1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
48 //
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
51 //
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
54 //
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95
96 #define DEBUG_TYPE "scalar-evolution"
97
98 STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
110 "symbolically execute a constant "
111 "derived loop"),
112 cl::init(100));
113
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
120 cl::desc("Verify no dangling value in ScalarEvolution's "
121 "ExprValueMap (slow)"));
122
123 //===----------------------------------------------------------------------===//
124 // SCEV class definitions
125 //===----------------------------------------------------------------------===//
126
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130
131 LLVM_DUMP_METHOD
dump() const132 void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135 }
136
print(raw_ostream & OS) const137 void SCEV::print(raw_ostream &OS) const {
138 switch (static_cast<SCEVTypes>(getSCEVType())) {
139 case scConstant:
140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
169 if (AR->hasNoUnsignedWrap())
170 OS << "nuw><";
171 if (AR->hasNoSignedWrap())
172 OS << "nsw><";
173 if (AR->hasNoSelfWrap() &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185 const char *OpStr = nullptr;
186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
196 if (std::next(I) != E)
197 OS << OpStr;
198 }
199 OS << ")";
200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->hasNoUnsignedWrap())
204 OS << "<nuw>";
205 if (NAry->hasNoSignedWrap())
206 OS << "<nsw>";
207 }
208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
217 Type *AllocTy;
218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
226
227 Type *CTy;
228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
231 FieldNo->printAsOperand(OS, false);
232 OS << ")";
233 return;
234 }
235
236 // Otherwise just print it normally.
237 U->getValue()->printAsOperand(OS, false);
238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
243 }
244 llvm_unreachable("Unknown SCEV kind!");
245 }
246
getType() const247 Type *SCEV::getType() const {
248 switch (static_cast<SCEVTypes>(getSCEVType())) {
249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268 }
269 llvm_unreachable("Unknown SCEV kind!");
270 }
271
isZero() const272 bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276 }
277
isOne() const278 bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282 }
283
isAllOnesValue() const284 bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288 }
289
isNonConstantNegative() const290 bool SCEV::isNonConstantNegative() const {
291 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292 if (!Mul) return false;
293
294 // If there is a constant factor, it will be first.
295 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296 if (!SC) return false;
297
298 // Return true if the value is negative, this matches things like (-42 * V).
299 return SC->getAPInt().isNegative();
300 }
301
SCEVCouldNotCompute()302 SCEVCouldNotCompute::SCEVCouldNotCompute() :
303 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
304
classof(const SCEV * S)305 bool SCEVCouldNotCompute::classof(const SCEV *S) {
306 return S->getSCEVType() == scCouldNotCompute;
307 }
308
getConstant(ConstantInt * V)309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
310 FoldingSetNodeID ID;
311 ID.AddInteger(scConstant);
312 ID.AddPointer(V);
313 void *IP = nullptr;
314 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
315 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
316 UniqueSCEVs.InsertNode(S, IP);
317 return S;
318 }
319
getConstant(const APInt & Val)320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
321 return getConstant(ConstantInt::get(getContext(), Val));
322 }
323
324 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
327 return getConstant(ConstantInt::get(ITy, V, isSigned));
328 }
329
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
331 unsigned SCEVTy, const SCEV *op, Type *ty)
332 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
333
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
335 const SCEV *op, Type *ty)
336 : SCEVCastExpr(ID, scTruncate, op, ty) {
337 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
338 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
339 "Cannot truncate non-integer value!");
340 }
341
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
343 const SCEV *op, Type *ty)
344 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
345 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
346 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
347 "Cannot zero extend non-integer value!");
348 }
349
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
351 const SCEV *op, Type *ty)
352 : SCEVCastExpr(ID, scSignExtend, op, ty) {
353 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
355 "Cannot sign extend non-integer value!");
356 }
357
deleted()358 void SCEVUnknown::deleted() {
359 // Clear this SCEVUnknown from various maps.
360 SE->forgetMemoizedResults(this);
361
362 // Remove this SCEVUnknown from the uniquing map.
363 SE->UniqueSCEVs.RemoveNode(this);
364
365 // Release the value.
366 setValPtr(nullptr);
367 }
368
allUsesReplacedWith(Value * New)369 void SCEVUnknown::allUsesReplacedWith(Value *New) {
370 // Clear this SCEVUnknown from various maps.
371 SE->forgetMemoizedResults(this);
372
373 // Remove this SCEVUnknown from the uniquing map.
374 SE->UniqueSCEVs.RemoveNode(this);
375
376 // Update this SCEVUnknown to point to the new value. This is needed
377 // because there may still be outstanding SCEVs which still point to
378 // this SCEVUnknown.
379 setValPtr(New);
380 }
381
isSizeOf(Type * & AllocTy) const382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384 if (VCE->getOpcode() == Instruction::PtrToInt)
385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386 if (CE->getOpcode() == Instruction::GetElementPtr &&
387 CE->getOperand(0)->isNullValue() &&
388 CE->getNumOperands() == 2)
389 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390 if (CI->isOne()) {
391 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392 ->getElementType();
393 return true;
394 }
395
396 return false;
397 }
398
isAlignOf(Type * & AllocTy) const399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getOperand(0)->isNullValue()) {
405 Type *Ty =
406 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
407 if (StructType *STy = dyn_cast<StructType>(Ty))
408 if (!STy->isPacked() &&
409 CE->getNumOperands() == 3 &&
410 CE->getOperand(1)->isNullValue()) {
411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412 if (CI->isOne() &&
413 STy->getNumElements() == 2 &&
414 STy->getElementType(0)->isIntegerTy(1)) {
415 AllocTy = STy->getElementType(1);
416 return true;
417 }
418 }
419 }
420
421 return false;
422 }
423
isOffsetOf(Type * & CTy,Constant * & FieldNo) const424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
425 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
426 if (VCE->getOpcode() == Instruction::PtrToInt)
427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428 if (CE->getOpcode() == Instruction::GetElementPtr &&
429 CE->getNumOperands() == 3 &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getOperand(1)->isNullValue()) {
432 Type *Ty =
433 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434 // Ignore vector types here so that ScalarEvolutionExpander doesn't
435 // emit getelementptrs that index into vectors.
436 if (Ty->isStructTy() || Ty->isArrayTy()) {
437 CTy = Ty;
438 FieldNo = CE->getOperand(2);
439 return true;
440 }
441 }
442
443 return false;
444 }
445
446 //===----------------------------------------------------------------------===//
447 // SCEV Utilities
448 //===----------------------------------------------------------------------===//
449
450 namespace {
451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452 /// than the complexity of the RHS. This comparator is used to canonicalize
453 /// expressions.
454 class SCEVComplexityCompare {
455 const LoopInfo *const LI;
456 public:
SCEVComplexityCompare(const LoopInfo * li)457 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
458
459 // Return true or false if LHS is less than, or at least RHS, respectively.
operator ()(const SCEV * LHS,const SCEV * RHS) const460 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461 return compare(LHS, RHS) < 0;
462 }
463
464 // Return negative, zero, or positive, if LHS is less than, equal to, or
465 // greater than RHS, respectively. A three-way result allows recursive
466 // comparisons to be more efficient.
compare(const SCEV * LHS,const SCEV * RHS) const467 int compare(const SCEV *LHS, const SCEV *RHS) const {
468 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469 if (LHS == RHS)
470 return 0;
471
472 // Primarily, sort the SCEVs by their getSCEVType().
473 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474 if (LType != RType)
475 return (int)LType - (int)RType;
476
477 // Aside from the getSCEVType() ordering, the particular ordering
478 // isn't very important except that it's beneficial to be consistent,
479 // so that (a + b) and (b + a) don't end up as different expressions.
480 switch (static_cast<SCEVTypes>(LType)) {
481 case scUnknown: {
482 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
484
485 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486 // not as complete as it could be.
487 const Value *LV = LU->getValue(), *RV = RU->getValue();
488
489 // Order pointer values after integer values. This helps SCEVExpander
490 // form GEPs.
