsUserOfAllInputs();
107 RemoveEnvironmentUses(instruction);
108 }
109
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const110 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
111 for (size_t i = 0; i < blocks_.size(); ++i) {
112 if (!visited.IsBitSet(i)) {
113 HBasicBlock* block = blocks_[i];
114 if (block == nullptr) continue;
115 DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
116 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
117 RemoveAsUser(it.Current());
118 }
119 }
120 }
121 }
122
RemoveDeadBlocks(const ArenaBitVector & visited)123 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
124 for (size_t i = 0; i < blocks_.size(); ++i) {
125 if (!visited.IsBitSet(i)) {
126 HBasicBlock* block = blocks_[i];
127 if (block == nullptr) continue;
128 // We only need to update the successor, which might be live.
129 for (HBasicBlock* successor : block->GetSuccessors()) {
130 successor->RemovePredecessor(block);
131 }
132 // Remove the block from the list of blocks, so that further analyses
133 // never see it.
134 blocks_[i] = nullptr;
135 if (block->IsExitBlock()) {
136 SetExitBlock(nullptr);
137 }
138 // Mark the block as removed. This is used by the HGraphBuilder to discard
139 // the block as a branch target.
140 block->SetGraph(nullptr);
141 }
142 }
143 }
144
BuildDominatorTree()145 GraphAnalysisResult HGraph::BuildDominatorTree() {
146 ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
147
148 // (1) Find the back edges in the graph doing a DFS traversal.
149 FindBackEdges(&visited);
150
151 // (2) Remove instructions and phis from blocks not visited during
152 // the initial DFS as users from other instructions, so that
153 // users can be safely removed before uses later.
154 RemoveInstructionsAsUsersFromDeadBlocks(visited);
155
156 // (3) Remove blocks not visited during the initial DFS.
157 // Step (5) requires dead blocks to be removed from the
158 // predecessors list of live blocks.
159 RemoveDeadBlocks(visited);
160
161 // (4) Simplify the CFG now, so that we don't need to recompute
162 // dominators and the reverse post order.
163 SimplifyCFG();
164
165 // (5) Compute the dominance information and the reverse post order.
166 ComputeDominanceInformation();
167
168 // (6) Analyze loops discovered through back edge analysis, and
169 // set the loop information on each block.
170 GraphAnalysisResult result = AnalyzeLoops();
171 if (result != kAnalysisSuccess) {
172 return result;
173 }
174
175 // (7) Precompute per-block try membership before entering the SSA builder,
176 // which needs the information to build catch block phis from values of
177 // locals at throwing instructions inside try blocks.
178 ComputeTryBlockInformation();
179
180 return kAnalysisSuccess;
181 }
182
ClearDominanceInformation()183 void HGraph::ClearDominanceInformation() {
184 for (HBasicBlock* block : GetReversePostOrder()) {
185 block->ClearDominanceInformation();
186 }
187 reverse_post_order_.clear();
188 }
189
ClearLoopInformation()190 void HGraph::ClearLoopInformation() {
191 SetHasIrreducibleLoops(false);
192 for (HBasicBlock* block : GetReversePostOrder()) {
193 block->SetLoopInformation(nullptr);
194 }
195 }
196
ClearDominanceInformation()197 void HBasicBlock::ClearDominanceInformation() {
198 dominated_blocks_.clear();
199 dominator_ = nullptr;
200 }
201
GetFirstInstructionDisregardMoves() const202 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
203 HInstruction* instruction = GetFirstInstruction();
204 while (instruction->IsParallelMove()) {
205 instruction = instruction->GetNext();
206 }
207 return instruction;
208 }
209
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)210 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
211 DCHECK(ContainsElement(block->GetSuccessors(), successor));
212
213 HBasicBlock* old_dominator = successor->GetDominator();
214 HBasicBlock* new_dominator =
215 (old_dominator == nullptr) ? block
216 : CommonDominator::ForPair(old_dominator, block);
217
218 if (old_dominator == new_dominator) {
219 return false;
220 } else {
221 successor->SetDominator(new_dominator);
222 return true;
223 }
224 }
225
ComputeDominanceInformation()226 void HGraph::ComputeDominanceInformation() {
227 DCHECK(reverse_post_order_.empty());
228 reverse_post_order_.reserve(blocks_.size());
229 reverse_post_order_.push_back(entry_block_);
230
231 // Number of visits of a given node, indexed by block id.
232 ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
233 // Number of successors visited from a given node, indexed by block id.
234 ArenaVector<size_t> successors_visited(blocks_.size(),
235 0u,
236 arena_->Adapter(kArenaAllocGraphBuilder));
237 // Nodes for which we need to visit successors.
238 ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
239 constexpr size_t kDefaultWorklistSize = 8;
240 worklist.reserve(kDefaultWorklistSize);
241 worklist.push_back(entry_block_);
242
243 while (!worklist.empty()) {
244 HBasicBlock* current = worklist.back();
245 uint32_t current_id = current->GetBlockId();
246 if (successors_visited[current_id] == current->GetSuccessors().size()) {
247 worklist.pop_back();
248 } else {
249 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
250 UpdateDominatorOfSuccessor(current, successor);
251
252 // Once all the forward edges have been visited, we know the immediate
253 // dominator of the block. We can then start visiting its successors.
254 if (++visits[successor->GetBlockId()] ==
255 successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
256 reverse_post_order_.push_back(successor);
257 worklist.push_back(successor);
258 }
259 }
260 }
261
262 // Check if the graph has back edges not dominated by their respective headers.
263 // If so, we need to update the dominators of those headers and recursively of
264 // their successors. We do that with a fix-point iteration over all blocks.
265 // The algorithm is guaranteed to terminate because it loops only if the sum
266 // of all dominator chains has decreased in the current iteration.
267 bool must_run_fix_point = false;
268 for (HBasicBlock* block : blocks_) {
269 if (block != nullptr &&
270 block->IsLoopHeader() &&
271 block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
272 must_run_fix_point = true;
273 break;
274 }
275 }
276 if (must_run_fix_point) {
277 bool update_occurred = true;
278 while (update_occurred) {
279 update_occurred = false;
280 for (HBasicBlock* block : GetReversePostOrder()) {
281 for (HBasicBlock* successor : block->GetSuccessors()) {
282 update_occurred |= UpdateDominatorOfSuccessor(block, successor);
283 }
284 }
285 }
286 }
287
288 // Make sure that there are no remaining blocks whose dominator information
289 // needs to be updated.
290 if (kIsDebugBuild) {
291 for (HBasicBlock* block : GetReversePostOrder()) {
292 for (HBasicBlock* successor : block->GetSuccessors()) {
293 DCHECK(!UpdateDominatorOfSuccessor(block, successor));
294 }
295 }
296 }
297
298 // Populate `dominated_blocks_` information after computing all dominators.
299 // The potential presence of irreducible loops requires to do it after.
300 for (HBasicBlock* block : GetReversePostOrder()) {
301 if (!block->IsEntryBlock()) {
302 block->GetDominator()->AddDominatedBlock(block);
303 }
304 }
305 }
306
SplitEdge(HBasicBlock * block,HBasicBlock * successor)307 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
308 HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
309 AddBlock(new_block);
310 // Use `InsertBetween` to ensure the predecessor index and successor index of
311 // `block` and `successor` are preserved.
312 new_block->InsertBetween(block, successor);
313 return new_block;
314 }
315
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)316 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
317 // Insert a new node between `block` and `successor` to split the
318 // critical edge.
319 HBasicBlock* new_block = SplitEdge(block, successor);
320 new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
321 if (successor->IsLoopHeader()) {
322 // If we split at a back edge boundary, make the new block the back edge.
323 HLoopInformation* info = successor->GetLoopInformation();
324 if (info->IsBackEdge(*block)) {
325 info->RemoveBackEdge(block);
326 info->AddBackEdge(new_block);
327 }
328 }
329 }
330
SimplifyLoop(HBasicBlock * header)331 void HGraph::SimplifyLoop(HBasicBlock* header) {
332 HLoopInformation* info = header->GetLoopInformation();
333
334 // Make sure the loop has only one pre header. This simplifies SSA building by having
335 // to just look at the pre header to know which locals are initialized at entry of the
336 // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
337 // this graph.
338 size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
339 if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
340 HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
341 AddBlock(pre_header);
342 pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
343
344 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
345 HBasicBlock* predecessor = header->GetPredecessors()[pred];
346 if (!info->IsBackEdge(*predecessor)) {
347 predecessor->ReplaceSuccessor(header, pre_header);
348 pred--;
349 }
350 }
351 pre_header->AddSuccessor(header);
352 }
353
354 // Make sure the first predecessor of a loop header is the incoming block.
355 if (info->IsBackEdge(*header->GetPredecessors()[0])) {
356 HBasicBlock* to_swap = header->GetPredecessors()[0];
357 for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
358 HBasicBlock* predecessor = header->GetPredecessors()[pred];
359 if (!info->IsBackEdge(*predecessor)) {
360 header->predecessors_[pred] = to_swap;
361 header->predecessors_[0] = predecessor;
362 break;
363 }
364 }
365 }
366
367 HInstruction* first_instruction = header->GetFirstInstruction();
368 if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
369 // Called from DeadBlockElimination. Update SuspendCheck pointer.
370 info->SetSuspendCheck(first_instruction->AsSuspendCheck());
371 }
372 }
373
ComputeTryBlockInformation()374 void HGraph::ComputeTryBlockInformation() {
375 // Iterate in reverse post order to propagate try membership information from
376 // predecessors to their successors.
377 for (HBasicBlock* block : GetReversePostOrder()) {
378 if (block->IsEntryBlock() || block->IsCatchBlock()) {
379 // Catch blocks after simplification have only exceptional predecessors
380 // and hence are never in tries.
381 continue;
382 }
383
384 // Infer try membership from the first predecessor. Having simplified loops,
385 // the first predecessor can never be a back edge and therefore it must have
386 // been visited already and had its try membership set.
387 HBasicBlock* first_predecessor = block->GetPredecessors()[0];
388 DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
389 const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
390 if (try_entry != nullptr &&
391 (block->GetTryCatchInformation() == nullptr ||
392 try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
393 // We are either setting try block membership for the first time or it
394 // has changed.
395 block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
396 }
397 }
398 }
399
SimplifyCFG()400 void HGraph::SimplifyCFG() {
401 // Simplify the CFG for future analysis, and code generation:
402 // (1): Split critical edges.
403 // (2): Simplify loops by having only one preheader.
404 // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
405 // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
406 for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
407 HBasicBlock* block = blocks_[block_id];
408 if (block == nullptr) continue;
409 if (block->GetSuccessors().size() > 1) {
410 // Only split normal-flow edges. We cannot split exceptional edges as they
411 // are synthesized (approximate real control flow), and we do not need to
412 // anyway. Moves that would be inserted there are performed by the runtime.
413 ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
414 for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
415 HBasicBlock* successor = normal_successors[j];
416 DCHECK(!successor->IsCatchBlock());
417 if (successor == exit_block_) {
418 // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
419 // do not want to split because Goto->Exit is not allowed.
420 DCHECK(block->IsSingleTryBoundary());
421 } else if (successor->GetPredecessors().size() > 1) {
422 SplitCriticalEdge(block, successor);
423 // SplitCriticalEdge could have invalidated the `normal_successors`
424 // ArrayRef. We must re-acquire it.
425 normal_successors = block->GetNormalSuccessors();
426 DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
427 DCHECK_EQ(e, normal_successors.size());
428 }
429 }
430 }
431 if (block->IsLoopHeader()) {
432 SimplifyLoop(block);
433 } else if (!block->IsEntryBlock() &&
434 block->GetFirstInstruction() != nullptr &&
435 block->GetFirstInstruction()->IsSuspendCheck()) {
436 // We are being called by the dead code elimiation pass, and what used to be
437 // a loop got dismantled. Just remove the suspend check.
438 block->RemoveInstruction(block->GetFirstInstruction());
439 }
440 }
441 }
442
AnalyzeLoops() const443 GraphAnalysisResult HGraph::AnalyzeLoops() const {
444 // We iterate post order to ensure we visit inner loops before outer loops.
