1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6 #define V8_S390_MACRO_ASSEMBLER_S390_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_r2};
18 const Register kReturnRegister1 = {Register::kCode_r3};
19 const Register kReturnRegister2 = {Register::kCode_r4};
20 const Register kJSFunctionRegister = {Register::kCode_r3};
21 const Register kContextRegister = {Register::kCode_r13};
22 const Register kAllocateSizeRegister = {Register::kCode_r3};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
31 
32 // ----------------------------------------------------------------------------
33 // Static helper functions
34 
35 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)36 inline MemOperand FieldMemOperand(Register object, int offset) {
37   return MemOperand(object, offset - kHeapObjectTag);
38 }
39 
40 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,Register index,int offset)41 inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
42   return MemOperand(object, index, offset - kHeapObjectTag);
43 }
44 
45 // Generate a MemOperand for loading a field from Root register
RootMemOperand(Heap::RootListIndex index)46 inline MemOperand RootMemOperand(Heap::RootListIndex index) {
47   return MemOperand(kRootRegister, index << kPointerSizeLog2);
48 }
49 
50 // Flags used for AllocateHeapNumber
51 enum TaggingMode {
52   // Tag the result.
53   TAG_RESULT,
54   // Don't tag
55   DONT_TAG_RESULT
56 };
57 
58 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60 enum PointersToHereCheck {
61   kPointersToHereMaybeInteresting,
62   kPointersToHereAreAlwaysInteresting
63 };
64 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
65 
66 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
67                                    Register reg3 = no_reg,
68                                    Register reg4 = no_reg,
69                                    Register reg5 = no_reg,
70                                    Register reg6 = no_reg);
71 
72 #ifdef DEBUG
73 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
74                 Register reg4 = no_reg, Register reg5 = no_reg,
75                 Register reg6 = no_reg, Register reg7 = no_reg,
76                 Register reg8 = no_reg, Register reg9 = no_reg,
77                 Register reg10 = no_reg);
78 #endif
79 
80 // These exist to provide portability between 32 and 64bit
81 #if V8_TARGET_ARCH_S390X
82 #define Div divd
83 
84 // The length of the arithmetic operation is the length
85 // of the register.
86 
87 // Length:
88 // H = halfword
89 // W = word
90 
91 // arithmetics and bitwise
92 #define AddMI agsi
93 #define AddRR agr
94 #define SubRR sgr
95 #define AndRR ngr
96 #define OrRR ogr
97 #define XorRR xgr
98 #define LoadComplementRR lcgr
99 #define LoadNegativeRR lngr
100 
101 // Distinct Operands
102 #define AddP_RRR agrk
103 #define AddPImm_RRI aghik
104 #define AddLogicalP_RRR algrk
105 #define SubP_RRR sgrk
106 #define SubLogicalP_RRR slgrk
107 #define AndP_RRR ngrk
108 #define OrP_RRR ogrk
109 #define XorP_RRR xgrk
110 
111 // Load / Store
112 #define LoadRR lgr
113 #define LoadAndTestRR ltgr
114 #define LoadImmP lghi
115 
116 // Compare
117 #define CmpPH cghi
118 #define CmpLogicalPW clgfi
119 
120 // Shifts
121 #define ShiftLeftP sllg
122 #define ShiftRightP srlg
123 #define ShiftLeftArithP slag
124 #define ShiftRightArithP srag
125 #else
126 
127 // arithmetics and bitwise
128 // Reg2Reg
129 #define AddMI asi
130 #define AddRR ar
131 #define SubRR sr
132 #define AndRR nr
133 #define OrRR or_z
134 #define XorRR xr
135 #define LoadComplementRR lcr
136 #define LoadNegativeRR lnr
137 
138 // Distinct Operands
139 #define AddP_RRR ark
140 #define AddPImm_RRI ahik
141 #define AddLogicalP_RRR alrk
142 #define SubP_RRR srk
143 #define SubLogicalP_RRR slrk
144 #define AndP_RRR nrk
145 #define OrP_RRR ork
146 #define XorP_RRR xrk
147 
148 // Load / Store
149 #define LoadRR lr
150 #define LoadAndTestRR ltr
151 #define LoadImmP lhi
152 
153 // Compare
154 #define CmpPH chi
155 #define CmpLogicalPW clfi
156 
157 // Shifts
158 #define ShiftLeftP ShiftLeft
159 #define ShiftRightP ShiftRight
160 #define ShiftLeftArithP ShiftLeftArith
161 #define ShiftRightArithP ShiftRightArith
162 
163 #endif
164 
165 // MacroAssembler implements a collection of frequently used macros.
166 class MacroAssembler : public Assembler {
167  public:
168   MacroAssembler(Isolate* isolate, void* buffer, int size,
169                  CodeObjectRequired create_code_object);
170 
171   // Returns the size of a call in instructions.
172   static int CallSize(Register target);
173   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
174   static int CallSizeNotPredictableCodeSize(Address target,
175                                             RelocInfo::Mode rmode,
176                                             Condition cond = al);
177 
178   // Jump, Call, and Ret pseudo instructions implementing inter-working.
179   void Jump(Register target);
180   void JumpToJSEntry(Register target);
181   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
182             CRegister cr = cr7);
183   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
184   void Call(Register target);
185   void CallJSEntry(Register target);
186   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
187   int CallSize(Handle<Code> code,
188                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
189                TypeFeedbackId ast_id = TypeFeedbackId::None(),
190                Condition cond = al);
191   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
192             TypeFeedbackId ast_id = TypeFeedbackId::None(),
193             Condition cond = al);
Ret()194   void Ret() { b(r14); }
Ret(Condition cond)195   void Ret(Condition cond) { b(cond, r14); }
196 
197   // Emit code that loads |parameter_index|'th parameter from the stack to
198   // the register according to the CallInterfaceDescriptor definition.
199   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
200   // below the caller's sp.
201   template <class Descriptor>
202   void LoadParameterFromStack(
203       Register reg, typename Descriptor::ParameterIndices parameter_index,
204       int sp_to_ra_offset_in_words = 0) {
205     DCHECK(Descriptor::kPassLastArgsOnStack);
206     UNIMPLEMENTED();
207   }
208 
209   // Emit code to discard a non-negative number of pointer-sized elements
210   // from the stack, clobbering only the sp register.
211   void Drop(int count);
212   void Drop(Register count, Register scratch = r0);
213 
Ret(int drop)214   void Ret(int drop) {
215     Drop(drop);
216     Ret();
217   }
218 
219   void Call(Label* target);
220 
221   // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)222   void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
223   void Move(Register dst, Handle<Object> value);
224   void Move(Register dst, Register src, Condition cond = al);
225   void Move(DoubleRegister dst, DoubleRegister src);
226 
227   void MultiPush(RegList regs, Register location = sp);
228   void MultiPop(RegList regs, Register location = sp);
229 
230   void MultiPushDoubles(RegList dregs, Register location = sp);
231   void MultiPopDoubles(RegList dregs, Register location = sp);
232 
233   // Load an object from the root table.
234   void LoadRoot(Register destination, Heap::RootListIndex index,
235                 Condition cond = al);
236   // Store an object to the root table.