491 bool LIsPointer = LV->getType()->isPointerTy(),
492 RIsPointer = RV->getType()->isPointerTy();
493 if (LIsPointer != RIsPointer)
494 return (int)LIsPointer - (int)RIsPointer;
495
496 // Compare getValueID values.
497 unsigned LID = LV->getValueID(),
498 RID = RV->getValueID();
499 if (LID != RID)
500 return (int)LID - (int)RID;
501
502 // Sort arguments by their position.
503 if (const Argument *LA = dyn_cast<Argument>(LV)) {
504 const Argument *RA = cast<Argument>(RV);
505 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506 return (int)LArgNo - (int)RArgNo;
507 }
508
509 // For instructions, compare their loop depth, and their operand
510 // count. This is pretty loose.
511 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512 const Instruction *RInst = cast<Instruction>(RV);
513
514 // Compare loop depths.
515 const BasicBlock *LParent = LInst->getParent(),
516 *RParent = RInst->getParent();
517 if (LParent != RParent) {
518 unsigned LDepth = LI->getLoopDepth(LParent),
519 RDepth = LI->getLoopDepth(RParent);
520 if (LDepth != RDepth)
521 return (int)LDepth - (int)RDepth;
522 }
523
524 // Compare the number of operands.
525 unsigned LNumOps = LInst->getNumOperands(),
526 RNumOps = RInst->getNumOperands();
527 return (int)LNumOps - (int)RNumOps;
528 }
529
530 return 0;
531 }
532
533 case scConstant: {
534 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536
537 // Compare constant values.
538 const APInt &LA = LC->getAPInt();
539 const APInt &RA = RC->getAPInt();
540 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541 if (LBitWidth != RBitWidth)
542 return (int)LBitWidth - (int)RBitWidth;
543 return LA.ult(RA) ? -1 : 1;
544 }
545
546 case scAddRecExpr: {
547 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549
550 // Compare addrec loop depths.
551 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552 if (LLoop != RLoop) {
553 unsigned LDepth = LLoop->getLoopDepth(),
554 RDepth = RLoop->getLoopDepth();
555 if (LDepth != RDepth)
556 return (int)LDepth - (int)RDepth;
557 }
558
559 // Addrec complexity grows with operand count.
560 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561 if (LNumOps != RNumOps)
562 return (int)LNumOps - (int)RNumOps;
563
564 // Lexicographically compare.
565 for (unsigned i = 0; i != LNumOps; ++i) {
566 long X = compare(LA->getOperand(i), RA->getOperand(i));
567 if (X != 0)
568 return X;
569 }
570
571 return 0;
572 }
573
574 case scAddExpr:
575 case scMulExpr:
576 case scSMaxExpr:
577 case scUMaxExpr: {
578 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580
581 // Lexicographically compare n-ary expressions.
582 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583 if (LNumOps != RNumOps)
584 return (int)LNumOps - (int)RNumOps;
585
586 for (unsigned i = 0; i != LNumOps; ++i) {
587 if (i >= RNumOps)
588 return 1;
589 long X = compare(LC->getOperand(i), RC->getOperand(i));
590 if (X != 0)
591 return X;
592 }
593 return (int)LNumOps - (int)RNumOps;
594 }
595
596 case scUDivExpr: {
597 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599
600 // Lexicographically compare udiv expressions.
601 long X = compare(LC->getLHS(), RC->getLHS());
602 if (X != 0)
603 return X;
604 return compare(LC->getRHS(), RC->getRHS());
605 }
606
607 case scTruncate:
608 case scZeroExtend:
609 case scSignExtend: {
610 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612
613 // Compare cast expressions by operand.
614 return compare(LC->getOperand(), RC->getOperand());
615 }
616
617 case scCouldNotCompute:
618 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
619 }
620 llvm_unreachable("Unknown SCEV kind!");
621 }
622 };
623 } // end anonymous namespace
624
625 /// Given a list of SCEV objects, order them by their complexity, and group
626 /// objects of the same complexity together by value. When this routine is
627 /// finished, we know that any duplicates in the vector are consecutive and that
628 /// complexity is monotonically increasing.
629 ///
630 /// Note that we go take special precautions to ensure that we get deterministic
631 /// results from this routine. In other words, we don't want the results of
632 /// this to depend on where the addresses of various SCEV objects happened to
633 /// land in memory.
634 ///
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI)635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
636 LoopInfo *LI) {
637 if (Ops.size() < 2) return; // Noop
638 if (Ops.size() == 2) {
639 // This is the common case, which also happens to be trivially simple.
640 // Special case it.
641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642 if (SCEVComplexityCompare(LI)(RHS, LHS))
643 std::swap(LHS, RHS);
644 return;
645 }
646
647 // Do the rough sort by complexity.
648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649
650 // Now that we are sorted by complexity, group elements of the same
651 // complexity. Note that this is, at worst, N^2, but the vector is likely to
652 // be extremely short in practice. Note that we take this approach because we
653 // do not want to depend on the addresses of the objects we are grouping.
654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655 const SCEV *S = Ops[i];
656 unsigned Complexity = S->getSCEVType();
657
658 // If there are any objects of the same complexity and same value as this
659 // one, group them.
660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661 if (Ops[j] == S) { // Found a duplicate.
662 // Move it to immediately after i'th element.
663 std::swap(Ops[i+1], Ops[j]);
664 ++i; // no need to rescan it.
665 if (i == e-2) return; // Done!
666 }
667 }
668 }
669 }
670
671 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)672 static inline int sizeOfSCEV(const SCEV *S) {
673 struct FindSCEVSize {
674 int Size;
675 FindSCEVSize() : Size(0) {}
676
677 bool follow(const SCEV *S) {
678 ++Size;
679 // Keep looking at all operands of S.
680 return true;
681 }
682 bool isDone() const {
683 return false;
684 }
685 };
686
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691 }
692
693 namespace {
694
695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
696 public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
divide__anond3aa2a800211::SCEVDivision699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
704 SCEVDivision D(SE, Numerator, Denominator);
705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anond3aa2a800211::SCEVDivision754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anond3aa2a800211::SCEVDivision755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anond3aa2a800211::SCEVDivision756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anond3aa2a800211::SCEVDivision757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anond3aa2a800211::SCEVDivision758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anond3aa2a800211::SCEVDivision759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitUnknown__anond3aa2a800211::SCEVDivision760 void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anond3aa2a800211::SCEVDivision761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
visitConstant__anond3aa2a800211::SCEVDivision763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getAPInt();
766 APInt DenominatorVal = D->getAPInt();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
visitAddRecExpr__anond3aa2a800211::SCEVDivision784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
visitAddExpr__anond3aa2a800211::SCEVDivision801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
visitMulExpr__anond3aa2a800211::SCEVDivision827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
891 divide(SE, Diff, Denominator, &Q, &R);
892 if (R != Zero)
893 return cannotDivide(Numerator);
894 Quotient = Q;
895 }
896
897 private:
SCEVDivision__anond3aa2a800211::SCEVDivision898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
903
904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
cannotDivide__anond3aa2a800211::SCEVDivision912 void cannotDivide(const SCEV *Numerator) {
913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
919 };
920
921 }
922
923 //===----------------------------------------------------------------------===//
924 // Simple SCEV method implementations
925 //===----------------------------------------------------------------------===//
926
927 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
929 ScalarEvolution &SE,
930 Type *ResultTy) {
931 // Handle the simplest case efficiently.
932 if (K == 1)
933 return SE.getTruncateOrZeroExtend(It, ResultTy);
934
935 // We are using the following formula for BC(It, K):
936 //
937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938 //
939 // Suppose, W is the bitwidth of the return value. We must be prepared for
940 // overflow. Hence, we must assure that the result of our computation is
941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
942 // safe in modular arithmetic.