445 // `PopulateRecursive` needs this guarantee to know whether a natural loop
446 // contains an irreducible loop.
447 for (HBasicBlock* block : GetPostOrder()) {
448 if (block->IsLoopHeader()) {
449 if (block->IsCatchBlock()) {
450 // TODO: Dealing with exceptional back edges could be tricky because
451 // they only approximate the real control flow. Bail out for now.
452 return kAnalysisFailThrowCatchLoop;
453 }
454 block->GetLoopInformation()->Populate();
455 }
456 }
457 return kAnalysisSuccess;
458 }
459
Dump(std::ostream & os)460 void HLoopInformation::Dump(std::ostream& os) {
461 os << "header: " << header_->GetBlockId() << std::endl;
462 os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
463 for (HBasicBlock* block : back_edges_) {
464 os << "back edge: " << block->GetBlockId() << std::endl;
465 }
466 for (HBasicBlock* block : header_->GetPredecessors()) {
467 os << "predecessor: " << block->GetBlockId() << std::endl;
468 }
469 for (uint32_t idx : blocks_.Indexes()) {
470 os << " in loop: " << idx << std::endl;
471 }
472 }
473
InsertConstant(HConstant * constant)474 void HGraph::InsertConstant(HConstant* constant) {
475 // New constants are inserted before the SuspendCheck at the bottom of the
476 // entry block. Note that this method can be called from the graph builder and
477 // the entry block therefore may not end with SuspendCheck->Goto yet.
478 HInstruction* insert_before = nullptr;
479
480 HInstruction* gota = entry_block_->GetLastInstruction();
481 if (gota != nullptr && gota->IsGoto()) {
482 HInstruction* suspend_check = gota->GetPrevious();
483 if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
484 insert_before = suspend_check;
485 } else {
486 insert_before = gota;
487 }
488 }
489
490 if (insert_before == nullptr) {
491 entry_block_->AddInstruction(constant);
492 } else {
493 entry_block_->InsertInstructionBefore(constant, insert_before);
494 }
495 }
496
GetNullConstant(uint32_t dex_pc)497 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
498 // For simplicity, don't bother reviving the cached null constant if it is
499 // not null and not in a block. Otherwise, we need to clear the instruction
500 // id and/or any invariants the graph is assuming when adding new instructions.
501 if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
502 cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
503 cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
504 InsertConstant(cached_null_constant_);
505 }
506 if (kIsDebugBuild) {
507 ScopedObjectAccess soa(Thread::Current());
508 DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
509 }
510 return cached_null_constant_;
511 }
512
GetCurrentMethod()513 HCurrentMethod* HGraph::GetCurrentMethod() {
514 // For simplicity, don't bother reviving the cached current method if it is
515 // not null and not in a block. Otherwise, we need to clear the instruction
516 // id and/or any invariants the graph is assuming when adding new instructions.
517 if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
518 cached_current_method_ = new (arena_) HCurrentMethod(
519 Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
520 entry_block_->GetDexPc());
521 if (entry_block_->GetFirstInstruction() == nullptr) {
522 entry_block_->AddInstruction(cached_current_method_);
523 } else {
524 entry_block_->InsertInstructionBefore(
525 cached_current_method_, entry_block_->GetFirstInstruction());
526 }
527 }
528 return cached_current_method_;
529 }
530
GetConstant(Primitive::Type type,int64_t value,uint32_t dex_pc)531 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
532 switch (type) {
533 case Primitive::Type::kPrimBoolean:
534 DCHECK(IsUint<1>(value));
535 FALLTHROUGH_INTENDED;
536 case Primitive::Type::kPrimByte:
537 case Primitive::Type::kPrimChar:
538 case Primitive::Type::kPrimShort:
539 case Primitive::Type::kPrimInt:
540 DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
541 return GetIntConstant(static_cast<int32_t>(value), dex_pc);
542
543 case Primitive::Type::kPrimLong:
544 return GetLongConstant(value, dex_pc);
545
546 default:
547 LOG(FATAL) << "Unsupported constant type";
548 UNREACHABLE();
549 }
550 }
551
CacheFloatConstant(HFloatConstant * constant)552 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
553 int32_t value = bit_cast<int32_t, float>(constant->GetValue());
554 DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
555 cached_float_constants_.Overwrite(value, constant);
556 }
557
CacheDoubleConstant(HDoubleConstant * constant)558 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
559 int64_t value = bit_cast<int64_t, double>(constant->GetValue());
560 DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
561 cached_double_constants_.Overwrite(value, constant);
562 }
563
Add(HBasicBlock * block)564 void HLoopInformation::Add(HBasicBlock* block) {
565 blocks_.SetBit(block->GetBlockId());
566 }
567
Remove(HBasicBlock * block)568 void HLoopInformation::Remove(HBasicBlock* block) {
569 blocks_.ClearBit(block->GetBlockId());
570 }
571
PopulateRecursive(HBasicBlock * block)572 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
573 if (blocks_.IsBitSet(block->GetBlockId())) {
574 return;
575 }
576
577 blocks_.SetBit(block->GetBlockId());
578 block->SetInLoop(this);
579 if (block->IsLoopHeader()) {
580 // We're visiting loops in post-order, so inner loops must have been
581 // populated already.
582 DCHECK(block->GetLoopInformation()->IsPopulated());
583 if (block->GetLoopInformation()->IsIrreducible()) {
584 contains_irreducible_loop_ = true;
585 }
586 }
587 for (HBasicBlock* predecessor : block->GetPredecessors()) {
588 PopulateRecursive(predecessor);
589 }
590 }
591
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)592 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
593 size_t block_id = block->GetBlockId();
594
595 // If `block` is in `finalized`, we know its membership in the loop has been
596 // decided and it does not need to be revisited.
597 if (finalized->IsBitSet(block_id)) {
598 return;
599 }
600
601 bool is_finalized = false;
602 if (block->IsLoopHeader()) {
603 // If we hit a loop header in an irreducible loop, we first check if the
604 // pre header of that loop belongs to the currently analyzed loop. If it does,
605 // then we visit the back edges.
606 // Note that we cannot use GetPreHeader, as the loop may have not been populated
607 // yet.
608 HBasicBlock* pre_header = block->GetPredecessors()[0];
609 PopulateIrreducibleRecursive(pre_header, finalized);
610 if (blocks_.IsBitSet(pre_header->GetBlockId())) {
611 block->SetInLoop(this);
612 blocks_.SetBit(block_id);
613 finalized->SetBit(block_id);
614 is_finalized = true;
615
616 HLoopInformation* info = block->GetLoopInformation();
617 for (HBasicBlock* back_edge : info->GetBackEdges()) {
618 PopulateIrreducibleRecursive(back_edge, finalized);
619 }
620 }
621 } else {
622 // Visit all predecessors. If one predecessor is part of the loop, this
623 // block is also part of this loop.
624 for (HBasicBlock* predecessor : block->GetPredecessors()) {
625 PopulateIrreducibleRecursive(predecessor, finalized);
626 if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
627 block->SetInLoop(this);
628 blocks_.SetBit(block_id);
629 finalized->SetBit(block_id);
630 is_finalized = true;
631 }
632 }
633 }
634
635 // All predecessors have been recursively visited. Mark finalized if not marked yet.
636 if (!is_finalized) {
637 finalized->SetBit(block_id);
638 }
639 }
640
Populate()641 void HLoopInformation::Populate() {
642 DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
643 // Populate this loop: starting with the back edge, recursively add predecessors
644 // that are not already part of that loop. Set the header as part of the loop
645 // to end the recursion.
646 // This is a recursive implementation of the algorithm described in
647 // "Advanced Compiler Design & Implementation" (Muchnick) p192.
648 HGraph* graph = header_->GetGraph();
649 blocks_.SetBit(header_->GetBlockId());
650 header_->SetInLoop(this);
651
652 bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
653
654 if (is_irreducible_loop) {
655 ArenaBitVector visited(graph->GetArena(),
656 graph->GetBlocks().size(),
657 /* expandable */ false,
658 kArenaAllocGraphBuilder);
659 // Stop marking blocks at the loop header.
660 visited.SetBit(header_->GetBlockId());
661
662 for (HBasicBlock* back_edge : GetBackEdges()) {
663 PopulateIrreducibleRecursive(back_edge, &visited);
664 }
665 } else {
666 for (HBasicBlock* back_edge : GetBackEdges()) {
667 PopulateRecursive(back_edge);
668 }
669 }
670
671 if (!is_irreducible_loop && graph->IsCompilingOsr()) {
672 // When compiling in OSR mode, all loops in the compiled method may be entered
673 // from the interpreter. We treat this OSR entry point just like an extra entry
674 // to an irreducible loop, so we need to mark the method's loops as irreducible.
675 // This does not apply to inlined loops which do not act as OSR entry points.
676 if (suspend_check_ == nullptr) {
677 // Just building the graph in OSR mode, this loop is not inlined. We never build an
678 // inner graph in OSR mode as we can do OSR transition only from the outer method.
679 is_irreducible_loop = true;
680 } else {
681 // Look at the suspend check's environment to determine if the loop was inlined.
682 DCHECK(suspend_check_->HasEnvironment());
683 if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
684 is_irreducible_loop = true;
685 }
686 }
687 }
688 if (is_irreducible_loop) {
689 irreducible_ = true;
690 contains_irreducible_loop_ = true;
691 graph->SetHasIrreducibleLoops(true);
692 }
693 graph->SetHasLoops(true);
694 }
695
GetPreHeader() const696 HBasicBlock* HLoopInformation::GetPreHeader() const {
697 HBasicBlock* block = header_->GetPredecessors()[0];
698 DCHECK(irreducible_ || (block == header_->GetDominator()));
699 return block;
700 }
701
Contains(const HBasicBlock & block) const702 bool HLoopInformation::Contains(const HBasicBlock& block) const {
703 return blocks_.IsBitSet(block.GetBlockId());
704 }
705
IsIn(const HLoopInformation & other) const706 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
707 return other.blocks_.IsBitSet(header_->GetBlockId());
708 }
709
IsDefinedOutOfTheLoop(HInstruction * instruction) const710 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
711 return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
712 }
713
GetLifetimeEnd() const714 size_t HLoopInformation::GetLifetimeEnd() const {
715 size_t last_position = 0;
716 for (HBasicBlock* back_edge : GetBackEdges()) {
717 last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
718 }
719 return last_position;
720 }
721
HasBackEdgeNotDominatedByHeader() const722 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
723 for (HBasicBlock* back_edge : GetBackEdges()) {
724 DCHECK(back_edge->GetDominator() != nullptr);
725 if (!header_->Dominates(back_edge)) {
726 return true;
727 }
728 }
729 return false;
730 }
731
DominatesAllBackEdges(HBasicBlock * block)732 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
733 for (HBasicBlock* back_edge : GetBackEdges()) {
734 if (!block->Dominates(back_edge)) {
735 return false;
736 }
737 }
738 return true;
739 }
740
741
HasExitEdge() const742 bool HLoopInformation::HasExitEdge() const {
743 // Determine if this loop has at least one exit edge.
744 HBlocksInLoopReversePostOrderIterator it_loop(*this);
745 for (; !it_loop.Done(); it_loop.Advance()) {
746 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
747 if (!Contains(*successor)) {
748 return true;
749 }
750 }
751 }
752 return false;
753 }
754
Dominates(HBasicBlock * other) const755 bool HBasicBlock::Dominates(HBasicBlock* other) const {
756 // Walk up the dominator tree from `other`, to find out if `this`
757 // is an ancestor.
758 HBasicBlock* current = other;
759 while (current != nullptr) {
760 if (current == this) {
761 return true;
762 }
763 current = current->GetDominator();
764 }
765 return false;
766 }
767
UpdateInputsUsers(HInstruction * instruction)768 static void UpdateInputsUsers(HInstruction* instruction) {
769 HInputsRef inputs = instruction->GetInputs();
770 for (size_t i = 0; i < inputs.size(); ++i) {
771 inputs[i]->AddUseAt(instruction, i);
772 }
773 // Environment should be created later.