237   void StoreRoot(Register source, Heap::RootListIndex index,
238                  Condition cond = al);
239 
240   //--------------------------------------------------------------------------
241   // S390 Macro Assemblers for Instructions
242   //--------------------------------------------------------------------------
243 
244   // Arithmetic Operations
245 
246   // Add (Register - Immediate)
247   void Add32(Register dst, const Operand& imm);
248   void AddP(Register dst, const Operand& imm);
249   void Add32(Register dst, Register src, const Operand& imm);
250   void AddP(Register dst, Register src, const Operand& imm);
251 
252   // Add (Register - Register)
253   void Add32(Register dst, Register src);
254   void AddP(Register dst, Register src);
255   void AddP_ExtendSrc(Register dst, Register src);
256   void Add32(Register dst, Register src1, Register src2);
257   void AddP(Register dst, Register src1, Register src2);
258   void AddP_ExtendSrc(Register dst, Register src1, Register src2);
259 
260   // Add (Register - Mem)
261   void Add32(Register dst, const MemOperand& opnd);
262   void AddP(Register dst, const MemOperand& opnd);
263   void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
264 
265   // Add (Mem - Immediate)
266   void Add32(const MemOperand& opnd, const Operand& imm);
267   void AddP(const MemOperand& opnd, const Operand& imm);
268 
269   // Add Logical (Register - Register)
270   void AddLogical32(Register dst, Register src1, Register src2);
271 
272   // Add Logical With Carry (Register - Register)
273   void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
274 
275   // Add Logical (Register - Immediate)
276   void AddLogical(Register dst, const Operand& imm);
277   void AddLogicalP(Register dst, const Operand& imm);
278 
279   // Add Logical (Register - Mem)
280   void AddLogical(Register dst, const MemOperand& opnd);
281   void AddLogicalP(Register dst, const MemOperand& opnd);
282 
283   // Subtract (Register - Immediate)
284   void Sub32(Register dst, const Operand& imm);
285   void SubP(Register dst, const Operand& imm);
286   void Sub32(Register dst, Register src, const Operand& imm);
287   void SubP(Register dst, Register src, const Operand& imm);
288 
289   // Subtract (Register - Register)
290   void Sub32(Register dst, Register src);
291   void SubP(Register dst, Register src);
292   void SubP_ExtendSrc(Register dst, Register src);
293   void Sub32(Register dst, Register src1, Register src2);
294   void SubP(Register dst, Register src1, Register src2);
295   void SubP_ExtendSrc(Register dst, Register src1, Register src2);
296 
297   // Subtract (Register - Mem)
298   void Sub32(Register dst, const MemOperand& opnd);
299   void SubP(Register dst, const MemOperand& opnd);
300   void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
301 
302   // Subtract Logical (Register - Mem)
303   void SubLogical(Register dst, const MemOperand& opnd);
304   void SubLogicalP(Register dst, const MemOperand& opnd);
305   void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
306   // Subtract Logical 32-bit
307   void SubLogical32(Register dst, Register src1, Register src2);
308   // Subtract Logical With Borrow 32-bit
309   void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
310 
311   // Multiply
312   void MulP(Register dst, const Operand& opnd);
313   void MulP(Register dst, Register src);
314   void MulP(Register dst, const MemOperand& opnd);
315   void Mul(Register dst, Register src1, Register src2);
316   void Mul32(Register dst, const MemOperand& src1);
317   void Mul32(Register dst, Register src1);
318   void Mul32(Register dst, const Operand& src1);
319   void Mul64(Register dst, const MemOperand& src1);
320   void Mul64(Register dst, Register src1);
321   void Mul64(Register dst, const Operand& src1);
322 
323   // Divide
324   void DivP(Register dividend, Register divider);
325 
326   // Compare
327   void Cmp32(Register src1, Register src2);
328   void CmpP(Register src1, Register src2);
329   void Cmp32(Register dst, const Operand& opnd);
330   void CmpP(Register dst, const Operand& opnd);
331   void Cmp32(Register dst, const MemOperand& opnd);
332   void CmpP(Register dst, const MemOperand& opnd);
333 
334   // Compare Logical
335   void CmpLogical32(Register src1, Register src2);
336   void CmpLogicalP(Register src1, Register src2);
337   void CmpLogical32(Register src1, const Operand& opnd);
338   void CmpLogicalP(Register src1, const Operand& opnd);
339   void CmpLogical32(Register dst, const MemOperand& opnd);
340   void CmpLogicalP(Register dst, const MemOperand& opnd);
341 
342   // Compare Logical Byte (CLI/CLIY)
343   void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
344 
345   // Load 32bit
346   void Load(Register dst, const MemOperand& opnd);
347   void Load(Register dst, const Operand& opnd);
348   void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
349   void LoadW(Register dst, Register src);
350   void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
351   void LoadlW(Register dst, Register src);
352   void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
353   void LoadLogicalHalfWordP(Register dst, Register src);
354   void LoadB(Register dst, const MemOperand& opnd);
355   void LoadB(Register dst, Register src);
356   void LoadlB(Register dst, const MemOperand& opnd);
357 
358   void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
359   void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
360 
361   // Load And Test
362   void LoadAndTest32(Register dst, Register src);
363   void LoadAndTestP_ExtendSrc(Register dst, Register src);
364   void LoadAndTestP(Register dst, Register src);
365 
366   void LoadAndTest32(Register dst, const MemOperand& opnd);
367   void LoadAndTestP(Register dst, const MemOperand& opnd);
368 
369   // Load Floating Point
370   void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
371   void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
372   void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
373 
374   // Load On Condition
375   void LoadOnConditionP(Condition cond, Register dst, Register src);
376 
377   // Store Floating Point
378   void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
379   void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
380   void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
381                             DoubleRegister scratch);
382 
383   void Branch(Condition c, const Operand& opnd);
384   void BranchOnCount(Register r1, Label* l);
385 
386   // Shifts
387   void ShiftLeft(Register dst, Register src, Register val);
388   void ShiftLeft(Register dst, Register src, const Operand& val);
389   void ShiftRight(Register dst, Register src, Register val);
390   void ShiftRight(Register dst, Register src, const Operand& val);
391   void ShiftLeftArith(Register dst, Register src, Register shift);
392   void ShiftLeftArith(Register dst, Register src, const Operand& val);
393   void ShiftRightArith(Register dst, Register src, Register shift);
394   void ShiftRightArith(Register dst, Register src, const Operand& val);
395 
396   void ClearRightImm(Register dst, Register src, const Operand& val);
397 
398   // Bitwise operations
399   void And(Register dst, Register src);
400   void AndP(Register dst, Register src);
401   void And(Register dst, Register src1, Register src2);
402   void AndP(Register dst, Register src1, Register src2);
403   void And(Register dst, const MemOperand& opnd);
404   void AndP(Register dst, const MemOperand& opnd);
405   void And(Register dst, const Operand& opnd);
406   void AndP(Register dst, const Operand& opnd);
407   void And(Register dst, Register src, const Operand& opnd);
408   void AndP(Register dst, Register src, const Operand& opnd);
409   void Or(Register dst, Register src);
410   void OrP(Register dst, Register src);
411   void Or(Register dst, Register src1, Register src2);
412   void OrP(Register dst, Register src1, Register src2);
413   void Or(Register dst, const MemOperand& opnd);
414   void OrP(Register dst, const MemOperand& opnd);
415   void Or(Register dst, const Operand& opnd);
416   void OrP(Register dst, const Operand& opnd);
417   void Or(Register dst, Register src, const Operand& opnd);
418   void OrP(Register dst, Register src, const Operand& opnd);
419   void Xor(Register dst, Register src);
420   void XorP(Register dst, Register src);
421   void Xor(Register dst, Register src1, Register src2);
422   void XorP(Register dst, Register src1, Register src2);
423   void Xor(Register dst, const MemOperand& opnd);
424   void XorP(Register dst, const MemOperand& opnd);
425   void Xor(Register dst, const Operand& opnd);
426   void XorP(Register dst, const Operand& opnd);
427   void Xor(Register dst, Register src, const Operand& opnd);
428   void XorP(Register dst, Register src, const Operand& opnd);
429   void Popcnt32(Register dst, Register src);
430   void Not32(Register dst, Register src = no_reg);
431   void Not64(Register dst, Register src = no_reg);
432   void NotP(Register dst, Register src = no_reg);
433 
434 #ifdef V8_TARGET_ARCH_S390X
435   void Popcnt64(Register dst, Register src);
436 #endif
437 
438   void mov(Register dst, const Operand& src);
439 
CleanUInt32(Register x)440   void CleanUInt32(Register x) {
441 #ifdef V8_TARGET_ARCH_S390X
442     llgfr(x, x);
443 #endif
444   }
445 
446   // ---------------------------------------------------------------------------
447   // GC Support
448 
449   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
450                                            Register address);
451 
452   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
453 
454   // Record in the remembered set the fact that we have a pointer to new space
455   // at the address pointed to by the addr register.  Only works if addr is not
456   // in new space.
457   void RememberedSetHelper(Register object,  // Used for debug code.
458                            Register addr, Register scratch,
459                            SaveFPRegsMode save_fp,
460                            RememberedSetFinalAction and_then);
461 
462   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
463                      Label* condition_met);
464 
465   // Check if object is in new space.  Jumps if the object is not in new space.
466   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)467   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
468     InNewSpace(object, scratch, eq, branch);
469   }
470 
471   // Check if object is in new space.  Jumps if the object is in new space.
472   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)473   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
474     InNewSpace(object, scratch, ne, branch);
475   }
476 
477   // Check if an object has a given incremental marking color.
478   void HasColor(Register object, Register scratch0, Register scratch1,
479                 Label* has_color, int first_bit, int second_bit);
480 
481   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
482                    Label* on_black);
483 
484   // Checks the color of an object.  If the object is white we jump to the
485   // incremental marker.
486   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
487                    Register scratch3, Label* value_is_white);
488 
489   // Notify the garbage collector that we wrote a pointer into an object.
490   // |object| is the object being stored into, |value| is the object being
491   // stored.  value and scratch registers are clobbered by the operation.