943 //
944 // However, this code doesn't use exactly that formula; the formula it uses
945 // is something like the following, where T is the number of factors of 2 in
946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947 // exponentiation:
948 //
949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
950 //
951 // This formula is trivially equivalent to the previous formula. However,
952 // this formula can be implemented much more efficiently. The trick is that
953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954 // arithmetic. To do exact division in modular arithmetic, all we have
955 // to do is multiply by the inverse. Therefore, this step can be done at
956 // width W.
957 //
958 // The next issue is how to safely do the division by 2^T. The way this
959 // is done is by doing the multiplication step at a width of at least W + T
960 // bits. This way, the bottom W+T bits of the product are accurate. Then,
961 // when we perform the division by 2^T (which is equivalent to a right shift
962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
963 // truncated out after the division by 2^T.
964 //
965 // In comparison to just directly using the first formula, this technique
966 // is much more efficient; using the first formula requires W * K bits,
967 // but this formula less than W + K bits. Also, the first formula requires
968 // a division step, whereas this formula only requires multiplies and shifts.
969 //
970 // It doesn't matter whether the subtraction step is done in the calculation
971 // width or the input iteration count's width; if the subtraction overflows,
972 // the result must be zero anyway. We prefer here to do it in the width of
973 // the induction variable because it helps a lot for certain cases; CodeGen
974 // isn't smart enough to ignore the overflow, which leads to much less
975 // efficient code if the width of the subtraction is wider than the native
976 // register width.
977 //
978 // (It's possible to not widen at all by pulling out factors of 2 before
979 // the multiplication; for example, K=2 can be calculated as
980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981 // extra arithmetic, so it's not an obvious win, and it gets
982 // much more complicated for K > 3.)
983
984 // Protection from insane SCEVs; this bound is conservative,
985 // but it probably doesn't matter.
986 if (K > 1000)
987 return SE.getCouldNotCompute();
988
989 unsigned W = SE.getTypeSizeInBits(ResultTy);
990
991 // Calculate K! / 2^T and T; we divide out the factors of two before
992 // multiplying for calculating K! / 2^T to avoid overflow.
993 // Other overflow doesn't matter because we only care about the bottom
994 // W bits of the result.
995 APInt OddFactorial(W, 1);
996 unsigned T = 1;
997 for (unsigned i = 3; i <= K; ++i) {
998 APInt Mult(W, i);
999 unsigned TwoFactors = Mult.countTrailingZeros();
1000 T += TwoFactors;
1001 Mult = Mult.lshr(TwoFactors);
1002 OddFactorial *= Mult;
1003 }
1004
1005 // We need at least W + T bits for the multiplication step
1006 unsigned CalculationBits = W + T;
1007
1008 // Calculate 2^T, at width T+W.
1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1010
1011 // Calculate the multiplicative inverse of K! / 2^T;
1012 // this multiplication factor will perform the exact division by
1013 // K! / 2^T.
1014 APInt Mod = APInt::getSignedMinValue(W+1);
1015 APInt MultiplyFactor = OddFactorial.zext(W+1);
1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017 MultiplyFactor = MultiplyFactor.trunc(W);
1018
1019 // Calculate the product, at width T+W
1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1021 CalculationBits);
1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1023 for (unsigned i = 1; i != K; ++i) {
1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1025 Dividend = SE.getMulExpr(Dividend,
1026 SE.getTruncateOrZeroExtend(S, CalculationTy));
1027 }
1028
1029 // Divide by 2^T
1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1031
1032 // Truncate the result, and divide by K! / 2^T.
1033
1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1036 }
1037
1038 /// Return the value of this chain of recurrences at the specified iteration
1039 /// number. We can evaluate this recurrence by multiplying each element in the
1040 /// chain by the binomial coefficient corresponding to it. In other words, we
1041 /// can evaluate {A,+,B,+,C,+,D} as:
1042 ///
1043 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1044 ///
1045 /// where BC(It, k) stands for binomial coefficient.
1046 ///
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1048 ScalarEvolution &SE) const {
1049 const SCEV *Result = getStart();
1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1051 // The computation is correct in the face of overflow provided that the
1052 // multiplication is performed _after_ the evaluation of the binomial
1053 // coefficient.
1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1055 if (isa<SCEVCouldNotCompute>(Coeff))
1056 return Coeff;
1057
1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1059 }
1060 return Result;
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // SCEV Expression folder implementations
1065 //===----------------------------------------------------------------------===//
1066
getTruncateExpr(const SCEV * Op,Type * Ty)1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1068 Type *Ty) {
1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1070 "This is not a truncating conversion!");
1071 assert(isSCEVable(Ty) &&
1072 "This is not a conversion to a SCEVable type!");
1073 Ty = getEffectiveSCEVType(Ty);
1074
1075 FoldingSetNodeID ID;
1076 ID.AddInteger(scTruncate);
1077 ID.AddPointer(Op);
1078 ID.AddPointer(Ty);
1079 void *IP = nullptr;
1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081
1082 // Fold if the operand is constant.
1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084 return getConstant(
1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1086
1087 // trunc(trunc(x)) --> trunc(x)
1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1089 return getTruncateExpr(ST->getOperand(), Ty);
1090
1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1093 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094
1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098
1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1100 // eliminate all the truncates, or we replace other casts with truncates.
1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102 SmallVector<const SCEV *, 4> Operands;
1103 bool hasTrunc = false;
1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1106 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107 hasTrunc = isa<SCEVTruncateExpr>(S);
1108 Operands.push_back(S);
1109 }
1110 if (!hasTrunc)
1111 return getAddExpr(Operands);
1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1113 }
1114
1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1116 // eliminate all the truncates, or we replace other casts with truncates.
1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118 SmallVector<const SCEV *, 4> Operands;
1119 bool hasTrunc = false;
1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1122 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123 hasTrunc = isa<SCEVTruncateExpr>(S);
1124 Operands.push_back(S);
1125 }
1126 if (!hasTrunc)
1127 return getMulExpr(Operands);
1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1129 }
1130
1131 // If the input value is a chrec scev, truncate the chrec's operands.
1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1133 SmallVector<const SCEV *, 4> Operands;
1134 for (const SCEV *Op : AddRec->operands())
1135 Operands.push_back(getTruncateExpr(Op, Ty));
1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1137 }
1138
1139 // The cast wasn't folded; create an explicit cast node. We can reuse
1140 // the existing insert position since if we get here, we won't have
1141 // made any changes which would invalidate it.
1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
1144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
1146 }
1147
1148 // Get the limit of a recurrence such that incrementing by Step cannot cause
1149 // signed overflow as long as the value of the recurrence within the
1150 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152 ICmpInst::Predicate *Pred,
1153 ScalarEvolution *SE) {
1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155 if (SE->isKnownPositive(Step)) {
1156 *Pred = ICmpInst::ICMP_SLT;
1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158 SE->getSignedRange(Step).getSignedMax());
1159 }
1160 if (SE->isKnownNegative(Step)) {
1161 *Pred = ICmpInst::ICMP_SGT;
1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMin());
1164 }
1165 return nullptr;
1166 }
1167
1168 // Get the limit of a recurrence such that incrementing by Step cannot cause
1169 // unsigned overflow as long as the value of the recurrence within the loop does
1170 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 *Pred = ICmpInst::ICMP_ULT;
1176
1177 return SE->getConstant(APInt::getMinValue(BitWidth) -
1178 SE->getUnsignedRange(Step).getUnsignedMax());
1179 }
1180
1181 namespace {
1182
1183 struct ExtendOpTraitsBase {
1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185 };
1186
1187 // Used to make code generic over signed and unsigned overflow.