774 DCHECK(!instruction->HasEnvironment());
775 }
776
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)777 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
778 HInstruction* replacement) {
779 DCHECK(initial->GetBlock() == this);
780 if (initial->IsControlFlow()) {
781 // We can only replace a control flow instruction with another control flow instruction.
782 DCHECK(replacement->IsControlFlow());
783 DCHECK_EQ(replacement->GetId(), -1);
784 DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
785 DCHECK_EQ(initial->GetBlock(), this);
786 DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
787 DCHECK(initial->GetUses().empty());
788 DCHECK(initial->GetEnvUses().empty());
789 replacement->SetBlock(this);
790 replacement->SetId(GetGraph()->GetNextInstructionId());
791 instructions_.InsertInstructionBefore(replacement, initial);
792 UpdateInputsUsers(replacement);
793 } else {
794 InsertInstructionBefore(replacement, initial);
795 initial->ReplaceWith(replacement);
796 }
797 RemoveInstruction(initial);
798 }
799
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)800 static void Add(HInstructionList* instruction_list,
801 HBasicBlock* block,
802 HInstruction* instruction) {
803 DCHECK(instruction->GetBlock() == nullptr);
804 DCHECK_EQ(instruction->GetId(), -1);
805 instruction->SetBlock(block);
806 instruction->SetId(block->GetGraph()->GetNextInstructionId());
807 UpdateInputsUsers(instruction);
808 instruction_list->AddInstruction(instruction);
809 }
810
AddInstruction(HInstruction * instruction)811 void HBasicBlock::AddInstruction(HInstruction* instruction) {
812 Add(&instructions_, this, instruction);
813 }
814
AddPhi(HPhi * phi)815 void HBasicBlock::AddPhi(HPhi* phi) {
816 Add(&phis_, this, phi);
817 }
818
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)819 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
820 DCHECK(!cursor->IsPhi());
821 DCHECK(!instruction->IsPhi());
822 DCHECK_EQ(instruction->GetId(), -1);
823 DCHECK_NE(cursor->GetId(), -1);
824 DCHECK_EQ(cursor->GetBlock(), this);
825 DCHECK(!instruction->IsControlFlow());
826 instruction->SetBlock(this);
827 instruction->SetId(GetGraph()->GetNextInstructionId());
828 UpdateInputsUsers(instruction);
829 instructions_.InsertInstructionBefore(instruction, cursor);
830 }
831
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)832 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
833 DCHECK(!cursor->IsPhi());
834 DCHECK(!instruction->IsPhi());
835 DCHECK_EQ(instruction->GetId(), -1);
836 DCHECK_NE(cursor->GetId(), -1);
837 DCHECK_EQ(cursor->GetBlock(), this);
838 DCHECK(!instruction->IsControlFlow());
839 DCHECK(!cursor->IsControlFlow());
840 instruction->SetBlock(this);
841 instruction->SetId(GetGraph()->GetNextInstructionId());
842 UpdateInputsUsers(instruction);
843 instructions_.InsertInstructionAfter(instruction, cursor);
844 }
845
InsertPhiAfter(HPhi * phi,HPhi * cursor)846 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
847 DCHECK_EQ(phi->GetId(), -1);
848 DCHECK_NE(cursor->GetId(), -1);
849 DCHECK_EQ(cursor->GetBlock(), this);
850 phi->SetBlock(this);
851 phi->SetId(GetGraph()->GetNextInstructionId());
852 UpdateInputsUsers(phi);
853 phis_.InsertInstructionAfter(phi, cursor);
854 }
855
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)856 static void Remove(HInstructionList* instruction_list,
857 HBasicBlock* block,
858 HInstruction* instruction,
859 bool ensure_safety) {
860 DCHECK_EQ(block, instruction->GetBlock());
861 instruction->SetBlock(nullptr);
862 instruction_list->RemoveInstruction(instruction);
863 if (ensure_safety) {
864 DCHECK(instruction->GetUses().empty());
865 DCHECK(instruction->GetEnvUses().empty());
866 RemoveAsUser(instruction);
867 }
868 }
869
RemoveInstruction(HInstruction * instruction,bool ensure_safety)870 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
871 DCHECK(!instruction->IsPhi());
872 Remove(&instructions_, this, instruction, ensure_safety);
873 }
874
RemovePhi(HPhi * phi,bool ensure_safety)875 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
876 Remove(&phis_, this, phi, ensure_safety);
877 }
878
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)879 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
880 if (instruction->IsPhi()) {
881 RemovePhi(instruction->AsPhi(), ensure_safety);
882 } else {
883 RemoveInstruction(instruction, ensure_safety);
884 }
885 }
886
CopyFrom(const ArenaVector<HInstruction * > & locals)887 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
888 for (size_t i = 0; i < locals.size(); i++) {
889 HInstruction* instruction = locals[i];
890 SetRawEnvAt(i, instruction);
891 if (instruction != nullptr) {
892 instruction->AddEnvUseAt(this, i);
893 }
894 }
895 }
896
CopyFrom(HEnvironment * env)897 void HEnvironment::CopyFrom(HEnvironment* env) {
898 for (size_t i = 0; i < env->Size(); i++) {
899 HInstruction* instruction = env->GetInstructionAt(i);
900 SetRawEnvAt(i, instruction);
901 if (instruction != nullptr) {
902 instruction->AddEnvUseAt(this, i);
903 }
904 }
905 }
906
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)907 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
908 HBasicBlock* loop_header) {
909 DCHECK(loop_header->IsLoopHeader());
910 for (size_t i = 0; i < env->Size(); i++) {
911 HInstruction* instruction = env->GetInstructionAt(i);
912 SetRawEnvAt(i, instruction);
913 if (instruction == nullptr) {
914 continue;
915 }
916 if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
917 // At the end of the loop pre-header, the corresponding value for instruction
918 // is the first input of the phi.
919 HInstruction* initial = instruction->AsPhi()->InputAt(0);
920 SetRawEnvAt(i, initial);
921 initial->AddEnvUseAt(this, i);
922 } else {
923 instruction->AddEnvUseAt(this, i);
924 }
925 }
926 }
927
RemoveAsUserOfInput(size_t index) const928 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
929 const HUserRecord<HEnvironment*>& env_use = vregs_[index];
930 HInstruction* user = env_use.GetInstruction();
931 auto before_env_use_node = env_use.GetBeforeUseNode();
932 user->env_uses_.erase_after(before_env_use_node);
933 user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
934 }
935
GetKind() const936 HInstruction::InstructionKind HInstruction::GetKind() const {
937 return GetKindInternal();
938 }
939
GetNextDisregardingMoves() const940 HInstruction* HInstruction::GetNextDisregardingMoves() const {
941 HInstruction* next = GetNext();
942 while (next != nullptr && next->IsParallelMove()) {
943 next = next->GetNext();
944 }
945 return next;
946 }
947
GetPreviousDisregardingMoves() const948 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
949 HInstruction* previous = GetPrevious();
950 while (previous != nullptr && previous->IsParallelMove()) {
951 previous = previous->GetPrevious();
952 }
953 return previous;
954 }
955
AddInstruction(HInstruction * instruction)956 void HInstructionList::AddInstruction(HInstruction* instruction) {
957 if (first_instruction_ == nullptr) {
958 DCHECK(last_instruction_ == nullptr);
959 first_instruction_ = last_instruction_ = instruction;
960 } else {
961 last_instruction_->next_ = instruction;
962 instruction->previous_ = last_instruction_;
963 last_instruction_ = instruction;
964 }
965 }
966
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)967 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
968 DCHECK(Contains(cursor));
969 if (cursor == first_instruction_) {
970 cursor->previous_ = instruction;
971 instruction->next_ = cursor;
972 first_instruction_ = instruction;
973 } else {
974 instruction->previous_ = cursor->previous_;
975 instruction->next_ = cursor;
976 cursor->previous_ = instruction;
977 instruction->previous_->next_ = instruction;
978 }
979 }
980
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)981 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
982 DCHECK(Contains(cursor));
983 if (cursor == last_instruction_) {
984 cursor->next_ = instruction;
985 instruction->previous_ = cursor;
986 last_instruction_ = instruction;
987 } else {
988 instruction->next_ = cursor->next_;
989 instruction->previous_ = cursor;
990 cursor->next_ = instruction;
991 instruction->next_->previous_ = instruction;
992 }
993 }
994
RemoveInstruction(HInstruction * instruction)995 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
996 if (instruction->previous_ != nullptr) {
997 instruction->previous_->next_ = instruction->next_;
998 }
999 if (instruction->next_ != nullptr) {
1000 instruction->next_->previous_ = instruction->previous_;
1001 }
1002 if (instruction == first_instruction_) {
1003 first_instruction_ = instruction->next_;
1004 }
1005 if (instruction == last_instruction_) {
1006 last_instruction_ = instruction->previous_;
1007 }
1008 }
1009
Contains(HInstruction * instruction) const1010 bool HInstructionList::Contains(HInstruction* instruction) const {
1011 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1012 if (it.Current() == instruction) {
1013 return true;
1014 }
1015 }
1016 return false;
1017 }
1018
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1019 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1020 const HInstruction* instruction2) const {
1021 DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1022 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1023 if (it.Current() == instruction1) {
1024 return true;
1025 }
1026 if (it.Current() == instruction2) {
1027 return false;
1028 }
1029 }
1030 LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1031 return true;
1032 }
1033
StrictlyDominates(HInstruction * other_instruction) const1034 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1035 if (other_instruction == this) {
1036 // An instruction does not strictly dominate itself.
1037 return false;
1038 }
1039 HBasicBlock* block = GetBlock();
1040 HBasicBlock* other_block = other_instruction->GetBlock();
1041 if (block != other_block) {
1042 return GetBlock()->Dominates(other_instruction->GetBlock());
1043 } else {
1044 // If both instructions are in the same block, ensure this
1045 // instruction comes before `other_instruction`.
1046 if (IsPhi()) {
1047 if (!other_instruction->IsPhi()) {
1048 // Phis appear before non phi-instructions so this instruction
1049 // dominates `other_instruction`.
1050 return true;
1051 } else {
1052 // There is no order among phis.
1053 LOG(FATAL) << "There is no dominance between phis of a same block.";
1054 return false;
1055 }
1056 } else {
1057 // `this` is not a phi.
1058 if (other_instruction->IsPhi()) {
1059 // Phis appear before non phi-instructions so this instruction
1060 // does not dominate `other_instruction`.
1061 return false;
1062 } else {
1063 // Check whether this instruction comes before
1064 // `other_instruction` in the instruction list.
1065 return block->GetInstructions().FoundBefore(this, other_instruction);
1066 }
1067 }
1068 }
1069 }
1070
RemoveEnvironment()1071 void HInstruction::RemoveEnvironment() {
1072 RemoveEnvironmentUses(this);
1073 environment_ = nullptr;
1074 }
1075
ReplaceWith(HInstruction * other)1076 void HInstruction::ReplaceWith(HInstruction* other) {
1077 DCHECK(other != nullptr);
1078 // Note: fixup_end remains valid across splice_after().
1079 auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1080 other->uses_.splice_after(other->uses_.before_begin(), uses_);
1081 other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1082
1083 // Note: env_fixup_end remains valid across splice_after().
1084 auto env_fixup_end =
1085 other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1086 other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1087 other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1088
1089 DCHECK(uses_.empty());
1090 DCHECK(env_uses_.empty());
1091 }
1092
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1093 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1094 const HUseList<HInstruction*>& uses = GetUses();
1095 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1096 HInstruction* user = it->GetUser();
1097 size_t index = it->GetIndex();
1098 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1099 ++it;
1100 if (dominator->StrictlyDominates(user)) {
1101 user->ReplaceInput(replacement, index);
1102 }
1103 }
1104 }
1105
ReplaceInput(HInstruction * replacement,size_t index)1106 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1107 HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1108 if (input_use.GetInstruction() == replacement) {
1109 // Nothing to do.
1110 return;
1111 }
1112 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1113 // Note: fixup_end remains valid across splice_after().