492   // The offset is the offset from the start of the object, not the offset from
493   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
494   void RecordWriteField(
495       Register object, int offset, Register value, Register scratch,
496       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
497       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
498       SmiCheck smi_check = INLINE_SMI_CHECK,
499       PointersToHereCheck pointers_to_here_check_for_value =
500           kPointersToHereMaybeInteresting);
501 
502   // As above, but the offset has the tag presubtracted.  For use with
503   // MemOperand(reg, off).
504   inline void RecordWriteContextSlot(
505       Register context, int offset, Register value, Register scratch,
506       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
507       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
508       SmiCheck smi_check = INLINE_SMI_CHECK,
509       PointersToHereCheck pointers_to_here_check_for_value =
510           kPointersToHereMaybeInteresting) {
511     RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
512                      lr_status, save_fp, remembered_set_action, smi_check,
513                      pointers_to_here_check_for_value);
514   }
515 
516   // Notify the garbage collector that we wrote a code entry into a
517   // JSFunction. Only scratch is clobbered by the operation.
518   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
519                                  Register scratch);
520 
521   void RecordWriteForMap(Register object, Register map, Register dst,
522                          LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
523 
524   // For a given |object| notify the garbage collector that the slot |address|
525   // has been written.  |value| is the object being stored. The value and
526   // address registers are clobbered by the operation.
527   void RecordWrite(
528       Register object, Register address, Register value,
529       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
530       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
531       SmiCheck smi_check = INLINE_SMI_CHECK,
532       PointersToHereCheck pointers_to_here_check_for_value =
533           kPointersToHereMaybeInteresting);
534 
push(Register src)535   void push(Register src) {
536     lay(sp, MemOperand(sp, -kPointerSize));
537     StoreP(src, MemOperand(sp));
538   }
539 
pop(Register dst)540   void pop(Register dst) {
541     LoadP(dst, MemOperand(sp));
542     la(sp, MemOperand(sp, kPointerSize));
543   }
544 
pop()545   void pop() { la(sp, MemOperand(sp, kPointerSize)); }
546 
Push(Register src)547   void Push(Register src) { push(src); }
548 
549   // Push a handle.
550   void Push(Handle<Object> handle);
Push(Smi * smi)551   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
552 
553   // Push two registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)554   void Push(Register src1, Register src2) {
555     lay(sp, MemOperand(sp, -kPointerSize * 2));
556     StoreP(src1, MemOperand(sp, kPointerSize));
557     StoreP(src2, MemOperand(sp, 0));
558   }
559 
560   // Push three registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)561   void Push(Register src1, Register src2, Register src3) {
562     lay(sp, MemOperand(sp, -kPointerSize * 3));
563     StoreP(src1, MemOperand(sp, kPointerSize * 2));
564     StoreP(src2, MemOperand(sp, kPointerSize));
565     StoreP(src3, MemOperand(sp, 0));
566   }
567 
568   // Push four registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)569   void Push(Register src1, Register src2, Register src3, Register src4) {
570     lay(sp, MemOperand(sp, -kPointerSize * 4));
571     StoreP(src1, MemOperand(sp, kPointerSize * 3));
572     StoreP(src2, MemOperand(sp, kPointerSize * 2));
573     StoreP(src3, MemOperand(sp, kPointerSize));
574     StoreP(src4, MemOperand(sp, 0));
575   }
576 
577   // Push five registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)578   void Push(Register src1, Register src2, Register src3, Register src4,
579             Register src5) {
580     DCHECK(!src1.is(src2));
581     DCHECK(!src1.is(src3));
582     DCHECK(!src2.is(src3));
583     DCHECK(!src1.is(src4));
584     DCHECK(!src2.is(src4));
585     DCHECK(!src3.is(src4));
586     DCHECK(!src1.is(src5));
587     DCHECK(!src2.is(src5));
588     DCHECK(!src3.is(src5));
589     DCHECK(!src4.is(src5));
590 
591     lay(sp, MemOperand(sp, -kPointerSize * 5));
592     StoreP(src1, MemOperand(sp, kPointerSize * 4));
593     StoreP(src2, MemOperand(sp, kPointerSize * 3));
594     StoreP(src3, MemOperand(sp, kPointerSize * 2));
595     StoreP(src4, MemOperand(sp, kPointerSize));
596     StoreP(src5, MemOperand(sp, 0));
597   }
598 
Pop(Register dst)599   void Pop(Register dst) { pop(dst); }
600 
601   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)602   void Pop(Register src1, Register src2) {
603     LoadP(src2, MemOperand(sp, 0));
604     LoadP(src1, MemOperand(sp, kPointerSize));
605     la(sp, MemOperand(sp, 2 * kPointerSize));
606   }
607 
608   // Pop three registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)609   void Pop(Register src1, Register src2, Register src3) {
610     LoadP(src3, MemOperand(sp, 0));
611     LoadP(src2, MemOperand(sp, kPointerSize));
612     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
613     la(sp, MemOperand(sp, 3 * kPointerSize));
614   }
615 
616   // Pop four registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4)617   void Pop(Register src1, Register src2, Register src3, Register src4) {
618     LoadP(src4, MemOperand(sp, 0));
619     LoadP(src3, MemOperand(sp, kPointerSize));
620     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
621     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
622     la(sp, MemOperand(sp, 4 * kPointerSize));
623   }
624 
625   // Pop five registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4,Register src5)626   void Pop(Register src1, Register src2, Register src3, Register src4,
627            Register src5) {
628     LoadP(src5, MemOperand(sp, 0));
629     LoadP(src4, MemOperand(sp, kPointerSize));
630     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
631     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
632     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
633     la(sp, MemOperand(sp, 5 * kPointerSize));
634   }
635 
636   // Push a fixed frame, consisting of lr, fp, constant pool.
637   void PushCommonFrame(Register marker_reg = no_reg);
638 
639   // Push a standard frame, consisting of lr, fp, constant pool,
640   // context and JS function
641   void PushStandardFrame(Register function_reg);
642 
643   void PopCommonFrame(Register marker_reg = no_reg);
644 
645   // Restore caller's frame pointer and return address prior to being
646   // overwritten by tail call stack preparation.
647   void RestoreFrameStateForTailCall();
648 
649   // Push and pop the registers that can hold pointers, as defined by the
650   // RegList constant kSafepointSavedRegisters.
651   void PushSafepointRegisters();
652   void PopSafepointRegisters();
653   // Store value in register src in the safepoint stack slot for
654   // register dst.
655   void StoreToSafepointRegisterSlot(Register src, Register dst);
656   // Load the value of the src register from its safepoint stack slot
657   // into register dst.
658   void LoadFromSafepointRegisterSlot(Register dst, Register src);
659 
660   // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
661   // from C.
662   // Does not handle errors.
663   void FlushICache(Register address, size_t size, Register scratch);
664 
665   // If the value is a NaN, canonicalize the value else, do nothing.
666   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
CanonicalizeNaN(const DoubleRegister value)667   void CanonicalizeNaN(const DoubleRegister value) {
668     CanonicalizeNaN(value, value);
669   }
670 
671   // Converts the integer (untagged smi) in |src| to a double, storing
672   // the result to |dst|
673   void ConvertIntToDouble(Register src, DoubleRegister dst);
674 
675   // Converts the unsigned integer (untagged smi) in |src| to
676   // a double, storing the result to |dst|
677   void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
678 
679   // Converts the integer (untagged smi) in |src| to
680   // a float, storing the result in |dst|
681   void ConvertIntToFloat(Register src, DoubleRegister dst);
682 
683   // Converts the unsigned integer (untagged smi) in |src| to
684   // a float, storing the result in |dst|
685   void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
686 
687 #if V8_TARGET_ARCH_S390X
688   void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
689   void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
690   void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
691   void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
692 #endif
693 
694   void MovIntToFloat(DoubleRegister dst, Register src);
695   void MovFloatToInt(Register dst, DoubleRegister src);
696   void MovDoubleToInt64(Register dst, DoubleRegister src);
697   void MovInt64ToDouble(DoubleRegister dst, Register src);
698   // Converts the double_input to an integer.  Note that, upon return,
699   // the contents of double_dst will also hold the fixed point representation.
700   void ConvertFloat32ToInt64(const DoubleRegister double_input,
701 #if !V8_TARGET_ARCH_S390X
702                              const Register dst_hi,
703 #endif
704                              const Register dst,
705                              const DoubleRegister double_dst,
706                              FPRoundingMode rounding_mode = kRoundToZero);
707 
708   // Converts the double_input to an integer.  Note that, upon return,
709   // the contents of double_dst will also hold the fixed point representation.