1188 template <typename ExtendOp> struct ExtendOpTraits {
1189 // Members present:
1190 //
1191 // static const SCEV::NoWrapFlags WrapType;
1192 //
1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194 //
1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196 // ICmpInst::Predicate *Pred,
1197 // ScalarEvolution *SE);
1198 };
1199
1200 template <>
1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203
1204 static const GetExtendExprTy GetExtendExpr;
1205
getOverflowLimitForStep__anond3aa2a800311::ExtendOpTraits1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207 ICmpInst::Predicate *Pred,
1208 ScalarEvolution *SE) {
1209 return getSignedOverflowLimitForStep(Step, Pred, SE);
1210 }
1211 };
1212
1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215
1216 template <>
1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219
1220 static const GetExtendExprTy GetExtendExpr;
1221
getOverflowLimitForStep__anond3aa2a800311::ExtendOpTraits1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223 ICmpInst::Predicate *Pred,
1224 ScalarEvolution *SE) {
1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226 }
1227 };
1228
1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1231 }
1232
1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238 // expression "Step + sext/zext(PreIncAR)" is congruent with
1239 // "sext/zext(PostIncAR)"
1240 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242 ScalarEvolution *SE) {
1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245
1246 const Loop *L = AR->getLoop();
1247 const SCEV *Start = AR->getStart();
1248 const SCEV *Step = AR->getStepRecurrence(*SE);
1249
1250 // Check for a simple looking step prior to loop entry.
1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252 if (!SA)
1253 return nullptr;
1254
1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256 // subtraction is expensive. For this purpose, perform a quick and dirty
1257 // difference, by checking for Step in the operand list.
1258 SmallVector<const SCEV *, 4> DiffOps;
1259 for (const SCEV *Op : SA->operands())
1260 if (Op != Step)
1261 DiffOps.push_back(Op);
1262
1263 if (DiffOps.size() == SA->getNumOperands())
1264 return nullptr;
1265
1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267 // `Step`:
1268
1269 // 1. NSW/NUW flags on the step increment.
1270 auto PreStartFlags =
1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275
1276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277 // "S+X does not sign/unsign-overflow".
1278 //
1279
1280 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1283 return PreStart;
1284
1285 // 2. Direct overflow check on the step operation's expression.
1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288 const SCEV *OperandExtendedStart =
1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290 (SE->*GetExtendExpr)(Step, WideTy));
1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297 }
1298 return PreStart;
1299 }
1300
1301 // 3. Loop precondition.
1302 ICmpInst::Predicate Pred;
1303 const SCEV *OverflowLimit =
1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305
1306 if (OverflowLimit &&
1307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1308 return PreStart;
1309
1310 return nullptr;
1311 }
1312
1313 // Get the normalized zero or sign extended expression for this AddRec's Start.
1314 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316 ScalarEvolution *SE) {
1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318
1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320 if (!PreStart)
1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322
1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324 (SE->*GetExtendExpr)(PreStart, Ty));
1325 }
1326
1327 // Try to prove away overflow by looking at "nearby" add recurrences. A
1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330 //
1331 // Formally:
1332 //
1333 // {S,+,X} == {S-T,+,X} + T
1334 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335 //
1336 // If ({S-T,+,X} + T) does not overflow ... (1)
1337 //
1338 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339 //
1340 // If {S-T,+,X} does not overflow ... (2)
1341 //
1342 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1344 //
1345 // If (S-T)+T does not overflow ... (3)
1346 //
1347 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348 // == {Ext(S),+,Ext(X)} == LHS
1349 //
1350 // Thus, if (1), (2) and (3) are true for some T, then
1351 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352 //
1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354 // does not overflow" restricted to the 0th iteration. Therefore we only need
1355 // to check for (1) and (2).
1356 //
1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358 // is `Delta` (defined below).
1359 //
1360 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362 const SCEV *Step,
1363 const Loop *L) {
1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365
1366 // We restrict `Start` to a constant to prevent SCEV from spending too much
1367 // time here. It is correct (but more expensive) to continue with a
1368 // non-constant `Start` and do a general SCEV subtraction to compute
1369 // `PreStart` below.
1370 //
1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372 if (!StartC)
1373 return false;
1374
1375 APInt StartAI = StartC->getAPInt();
1376
1377 for (unsigned Delta : {-2, -1, 1, 2}) {
1378 const SCEV *PreStart = getConstant(StartAI - Delta);
1379
1380 FoldingSetNodeID ID;
1381 ID.AddInteger(scAddRecExpr);
1382 ID.AddPointer(PreStart);
1383 ID.AddPointer(Step);
1384 ID.AddPointer(L);
1385 void *IP = nullptr;
1386 const auto *PreAR =
1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388
1389 // Give up if we don't already have the add recurrence we need because
1390 // actually constructing an add recurrence is relatively expensive.
1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395 DeltaS, &Pred, this);
1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1397 return true;
1398 }
1399 }
1400
1401 return false;
1402 }
1403
getZeroExtendExpr(const SCEV * Op,Type * Ty)1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1405 Type *Ty) {
1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1407 "This is not an extending conversion!");
1408 assert(isSCEVable(Ty) &&
1409 "This is not a conversion to a SCEVable type!");
1410 Ty = getEffectiveSCEVType(Ty);
1411
1412 // Fold if the operand is constant.
1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414 return getConstant(
1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1416
1417 // zext(zext(x)) --> zext(x)
1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1419 return getZeroExtendExpr(SZ->getOperand(), Ty);
1420
1421 // Before doing any expensive analysis, check to see if we've already
1422 // computed a SCEV for this Op and Ty.
1423 FoldingSetNodeID ID;
1424 ID.AddInteger(scZeroExtend);
1425 ID.AddPointer(Op);
1426 ID.AddPointer(Ty);
1427 void *IP = nullptr;
1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429
1430 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432 // It's possible the bits taken off by the truncate were all zero bits. If
1433 // so, we should be able to simplify this further.
1434 const SCEV *X = ST->getOperand();
1435 ConstantRange CR = getUnsignedRange(X);
1436 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437 unsigned NewBits = getTypeSizeInBits(Ty);
1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1439 CR.zextOrTrunc(NewBits)))
1440 return getTruncateOrZeroExtend(X, Ty);
1441 }
1442
1443 // If the input value is a chrec scev, and we can prove that the value
1444 // did not overflow the old, smaller, value, we can zero extend all of the
1445 // operands (often constants). This allows analysis of something like
1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1448 if (AR->isAffine()) {
1449 const SCEV *Start = AR->getStart();
1450 const SCEV *Step = AR->getStepRecurrence(*this);
1451 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452 const Loop *L = AR->getLoop();
1453
1454 if (!AR->hasNoUnsignedWrap()) {
1455 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457 }
1458
1459 // If we have special knowledge that this addrec won't overflow,
1460 // we don't need to do any further analysis.
1461 if (AR->hasNoUnsignedWrap())
1462 return getAddRecExpr(
1463 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465
1466 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467 // Note that this serves two purposes: It filters out loops that are
1468 // simply not analyzable, and it covers the case where this code is
1469 // being called from within backedge-taken count analysis, such that
1470 // attempting to ask for the backedge-taken count would likely result
1471 // in infinite recursion. In the later case, the analysis code will
1472 // cope with a conservative value, and it will take care to purge
1473 // that value once it has finished.
1474 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476 // Manually compute the final value for AR, checking for
1477 // overflow.
1478
1479 // Check whether the backedge-taken count can be losslessly casted to
1480 // the addrec's type. The count is always unsigned.
1481 const SCEV *CastedMaxBECount =
1482 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483 const SCEV *RecastedMaxBECount =
1484 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485 if (MaxBECount == RecastedMaxBECount) {
1486 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491 const SCEV *WideMaxBECount =
1492 getZeroExtendExpr(CastedMaxBECount, WideTy);
1493 const SCEV *OperandExtendedAdd =
1494 getAddExpr(WideStart,
1495 getMulExpr(WideMaxBECount,
1496 getZeroExtendExpr(Step, WideTy)));
1497 if (ZAdd == OperandExtendedAdd) {
1498 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500 // Return the expression with the addrec on the outside.
1501 return getAddRecExpr(
1502 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504 }
1505 // Similar to above, only this time treat the step value as signed.
1506 // This covers loops that count down.