1114 auto fixup_end =
1115 replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1116 replacement->uses_.splice_after(replacement->uses_.before_begin(),
1117 input_use.GetInstruction()->uses_,
1118 before_use_node);
1119 replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1120 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1121 }
1122
EnvironmentSize() const1123 size_t HInstruction::EnvironmentSize() const {
1124 return HasEnvironment() ? environment_->Size() : 0;
1125 }
1126
AddInput(HInstruction * input)1127 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1128 DCHECK(input->GetBlock() != nullptr);
1129 inputs_.push_back(HUserRecord<HInstruction*>(input));
1130 input->AddUseAt(this, inputs_.size() - 1);
1131 }
1132
InsertInputAt(size_t index,HInstruction * input)1133 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1134 inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1135 input->AddUseAt(this, index);
1136 // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1137 for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1138 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1139 inputs_[i].GetUseNode()->SetIndex(i);
1140 }
1141 }
1142
RemoveInputAt(size_t index)1143 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1144 RemoveAsUserOfInput(index);
1145 inputs_.erase(inputs_.begin() + index);
1146 // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1147 for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1148 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1149 inputs_[i].GetUseNode()->SetIndex(i);
1150 }
1151 }
1152
1153 #define DEFINE_ACCEPT(name, super) \
1154 void H##name::Accept(HGraphVisitor* visitor) { \
1155 visitor->Visit##name(this); \
1156 }
1157
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1158 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1159
1160 #undef DEFINE_ACCEPT
1161
1162 void HGraphVisitor::VisitInsertionOrder() {
1163 const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1164 for (HBasicBlock* block : blocks) {
1165 if (block != nullptr) {
1166 VisitBasicBlock(block);
1167 }
1168 }
1169 }
1170
VisitReversePostOrder()1171 void HGraphVisitor::VisitReversePostOrder() {
1172 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1173 VisitBasicBlock(block);
1174 }
1175 }
1176
VisitBasicBlock(HBasicBlock * block)1177 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1178 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1179 it.Current()->Accept(this);
1180 }
1181 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1182 it.Current()->Accept(this);
1183 }
1184 }
1185
TryStaticEvaluation() const1186 HConstant* HTypeConversion::TryStaticEvaluation() const {
1187 HGraph* graph = GetBlock()->GetGraph();
1188 if (GetInput()->IsIntConstant()) {
1189 int32_t value = GetInput()->AsIntConstant()->GetValue();
1190 switch (GetResultType()) {
1191 case Primitive::kPrimLong:
1192 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1193 case Primitive::kPrimFloat:
1194 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1195 case Primitive::kPrimDouble:
1196 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1197 default:
1198 return nullptr;
1199 }
1200 } else if (GetInput()->IsLongConstant()) {
1201 int64_t value = GetInput()->AsLongConstant()->GetValue();
1202 switch (GetResultType()) {
1203 case Primitive::kPrimInt:
1204 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1205 case Primitive::kPrimFloat:
1206 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1207 case Primitive::kPrimDouble:
1208 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1209 default:
1210 return nullptr;
1211 }
1212 } else if (GetInput()->IsFloatConstant()) {
1213 float value = GetInput()->AsFloatConstant()->GetValue();
1214 switch (GetResultType()) {
1215 case Primitive::kPrimInt:
1216 if (std::isnan(value))
1217 return graph->GetIntConstant(0, GetDexPc());
1218 if (value >= kPrimIntMax)
1219 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1220 if (value <= kPrimIntMin)
1221 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1222 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1223 case Primitive::kPrimLong:
1224 if (std::isnan(value))
1225 return graph->GetLongConstant(0, GetDexPc());
1226 if (value >= kPrimLongMax)
1227 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1228 if (value <= kPrimLongMin)
1229 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1230 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1231 case Primitive::kPrimDouble:
1232 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1233 default:
1234 return nullptr;
1235 }
1236 } else if (GetInput()->IsDoubleConstant()) {
1237 double value = GetInput()->AsDoubleConstant()->GetValue();
1238 switch (GetResultType()) {
1239 case Primitive::kPrimInt:
1240 if (std::isnan(value))
1241 return graph->GetIntConstant(0, GetDexPc());
1242 if (value >= kPrimIntMax)
1243 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1244 if (value <= kPrimLongMin)
1245 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1246 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1247 case Primitive::kPrimLong:
1248 if (std::isnan(value))
1249 return graph->GetLongConstant(0, GetDexPc());
1250 if (value >= kPrimLongMax)
1251 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1252 if (value <= kPrimLongMin)
1253 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1254 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1255 case Primitive::kPrimFloat:
1256 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1257 default:
1258 return nullptr;
1259 }
1260 }
1261 return nullptr;
1262 }
1263
TryStaticEvaluation() const1264 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1265 if (GetInput()->IsIntConstant()) {
1266 return Evaluate(GetInput()->AsIntConstant());
1267 } else if (GetInput()->IsLongConstant()) {
1268 return Evaluate(GetInput()->AsLongConstant());
1269 } else if (kEnableFloatingPointStaticEvaluation) {
1270 if (GetInput()->IsFloatConstant()) {
1271 return Evaluate(GetInput()->AsFloatConstant());
1272 } else if (GetInput()->IsDoubleConstant()) {
1273 return Evaluate(GetInput()->AsDoubleConstant());
1274 }
1275 }
1276 return nullptr;
1277 }
1278
TryStaticEvaluation() const1279 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1280 if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1281 return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1282 } else if (GetLeft()->IsLongConstant()) {
1283 if (GetRight()->IsIntConstant()) {
1284 // The binop(long, int) case is only valid for shifts and rotations.
1285 DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1286 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1287 } else if (GetRight()->IsLongConstant()) {
1288 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1289 }
1290 } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1291 // The binop(null, null) case is only valid for equal and not-equal conditions.
1292 DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1293 return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1294 } else if (kEnableFloatingPointStaticEvaluation) {
1295 if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1296 return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1297 } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1298 return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1299 }
1300 }
1301 return nullptr;
1302 }
1303
GetConstantRight() const1304 HConstant* HBinaryOperation::GetConstantRight() const {
1305 if (GetRight()->IsConstant()) {
1306 return GetRight()->AsConstant();
1307 } else if (IsCommutative() && GetLeft()->IsConstant()) {
1308 return GetLeft()->AsConstant();
1309 } else {
1310 return nullptr;
1311 }
1312 }
1313
1314 // If `GetConstantRight()` returns one of the input, this returns the other
1315 // one. Otherwise it returns null.
GetLeastConstantLeft() const1316 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1317 HInstruction* most_constant_right = GetConstantRight();
1318 if (most_constant_right == nullptr) {
1319 return nullptr;
1320 } else if (most_constant_right == GetLeft()) {
1321 return GetRight();
1322 } else {
1323 return GetLeft();
1324 }
1325 }
1326
operator <<(std::ostream & os,const ComparisonBias & rhs)1327 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1328 switch (rhs) {
1329 case ComparisonBias::kNoBias:
1330 return os << "no_bias";
1331 case ComparisonBias::kGtBias:
1332 return os << "gt_bias";
1333 case ComparisonBias::kLtBias:
1334 return os << "lt_bias";
1335 default:
1336 LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1337 UNREACHABLE();
1338 }
1339 }
1340
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1341 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1342 return this == instruction->GetPreviousDisregardingMoves();
1343 }
1344
Equals(const HInstruction * other) const1345 bool HInstruction::Equals(const HInstruction* other) const {
1346 if (!InstructionTypeEquals(other)) return false;
1347 DCHECK_EQ(GetKind(), other->GetKind());
1348 if (!InstructionDataEquals(other)) return false;
1349 if (GetType() != other->GetType()) return false;
1350 HConstInputsRef inputs = GetInputs();
1351 HConstInputsRef other_inputs = other->GetInputs();
1352 if (inputs.size() != other_inputs.size()) return false;
1353 for (size_t i = 0; i != inputs.size(); ++i) {
1354 if (inputs[i] != other_inputs[i]) return false;
1355 }
1356
1357 DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1358 return true;
1359 }
1360
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1361 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1362 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1363 switch (rhs) {
1364 FOR_EACH_INSTRUCTION(DECLARE_CASE)
1365 default:
1366 os << "Unknown instruction kind " << static_cast<int>(rhs);
1367 break;
1368 }
1369 #undef DECLARE_CASE
1370 return os;
1371 }
1372
MoveBefore(HInstruction * cursor,bool do_checks)1373 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1374 if (do_checks) {
1375 DCHECK(!IsPhi());
1376 DCHECK(!IsControlFlow());
1377 DCHECK(CanBeMoved() ||
1378 // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1379 IsShouldDeoptimizeFlag());
1380 DCHECK(!cursor->IsPhi());
1381 }
1382
1383 next_->previous_ = previous_;
1384 if (previous_ != nullptr) {
1385 previous_->next_ = next_;
1386 }
1387 if (block_->instructions_.first_instruction_ == this) {
1388 block_->instructions_.first_instruction_ = next_;
1389 }
1390 DCHECK_NE(block_->instructions_.last_instruction_, this);
1391
1392 previous_ = cursor->previous_;
1393 if (previous_ != nullptr) {
1394 previous_->next_ = this;
1395 }
1396 next_ = cursor;
1397 cursor->previous_ = this;
1398 block_ = cursor->block_;
1399
1400 if (block_->instructions_.first_instruction_ == cursor) {
1401 block_->instructions_.first_instruction_ = this;
1402 }
1403 }
1404
MoveBeforeFirstUserAndOutOfLoops()1405 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1406 DCHECK(!CanThrow());
1407 DCHECK(!HasSideEffects());
1408 DCHECK(!HasEnvironmentUses());
1409 DCHECK(HasNonEnvironmentUses());
1410 DCHECK(!IsPhi()); // Makes no sense for Phi.
1411 DCHECK_EQ(InputCount(), 0u);
1412
1413 // Find the target block.
1414 auto uses_it = GetUses().begin();
1415 auto uses_end = GetUses().end();
1416 HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1417 ++uses_it;
1418 while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1419 ++uses_it;
1420 }
1421 if (uses_it != uses_end) {
1422 // This instruction has uses in two or more blocks. Find the common dominator.
1423 CommonDominator finder(target_block);
1424 for (; uses_it != uses_end; ++uses_it) {
1425 finder.Update(uses_it->GetUser()->GetBlock());
1426 }
1427 target_block = finder.Get();
1428 DCHECK(target_block != nullptr);
1429 }
1430 // Move to the first dominator not in a loop.
1431 while (target_block->IsInLoop()) {
1432 target_block = target_block->GetDominator();
1433 DCHECK(target_block != nullptr);
1434 }
1435
1436 // Find insertion position.
1437 HInstruction* insert_pos = nullptr;
1438 for (const HUseListNode<HInstruction*>& use : GetUses()) {
1439 if (use.GetUser()->GetBlock() == target_block &&
1440 (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1441 insert_pos = use.GetUser();
1442 }
1443 }
1444 if (insert_pos == nullptr) {
1445 // No user in `target_block`, insert before the control flow instruction.