710   void ConvertDoubleToInt64(const DoubleRegister double_input,
711 #if !V8_TARGET_ARCH_S390X
712                             const Register dst_hi,
713 #endif
714                             const Register dst, const DoubleRegister double_dst,
715                             FPRoundingMode rounding_mode = kRoundToZero);
716 
717   void ConvertFloat32ToInt32(const DoubleRegister double_input,
718                              const Register dst,
719                              const DoubleRegister double_dst,
720                              FPRoundingMode rounding_mode);
721   void ConvertFloat32ToUnsignedInt32(
722       const DoubleRegister double_input, const Register dst,
723       const DoubleRegister double_dst,
724       FPRoundingMode rounding_mode = kRoundToZero);
725 #if V8_TARGET_ARCH_S390X
726   // Converts the double_input to an unsigned integer.  Note that, upon return,
727   // the contents of double_dst will also hold the fixed point representation.
728   void ConvertDoubleToUnsignedInt64(
729       const DoubleRegister double_input, const Register dst,
730       const DoubleRegister double_dst,
731       FPRoundingMode rounding_mode = kRoundToZero);
732   void ConvertFloat32ToUnsignedInt64(
733       const DoubleRegister double_input, const Register dst,
734       const DoubleRegister double_dst,
735       FPRoundingMode rounding_mode = kRoundToZero);
736 #endif
737 
738 #if !V8_TARGET_ARCH_S390X
739   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
740                      Register src_high, Register scratch, Register shift);
741   void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
742                      Register src_high, uint32_t shift);
743   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
744                       Register src_high, Register scratch, Register shift);
745   void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
746                       Register src_high, uint32_t shift);
747   void ShiftRightArithPair(Register dst_low, Register dst_high,
748                            Register src_low, Register src_high,
749                            Register scratch, Register shift);
750   void ShiftRightArithPair(Register dst_low, Register dst_high,
751                            Register src_low, Register src_high, uint32_t shift);
752 #endif
753 
754   // Generates function and stub prologue code.
755   void StubPrologue(StackFrame::Type type, Register base = no_reg,
756                     int prologue_offset = 0);
757   void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
758 
759   // Enter exit frame.
760   // stack_space - extra stack space, used for parameters before call to C.
761   // At least one slot (for the return address) should be provided.
762   void EnterExitFrame(bool save_doubles, int stack_space = 1,
763                       StackFrame::Type frame_type = StackFrame::EXIT);
764 
765   // Leave the current exit frame. Expects the return value in r0.
766   // Expect the number of values, pushed prior to the exit frame, to
767   // remove in a register (or no_reg, if there is nothing to remove).
768   void LeaveExitFrame(bool save_doubles, Register argument_count,
769                       bool restore_context,
770                       bool argument_count_is_length = false);
771 
772   // Get the actual activation frame alignment for target environment.
773   static int ActivationFrameAlignment();
774 
775   void LoadContext(Register dst, int context_chain_length);
776 
777   // Load the global object from the current context.
LoadGlobalObject(Register dst)778   void LoadGlobalObject(Register dst) {
779     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
780   }
781 
782   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)783   void LoadGlobalProxy(Register dst) {
784     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
785   }
786 
787   // Conditionally load the cached Array transitioned map of type
788   // transitioned_kind from the native context if the map in register
789   // map_in_out is the cached Array map in the native context of
790   // expected_kind.
791   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
792                                            ElementsKind transitioned_kind,
793                                            Register map_in_out,
794                                            Register scratch,
795                                            Label* no_map_match);
796 
797   void LoadNativeContextSlot(int index, Register dst);
798 
799   // Load the initial map from the global function. The registers
800   // function and map can be the same, function is then overwritten.
801   void LoadGlobalFunctionInitialMap(Register function, Register map,
802                                     Register scratch);
803 
InitializeRootRegister()804   void InitializeRootRegister() {
805     ExternalReference roots_array_start =
806         ExternalReference::roots_array_start(isolate());
807     mov(kRootRegister, Operand(roots_array_start));
808   }
809 
810   // ----------------------------------------------------------------
811   // new S390 macro-assembler interfaces that are slightly higher level
812   // than assembler-s390 and may generate variable length sequences
813 
814   // load a literal signed int value <value> to GPR <dst>
815   void LoadIntLiteral(Register dst, int value);
816 
817   // load an SMI value <value> to GPR <dst>
818   void LoadSmiLiteral(Register dst, Smi* smi);
819 
820   // load a literal double value <value> to FPR <result>
821   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
822   void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
823                          Register scratch);
824 
825   void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
826 
827   void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
828 
829   void LoadHalfWordP(Register dst, const MemOperand& mem,
830                      Register scratch = no_reg);
831 
832   void StoreHalfWord(Register src, const MemOperand& mem,
833                      Register scratch = r0);
834   void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
835 
836   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
837                           Register scratch = no_reg);
838   void StoreRepresentation(Register src, const MemOperand& mem,
839                            Representation r, Register scratch = no_reg);
840 
841   void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
842   void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
843   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
844   void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
845   void AndSmiLiteral(Register dst, Register src, Smi* smi);
846 
847   // Set new rounding mode RN to FPSCR
848   void SetRoundingMode(FPRoundingMode RN);
849 
850   // reset rounding mode to default (kRoundToNearest)
851   void ResetRoundingMode();
852 
853   // These exist to provide portability between 32 and 64bit
854   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
855   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
856   void StoreP(const MemOperand& mem, const Operand& opnd,
857               Register scratch = no_reg);
858   void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
859   void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
860   void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
861   void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
862 
863   // Cleanse pointer address on 31bit by zero out top  bit.
864   // This is a NOP on 64-bit.
CleanseP(Register src)865   void CleanseP(Register src) {
866 #if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
867     nilh(src, Operand(0x7FFF));
868 #endif
869   }
870 
871   // ---------------------------------------------------------------------------
872   // JavaScript invokes
873 
874   // Set up call kind marking in ecx. The method takes ecx as an
875   // explicit first parameter to make the code more readable at the
876   // call sites.
877   // void SetCallKind(Register dst, CallKind kind);
878 
879   // Removes current frame and its arguments from the stack preserving
880   // the arguments and a return address pushed to the stack for the next call.
881   // Both |callee_args_count| and |caller_args_count_reg| do not include
882   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
883   // is trashed.
884   void PrepareForTailCall(const ParameterCount& callee_args_count,
885                           Register caller_args_count_reg, Register scratch0,
886                           Register scratch1);
887 
888   // Invoke the JavaScript function code by either calling or jumping.
889   void InvokeFunctionCode(Register function, Register new_target,
890                           const ParameterCount& expected,
891                           const ParameterCount& actual, InvokeFlag flag,
892                           const CallWrapper& call_wrapper);
893 
894   void FloodFunctionIfStepping(Register fun, Register new_target,
895                                const ParameterCount& expected,
896                                const ParameterCount& actual);
897 
898   // Invoke the JavaScript function in the given register. Changes the
899   // current context to the context in the function before invoking.
900   void InvokeFunction(Register function, Register new_target,
901                       const ParameterCount& actual, InvokeFlag flag,
902                       const CallWrapper& call_wrapper);
903 
904   void InvokeFunction(Register function, const ParameterCount& expected,
905                       const ParameterCount& actual, InvokeFlag flag,
906                       const CallWrapper& call_wrapper);
907 
908   void InvokeFunction(Handle<JSFunction> function,
909                       const ParameterCount& expected,
910                       const ParameterCount& actual, InvokeFlag flag,
911                       const CallWrapper& call_wrapper);
912 
913   void IsObjectJSStringType(Register object, Register scratch, Label* fail);
914 
915   void IsObjectNameType(Register object, Register scratch, Label* fail);
916 
917   // ---------------------------------------------------------------------------
918   // Debugger Support
919 
920   void DebugBreak();
921 
922   // ---------------------------------------------------------------------------
923   // Exception handling
924 
925   // Push a new stack handler and link into stack handler chain.
926   void PushStackHandler();
927 
928   // Unlink the stack handler on top of the stack from the stack handler chain.
929   // Must preserve the result register.
930   void PopStackHandler();
931 
932   // ---------------------------------------------------------------------------
933   // Inline caching support
934 
935   void GetNumberHash(Register t0, Register scratch);
936 
MarkCode(NopMarkerTypes type)937   inline void MarkCode(NopMarkerTypes type) { nop(type); }
938 
939   // Check if the given instruction is a 'type' marker.
940   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
941   // These instructions are generated to mark special location in the code,
942   // like some special IC code.