1507 OperandExtendedAdd =
1508 getAddExpr(WideStart,
1509 getMulExpr(WideMaxBECount,
1510 getSignExtendExpr(Step, WideTy)));
1511 if (ZAdd == OperandExtendedAdd) {
1512 // Cache knowledge of AR NW, which is propagated to this AddRec.
1513 // Negative step causes unsigned wrap, but it still can't self-wrap.
1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515 // Return the expression with the addrec on the outside.
1516 return getAddRecExpr(
1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519 }
1520 }
1521 }
1522
1523 // Normally, in the cases we can prove no-overflow via a
1524 // backedge guarding condition, we can also compute a backedge
1525 // taken count for the loop. The exceptions are assumptions and
1526 // guards present in the loop -- SCEV is not great at exploiting
1527 // these to compute max backedge taken counts, but can still use
1528 // these to prove lack of overflow. Use this fact to avoid
1529 // doing extra work that may not pay off.
1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531 !AC.assumptions().empty()) {
1532 // If the backedge is guarded by a comparison with the pre-inc
1533 // value the addrec is safe. Also, if the entry is guarded by
1534 // a comparison with the start value and the backedge is
1535 // guarded by a comparison with the post-inc value, the addrec
1536 // is safe.
1537 if (isKnownPositive(Step)) {
1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539 getUnsignedRange(Step).getUnsignedMax());
1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1542 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1543 AR->getPostIncExpr(*this), N))) {
1544 // Cache knowledge of AR NUW, which is propagated to this
1545 // AddRec.
1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547 // Return the expression with the addrec on the outside.
1548 return getAddRecExpr(
1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1551 }
1552 } else if (isKnownNegative(Step)) {
1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554 getSignedRange(Step).getSignedMin());
1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1557 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1558 AR->getPostIncExpr(*this), N))) {
1559 // Cache knowledge of AR NW, which is propagated to this
1560 // AddRec. Negative step causes unsigned wrap, but it
1561 // still can't self-wrap.
1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563 // Return the expression with the addrec on the outside.
1564 return getAddRecExpr(
1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1567 }
1568 }
1569 }
1570
1571 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573 return getAddRecExpr(
1574 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576 }
1577 }
1578
1579 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1581 if (SA->hasNoUnsignedWrap()) {
1582 // If the addition does not unsign overflow then we can, by definition,
1583 // commute the zero extension with the addition operation.
1584 SmallVector<const SCEV *, 4> Ops;
1585 for (const auto *Op : SA->operands())
1586 Ops.push_back(getZeroExtendExpr(Op, Ty));
1587 return getAddExpr(Ops, SCEV::FlagNUW);
1588 }
1589 }
1590
1591 // The cast wasn't folded; create an explicit cast node.
1592 // Recompute the insert position, as it may have been invalidated.
1593 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1594 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595 Op, Ty);
1596 UniqueSCEVs.InsertNode(S, IP);
1597 return S;
1598 }
1599
getSignExtendExpr(const SCEV * Op,Type * Ty)1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1601 Type *Ty) {
1602 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1603 "This is not an extending conversion!");
1604 assert(isSCEVable(Ty) &&
1605 "This is not a conversion to a SCEVable type!");
1606 Ty = getEffectiveSCEVType(Ty);
1607
1608 // Fold if the operand is constant.
1609 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610 return getConstant(
1611 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1612
1613 // sext(sext(x)) --> sext(x)
1614 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1615 return getSignExtendExpr(SS->getOperand(), Ty);
1616
1617 // sext(zext(x)) --> zext(x)
1618 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619 return getZeroExtendExpr(SZ->getOperand(), Ty);
1620
1621 // Before doing any expensive analysis, check to see if we've already
1622 // computed a SCEV for this Op and Ty.
1623 FoldingSetNodeID ID;
1624 ID.AddInteger(scSignExtend);
1625 ID.AddPointer(Op);
1626 ID.AddPointer(Ty);
1627 void *IP = nullptr;
1628 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629
1630 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632 // It's possible the bits taken off by the truncate were all sign bits. If
1633 // so, we should be able to simplify this further.
1634 const SCEV *X = ST->getOperand();
1635 ConstantRange CR = getSignedRange(X);
1636 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637 unsigned NewBits = getTypeSizeInBits(Ty);
1638 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1639 CR.sextOrTrunc(NewBits)))
1640 return getTruncateOrSignExtend(X, Ty);
1641 }
1642
1643 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1644 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1645 if (SA->getNumOperands() == 2) {
1646 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1648 if (SMul && SC1) {
1649 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1650 const APInt &C1 = SC1->getAPInt();
1651 const APInt &C2 = SC2->getAPInt();
1652 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1653 C2.ugt(C1) && C2.isPowerOf2())
1654 return getAddExpr(getSignExtendExpr(SC1, Ty),
1655 getSignExtendExpr(SMul, Ty));
1656 }
1657 }
1658 }
1659
1660 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1661 if (SA->hasNoSignedWrap()) {
1662 // If the addition does not sign overflow then we can, by definition,
1663 // commute the sign extension with the addition operation.
1664 SmallVector<const SCEV *, 4> Ops;
1665 for (const auto *Op : SA->operands())
1666 Ops.push_back(getSignExtendExpr(Op, Ty));
1667 return getAddExpr(Ops, SCEV::FlagNSW);
1668 }
1669 }
1670 // If the input value is a chrec scev, and we can prove that the value
1671 // did not overflow the old, smaller, value, we can sign extend all of the
1672 // operands (often constants). This allows analysis of something like
1673 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1674 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1675 if (AR->isAffine()) {
1676 const SCEV *Start = AR->getStart();
1677 const SCEV *Step = AR->getStepRecurrence(*this);
1678 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679 const Loop *L = AR->getLoop();
1680
1681 if (!AR->hasNoSignedWrap()) {
1682 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684 }
1685
1686 // If we have special knowledge that this addrec won't overflow,
1687 // we don't need to do any further analysis.
1688 if (AR->hasNoSignedWrap())
1689 return getAddRecExpr(
1690 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1692
1693 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694 // Note that this serves two purposes: It filters out loops that are
1695 // simply not analyzable, and it covers the case where this code is
1696 // being called from within backedge-taken count analysis, such that
1697 // attempting to ask for the backedge-taken count would likely result
1698 // in infinite recursion. In the later case, the analysis code will
1699 // cope with a conservative value, and it will take care to purge
1700 // that value once it has finished.
1701 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1702 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1703 // Manually compute the final value for AR, checking for
1704 // overflow.
1705
1706 // Check whether the backedge-taken count can be losslessly casted to
1707 // the addrec's type. The count is always unsigned.
1708 const SCEV *CastedMaxBECount =
1709 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1710 const SCEV *RecastedMaxBECount =
1711 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712 if (MaxBECount == RecastedMaxBECount) {
1713 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1714 // Check whether Start+Step*MaxBECount has no signed overflow.
1715 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1716 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718 const SCEV *WideMaxBECount =
1719 getZeroExtendExpr(CastedMaxBECount, WideTy);
1720 const SCEV *OperandExtendedAdd =
1721 getAddExpr(WideStart,
1722 getMulExpr(WideMaxBECount,
1723 getSignExtendExpr(Step, WideTy)));
1724 if (SAdd == OperandExtendedAdd) {
1725 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1727 // Return the expression with the addrec on the outside.
1728 return getAddRecExpr(
1729 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1731 }
1732 // Similar to above, only this time treat the step value as unsigned.
1733 // This covers loops that count up with an unsigned step.
1734 OperandExtendedAdd =
1735 getAddExpr(WideStart,
1736 getMulExpr(WideMaxBECount,
1737 getZeroExtendExpr(Step, WideTy)));
1738 if (SAdd == OperandExtendedAdd) {
1739 // If AR wraps around then
1740 //
1741 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742 // => SAdd != OperandExtendedAdd
1743 //
1744 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745 // (SAdd == OperandExtendedAdd => AR is NW)
1746
1747 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748
1749 // Return the expression with the addrec on the outside.