1446 insert_pos = target_block->GetLastInstruction();
1447 DCHECK(insert_pos->IsControlFlow());
1448 // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1449 if (insert_pos->IsIf()) {
1450 HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1451 if (if_input == insert_pos->GetPrevious()) {
1452 insert_pos = if_input;
1453 }
1454 }
1455 }
1456 MoveBefore(insert_pos);
1457 }
1458
SplitBefore(HInstruction * cursor)1459 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1460 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1461 DCHECK_EQ(cursor->GetBlock(), this);
1462
1463 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1464 cursor->GetDexPc());
1465 new_block->instructions_.first_instruction_ = cursor;
1466 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1467 instructions_.last_instruction_ = cursor->previous_;
1468 if (cursor->previous_ == nullptr) {
1469 instructions_.first_instruction_ = nullptr;
1470 } else {
1471 cursor->previous_->next_ = nullptr;
1472 cursor->previous_ = nullptr;
1473 }
1474
1475 new_block->instructions_.SetBlockOfInstructions(new_block);
1476 AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
1477
1478 for (HBasicBlock* successor : GetSuccessors()) {
1479 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1480 }
1481 new_block->successors_.swap(successors_);
1482 DCHECK(successors_.empty());
1483 AddSuccessor(new_block);
1484
1485 GetGraph()->AddBlock(new_block);
1486 return new_block;
1487 }
1488
CreateImmediateDominator()1489 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1490 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1491 DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1492
1493 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1494
1495 for (HBasicBlock* predecessor : GetPredecessors()) {
1496 predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1497 }
1498 new_block->predecessors_.swap(predecessors_);
1499 DCHECK(predecessors_.empty());
1500 AddPredecessor(new_block);
1501
1502 GetGraph()->AddBlock(new_block);
1503 return new_block;
1504 }
1505
SplitBeforeForInlining(HInstruction * cursor)1506 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1507 DCHECK_EQ(cursor->GetBlock(), this);
1508
1509 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1510 cursor->GetDexPc());
1511 new_block->instructions_.first_instruction_ = cursor;
1512 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1513 instructions_.last_instruction_ = cursor->previous_;
1514 if (cursor->previous_ == nullptr) {
1515 instructions_.first_instruction_ = nullptr;
1516 } else {
1517 cursor->previous_->next_ = nullptr;
1518 cursor->previous_ = nullptr;
1519 }
1520
1521 new_block->instructions_.SetBlockOfInstructions(new_block);
1522
1523 for (HBasicBlock* successor : GetSuccessors()) {
1524 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1525 }
1526 new_block->successors_.swap(successors_);
1527 DCHECK(successors_.empty());
1528
1529 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1530 dominated->dominator_ = new_block;
1531 }
1532 new_block->dominated_blocks_.swap(dominated_blocks_);
1533 DCHECK(dominated_blocks_.empty());
1534 return new_block;
1535 }
1536
SplitAfterForInlining(HInstruction * cursor)1537 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1538 DCHECK(!cursor->IsControlFlow());
1539 DCHECK_NE(instructions_.last_instruction_, cursor);
1540 DCHECK_EQ(cursor->GetBlock(), this);
1541
1542 HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1543 new_block->instructions_.first_instruction_ = cursor->GetNext();
1544 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1545 cursor->next_->previous_ = nullptr;
1546 cursor->next_ = nullptr;
1547 instructions_.last_instruction_ = cursor;
1548
1549 new_block->instructions_.SetBlockOfInstructions(new_block);
1550 for (HBasicBlock* successor : GetSuccessors()) {
1551 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1552 }
1553 new_block->successors_.swap(successors_);
1554 DCHECK(successors_.empty());
1555
1556 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1557 dominated->dominator_ = new_block;
1558 }
1559 new_block->dominated_blocks_.swap(dominated_blocks_);
1560 DCHECK(dominated_blocks_.empty());
1561 return new_block;
1562 }
1563
ComputeTryEntryOfSuccessors() const1564 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1565 if (EndsWithTryBoundary()) {
1566 HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1567 if (try_boundary->IsEntry()) {
1568 DCHECK(!IsTryBlock());
1569 return try_boundary;
1570 } else {
1571 DCHECK(IsTryBlock());
1572 DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1573 return nullptr;
1574 }
1575 } else if (IsTryBlock()) {
1576 return &try_catch_information_->GetTryEntry();
1577 } else {
1578 return nullptr;
1579 }
1580 }
1581
HasThrowingInstructions() const1582 bool HBasicBlock::HasThrowingInstructions() const {
1583 for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1584 if (it.Current()->CanThrow()) {
1585 return true;
1586 }
1587 }
1588 return false;
1589 }
1590
HasOnlyOneInstruction(const HBasicBlock & block)1591 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1592 return block.GetPhis().IsEmpty()
1593 && !block.GetInstructions().IsEmpty()
1594 && block.GetFirstInstruction() == block.GetLastInstruction();
1595 }
1596
IsSingleGoto() const1597 bool HBasicBlock::IsSingleGoto() const {
1598 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1599 }
1600
IsSingleTryBoundary() const1601 bool HBasicBlock::IsSingleTryBoundary() const {
1602 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1603 }
1604
EndsWithControlFlowInstruction() const1605 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1606 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1607 }
1608
EndsWithIf() const1609 bool HBasicBlock::EndsWithIf() const {
1610 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1611 }
1612
EndsWithTryBoundary() const1613 bool HBasicBlock::EndsWithTryBoundary() const {
1614 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1615 }
1616
HasSinglePhi() const1617 bool HBasicBlock::HasSinglePhi() const {
1618 return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1619 }
1620
GetNormalSuccessors() const1621 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1622 if (EndsWithTryBoundary()) {
1623 // The normal-flow successor of HTryBoundary is always stored at index zero.
1624 DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1625 return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1626 } else {
1627 // All successors of blocks not ending with TryBoundary are normal.
1628 return ArrayRef<HBasicBlock* const>(successors_);
1629 }
1630 }
1631
GetExceptionalSuccessors() const1632 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1633 if (EndsWithTryBoundary()) {
1634 return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1635 } else {
1636 // Blocks not ending with TryBoundary do not have exceptional successors.
1637 return ArrayRef<HBasicBlock* const>();
1638 }
1639 }
1640
HasSameExceptionHandlersAs(const HTryBoundary & other) const1641 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1642 ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1643 ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1644
1645 size_t length = handlers1.size();
1646 if (length != handlers2.size()) {
1647 return false;
1648 }
1649
1650 // Exception handlers need to be stored in the same order.
1651 for (size_t i = 0; i < length; ++i) {
1652 if (handlers1[i] != handlers2[i]) {
1653 return false;
1654 }
1655 }
1656 return true;
1657 }
1658
CountSize() const1659 size_t HInstructionList::CountSize() const {
1660 size_t size = 0;
1661 HInstruction* current = first_instruction_;
1662 for (; current != nullptr; current = current->GetNext()) {
1663 size++;
1664 }
1665 return size;
1666 }
1667
SetBlockOfInstructions(HBasicBlock * block) const1668 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
1669 for (HInstruction* current = first_instruction_;
1670 current != nullptr;
1671 current = current->GetNext()) {
1672 current->SetBlock(block);
1673 }
1674 }
1675
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)1676 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
1677 DCHECK(Contains(cursor));
1678 if (!instruction_list.IsEmpty()) {
1679 if (cursor == last_instruction_) {
1680 last_instruction_ = instruction_list.last_instruction_;
1681 } else {
1682 cursor->next_->previous_ = instruction_list.last_instruction_;
1683 }
1684 instruction_list.last_instruction_->next_ = cursor->next_;
1685 cursor->next_ = instruction_list.first_instruction_;
1686 instruction_list.first_instruction_->previous_ = cursor;
1687 }
1688 }
1689
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)1690 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
1691 DCHECK(Contains(cursor));
1692 if (!instruction_list.IsEmpty()) {
1693 if (cursor == first_instruction_) {
1694 first_instruction_ = instruction_list.first_instruction_;
1695 } else {
1696 cursor->previous_->next_ = instruction_list.first_instruction_;
1697 }
1698 instruction_list.last_instruction_->next_ = cursor;
1699 instruction_list.first_instruction_->previous_ = cursor->previous_;
1700 cursor->previous_ = instruction_list.last_instruction_;
1701 }
1702 }
1703
Add(const HInstructionList & instruction_list)1704 void HInstructionList::Add(const HInstructionList& instruction_list) {
1705 if (IsEmpty()) {
1706 first_instruction_ = instruction_list.first_instruction_;
1707 last_instruction_ = instruction_list.last_instruction_;
1708 } else {
1709 AddAfter(last_instruction_, instruction_list);
1710 }
1711 }
1712
1713 // Should be called on instructions in a dead block in post order. This method
1714 // assumes `insn` has been removed from all users with the exception of catch
1715 // phis because of missing exceptional edges in the graph. It removes the
1716 // instruction from catch phi uses, together with inputs of other catch phis in
1717 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)1718 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
1719 DCHECK(!insn->HasEnvironmentUses());
1720 while (insn->HasNonEnvironmentUses()) {
1721 const HUseListNode<HInstruction*>& use = insn->GetUses().front();
1722 size_t use_index = use.GetIndex();
1723 HBasicBlock* user_block = use.GetUser()->GetBlock();
1724 DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
1725 for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1726 phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
1727 }
1728 }
1729 }
1730
DisconnectAndDelete()1731 void HBasicBlock::DisconnectAndDelete() {
1732 // Dominators must be removed after all the blocks they dominate. This way
1733 // a loop header is removed last, a requirement for correct loop information
1734 // iteration.
1735 DCHECK(dominated_blocks_.empty());
1736
1737 // The following steps gradually remove the block from all its dependants in
1738 // post order (b/27683071).
1739
1740 // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
1741 // We need to do this before step (4) which destroys the predecessor list.
1742 HBasicBlock* loop_update_start = this;
1743 if (IsLoopHeader()) {
1744 HLoopInformation* loop_info = GetLoopInformation();
1745 // All other blocks in this loop should have been removed because the header
1746 // was their dominator.
1747 // Note that we do not remove `this` from `loop_info` as it is unreachable.
1748 DCHECK(!loop_info->IsIrreducible());
1749 DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
1750 DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
1751 loop_update_start = loop_info->GetPreHeader();
1752 }
1753
1754 // (2) Disconnect the block from its successors and update their phis.
1755 for (HBasicBlock* successor : successors_) {
1756 // Delete this block from the list of predecessors.
1757 size_t this_index = successor->GetPredecessorIndexOf(this);
1758 successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
1759
1760 // Check that `successor` has other predecessors, otherwise `this` is the
1761 // dominator of `successor` which violates the order DCHECKed at the top.
1762 DCHECK(!successor->predecessors_.empty());
1763
1764 // Remove this block's entries in the successor's phis. Skip exceptional
1765 // successors because catch phi inputs do not correspond to predecessor
1766 // blocks but throwing instructions. The inputs of the catch phis will be
1767 // updated in step (3).
1768 if (!successor->IsCatchBlock()) {
1769 if (successor->predecessors_.size() == 1u) {
1770 // The successor has just one predecessor left. Replace phis with the only
1771 // remaining input.
1772 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1773 HPhi* phi = phi_it.Current()->AsPhi();
1774 phi->ReplaceWith(phi->InputAt(1 - this_index));
1775 successor->RemovePhi(phi);
1776 }
1777 } else {
1778 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1779 phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1780 }
1781 }
1782 }
1783 }
1784 successors_.clear();
1785
1786 // (3) Remove instructions and phis. Instructions should have no remaining uses
1787 // except in catch phis. If an instruction is used by a catch phi at `index`,
1788 // remove `index`-th input of all phis in the catch block since they are
1789 // guaranteed dead. Note that we may miss dead inputs this way but the
1790 // graph will always remain consistent.
1791 for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1792 HInstruction* insn = it.Current();
1793 RemoveUsesOfDeadInstruction(insn);
1794 RemoveInstruction(insn);
1795 }
1796 for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
1797 HPhi* insn = it.Current()->AsPhi();
1798 RemoveUsesOfDeadInstruction(insn);
1799 RemovePhi(insn);
1800 }
1801
1802 // (4) Disconnect the block from its predecessors and update their
1803 // control-flow instructions.
1804 for (HBasicBlock* predecessor : predecessors_) {
1805 // We should not see any back edges as they would have been removed by step (3).
1806 DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
1807
1808 HInstruction* last_instruction = predecessor->GetLastInstruction();
1809 if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
1810 // This block is the only normal-flow successor of the TryBoundary which
1811 // makes `predecessor` dead. Since DCE removes blocks in post order,
1812 // exception handlers of this TryBoundary were already visited and any
1813 // remaining handlers therefore must be live. We remove `predecessor` from
1814 // their list of predecessors.