IsMarkedCode(Instr instr,int type)943   static inline bool IsMarkedCode(Instr instr, int type) {
944     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
945     return IsNop(instr, type);
946   }
947 
GetCodeMarker(Instr instr)948   static inline int GetCodeMarker(Instr instr) {
949     int dst_reg_offset = 12;
950     int dst_mask = 0xf << dst_reg_offset;
951     int src_mask = 0xf;
952     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
953     int src_reg = instr & src_mask;
954     uint32_t non_register_mask = ~(dst_mask | src_mask);
955     uint32_t mov_mask = al | 13 << 21;
956 
957     // Return <n> if we have a mov rn rn, else return -1.
958     int type = ((instr & non_register_mask) == mov_mask) &&
959                        (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
960                        (dst_reg < LAST_CODE_MARKER)
961                    ? src_reg
962                    : -1;
963     DCHECK((type == -1) ||
964            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
965     return type;
966   }
967 
968   // ---------------------------------------------------------------------------
969   // Allocation support
970 
971   // Allocate an object in new space or old pointer space. The object_size is
972   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
973   // is passed. If the space is exhausted control continues at the gc_required
974   // label. The allocated object is returned in result. If the flag
975   // tag_allocated_object is true the result is tagged as as a heap object.
976   // All registers are clobbered also when control continues at the gc_required
977   // label.
978   void Allocate(int object_size, Register result, Register scratch1,
979                 Register scratch2, Label* gc_required, AllocationFlags flags);
980 
981   void Allocate(Register object_size, Register result, Register result_end,
982                 Register scratch, Label* gc_required, AllocationFlags flags);
983 
984   // FastAllocate is right now only used for folded allocations. It just
985   // increments the top pointer without checking against limit. This can only
986   // be done if it was proved earlier that the allocation will succeed.
987   void FastAllocate(int object_size, Register result, Register scratch1,
988                     Register scratch2, AllocationFlags flags);
989 
990   void FastAllocate(Register object_size, Register result, Register result_end,
991                     Register scratch, AllocationFlags flags);
992 
993   void AllocateTwoByteString(Register result, Register length,
994                              Register scratch1, Register scratch2,
995                              Register scratch3, Label* gc_required);
996   void AllocateOneByteString(Register result, Register length,
997                              Register scratch1, Register scratch2,
998                              Register scratch3, Label* gc_required);
999   void AllocateTwoByteConsString(Register result, Register length,
1000                                  Register scratch1, Register scratch2,
1001                                  Label* gc_required);
1002   void AllocateOneByteConsString(Register result, Register length,
1003                                  Register scratch1, Register scratch2,
1004                                  Label* gc_required);
1005   void AllocateTwoByteSlicedString(Register result, Register length,
1006                                    Register scratch1, Register scratch2,
1007                                    Label* gc_required);
1008   void AllocateOneByteSlicedString(Register result, Register length,
1009                                    Register scratch1, Register scratch2,
1010                                    Label* gc_required);
1011 
1012   // Allocates a heap number or jumps to the gc_required label if the young
1013   // space is full and a scavenge is needed. All registers are clobbered also
1014   // when control continues at the gc_required label.
1015   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
1016                           Register heap_number_map, Label* gc_required,
1017                           MutableMode mode = IMMUTABLE);
1018   void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
1019                                    Register scratch1, Register scratch2,
1020                                    Register heap_number_map,
1021                                    Label* gc_required);
1022 
1023   // Allocate and initialize a JSValue wrapper with the specified {constructor}
1024   // and {value}.
1025   void AllocateJSValue(Register result, Register constructor, Register value,
1026                        Register scratch1, Register scratch2,
1027                        Label* gc_required);
1028 
1029   // Initialize fields with filler values.  |count| fields starting at
1030   // |current_address| are overwritten with the value in |filler|.  At the end
1031   // the loop, |current_address| points at the next uninitialized field.
1032   // |count| is assumed to be non-zero.
1033   void InitializeNFieldsWithFiller(Register current_address, Register count,
1034                                    Register filler);
1035 
1036   // Initialize fields with filler values.  Fields starting at |current_address|
1037   // not including |end_address| are overwritten with the value in |filler|.  At
1038   // the end the loop, |current_address| takes the value of |end_address|.
1039   void InitializeFieldsWithFiller(Register current_address,
1040                                   Register end_address, Register filler);
1041 
1042   // ---------------------------------------------------------------------------
1043   // Support functions.
1044 
1045   // Machine code version of Map::GetConstructor().
1046   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1047   void GetMapConstructor(Register result, Register map, Register temp,
1048                          Register temp2);
1049 
1050   // Try to get function prototype of a function and puts the value in
1051   // the result register. Checks that the function really is a
1052   // function and jumps to the miss label if the fast checks fail. The
1053   // function register will be untouched; the other registers may be
1054   // clobbered.
1055   void TryGetFunctionPrototype(Register function, Register result,
1056                                Register scratch, Label* miss);
1057 
1058   // Compare object type for heap object.  heap_object contains a non-Smi
1059   // whose object type should be compared with the given type.  This both
1060   // sets the flags and leaves the object type in the type_reg register.
1061   // It leaves the map in the map register (unless the type_reg and map register
1062   // are the same register).  It leaves the heap object in the heap_object
1063   // register unless the heap_object register is the same register as one of the
1064   // other registers.
1065   // Type_reg can be no_reg. In that case ip is used.
1066   void CompareObjectType(Register heap_object, Register map, Register type_reg,
1067                          InstanceType type);
1068 
1069   // Compare instance type in a map.  map contains a valid map object whose
1070   // object type should be compared with the given type.  This both
1071   // sets the flags and leaves the object type in the type_reg register.
1072   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1073 
1074   // Check if a map for a JSObject indicates that the object can have both smi
1075   // and HeapObject elements.  Jump to the specified label if it does not.
1076   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1077 
1078   // Check if a map for a JSObject indicates that the object has fast smi only
1079   // elements.  Jump to the specified label if it does not.
1080   void CheckFastSmiElements(Register map, Register scratch, Label* fail);
1081 
1082   // Check to see if maybe_number can be stored as a double in
1083   // FastDoubleElements. If it can, store it at the index specified by key in
1084   // the FastDoubleElements array elements. Otherwise jump to fail.
1085   void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
1086                                    Register elements_reg, Register scratch1,
1087                                    DoubleRegister double_scratch, Label* fail,
1088                                    int elements_offset = 0);
1089 
1090   // Compare an object's map with the specified map and its transitioned
1091   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
1092   // set with result of map compare. If multiple map compares are required, the
1093   // compare sequences branches to early_success.
1094   void CompareMap(Register obj, Register scratch, Handle<Map> map,
1095                   Label* early_success);
1096 
1097   // As above, but the map of the object is already loaded into the register
1098   // which is preserved by the code generated.
1099   void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
1100 
1101   // Check if the map of an object is equal to a specified map and branch to
1102   // label if not. Skip the smi check if not required (object is known to be a
1103   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1104   // against maps that are ElementsKind transition maps of the specified map.
1105   void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
1106                 SmiCheckType smi_check_type);
1107 
1108   void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
1109                 Label* fail, SmiCheckType smi_check_type);
1110 
1111   // Check if the map of an object is equal to a specified weak map and branch
1112   // to a specified target if equal. Skip the smi check if not required
1113   // (object is known to be a heap object)
1114   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1115                        Handle<WeakCell> cell, Handle<Code> success,
1116                        SmiCheckType smi_check_type);
1117 
1118   // Compare the given value and the value of weak cell.
1119   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
1120                     CRegister cr = cr7);
1121 
1122   void GetWeakValue(Register value, Handle<WeakCell> cell);
1123 
1124   // Load the value of the weak cell in the value register. Branch to the given
1125   // miss label if the weak cell was cleared.
1126   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1127 
1128   // Compare the object in a register to a value from the root list.
1129   // Uses the ip register as scratch.
1130   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)1131   void PushRoot(Heap::RootListIndex index) {
1132     LoadRoot(r0, index);
1133     Push(r0);
1134   }
1135 
1136   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)1137   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1138     CompareRoot(with, index);
1139     beq(if_equal);
1140   }
1141 
1142   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)1143   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1144                      Label* if_not_equal) {
1145     CompareRoot(with, index);
1146     bne(if_not_equal);
1147   }
1148 
1149   // Load and check the instance type of an object for being a string.
1150   // Loads the type into the second argument register.
1151   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type)1152   Condition IsObjectStringType(Register obj, Register type) {
1153     LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1154     LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1155     mov(r0, Operand(kIsNotStringMask));
1156     AndP(r0, type);
1157     DCHECK_EQ(0u, kStringTag);
1158     return eq;
1159   }
1160 
1161   // Get the number of least significant bits from a register
1162   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1163   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1164 
1165   // Load the value of a smi object into a FP double register. The register
1166   // scratch1 can be the same register as smi in which case smi will hold the
1167   // untagged value afterwards.