1750 return getAddRecExpr(
1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753 }
1754 }
1755 }
1756
1757 // Normally, in the cases we can prove no-overflow via a
1758 // backedge guarding condition, we can also compute a backedge
1759 // taken count for the loop. The exceptions are assumptions and
1760 // guards present in the loop -- SCEV is not great at exploiting
1761 // these to compute max backedge taken counts, but can still use
1762 // these to prove lack of overflow. Use this fact to avoid
1763 // doing extra work that may not pay off.
1764
1765 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766 !AC.assumptions().empty()) {
1767 // If the backedge is guarded by a comparison with the pre-inc
1768 // value the addrec is safe. Also, if the entry is guarded by
1769 // a comparison with the start value and the backedge is
1770 // guarded by a comparison with the post-inc value, the addrec
1771 // is safe.
1772 ICmpInst::Predicate Pred;
1773 const SCEV *OverflowLimit =
1774 getSignedOverflowLimitForStep(Step, &Pred, this);
1775 if (OverflowLimit &&
1776 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779 OverflowLimit)))) {
1780 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1782 return getAddRecExpr(
1783 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1785 }
1786 }
1787
1788 // If Start and Step are constants, check if we can apply this
1789 // transformation:
1790 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1791 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792 auto *SC2 = dyn_cast<SCEVConstant>(Step);
1793 if (SC1 && SC2) {
1794 const APInt &C1 = SC1->getAPInt();
1795 const APInt &C2 = SC2->getAPInt();
1796 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797 C2.isPowerOf2()) {
1798 Start = getSignExtendExpr(Start, Ty);
1799 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800 AR->getNoWrapFlags());
1801 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802 }
1803 }
1804
1805 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807 return getAddRecExpr(
1808 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810 }
1811 }
1812
1813 // If the input value is provably positive and we could not simplify
1814 // away the sext build a zext instead.
1815 if (isKnownNonNegative(Op))
1816 return getZeroExtendExpr(Op, Ty);
1817
1818 // The cast wasn't folded; create an explicit cast node.
1819 // Recompute the insert position, as it may have been invalidated.
1820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1821 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822 Op, Ty);
1823 UniqueSCEVs.InsertNode(S, IP);
1824 return S;
1825 }
1826
1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828 /// unspecified bits out to the given type.
1829 ///
getAnyExtendExpr(const SCEV * Op,Type * Ty)1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1831 Type *Ty) {
1832 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1833 "This is not an extending conversion!");
1834 assert(isSCEVable(Ty) &&
1835 "This is not a conversion to a SCEVable type!");
1836 Ty = getEffectiveSCEVType(Ty);
1837
1838 // Sign-extend negative constants.
1839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1840 if (SC->getAPInt().isNegative())
1841 return getSignExtendExpr(Op, Ty);
1842
1843 // Peel off a truncate cast.
1844 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1845 const SCEV *NewOp = T->getOperand();
1846 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847 return getAnyExtendExpr(NewOp, Ty);
1848 return getTruncateOrNoop(NewOp, Ty);
1849 }
1850
1851 // Next try a zext cast. If the cast is folded, use it.
1852 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1853 if (!isa<SCEVZeroExtendExpr>(ZExt))
1854 return ZExt;
1855
1856 // Next try a sext cast. If the cast is folded, use it.
1857 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1858 if (!isa<SCEVSignExtendExpr>(SExt))
1859 return SExt;
1860
1861 // Force the cast to be folded into the operands of an addrec.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863 SmallVector<const SCEV *, 4> Ops;
1864 for (const SCEV *Op : AR->operands())
1865 Ops.push_back(getAnyExtendExpr(Op, Ty));
1866 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1867 }
1868
1869 // If the expression is obviously signed, use the sext cast value.
1870 if (isa<SCEVSMaxExpr>(Op))
1871 return SExt;
1872
1873 // Absent any other information, use the zext cast value.
1874 return ZExt;
1875 }
1876
1877 /// Process the given Ops list, which is a list of operands to be added under
1878 /// the given scale, update the given map. This is a helper function for
1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1880 /// that would form an add expression like this:
1881 ///
1882 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1883 ///
1884 /// where A and B are constants, update the map with these values:
1885 ///
1886 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887 ///
1888 /// and add 13 + A*B*29 to AccumulatedConstant.
1889 /// This will allow getAddRecExpr to produce this:
1890 ///
1891 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892 ///
1893 /// This form often exposes folding opportunities that are hidden in
1894 /// the original operand list.
1895 ///
1896 /// Return true iff it appears that any interesting folding opportunities
1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898 /// the common case where no interesting opportunities are present, and
1899 /// is also used as a check to avoid infinite recursion.
1900 ///
1901 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1903 SmallVectorImpl<const SCEV *> &NewOps,
1904 APInt &AccumulatedConstant,
1905 const SCEV *const *Ops, size_t NumOperands,
1906 const APInt &Scale,
1907 ScalarEvolution &SE) {
1908 bool Interesting = false;
1909
1910 // Iterate over the add operands. They are sorted, with constants first.
1911 unsigned i = 0;
1912 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913 ++i;
1914 // Pull a buried constant out to the outside.
1915 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916 Interesting = true;
1917 AccumulatedConstant += Scale * C->getAPInt();
1918 }
1919
1920 // Next comes everything else. We're especially interested in multiplies
1921 // here, but they're in the middle, so just visit the rest with one loop.
1922 for (; i != NumOperands; ++i) {
1923 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925 APInt NewScale =
1926 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1927 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928 // A multiplication of a constant with another add; recurse.
1929 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1930 Interesting |=
1931 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1932 Add->op_begin(), Add->getNumOperands(),
1933 NewScale, SE);
1934 } else {
1935 // A multiplication of a constant with some other value. Update
1936 // the map.
1937 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938 const SCEV *Key = SE.getMulExpr(MulOps);
1939 auto Pair = M.insert({Key, NewScale});
1940 if (Pair.second) {
1941 NewOps.push_back(Pair.first->first);
1942 } else {
1943 Pair.first->second += NewScale;
1944 // The map already had an entry for this value, which may indicate
1945 // a folding opportunity.
1946 Interesting = true;
1947 }
1948 }
1949 } else {
1950 // An ordinary operand. Update the map.
1951 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1952 M.insert({Ops[i], Scale});
1953 if (Pair.second) {
1954 NewOps.push_back(Pair.first->first);
1955 } else {
1956 Pair.first->second += Scale;
1957 // The map already had an entry for this value, which may indicate
1958 // a folding opportunity.
1959 Interesting = true;
1960 }
1961 }
1962 }
1963
1964 return Interesting;
1965 }
1966
1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1969 // can't-overflow flags for the operation if possible.
1970 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972 const SmallVectorImpl<const SCEV *> &Ops,
1973 SCEV::NoWrapFlags Flags) {
1974 using namespace std::placeholders;
1975 typedef OverflowingBinaryOperator OBO;
1976
1977 bool CanAnalyze =
1978 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979 (void)CanAnalyze;
1980 assert(CanAnalyze && "don't call from other places!");
1981
1982 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983 SCEV::NoWrapFlags SignOrUnsignWrap =
1984 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1985
1986 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1987 auto IsKnownNonNegative = [&](const SCEV *S) {
1988 return SE->isKnownNonNegative(S);
1989 };
1990
1991 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1992 Flags =
1993 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1994
1995 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996
1997 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999
2000 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002
2003 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2004 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2005 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006 Instruction::Add, C, OBO::NoSignedWrap);
2007 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009 }
2010 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2011 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012 Instruction::Add, C, OBO::NoUnsignedWrap);
2013 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015 }
2016 }
2017
2018 return Flags;
2019 }
2020
2021 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2023 SCEV::NoWrapFlags Flags) {
2024 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2025 "only nuw or nsw allowed");
2026 assert(!Ops.empty() && "Cannot get empty add!");
2027 if (Ops.size() == 1) return Ops[0];
2028 #ifndef NDEBUG
2029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2030 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2032 "SCEVAddExpr operand types don't match!");
2033 #endif
2034
2035 // Sort by complexity, this groups all similar expression types together.