1815 DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
1816 while (predecessor->GetSuccessors().size() > 1) {
1817 HBasicBlock* handler = predecessor->GetSuccessors()[1];
1818 DCHECK(handler->IsCatchBlock());
1819 predecessor->RemoveSuccessor(handler);
1820 handler->RemovePredecessor(predecessor);
1821 }
1822 }
1823
1824 predecessor->RemoveSuccessor(this);
1825 uint32_t num_pred_successors = predecessor->GetSuccessors().size();
1826 if (num_pred_successors == 1u) {
1827 // If we have one successor after removing one, then we must have
1828 // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
1829 // successor. Replace those with a HGoto.
1830 DCHECK(last_instruction->IsIf() ||
1831 last_instruction->IsPackedSwitch() ||
1832 (last_instruction->IsTryBoundary() && IsCatchBlock()));
1833 predecessor->RemoveInstruction(last_instruction);
1834 predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
1835 } else if (num_pred_successors == 0u) {
1836 // The predecessor has no remaining successors and therefore must be dead.
1837 // We deliberately leave it without a control-flow instruction so that the
1838 // GraphChecker fails unless it is not removed during the pass too.
1839 predecessor->RemoveInstruction(last_instruction);
1840 } else {
1841 // There are multiple successors left. The removed block might be a successor
1842 // of a PackedSwitch which will be completely removed (perhaps replaced with
1843 // a Goto), or we are deleting a catch block from a TryBoundary. In either
1844 // case, leave `last_instruction` as is for now.
1845 DCHECK(last_instruction->IsPackedSwitch() ||
1846 (last_instruction->IsTryBoundary() && IsCatchBlock()));
1847 }
1848 }
1849 predecessors_.clear();
1850
1851 // (5) Remove the block from all loops it is included in. Skip the inner-most
1852 // loop if this is the loop header (see definition of `loop_update_start`)
1853 // because the loop header's predecessor list has been destroyed in step (4).
1854 for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
1855 HLoopInformation* loop_info = it.Current();
1856 loop_info->Remove(this);
1857 if (loop_info->IsBackEdge(*this)) {
1858 // If this was the last back edge of the loop, we deliberately leave the
1859 // loop in an inconsistent state and will fail GraphChecker unless the
1860 // entire loop is removed during the pass.
1861 loop_info->RemoveBackEdge(this);
1862 }
1863 }
1864
1865 // (6) Disconnect from the dominator.
1866 dominator_->RemoveDominatedBlock(this);
1867 SetDominator(nullptr);
1868
1869 // (7) Delete from the graph, update reverse post order.
1870 graph_->DeleteDeadEmptyBlock(this);
1871 SetGraph(nullptr);
1872 }
1873
MergeInstructionsWith(HBasicBlock * other)1874 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
1875 DCHECK(EndsWithControlFlowInstruction());
1876 RemoveInstruction(GetLastInstruction());
1877 instructions_.Add(other->GetInstructions());
1878 other->instructions_.SetBlockOfInstructions(this);
1879 other->instructions_.Clear();
1880 }
1881
MergeWith(HBasicBlock * other)1882 void HBasicBlock::MergeWith(HBasicBlock* other) {
1883 DCHECK_EQ(GetGraph(), other->GetGraph());
1884 DCHECK(ContainsElement(dominated_blocks_, other));
1885 DCHECK_EQ(GetSingleSuccessor(), other);
1886 DCHECK_EQ(other->GetSinglePredecessor(), this);
1887 DCHECK(other->GetPhis().IsEmpty());
1888
1889 // Move instructions from `other` to `this`.
1890 MergeInstructionsWith(other);
1891
1892 // Remove `other` from the loops it is included in.
1893 for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1894 HLoopInformation* loop_info = it.Current();
1895 loop_info->Remove(other);
1896 if (loop_info->IsBackEdge(*other)) {
1897 loop_info->ReplaceBackEdge(other, this);
1898 }
1899 }
1900
1901 // Update links to the successors of `other`.
1902 successors_.clear();
1903 for (HBasicBlock* successor : other->GetSuccessors()) {
1904 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
1905 }
1906 successors_.swap(other->successors_);
1907 DCHECK(other->successors_.empty());
1908
1909 // Update the dominator tree.
1910 RemoveDominatedBlock(other);
1911 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1912 dominated->SetDominator(this);
1913 }
1914 dominated_blocks_.insert(
1915 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
1916 other->dominated_blocks_.clear();
1917 other->dominator_ = nullptr;
1918
1919 // Clear the list of predecessors of `other` in preparation of deleting it.
1920 other->predecessors_.clear();
1921
1922 // Delete `other` from the graph. The function updates reverse post order.
1923 graph_->DeleteDeadEmptyBlock(other);
1924 other->SetGraph(nullptr);
1925 }
1926
MergeWithInlined(HBasicBlock * other)1927 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
1928 DCHECK_NE(GetGraph(), other->GetGraph());
1929 DCHECK(GetDominatedBlocks().empty());
1930 DCHECK(GetSuccessors().empty());
1931 DCHECK(!EndsWithControlFlowInstruction());
1932 DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
1933 DCHECK(other->GetPhis().IsEmpty());
1934 DCHECK(!other->IsInLoop());
1935
1936 // Move instructions from `other` to `this`.
1937 instructions_.Add(other->GetInstructions());
1938 other->instructions_.SetBlockOfInstructions(this);
1939
1940 // Update links to the successors of `other`.
1941 successors_.clear();
1942 for (HBasicBlock* successor : other->GetSuccessors()) {
1943 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
1944 }
1945 successors_.swap(other->successors_);
1946 DCHECK(other->successors_.empty());
1947
1948 // Update the dominator tree.
1949 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1950 dominated->SetDominator(this);
1951 }
1952 dominated_blocks_.insert(
1953 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
1954 other->dominated_blocks_.clear();
1955 other->dominator_ = nullptr;
1956 other->graph_ = nullptr;
1957 }
1958
ReplaceWith(HBasicBlock * other)1959 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
1960 while (!GetPredecessors().empty()) {
1961 HBasicBlock* predecessor = GetPredecessors()[0];
1962 predecessor->ReplaceSuccessor(this, other);
1963 }
1964 while (!GetSuccessors().empty()) {
1965 HBasicBlock* successor = GetSuccessors()[0];
1966 successor->ReplacePredecessor(this, other);
1967 }
1968 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1969 other->AddDominatedBlock(dominated);
1970 }
1971 GetDominator()->ReplaceDominatedBlock(this, other);
1972 other->SetDominator(GetDominator());
1973 dominator_ = nullptr;
1974 graph_ = nullptr;
1975 }
1976
DeleteDeadEmptyBlock(HBasicBlock * block)1977 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
1978 DCHECK_EQ(block->GetGraph(), this);
1979 DCHECK(block->GetSuccessors().empty());
1980 DCHECK(block->GetPredecessors().empty());
1981 DCHECK(block->GetDominatedBlocks().empty());
1982 DCHECK(block->GetDominator() == nullptr);
1983 DCHECK(block->GetInstructions().IsEmpty());
1984 DCHECK(block->GetPhis().IsEmpty());
1985
1986 if (block->IsExitBlock()) {
1987 SetExitBlock(nullptr);
1988 }
1989
1990 RemoveElement(reverse_post_order_, block);
1991 blocks_[block->GetBlockId()] = nullptr;
1992 block->SetGraph(nullptr);
1993 }
1994
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)1995 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
1996 HBasicBlock* reference,
1997 bool replace_if_back_edge) {
1998 if (block->IsLoopHeader()) {
1999 // Clear the information of which blocks are contained in that loop. Since the
2000 // information is stored as a bit vector based on block ids, we have to update
2001 // it, as those block ids were specific to the callee graph and we are now adding
2002 // these blocks to the caller graph.
2003 block->GetLoopInformation()->ClearAllBlocks();
2004 }
2005
2006 // If not already in a loop, update the loop information.
2007 if (!block->IsInLoop()) {
2008 block->SetLoopInformation(reference->GetLoopInformation());
2009 }
2010
2011 // If the block is in a loop, update all its outward loops.
2012 HLoopInformation* loop_info = block->GetLoopInformation();
2013 if (loop_info != nullptr) {
2014 for (HLoopInformationOutwardIterator loop_it(*block);
2015 !loop_it.Done();
2016 loop_it.Advance()) {
2017 loop_it.Current()->Add(block);
2018 }
2019 if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2020 loop_info->ReplaceBackEdge(reference, block);
2021 }
2022 }
2023
2024 // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2025 TryCatchInformation* try_catch_info = reference->IsTryBlock()
2026 ? reference->GetTryCatchInformation()
2027 : nullptr;
2028 block->SetTryCatchInformation(try_catch_info);
2029 }
2030
InlineInto(HGraph * outer_graph,HInvoke * invoke)2031 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2032 DCHECK(HasExitBlock()) << "Unimplemented scenario";
2033 // Update the environments in this graph to have the invoke's environment
2034 // as parent.
2035 {
2036 // Skip the entry block, we do not need to update the entry's suspend check.
2037 for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2038 for (HInstructionIterator instr_it(block->GetInstructions());
2039 !instr_it.Done();
2040 instr_it.Advance()) {
2041 HInstruction* current = instr_it.Current();
2042 if (current->NeedsEnvironment()) {
2043 DCHECK(current->HasEnvironment());
2044 current->GetEnvironment()->SetAndCopyParentChain(
2045 outer_graph->GetArena(), invoke->GetEnvironment());
2046 }
2047 }
2048 }
2049 }
2050 outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2051
2052 if (HasBoundsChecks()) {
2053 outer_graph->SetHasBoundsChecks(true);
2054 }
2055 if (HasLoops()) {
2056 outer_graph->SetHasLoops(true);
2057 }
2058 if (HasIrreducibleLoops()) {
2059 outer_graph->SetHasIrreducibleLoops(true);
2060 }
2061 if (HasTryCatch()) {
2062 outer_graph->SetHasTryCatch(true);
2063 }
2064 if (HasSIMD()) {
2065 outer_graph->SetHasSIMD(true);
2066 }
2067
2068 HInstruction* return_value = nullptr;
2069 if (GetBlocks().size() == 3) {
2070 // Inliner already made sure we don't inline methods that always throw.
2071 DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2072 // Simple case of an entry block, a body block, and an exit block.
2073 // Put the body block's instruction into `invoke`'s block.
2074 HBasicBlock* body = GetBlocks()[1];
2075 DCHECK(GetBlocks()[0]->IsEntryBlock());
2076 DCHECK(GetBlocks()[2]->IsExitBlock());
2077 DCHECK(!body->IsExitBlock());
2078 DCHECK(!body->IsInLoop());
2079 HInstruction* last = body->GetLastInstruction();
2080
2081 // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2082 invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2083 body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2084
2085 // Replace the invoke with the return value of the inlined graph.
2086 if (last->IsReturn()) {
2087 return_value = last->InputAt(0);
2088 } else {
2089 DCHECK(last->IsReturnVoid());
2090 }
2091
2092 invoke->GetBlock()->RemoveInstruction(last);
2093 } else {
2094 // Need to inline multiple blocks. We split `invoke`'s block
2095 // into two blocks, merge the first block of the inlined graph into
2096 // the first half, and replace the exit block of the inlined graph
2097 // with the second half.
2098 ArenaAllocator* allocator = outer_graph->GetArena();
2099 HBasicBlock* at = invoke->GetBlock();
2100 // Note that we split before the invoke only to simplify polymorphic inlining.
2101 HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2102
2103 HBasicBlock* first = entry_block_->GetSuccessors()[0];
2104 DCHECK(!first->IsInLoop());
2105 at->MergeWithInlined(first);
2106 exit_block_->ReplaceWith(to);
2107
2108 // Update the meta information surrounding blocks:
2109 // (1) the graph they are now in,
2110 // (2) the reverse post order of that graph,
2111 // (3) their potential loop information, inner and outer,
2112 // (4) try block membership.
2113 // Note that we do not need to update catch phi inputs because they
2114 // correspond to the register file of the outer method which the inlinee
2115 // cannot modify.
2116
2117 // We don't add the entry block, the exit block, and the first block, which
2118 // has been merged with `at`.
2119 static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2120
2121 // We add the `to` block.