1168   void SmiToDouble(DoubleRegister value, Register smi);
1169 
1170   // Check if a double can be exactly represented as a signed 32-bit integer.
1171   // CR_EQ in cr7 is set if true.
1172   void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
1173                          Register scratch2, DoubleRegister double_scratch);
1174 
1175   // Check if a double is equal to -0.0.
1176   // CR_EQ in cr7 holds the result.
1177   void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
1178                              Register scratch2);
1179 
1180   // Check the sign of a double.
1181   // CR_LT in cr7 holds the result.
1182   void TestDoubleSign(DoubleRegister input, Register scratch);
1183   void TestHeapNumberSign(Register input, Register scratch);
1184 
1185   // Try to convert a double to a signed 32-bit integer.
1186   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1187   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1188                              Register scratch, DoubleRegister double_scratch);
1189 
1190   // Floor a double and writes the value to the result register.
1191   // Go to exact if the conversion is exact (to be able to test -0),
1192   // fall through calling code if an overflow occurred, else go to done.
1193   // In return, input_high is loaded with high bits of input.
1194   void TryInt32Floor(Register result, DoubleRegister double_input,
1195                      Register input_high, Register scratch,
1196                      DoubleRegister double_scratch, Label* done, Label* exact);
1197 
1198   // Performs a truncating conversion of a floating point number as used by
1199   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1200   // succeeds, otherwise falls through if result is saturated. On return
1201   // 'result' either holds answer, or is clobbered on fall through.
1202   //
1203   // Only public for the test code in test-code-stubs-arm.cc.
1204   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
1205                                   Label* done);
1206 
1207   // Performs a truncating conversion of a floating point number as used by
1208   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1209   // Exits with 'result' holding the answer.
1210   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1211 
1212   // Performs a truncating conversion of a heap number as used by
1213   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1214   // must be different registers.  Exits with 'result' holding the answer.
1215   void TruncateHeapNumberToI(Register result, Register object);
1216 
1217   // Converts the smi or heap number in object to an int32 using the rules
1218   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1219   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1220   // different registers.
1221   void TruncateNumberToI(Register object, Register result,
1222                          Register heap_number_map, Register scratch1,
1223                          Label* not_int32);
1224 
1225   // ---------------------------------------------------------------------------
1226   // Runtime calls
1227 
1228   // Call a code stub.
1229   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
1230                 Condition cond = al);
1231 
1232   // Call a code stub.
1233   void TailCallStub(CodeStub* stub, Condition cond = al);
1234 
1235   // Call a runtime routine.
1236   void CallRuntime(const Runtime::Function* f, int num_arguments,
1237                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1238   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1239     const Runtime::Function* function = Runtime::FunctionForId(fid);
1240     CallRuntime(function, function->nargs, kSaveFPRegs);
1241   }
1242 
1243   // Convenience function: Same as above, but takes the fid instead.
1244   void CallRuntime(Runtime::FunctionId fid,
1245                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1246     const Runtime::Function* function = Runtime::FunctionForId(fid);
1247     CallRuntime(function, function->nargs, save_doubles);
1248   }
1249 
1250   // Convenience function: Same as above, but takes the fid instead.
1251   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1252                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1253     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1254   }
1255 
1256   // Convenience function: call an external reference.
1257   void CallExternalReference(const ExternalReference& ext, int num_arguments);
1258 
1259   // Convenience function: tail call a runtime routine (jump).
1260   void TailCallRuntime(Runtime::FunctionId fid);
1261 
1262   int CalculateStackPassedWords(int num_reg_arguments,
1263                                 int num_double_arguments);
1264 
1265   // Before calling a C-function from generated code, align arguments on stack.
1266   // After aligning the frame, non-register arguments must be stored in
1267   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1268   // are word sized. If double arguments are used, this function assumes that
1269   // all double arguments are stored before core registers; otherwise the
1270   // correct alignment of the double values is not guaranteed.
1271   // Some compilers/platforms require the stack to be aligned when calling
1272   // C++ code.
1273   // Needs a scratch register to do some arithmetic. This register will be
1274   // trashed.
1275   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
1276                             Register scratch);
1277   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
1278 
1279   // There are two ways of passing double arguments on ARM, depending on
1280   // whether soft or hard floating point ABI is used. These functions
1281   // abstract parameter passing for the three different ways we call
1282   // C functions from generated code.
1283   void MovToFloatParameter(DoubleRegister src);
1284   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1285   void MovToFloatResult(DoubleRegister src);
1286 
1287   // Calls a C function and cleans up the space for arguments allocated
1288   // by PrepareCallCFunction. The called function is not allowed to trigger a
1289   // garbage collection, since that might move the code and invalidate the
1290   // return address (unless this is somehow accounted for by the called
1291   // function).
1292   void CallCFunction(ExternalReference function, int num_arguments);
1293   void CallCFunction(Register function, int num_arguments);
1294   void CallCFunction(ExternalReference function, int num_reg_arguments,
1295                      int num_double_arguments);
1296   void CallCFunction(Register function, int num_reg_arguments,
1297                      int num_double_arguments);
1298 
1299   void MovFromFloatParameter(DoubleRegister dst);
1300   void MovFromFloatResult(DoubleRegister dst);
1301 
1302   // Jump to a runtime routine.
1303   void JumpToExternalReference(const ExternalReference& builtin,
1304                                bool builtin_exit_frame = false);
1305 
CodeObject()1306   Handle<Object> CodeObject() {
1307     DCHECK(!code_object_.is_null());
1308     return code_object_;
1309   }
1310 
1311   // Emit code for a truncating division by a constant. The dividend register is
1312   // unchanged and ip gets clobbered. Dividend and result must be different.
1313   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1314 
1315   // ---------------------------------------------------------------------------
1316   // StatsCounter support
1317 
1318   void SetCounter(StatsCounter* counter, int value, Register scratch1,
1319                   Register scratch2);
1320   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1321                         Register scratch2);
1322   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1323                         Register scratch2);
1324 
1325   // ---------------------------------------------------------------------------
1326   // Debugging
1327 
1328   // Calls Abort(msg) if the condition cond is not satisfied.
1329   // Use --debug_code to enable.
1330   void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1331   void AssertFastElements(Register elements);
1332 
1333   // Like Assert(), but always enabled.
1334   void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1335 
1336   // Print a message to stdout and abort execution.
1337   void Abort(BailoutReason reason);
1338 
1339   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1340   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1341   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1342   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1343   bool has_frame() { return has_frame_; }
1344   inline bool AllowThisStubCall(CodeStub* stub);
1345 
1346   // ---------------------------------------------------------------------------
1347   // Number utilities
1348 
1349   // Check whether the value of reg is a power of two and not zero. If not
1350   // control continues at the label not_power_of_two. If reg is a power of two
1351   // the register scratch contains the value of (reg - 1) when control falls
1352   // through.
1353   void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1354                                  Label* not_power_of_two_or_zero);
1355   // Check whether the value of reg is a power of two and not zero.
1356   // Control falls through if it is, with scratch containing the mask
1357   // value (reg - 1).
1358   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1359   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1360   // strictly positive but not a power of two.
1361   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1362                                        Label* zero_and_neg,
1363                                        Label* not_power_of_two);
1364 
1365   // ---------------------------------------------------------------------------
1366   // Bit testing/extraction
1367   //
1368   // Bit numbering is such that the least significant bit is bit 0
1369   // (for consistency between 32/64-bit).
1370 
1371   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1372   // and place them into the least significant bits of dst.
ExtractBitRange(Register dst,Register src,int rangeStart,int rangeEnd)1373   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1374                               int rangeEnd) {
1375     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1376 
1377     // Try to use RISBG if possible.
1378     if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1379       int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
1380       int endBit = 63;  // End is always LSB after shifting.
1381       int startBit = 63 - rangeStart + rangeEnd;
1382       risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
1383             true);
1384     } else {
1385       if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
1386         ShiftRightP(dst, src, Operand(rangeEnd));
1387       else if (!dst.is(src))  // If we didn't shift, we might need to copy
1388         LoadRR(dst, src);
1389       int width = rangeStart - rangeEnd + 1;
1390 #if V8_TARGET_ARCH_S390X
1391       uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
1392       nihf(dst, Operand(mask >> 32));
1393       nilf(dst, Operand(mask & 0xFFFFFFFF));
1394       ltgr(dst, dst);
1395 #else
1396       uint32_t mask = (1 << width) - 1;
1397       AndP(dst, Operand(mask));
1398 #endif
1399     }
1400   }
1401 
ExtractBit(Register dst,Register src,uint32_t bitNumber)1402   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
1403     ExtractBitRange(dst, src, bitNumber, bitNumber);
1404   }
1405 
1406   // Extract consecutive bits (defined by mask) from src and place them
1407   // into the least significant bits of dst.