2036 GroupByComplexity(Ops, &LI);
2037
2038 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039
2040 // If there are any constants, fold them together.
2041 unsigned Idx = 0;
2042 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2043 ++Idx;
2044 assert(Idx < Ops.size());
2045 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2046 // We found two constants, fold them together!
2047 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2048 if (Ops.size() == 2) return Ops[0];
2049 Ops.erase(Ops.begin()+1); // Erase the folded element
2050 LHSC = cast<SCEVConstant>(Ops[0]);
2051 }
2052
2053 // If we are left with a constant zero being added, strip it off.
2054 if (LHSC->getValue()->isZero()) {
2055 Ops.erase(Ops.begin());
2056 --Idx;
2057 }
2058
2059 if (Ops.size() == 1) return Ops[0];
2060 }
2061
2062 // Okay, check to see if the same value occurs in the operand list more than
2063 // once. If so, merge them together into an multiply expression. Since we
2064 // sorted the list, these values are required to be adjacent.
2065 Type *Ty = Ops[0]->getType();
2066 bool FoundMatch = false;
2067 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2068 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2069 // Scan ahead to count how many equal operands there are.
2070 unsigned Count = 2;
2071 while (i+Count != e && Ops[i+Count] == Ops[i])
2072 ++Count;
2073 // Merge the values into a multiply.
2074 const SCEV *Scale = getConstant(Ty, Count);
2075 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076 if (Ops.size() == Count)
2077 return Mul;
2078 Ops[i] = Mul;
2079 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2080 --i; e -= Count - 1;
2081 FoundMatch = true;
2082 }
2083 if (FoundMatch)
2084 return getAddExpr(Ops, Flags);
2085
2086 // Check for truncates. If all the operands are truncated from the same
2087 // type, see if factoring out the truncate would permit the result to be
2088 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089 // if the contents of the resulting outer trunc fold to something simple.
2090 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2092 Type *DstType = Trunc->getType();
2093 Type *SrcType = Trunc->getOperand()->getType();
2094 SmallVector<const SCEV *, 8> LargeOps;
2095 bool Ok = true;
2096 // Check all the operands to see if they can be represented in the
2097 // source type of the truncate.
2098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100 if (T->getOperand()->getType() != SrcType) {
2101 Ok = false;
2102 break;
2103 }
2104 LargeOps.push_back(T->getOperand());
2105 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2106 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2107 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2108 SmallVector<const SCEV *, 8> LargeMulOps;
2109 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110 if (const SCEVTruncateExpr *T =
2111 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112 if (T->getOperand()->getType() != SrcType) {
2113 Ok = false;
2114 break;
2115 }
2116 LargeMulOps.push_back(T->getOperand());
2117 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2118 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2119 } else {
2120 Ok = false;
2121 break;
2122 }
2123 }
2124 if (Ok)
2125 LargeOps.push_back(getMulExpr(LargeMulOps));
2126 } else {
2127 Ok = false;
2128 break;
2129 }
2130 }
2131 if (Ok) {
2132 // Evaluate the expression in the larger type.
2133 const SCEV *Fold = getAddExpr(LargeOps, Flags);
2134 // If it folds to something simple, use it. Otherwise, don't.
2135 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136 return getTruncateExpr(Fold, DstType);
2137 }
2138 }
2139
2140 // Skip past any other cast SCEVs.
2141 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142 ++Idx;
2143
2144 // If there are add operands they would be next.
2145 if (Idx < Ops.size()) {
2146 bool DeletedAdd = false;
2147 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2148 // If we have an add, expand the add operands onto the end of the operands
2149 // list.
2150 Ops.erase(Ops.begin()+Idx);
2151 Ops.append(Add->op_begin(), Add->op_end());
2152 DeletedAdd = true;
2153 }
2154
2155 // If we deleted at least one add, we added operands to the end of the list,
2156 // and they are not necessarily sorted. Recurse to resort and resimplify
2157 // any operands we just acquired.
2158 if (DeletedAdd)
2159 return getAddExpr(Ops);
2160 }
2161
2162 // Skip over the add expression until we get to a multiply.
2163 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164 ++Idx;
2165
2166 // Check to see if there are any folding opportunities present with
2167 // operands multiplied by constant values.
2168 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169 uint64_t BitWidth = getTypeSizeInBits(Ty);
2170 DenseMap<const SCEV *, APInt> M;
2171 SmallVector<const SCEV *, 8> NewOps;
2172 APInt AccumulatedConstant(BitWidth, 0);
2173 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2174 Ops.data(), Ops.size(),
2175 APInt(BitWidth, 1), *this)) {
2176 struct APIntCompare {
2177 bool operator()(const APInt &LHS, const APInt &RHS) const {
2178 return LHS.ult(RHS);
2179 }
2180 };
2181
2182 // Some interesting folding opportunity is present, so its worthwhile to
2183 // re-generate the operands list. Group the operands by constant scale,
2184 // to avoid multiplying by the same constant scale multiple times.
2185 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2186 for (const SCEV *NewOp : NewOps)
2187 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2188 // Re-generate the operands list.
2189 Ops.clear();
2190 if (AccumulatedConstant != 0)
2191 Ops.push_back(getConstant(AccumulatedConstant));
2192 for (auto &MulOp : MulOpLists)
2193 if (MulOp.first != 0)
2194 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195 getAddExpr(MulOp.second)));
2196 if (Ops.empty())
2197 return getZero(Ty);
2198 if (Ops.size() == 1)
2199 return Ops[0];
2200 return getAddExpr(Ops);
2201 }
2202 }
2203
2204 // If we are adding something to a multiply expression, make sure the
2205 // something is not already an operand of the multiply. If so, merge it into
2206 // the multiply.
2207 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2208 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2209 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2210 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2211 if (isa<SCEVConstant>(MulOpSCEV))
2212 continue;
2213 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2214 if (MulOpSCEV == Ops[AddOp]) {
2215 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2216 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2217 if (Mul->getNumOperands() != 2) {
2218 // If the multiply has more than two operands, we must get the
2219 // Y*Z term.
2220 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221 Mul->op_begin()+MulOp);
2222 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2223 InnerMul = getMulExpr(MulOps);
2224 }
2225 const SCEV *One = getOne(Ty);
2226 const SCEV *AddOne = getAddExpr(One, InnerMul);
2227 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2228 if (Ops.size() == 2) return OuterMul;
2229 if (AddOp < Idx) {
2230 Ops.erase(Ops.begin()+AddOp);
2231 Ops.erase(Ops.begin()+Idx-1);
2232 } else {
2233 Ops.erase(Ops.begin()+Idx);
2234 Ops.erase(Ops.begin()+AddOp-1);
2235 }
2236 Ops.push_back(OuterMul);
2237 return getAddExpr(Ops);
2238 }
2239
2240 // Check this multiply against other multiplies being added together.
2241 for (unsigned OtherMulIdx = Idx+1;
2242 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243 ++OtherMulIdx) {
2244 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2245 // If MulOp occurs in OtherMul, we can fold the two multiplies
2246 // together.
2247 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248 OMulOp != e; ++OMulOp)
2249 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2251 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2252 if (Mul->getNumOperands() != 2) {
2253 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2254 Mul->op_begin()+MulOp);
2255 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2256 InnerMul1 = getMulExpr(MulOps);
2257 }
2258 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2259 if (OtherMul->getNumOperands() != 2) {
2260 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2261 OtherMul->op_begin()+OMulOp);
2262 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2263 InnerMul2 = getMulExpr(MulOps);
2264 }
2265 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2267 if (Ops.size() == 2) return OuterMul;
2268 Ops.erase(Ops.begin()+Idx);
2269 Ops.erase(Ops.begin()+OtherMulIdx-1);
2270 Ops.push_back(OuterMul);
2271 return getAddExpr(Ops);
2272 }
2273 }
2274 }
2275 }
2276
2277 // If there are any add recurrences in the operands list, see if any other
2278 // added values are loop invariant. If so, we can fold them into the
2279 // recurrence.