2122 static constexpr int kNumberOfNewBlocksInCaller = 1;
2123 size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2124 + kNumberOfNewBlocksInCaller;
2125
2126 // Find the location of `at` in the outer graph's reverse post order. The new
2127 // blocks will be added after it.
2128 size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2129 MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2130
2131 // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2132 // and (4) to the blocks that apply.
2133 for (HBasicBlock* current : GetReversePostOrder()) {
2134 if (current != exit_block_ && current != entry_block_ && current != first) {
2135 DCHECK(current->GetTryCatchInformation() == nullptr);
2136 DCHECK(current->GetGraph() == this);
2137 current->SetGraph(outer_graph);
2138 outer_graph->AddBlock(current);
2139 outer_graph->reverse_post_order_[++index_of_at] = current;
2140 UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge */ false);
2141 }
2142 }
2143
2144 // Do (1), (2), (3) and (4) to `to`.
2145 to->SetGraph(outer_graph);
2146 outer_graph->AddBlock(to);
2147 outer_graph->reverse_post_order_[++index_of_at] = to;
2148 // Only `to` can become a back edge, as the inlined blocks
2149 // are predecessors of `to`.
2150 UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2151
2152 // Update all predecessors of the exit block (now the `to` block)
2153 // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2154 // to now get the outer graph exit block as successor. Note that the inliner
2155 // currently doesn't support inlining methods with try/catch.
2156 HPhi* return_value_phi = nullptr;
2157 bool rerun_dominance = false;
2158 bool rerun_loop_analysis = false;
2159 for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2160 HBasicBlock* predecessor = to->GetPredecessors()[pred];
2161 HInstruction* last = predecessor->GetLastInstruction();
2162 if (last->IsThrow()) {
2163 DCHECK(!at->IsTryBlock());
2164 predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2165 --pred;
2166 // We need to re-run dominance information, as the exit block now has
2167 // a new dominator.
2168 rerun_dominance = true;
2169 if (predecessor->GetLoopInformation() != nullptr) {
2170 // The exit block and blocks post dominated by the exit block do not belong
2171 // to any loop. Because we do not compute the post dominators, we need to re-run
2172 // loop analysis to get the loop information correct.
2173 rerun_loop_analysis = true;
2174 }
2175 } else {
2176 if (last->IsReturnVoid()) {
2177 DCHECK(return_value == nullptr);
2178 DCHECK(return_value_phi == nullptr);
2179 } else {
2180 DCHECK(last->IsReturn());
2181 if (return_value_phi != nullptr) {
2182 return_value_phi->AddInput(last->InputAt(0));
2183 } else if (return_value == nullptr) {
2184 return_value = last->InputAt(0);
2185 } else {
2186 // There will be multiple returns.
2187 return_value_phi = new (allocator) HPhi(
2188 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2189 to->AddPhi(return_value_phi);
2190 return_value_phi->AddInput(return_value);
2191 return_value_phi->AddInput(last->InputAt(0));
2192 return_value = return_value_phi;
2193 }
2194 }
2195 predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2196 predecessor->RemoveInstruction(last);
2197 }
2198 }
2199 if (rerun_loop_analysis) {
2200 DCHECK(!outer_graph->HasIrreducibleLoops())
2201 << "Recomputing loop information in graphs with irreducible loops "
2202 << "is unsupported, as it could lead to loop header changes";
2203 outer_graph->ClearLoopInformation();
2204 outer_graph->ClearDominanceInformation();
2205 outer_graph->BuildDominatorTree();
2206 } else if (rerun_dominance) {
2207 outer_graph->ClearDominanceInformation();
2208 outer_graph->ComputeDominanceInformation();
2209 }
2210 }
2211
2212 // Walk over the entry block and:
2213 // - Move constants from the entry block to the outer_graph's entry block,
2214 // - Replace HParameterValue instructions with their real value.
2215 // - Remove suspend checks, that hold an environment.
2216 // We must do this after the other blocks have been inlined, otherwise ids of
2217 // constants could overlap with the inner graph.
2218 size_t parameter_index = 0;
2219 for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2220 HInstruction* current = it.Current();
2221 HInstruction* replacement = nullptr;
2222 if (current->IsNullConstant()) {
2223 replacement = outer_graph->GetNullConstant(current->GetDexPc());
2224 } else if (current->IsIntConstant()) {
2225 replacement = outer_graph->GetIntConstant(
2226 current->AsIntConstant()->GetValue(), current->GetDexPc());
2227 } else if (current->IsLongConstant()) {
2228 replacement = outer_graph->GetLongConstant(
2229 current->AsLongConstant()->GetValue(), current->GetDexPc());
2230 } else if (current->IsFloatConstant()) {
2231 replacement = outer_graph->GetFloatConstant(
2232 current->AsFloatConstant()->GetValue(), current->GetDexPc());
2233 } else if (current->IsDoubleConstant()) {
2234 replacement = outer_graph->GetDoubleConstant(
2235 current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2236 } else if (current->IsParameterValue()) {
2237 if (kIsDebugBuild
2238 && invoke->IsInvokeStaticOrDirect()
2239 && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2240 // Ensure we do not use the last input of `invoke`, as it
2241 // contains a clinit check which is not an actual argument.
2242 size_t last_input_index = invoke->InputCount() - 1;
2243 DCHECK(parameter_index != last_input_index);
2244 }
2245 replacement = invoke->InputAt(parameter_index++);
2246 } else if (current->IsCurrentMethod()) {
2247 replacement = outer_graph->GetCurrentMethod();
2248 } else {
2249 DCHECK(current->IsGoto() || current->IsSuspendCheck());
2250 entry_block_->RemoveInstruction(current);
2251 }
2252 if (replacement != nullptr) {
2253 current->ReplaceWith(replacement);
2254 // If the current is the return value then we need to update the latter.
2255 if (current == return_value) {
2256 DCHECK_EQ(entry_block_, return_value->GetBlock());
2257 return_value = replacement;
2258 }
2259 }
2260 }
2261
2262 return return_value;
2263 }
2264
2265 /*
2266 * Loop will be transformed to:
2267 * old_pre_header
2268 * |
2269 * if_block
2270 * / \
2271 * true_block false_block
2272 * \ /
2273 * new_pre_header
2274 * |
2275 * header
2276 */
TransformLoopHeaderForBCE(HBasicBlock * header)2277 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2278 DCHECK(header->IsLoopHeader());
2279 HBasicBlock* old_pre_header = header->GetDominator();
2280
2281 // Need extra block to avoid critical edge.
2282 HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2283 HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2284 HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2285 HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2286 AddBlock(if_block);
2287 AddBlock(true_block);
2288 AddBlock(false_block);
2289 AddBlock(new_pre_header);
2290
2291 header->ReplacePredecessor(old_pre_header, new_pre_header);
2292 old_pre_header->successors_.clear();
2293 old_pre_header->dominated_blocks_.clear();
2294
2295 old_pre_header->AddSuccessor(if_block);
2296 if_block->AddSuccessor(true_block); // True successor
2297 if_block->AddSuccessor(false_block); // False successor
2298 true_block->AddSuccessor(new_pre_header);
2299 false_block->AddSuccessor(new_pre_header);
2300
2301 old_pre_header->dominated_blocks_.push_back(if_block);
2302 if_block->SetDominator(old_pre_header);
2303 if_block->dominated_blocks_.push_back(true_block);
2304 true_block->SetDominator(if_block);
2305 if_block->dominated_blocks_.push_back(false_block);
2306 false_block->SetDominator(if_block);
2307 if_block->dominated_blocks_.push_back(new_pre_header);
2308 new_pre_header->SetDominator(if_block);
2309 new_pre_header->dominated_blocks_.push_back(header);
2310 header->SetDominator(new_pre_header);
2311
2312 // Fix reverse post order.
2313 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2314 MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2315 reverse_post_order_[index_of_header++] = if_block;
2316 reverse_post_order_[index_of_header++] = true_block;
2317 reverse_post_order_[index_of_header++] = false_block;
2318 reverse_post_order_[index_of_header++] = new_pre_header;
2319
2320 // The pre_header can never be a back edge of a loop.
2321 DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2322 !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2323 UpdateLoopAndTryInformationOfNewBlock(
2324 if_block, old_pre_header, /* replace_if_back_edge */ false);
2325 UpdateLoopAndTryInformationOfNewBlock(
2326 true_block, old_pre_header, /* replace_if_back_edge */ false);
2327 UpdateLoopAndTryInformationOfNewBlock(
2328 false_block, old_pre_header, /* replace_if_back_edge */ false);
2329 UpdateLoopAndTryInformationOfNewBlock(
2330 new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2331 }
2332
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2333 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2334 HBasicBlock* body,
2335 HBasicBlock* exit) {
2336 DCHECK(header->IsLoopHeader());
2337 HLoopInformation* loop = header->GetLoopInformation();
2338
2339 // Add new loop blocks.
2340 HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2341 HBasicBlock* new_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2342 HBasicBlock* new_body = new (arena_) HBasicBlock(this, header->GetDexPc());
2343 AddBlock(new_pre_header);
2344 AddBlock(new_header);
2345 AddBlock(new_body);
2346
2347 // Set up control flow.
2348 header->ReplaceSuccessor(exit, new_pre_header);
2349 new_pre_header->AddSuccessor(new_header);
2350 new_header->AddSuccessor(exit);
2351 new_header->AddSuccessor(new_body);
2352 new_body->AddSuccessor(new_header);
2353
2354 // Set up dominators.
2355 header->ReplaceDominatedBlock(exit, new_pre_header);
2356 new_pre_header->SetDominator(header);
2357 new_pre_header->dominated_blocks_.push_back(new_header);
2358 new_header->SetDominator(new_pre_header);
2359 new_header->dominated_blocks_.push_back(new_body);
2360 new_body->SetDominator(new_header);
2361 new_header->dominated_blocks_.push_back(exit);
2362 exit->SetDominator(new_header);
2363
2364 // Fix reverse post order.
2365 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2366 MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2367 reverse_post_order_[++index_of_header] = new_pre_header;
2368 reverse_post_order_[++index_of_header] = new_header;
2369 size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2370 MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2371 reverse_post_order_[index_of_body] = new_body;
2372
2373 // Add gotos and suspend check (client must add conditional in header).
2374 new_pre_header->AddInstruction(new (arena_) HGoto());
2375 HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(header->GetDexPc());
2376 new_header->AddInstruction(suspend_check);
2377 new_body->AddInstruction(new (arena_) HGoto());
2378 suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2379 loop->GetSuspendCheck()->GetEnvironment(), header);
2380
2381 // Update loop information.
2382 new_header->AddBackEdge(new_body);
2383 new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2384 new_header->GetLoopInformation()->Populate();
2385 new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward
2386 HLoopInformationOutwardIterator it(*new_header);
2387 for (it.Advance(); !it.Done(); it.Advance()) {
2388 it.Current()->Add(new_pre_header);
2389 it.Current()->Add(new_header);
2390 it.Current()->Add(new_body);
2391 }
2392 return new_pre_header;
2393 }
2394
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2395 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2396 REQUIRES_SHARED(Locks::mutator_lock_) {
2397 if (rti.IsValid()) {
2398 DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2399 << " upper_bound_rti: " << upper_bound_rti
2400 << " rti: " << rti;
2401 DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2402 << " upper_bound_rti: " << upper_bound_rti
2403 << " rti: " << rti;
2404 }
2405 }
2406
SetReferenceTypeInfo(ReferenceTypeInfo rti)2407 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2408 if (kIsDebugBuild) {
2409 DCHECK_EQ(GetType(), Primitive::kPrimNot);
2410 ScopedObjectAccess soa(Thread::Current());
2411 DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2412 if (IsBoundType()) {
2413 // Having the test here spares us from making the method virtual just for
2414 // the sake of a DCHECK.