1408   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1409                              RCBit rc = LeaveRC) {
1410     int start = kBitsPerPointer - 1;
1411     int end;
1412     uintptr_t bit = (1L << start);
1413 
1414     while (bit && (mask & bit) == 0) {
1415       start--;
1416       bit >>= 1;
1417     }
1418     end = start;
1419     bit >>= 1;
1420 
1421     while (bit && (mask & bit)) {
1422       end--;
1423       bit >>= 1;
1424     }
1425 
1426     // 1-bits in mask must be contiguous
1427     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1428 
1429     ExtractBitRange(dst, src, start, end);
1430   }
1431 
1432   // Test single bit in value.
1433   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1434     ExtractBitRange(scratch, value, bitNumber, bitNumber);
1435   }
1436 
1437   // Test consecutive bit range in value.  Range is defined by
1438   // rangeStart - rangeEnd.
1439   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1440                            Register scratch = r0) {
1441     ExtractBitRange(scratch, value, rangeStart, rangeEnd);
1442   }
1443 
1444   // Test consecutive bit range in value.  Range is defined by mask.
1445   inline void TestBitMask(Register value, uintptr_t mask,
1446                           Register scratch = r0) {
1447     ExtractBitMask(scratch, value, mask, SetRC);
1448   }
1449 
1450   // ---------------------------------------------------------------------------
1451   // Smi utilities
1452 
1453   // Shift left by kSmiShift
SmiTag(Register reg)1454   void SmiTag(Register reg) { SmiTag(reg, reg); }
SmiTag(Register dst,Register src)1455   void SmiTag(Register dst, Register src) {
1456     ShiftLeftP(dst, src, Operand(kSmiShift));
1457   }
1458 
1459 #if !V8_TARGET_ARCH_S390X
1460   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1461   void SmiTagCheckOverflow(Register reg, Register overflow);
1462   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1463 
JumpIfNotSmiCandidate(Register value,Register scratch,Label * not_smi_label)1464   inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1465                                     Label* not_smi_label) {
1466     // High bits must be identical to fit into an Smi
1467     STATIC_ASSERT(kSmiShift == 1);
1468     AddP(scratch, value, Operand(0x40000000u));
1469     CmpP(scratch, Operand::Zero());
1470     blt(not_smi_label);
1471   }
1472 #endif
TestUnsignedSmiCandidate(Register value,Register scratch)1473   inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1474     // The test is different for unsigned int values. Since we need
1475     // the value to be in the range of a positive smi, we can't
1476     // handle any of the high bits being set in the value.
1477     TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1478                  scratch);
1479   }
JumpIfNotUnsignedSmiCandidate(Register value,Register scratch,Label * not_smi_label)1480   inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1481                                             Label* not_smi_label) {
1482     TestUnsignedSmiCandidate(value, scratch);
1483     bne(not_smi_label /*, cr0*/);
1484   }
1485 
SmiUntag(Register reg)1486   void SmiUntag(Register reg) { SmiUntag(reg, reg); }
1487 
SmiUntag(Register dst,Register src)1488   void SmiUntag(Register dst, Register src) {
1489     ShiftRightArithP(dst, src, Operand(kSmiShift));
1490   }
1491 
SmiToPtrArrayOffset(Register dst,Register src)1492   void SmiToPtrArrayOffset(Register dst, Register src) {
1493 #if V8_TARGET_ARCH_S390X
1494     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1495     ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1496 #else
1497     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1498     ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1499 #endif
1500   }
1501 
SmiToByteArrayOffset(Register dst,Register src)1502   void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1503 
SmiToShortArrayOffset(Register dst,Register src)1504   void SmiToShortArrayOffset(Register dst, Register src) {
1505 #if V8_TARGET_ARCH_S390X
1506     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1507     ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
1508 #else
1509     STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1510     if (!dst.is(src)) {
1511       LoadRR(dst, src);
1512     }
1513 #endif
1514   }
1515 
SmiToIntArrayOffset(Register dst,Register src)1516   void SmiToIntArrayOffset(Register dst, Register src) {
1517 #if V8_TARGET_ARCH_S390X
1518     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1519     ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
1520 #else
1521     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1522     ShiftLeftP(dst, src, Operand(2 - kSmiShift));
1523 #endif
1524   }
1525 
1526 #define SmiToFloatArrayOffset SmiToIntArrayOffset
1527 
SmiToDoubleArrayOffset(Register dst,Register src)1528   void SmiToDoubleArrayOffset(Register dst, Register src) {
1529 #if V8_TARGET_ARCH_S390X
1530     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1531     ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
1532 #else
1533     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1534     ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1535 #endif
1536   }
1537 
SmiToArrayOffset(Register dst,Register src,int elementSizeLog2)1538   void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1539     if (kSmiShift < elementSizeLog2) {
1540       ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
1541     } else if (kSmiShift > elementSizeLog2) {
1542       ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
1543     } else if (!dst.is(src)) {
1544       LoadRR(dst, src);
1545     }
1546   }
1547 
IndexToArrayOffset(Register dst,Register src,int elementSizeLog2,bool isSmi,bool keyMaybeNegative)1548   void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1549                           bool isSmi, bool keyMaybeNegative) {
1550     if (isSmi) {
1551       SmiToArrayOffset(dst, src, elementSizeLog2);
1552     } else if (keyMaybeNegative ||
1553           !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1554 #if V8_TARGET_ARCH_S390X
1555       // If array access is dehoisted, the key, being an int32, can contain
1556       // a negative value, as needs to be sign-extended to 64-bit for
1557       // memory access.
1558       //
1559       // src (key) is a 32-bit integer.  Sign extension ensures
1560       // upper 32-bit does not contain garbage before being used to
1561       // reference memory.
1562       lgfr(src, src);
1563 #endif
1564       ShiftLeftP(dst, src, Operand(elementSizeLog2));
1565     } else {
1566       // Small optimization to reduce pathlength.  After Bounds Check,
1567       // the key is guaranteed to be non-negative.  Leverage RISBG,
1568       // which also performs zero-extension.
1569       risbg(dst, src, Operand(32 - elementSizeLog2),
1570             Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
1571             true);
1572     }
1573   }
1574 
1575   // Untag the source value into destination and jump if source is a smi.
1576   // Souce and destination can be the same register.
1577   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1578 
1579   // Untag the source value into destination and jump if source is not a smi.
1580   // Souce and destination can be the same register.
1581   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1582 
TestIfSmi(Register value)1583   inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
1584 
TestIfPositiveSmi(Register value,Register scratch)1585   inline void TestIfPositiveSmi(Register value, Register scratch) {
1586     STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1587                   (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1588     mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
1589     AndP(scratch, value);
1590   }
1591 
1592   // Jump the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1593   inline void JumpIfSmi(Register value, Label* smi_label) {
1594     TestIfSmi(value);
1595     beq(smi_label /*, cr0*/);  // branch if SMI
1596   }
1597   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1598   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1599     TestIfSmi(value);
1600     bne(not_smi_label /*, cr0*/);
1601   }
1602   // Jump if either of the registers contain a non-smi.
1603   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1604   // Jump if either of the registers contain a smi.
1605   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1606 
1607   // Abort execution if argument is a number, enabled via --debug-code.
1608   void AssertNotNumber(Register object);
1609 
1610   // Abort execution if argument is a smi, enabled via --debug-code.
1611   void AssertNotSmi(Register object);
1612   void AssertSmi(Register object);
1613 
1614 #if V8_TARGET_ARCH_S390X
TestIfInt32(Register value,Register scratch)1615   inline void TestIfInt32(Register value, Register scratch) {
1616     // High bits must be identical to fit into an 32-bit integer
1617     lgfr(scratch, value);
1618     CmpP(scratch, value);
1619   }
1620 #else
TestIfInt32(Register hi_word,Register lo_word,Register scratch)1621   inline void TestIfInt32(Register hi_word, Register lo_word,
1622                           Register scratch) {
1623     // High bits must be identical to fit into an 32-bit integer
1624     ShiftRightArith(scratch, lo_word, Operand(31));
1625     CmpP(scratch, hi_word);
1626   }
1627 #endif
1628 
1629 #if V8_TARGET_ARCH_S390X
1630   // Ensure it is permissable to read/write int value directly from
1631   // upper half of the smi.