2415 CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2416 }
2417 }
2418 reference_type_handle_ = rti.GetTypeHandle();
2419 SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2420 }
2421
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2422 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2423 if (kIsDebugBuild) {
2424 ScopedObjectAccess soa(Thread::Current());
2425 DCHECK(upper_bound.IsValid());
2426 DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2427 CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2428 }
2429 upper_bound_ = upper_bound;
2430 SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2431 }
2432
Create(TypeHandle type_handle,bool is_exact)2433 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2434 if (kIsDebugBuild) {
2435 ScopedObjectAccess soa(Thread::Current());
2436 DCHECK(IsValidHandle(type_handle));
2437 if (!is_exact) {
2438 DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2439 << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2440 }
2441 }
2442 return ReferenceTypeInfo(type_handle, is_exact);
2443 }
2444
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2445 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2446 ScopedObjectAccess soa(Thread::Current());
2447 os << "["
2448 << " is_valid=" << rhs.IsValid()
2449 << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2450 << " is_exact=" << rhs.IsExact()
2451 << " ]";
2452 return os;
2453 }
2454
HasAnyEnvironmentUseBefore(HInstruction * other)2455 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2456 // For now, assume that instructions in different blocks may use the
2457 // environment.
2458 // TODO: Use the control flow to decide if this is true.
2459 if (GetBlock() != other->GetBlock()) {
2460 return true;
2461 }
2462
2463 // We know that we are in the same block. Walk from 'this' to 'other',
2464 // checking to see if there is any instruction with an environment.
2465 HInstruction* current = this;
2466 for (; current != other && current != nullptr; current = current->GetNext()) {
2467 // This is a conservative check, as the instruction result may not be in
2468 // the referenced environment.
2469 if (current->HasEnvironment()) {
2470 return true;
2471 }
2472 }
2473
2474 // We should have been called with 'this' before 'other' in the block.
2475 // Just confirm this.
2476 DCHECK(current != nullptr);
2477 return false;
2478 }
2479
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2480 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2481 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2482 IntrinsicSideEffects side_effects,
2483 IntrinsicExceptions exceptions) {
2484 intrinsic_ = intrinsic;
2485 IntrinsicOptimizations opt(this);
2486
2487 // Adjust method's side effects from intrinsic table.
2488 switch (side_effects) {
2489 case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2490 case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2491 case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2492 case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2493 }
2494
2495 if (needs_env_or_cache == kNoEnvironmentOrCache) {
2496 opt.SetDoesNotNeedDexCache();
2497 opt.SetDoesNotNeedEnvironment();
2498 } else {
2499 // If we need an environment, that means there will be a call, which can trigger GC.
2500 SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2501 }
2502 // Adjust method's exception status from intrinsic table.
2503 SetCanThrow(exceptions == kCanThrow);
2504 }
2505
IsStringAlloc() const2506 bool HNewInstance::IsStringAlloc() const {
2507 ScopedObjectAccess soa(Thread::Current());
2508 return GetReferenceTypeInfo().IsStringClass();
2509 }
2510
NeedsEnvironment() const2511 bool HInvoke::NeedsEnvironment() const {
2512 if (!IsIntrinsic()) {
2513 return true;
2514 }
2515 IntrinsicOptimizations opt(*this);
2516 return !opt.GetDoesNotNeedEnvironment();
2517 }
2518
GetDexFileForPcRelativeDexCache() const2519 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2520 ArtMethod* caller = GetEnvironment()->GetMethod();
2521 ScopedObjectAccess soa(Thread::Current());
2522 // `caller` is null for a top-level graph representing a method whose declaring
2523 // class was not resolved.
2524 return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2525 }
2526
NeedsDexCacheOfDeclaringClass() const2527 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2528 if (GetMethodLoadKind() != MethodLoadKind::kDexCacheViaMethod) {
2529 return false;
2530 }
2531 if (!IsIntrinsic()) {
2532 return true;
2533 }
2534 IntrinsicOptimizations opt(*this);
2535 return !opt.GetDoesNotNeedDexCache();
2536 }
2537
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2538 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2539 switch (rhs) {
2540 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2541 return os << "string_init";
2542 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2543 return os << "recursive";
2544 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2545 return os << "direct";
2546 case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
2547 return os << "dex_cache_pc_relative";
2548 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod:
2549 return os << "dex_cache_via_method";
2550 default:
2551 LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2552 UNREACHABLE();
2553 }
2554 }
2555
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2556 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2557 switch (rhs) {
2558 case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2559 return os << "explicit";
2560 case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2561 return os << "implicit";
2562 case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2563 return os << "none";
2564 default:
2565 LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2566 UNREACHABLE();
2567 }
2568 }
2569
InstructionDataEquals(const HInstruction * other) const2570 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2571 const HLoadClass* other_load_class = other->AsLoadClass();
2572 // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2573 // names rather than type indexes. However, we shall also have to re-think the hash code.
2574 if (type_index_ != other_load_class->type_index_ ||
2575 GetPackedFields() != other_load_class->GetPackedFields()) {
2576 return false;
2577 }
2578 switch (GetLoadKind()) {
2579 case LoadKind::kBootImageAddress:
2580 case LoadKind::kJitTableAddress: {
2581 ScopedObjectAccess soa(Thread::Current());
2582 return GetClass().Get() == other_load_class->GetClass().Get();
2583 }
2584 default:
2585 DCHECK(HasTypeReference(GetLoadKind()));
2586 return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2587 }
2588 }
2589
SetLoadKind(LoadKind load_kind)2590 void HLoadClass::SetLoadKind(LoadKind load_kind) {
2591 SetPackedField<LoadKindField>(load_kind);
2592
2593 if (load_kind != LoadKind::kDexCacheViaMethod &&
2594 load_kind != LoadKind::kReferrersClass) {
2595 RemoveAsUserOfInput(0u);
2596 SetRawInputAt(0u, nullptr);
2597 }
2598
2599 if (!NeedsEnvironment()) {
2600 RemoveEnvironment();
2601 SetSideEffects(SideEffects::None());
2602 }
2603 }
2604
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2605 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2606 switch (rhs) {
2607 case HLoadClass::LoadKind::kReferrersClass:
2608 return os << "ReferrersClass";
2609 case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
2610 return os << "BootImageLinkTimeAddress";
2611 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2612 return os << "BootImageLinkTimePcRelative";
2613 case HLoadClass::LoadKind::kBootImageAddress:
2614 return os << "BootImageAddress";
2615 case HLoadClass::LoadKind::kBssEntry:
2616 return os << "BssEntry";
2617 case HLoadClass::LoadKind::kJitTableAddress:
2618 return os << "JitTableAddress";
2619 case HLoadClass::LoadKind::kDexCacheViaMethod:
2620 return os << "DexCacheViaMethod";
2621 default:
2622 LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2623 UNREACHABLE();
2624 }
2625 }
2626
InstructionDataEquals(const HInstruction * other) const2627 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2628 const HLoadString* other_load_string = other->AsLoadString();
2629 // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2630 // rather than their indexes. However, we shall also have to re-think the hash code.
2631 if (string_index_ != other_load_string->string_index_ ||
2632 GetPackedFields() != other_load_string->GetPackedFields()) {
2633 return false;
2634 }
2635 switch (GetLoadKind()) {
2636 case LoadKind::kBootImageAddress:
2637 case LoadKind::kJitTableAddress: {
2638 ScopedObjectAccess soa(Thread::Current());
2639 return GetString().Get() == other_load_string->GetString().Get();
2640 }
2641 default:
2642 return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2643 }
2644 }
2645
SetLoadKind(LoadKind load_kind)2646 void HLoadString::SetLoadKind(LoadKind load_kind) {
2647 // Once sharpened, the load kind should not be changed again.
2648 DCHECK_EQ(GetLoadKind(), LoadKind::kDexCacheViaMethod);
2649 SetPackedField<LoadKindField>(load_kind);
2650
2651 if (load_kind != LoadKind::kDexCacheViaMethod) {
2652 RemoveAsUserOfInput(0u);
2653 SetRawInputAt(0u, nullptr);
2654 }
2655 if (!NeedsEnvironment()) {
2656 RemoveEnvironment();
2657 SetSideEffects(SideEffects::None());
2658 }
2659 }
2660
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2661 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2662 switch (rhs) {
2663 case HLoadString::LoadKind::kBootImageLinkTimeAddress:
2664 return os << "BootImageLinkTimeAddress";
2665 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2666 return os << "BootImageLinkTimePcRelative";
2667 case HLoadString::LoadKind::kBootImageAddress:
2668 return os << "BootImageAddress";
2669 case HLoadString::LoadKind::kBssEntry:
2670 return os << "BssEntry";
2671 case HLoadString::LoadKind::kJitTableAddress:
2672 return os << "JitTableAddress";
2673 case HLoadString::LoadKind::kDexCacheViaMethod:
2674 return os << "DexCacheViaMethod";
2675 default:
2676 LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2677 UNREACHABLE();
2678 }
2679 }
2680
RemoveEnvironmentUsers()2681 void HInstruction::RemoveEnvironmentUsers() {
2682 for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
2683 HEnvironment* user = use.GetUser();
2684 user->SetRawEnvAt(use.GetIndex(), nullptr);
2685 }
2686 env_uses_.clear();
2687 }
2688
2689 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)2690 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
2691 ArenaAllocator* allocator = GetArena();
2692
2693 if (cond->IsCondition() &&
2694 !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
2695 // Can't reverse floating point conditions. We have to use HBooleanNot in that case.
2696 HInstruction* lhs = cond->InputAt(0);
2697 HInstruction* rhs = cond->InputAt(1);
2698 HInstruction* replacement = nullptr;
2699 switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite*
2700 case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
2701 case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
2702 case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
2703 case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
2704 case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
2705 case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
2706 case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break;
2707 case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
2708 case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break;
2709 case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
2710 default:
2711 LOG(FATAL) << "Unexpected condition";
2712 UNREACHABLE();
2713 }
2714 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2715 return replacement;
2716 } else if (cond->IsIntConstant()) {
2717 HIntConstant* int_const = cond->AsIntConstant();
2718 if (int_const->IsFalse()) {
2719 return GetIntConstant(1);
2720 } else {
2721 DCHECK(int_const->IsTrue()) << int_const->GetValue();
2722 return GetIntConstant(0);
2723 }
2724 } else {
2725 HInstruction* replacement = new (allocator) HBooleanNot(cond);
2726 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2727 return replacement;
2728 }
2729 }
2730
operator <<(std::ostream & os,const MoveOperands & rhs)2731 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
2732 os << "["
2733 << " source=" << rhs.GetSource()
2734 << " destination=" << rhs.GetDestination()
2735 << " type=" << rhs.GetType()
2736 << " instruction=";
2737 if (rhs.GetInstruction() != nullptr) {
2738 os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
2739 } else {
2740 os << "null";
2741 }
2742 os << " ]";
2743 return os;
2744 }
2745
operator <<(std::ostream & os,TypeCheckKind rhs)2746 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
2747 switch (rhs) {
2748 case TypeCheckKind::kUnresolvedCheck:
2749 return os << "unresolved_check";
2750 case TypeCheckKind::kExactCheck:
2751 return os << "exact_check";
2752 case TypeCheckKind::kClassHierarchyCheck:
2753 return os << "class_hierarchy_check";
2754 case TypeCheckKind::kAbstractClassCheck:
2755 return os << "abstract_class_check";
2756 case TypeCheckKind::kInterfaceCheck:
2757 return os << "interface_check";
2758 case TypeCheckKind::kArrayObjectCheck:
2759 return os << "array_object_check";
2760 case TypeCheckKind::kArrayCheck:
2761 return os << "array_check";
2762 default:
2763 LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
2764 UNREACHABLE();
2765 }
2766 }
2767
operator <<(std::ostream & os,const MemBarrierKind & kind)2768 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
2769 switch (kind) {
2770 case MemBarrierKind::kAnyStore:
2771 return os << "AnyStore";
2772 case MemBarrierKind::kLoadAny:
2773 return os << "LoadAny";
2774 case MemBarrierKind::kStoreStore:
2775 return os << "StoreStore";
2776 case MemBarrierKind::kAnyAny:
2777 return os << "AnyAny";
2778 case MemBarrierKind::kNTStoreStore:
2779 return os << "NTStoreStore";
2780
2781 default:
2782 LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
2783 UNREACHABLE();
2784 }
2785 }
2786
2787 } // namespace art
2788