1632   STATIC_ASSERT(kSmiTag == 0);
1633   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1634 #endif
1635 #if V8_TARGET_LITTLE_ENDIAN
1636 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
1637 #else
1638 #define SmiWordOffset(offset) offset
1639 #endif
1640 
1641   // Abort execution if argument is not a string, enabled via --debug-code.
1642   void AssertString(Register object);
1643 
1644   // Abort execution if argument is not a name, enabled via --debug-code.
1645   void AssertName(Register object);
1646 
1647   void AssertFunction(Register object);
1648 
1649   // Abort execution if argument is not a JSBoundFunction,
1650   // enabled via --debug-code.
1651   void AssertBoundFunction(Register object);
1652 
1653   // Abort execution if argument is not a JSGeneratorObject,
1654   // enabled via --debug-code.
1655   void AssertGeneratorObject(Register object);
1656 
1657   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1658   void AssertReceiver(Register object);
1659 
1660   // Abort execution if argument is not undefined or an AllocationSite, enabled
1661   // via --debug-code.
1662   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1663 
1664   // Abort execution if reg is not the root value with the given index,
1665   // enabled via --debug-code.
1666   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1667 
1668   // ---------------------------------------------------------------------------
1669   // HeapNumber utilities
1670 
1671   void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1672                            Register scratch, Label* on_not_heap_number);
1673 
1674   // ---------------------------------------------------------------------------
1675   // String utilities
1676 
1677   // Checks if both objects are sequential one-byte strings and jumps to label
1678   // if either is not. Assumes that neither object is a smi.
1679   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1680                                                     Register object2,
1681                                                     Register scratch1,
1682                                                     Register scratch2,
1683                                                     Label* failure);
1684 
1685   // Checks if both objects are sequential one-byte strings and jumps to label
1686   // if either is not.
1687   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1688                                              Register scratch1,
1689                                              Register scratch2,
1690                                              Label* not_flat_one_byte_strings);
1691 
1692   // Checks if both instance types are sequential one-byte strings and jumps to
1693   // label if either is not.
1694   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1695       Register first_object_instance_type, Register second_object_instance_type,
1696       Register scratch1, Register scratch2, Label* failure);
1697 
1698   // Check if instance type is sequential one-byte string and jump to label if
1699   // it is not.
1700   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1701                                                 Label* failure);
1702 
1703   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1704 
1705   void EmitSeqStringSetCharCheck(Register string, Register index,
1706                                  Register value, uint32_t encoding_mask);
1707 
1708   // ---------------------------------------------------------------------------
1709   // Patching helpers.
1710 
1711   void ClampUint8(Register output_reg, Register input_reg);
1712 
1713   // Saturate a value into 8-bit unsigned integer
1714   //   if input_value < 0, output_value is 0
1715   //   if input_value > 255, output_value is 255
1716   //   otherwise output_value is the (int)input_value (round to nearest)
1717   void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1718                           DoubleRegister temp_double_reg);
1719 
1720   void LoadInstanceDescriptors(Register map, Register descriptors);
1721   void EnumLength(Register dst, Register map);
1722   void NumberOfOwnDescriptors(Register dst, Register map);
1723   void LoadAccessor(Register dst, Register holder, int accessor_index,
1724                     AccessorComponent accessor);
1725 
1726   template <typename Field>
DecodeField(Register dst,Register src)1727   void DecodeField(Register dst, Register src) {
1728     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1729   }
1730 
1731   template <typename Field>
DecodeField(Register reg)1732   void DecodeField(Register reg) {
1733     DecodeField<Field>(reg, reg);
1734   }
1735 
1736   template <typename Field>
DecodeFieldToSmi(Register dst,Register src)1737   void DecodeFieldToSmi(Register dst, Register src) {
1738     // TODO(joransiu): Optimize into single instruction
1739     DecodeField<Field>(dst, src);
1740     SmiTag(dst);
1741   }
1742 
1743   template <typename Field>
DecodeFieldToSmi(Register reg)1744   void DecodeFieldToSmi(Register reg) {
1745     DecodeFieldToSmi<Field>(reg, reg);
1746   }
1747 
1748   // Load the type feedback vector from a JavaScript frame.
1749   void EmitLoadTypeFeedbackVector(Register vector);
1750 
1751   // Activation support.
1752   void EnterFrame(StackFrame::Type type,
1753                   bool load_constant_pool_pointer_reg = false);
1754   // Returns the pc offset at which the frame ends.
1755   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1756 
1757   void EnterBuiltinFrame(Register context, Register target, Register argc);
1758   void LeaveBuiltinFrame(Register context, Register target, Register argc);
1759 
1760   // Expects object in r2 and returns map with validated enum cache
1761   // in r2.  Assumes that any other register can be used as a scratch.
1762   void CheckEnumCache(Label* call_runtime);
1763 
1764   // AllocationMemento support. Arrays may have an associated
1765   // AllocationMemento object that can be checked for in order to pretransition
1766   // to another type.
1767   // On entry, receiver_reg should point to the array object.
1768   // scratch_reg gets clobbered.
1769   // If allocation info is present, condition flags are set to eq.
1770   void TestJSArrayForAllocationMemento(Register receiver_reg,
1771                                        Register scratch_reg,
1772                                        Register scratch2_reg,
1773                                        Label* no_memento_found);
1774 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Register scratch2_reg,Label * memento_found)1775   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1776                                          Register scratch_reg,
1777                                          Register scratch2_reg,
1778                                          Label* memento_found) {
1779     Label no_memento_found;
1780     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
1781                                     &no_memento_found);
1782     beq(memento_found);
1783     bind(&no_memento_found);
1784   }
1785 
1786   // Jumps to found label if a prototype map has dictionary elements.
1787   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1788                                         Register scratch1, Label* found);
1789 
1790  private:
1791   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1792 
1793   void CallCFunctionHelper(Register function, int num_reg_arguments,
1794                            int num_double_arguments);
1795 
1796   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1797             CRegister cr = cr7);
1798 
1799   // Helper functions for generating invokes.
1800   void InvokePrologue(const ParameterCount& expected,
1801                       const ParameterCount& actual, Label* done,
1802                       bool* definitely_mismatches, InvokeFlag flag,
1803                       const CallWrapper& call_wrapper);
1804 
1805   void InitializeNewString(Register string, Register length,
1806                            Heap::RootListIndex map_index, Register scratch1,
1807                            Register scratch2);
1808 
1809   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1810   void InNewSpace(Register object, Register scratch,
1811                   Condition cond,  // eq for new space, ne otherwise.
1812                   Label* branch);
1813 
1814   // Helper for finding the mark bits for an address.  Afterwards, the
1815   // bitmap register points at the word with the mark bits and the mask
1816   // the position of the first bit.  Leaves addr_reg unchanged.
1817   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1818                           Register mask_reg);
1819 
1820   static const RegList kSafepointSavedRegisters;
1821   static const int kNumSafepointSavedRegisters;
1822 
1823   // Compute memory operands for safepoint stack slots.
1824   static int SafepointRegisterStackIndex(int reg_code);
1825   MemOperand SafepointRegisterSlot(Register reg);
1826   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1827 
1828   bool generating_stub_;
1829   bool has_frame_;
1830   // This handle will be patched with the code object on installation.
1831   Handle<Object> code_object_;
1832 
1833   // Needs access to SafepointRegisterStackIndex for compiled frame
1834   // traversal.
1835   friend class StandardFrame;
1836 };
1837 
1838 // The code patcher is used to patch (typically) small parts of code e.g. for
1839 // debugging and other types of instrumentation. When using the code patcher
1840 // the exact number of bytes specified must be emitted. It is not legal to emit
1841 // relocation information. If any of these constraints are violated it causes
1842 // an assertion to fail.
1843 class CodePatcher {
1844  public:
1845   enum FlushICache { FLUSH, DONT_FLUSH };
1846 
1847   CodePatcher(Isolate* isolate, byte* address, int instructions,
1848               FlushICache flush_cache = FLUSH);
1849   ~CodePatcher();
1850 
1851   // Macro assembler to emit code.
masm()1852   MacroAssembler* masm() { return &masm_; }
1853 
1854  private:
1855   byte* address_;            // The address of the code being patched.
1856   int size_;                 // Number of bytes of the expected patch size.
1857   MacroAssembler masm_;      // Macro assembler used to generate the code.
1858   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1859 };
1860 
1861 // -----------------------------------------------------------------------------
1862 // Static helper functions.
1863 
1864 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1865   return MemOperand(context, Context::SlotOffset(index));
1866 }
1867 
NativeContextMemOperand()1868 inline MemOperand NativeContextMemOperand() {
1869   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1870 }
1871 
1872 #define ACCESS_MASM(masm) masm->
1873 
1874 }  // namespace internal
1875 }  // namespace v8
1876 
1877 #endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1878