2280 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281 ++Idx;
2282
2283 // Scan over all recurrences, trying to fold loop invariants into them.
2284 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285 // Scan all of the other operands to this add and add them to the vector if
2286 // they are loop invariant w.r.t. the recurrence.
2287 SmallVector<const SCEV *, 8> LIOps;
2288 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2289 const Loop *AddRecLoop = AddRec->getLoop();
2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2292 LIOps.push_back(Ops[i]);
2293 Ops.erase(Ops.begin()+i);
2294 --i; --e;
2295 }
2296
2297 // If we found some loop invariants, fold them into the recurrence.
2298 if (!LIOps.empty()) {
2299 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2300 LIOps.push_back(AddRec->getStart());
2301
2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303 AddRec->op_end());
2304 // This follows from the fact that the no-wrap flags on the outer add
2305 // expression are applicable on the 0th iteration, when the add recurrence
2306 // will be equal to its start value.
2307 AddRecOps[0] = getAddExpr(LIOps, Flags);
2308
2309 // Build the new addrec. Propagate the NUW and NSW flags if both the
2310 // outer add and the inner addrec are guaranteed to have no overflow.
2311 // Always propagate NW.
2312 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2313 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2314
2315 // If all of the other operands were loop invariant, we are done.
2316 if (Ops.size() == 1) return NewRec;
2317
2318 // Otherwise, add the folded AddRec by the non-invariant parts.
2319 for (unsigned i = 0;; ++i)
2320 if (Ops[i] == AddRec) {
2321 Ops[i] = NewRec;
2322 break;
2323 }
2324 return getAddExpr(Ops);
2325 }
2326
2327 // Okay, if there weren't any loop invariants to be folded, check to see if
2328 // there are multiple AddRec's with the same loop induction variable being
2329 // added together. If so, we can fold them.
2330 for (unsigned OtherIdx = Idx+1;
2331 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332 ++OtherIdx)
2333 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2335 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336 AddRec->op_end());
2337 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338 ++OtherIdx)
2339 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2340 if (OtherAddRec->getLoop() == AddRecLoop) {
2341 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342 i != e; ++i) {
2343 if (i >= AddRecOps.size()) {
2344 AddRecOps.append(OtherAddRec->op_begin()+i,
2345 OtherAddRec->op_end());
2346 break;
2347 }
2348 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349 OtherAddRec->getOperand(i));
2350 }
2351 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2352 }
2353 // Step size has changed, so we cannot guarantee no self-wraparound.
2354 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2355 return getAddExpr(Ops);
2356 }
2357
2358 // Otherwise couldn't fold anything into this recurrence. Move onto the
2359 // next one.
2360 }
2361
2362 // Okay, it looks like we really DO need an add expr. Check to see if we
2363 // already have one, otherwise create a new one.
2364 FoldingSetNodeID ID;
2365 ID.AddInteger(scAddExpr);
2366 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367 ID.AddPointer(Ops[i]);
2368 void *IP = nullptr;
2369 SCEVAddExpr *S =
2370 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371 if (!S) {
2372 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375 O, Ops.size());
2376 UniqueSCEVs.InsertNode(S, IP);
2377 }
2378 S->setNoWrapFlags(Flags);
2379 return S;
2380 }
2381
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383 uint64_t k = i*j;
2384 if (j > 1 && k / j != i) Overflow = true;
2385 return k;
2386 }
2387
2388 /// Compute the result of "n choose k", the binomial coefficient. If an
2389 /// intermediate computation overflows, Overflow will be set and the return will
2390 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392 // We use the multiplicative formula:
2393 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394 // At each iteration, we take the n-th term of the numeral and divide by the
2395 // (k-n)th term of the denominator. This division will always produce an
2396 // integral result, and helps reduce the chance of overflow in the
2397 // intermediate computations. However, we can still overflow even when the
2398 // final result would fit.
2399
2400 if (n == 0 || n == k) return 1;
2401 if (k > n) return 0;
2402
2403 if (k > n/2)
2404 k = n-k;
2405
2406 uint64_t r = 1;
2407 for (uint64_t i = 1; i <= k; ++i) {
2408 r = umul_ov(r, n-(i-1), Overflow);
2409 r /= i;
2410 }
2411 return r;
2412 }
2413
2414 /// Determine if any of the operands in this SCEV are a constant or if
2415 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantSomewhere(const SCEV * StartExpr)2416 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417 SmallVector<const SCEV *, 4> Ops;
2418 Ops.push_back(StartExpr);
2419 while (!Ops.empty()) {
2420 const SCEV *CurrentExpr = Ops.pop_back_val();
2421 if (isa<SCEVConstant>(*CurrentExpr))
2422 return true;
2423
2424 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2426 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2427 }
2428 }
2429 return false;
2430 }
2431
2432 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2434 SCEV::NoWrapFlags Flags) {
2435 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2436 "only nuw or nsw allowed");
2437 assert(!Ops.empty() && "Cannot get empty mul!");
2438 if (Ops.size() == 1) return Ops[0];
2439 #ifndef NDEBUG
2440 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2441 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2442 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2443 "SCEVMulExpr operand types don't match!");
2444 #endif
2445
2446 // Sort by complexity, this groups all similar expression types together.
2447 GroupByComplexity(Ops, &LI);
2448
2449 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450
2451 // If there are any constants, fold them together.
2452 unsigned Idx = 0;
2453 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2454
2455 // C1*(C2+V) -> C1*C2 + C1*V
2456 if (Ops.size() == 2)
2457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458 // If any of Add's ops are Adds or Muls with a constant,
2459 // apply this transformation as well.
2460 if (Add->getNumOperands() == 2)
2461 if (containsConstantSomewhere(Add))
2462 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463 getMulExpr(LHSC, Add->getOperand(1)));
2464
2465 ++Idx;
2466 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2467 // We found two constants, fold them together!
2468 ConstantInt *Fold =
2469 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2470 Ops[0] = getConstant(Fold);
2471 Ops.erase(Ops.begin()+1); // Erase the folded element
2472 if (Ops.size() == 1) return Ops[0];
2473 LHSC = cast<SCEVConstant>(Ops[0]);
2474 }
2475
2476 // If we are left with a constant one being multiplied, strip it off.
2477 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478 Ops.erase(Ops.begin());
2479 --Idx;
2480 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2481 // If we have a multiply of zero, it will always be zero.
2482 return Ops[0];
2483 } else if (Ops[0]->isAllOnesValue()) {
2484 // If we have a mul by -1 of an add, try distributing the -1 among the
2485 // add operands.
2486 if (Ops.size() == 2) {
2487 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488 SmallVector<const SCEV *, 4> NewOps;
2489 bool AnyFolded = false;
2490 for (const SCEV *AddOp : Add->operands()) {
2491 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2492 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493 NewOps.push_back(Mul);
2494 }
2495 if (AnyFolded)
2496 return getAddExpr(NewOps);
2497 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2498 // Negation preserves a recurrence's no self-wrap property.
2499 SmallVector<const SCEV *, 4> Operands;
2500 for (const SCEV *AddRecOp : AddRec->operands())
2501 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502
2503 return getAddRecExpr(Operands, AddRec->getLoop(),
2504 AddRec->getNoWrapFlags(SCEV::FlagNW));
2505 }
2506 }
2507 }
2508
2509 if (Ops.size() == 1)
2510 return Ops[0];
2511 }
2512
2513 // Skip over the add expression until we get to a multiply.
2514 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515 ++Idx;
2516
2517 // If there are mul operands inline them all into this expression.
2518 if (Idx < Ops.size()) {
2519 bool DeletedMul = false;
2520 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2521 // If we have an mul, expand the mul operands onto the end of the operands
2522 // list.
2523 Ops.erase(Ops.begin()+Idx);
2524 Ops.append(Mul->op_begin(), Mul->op_end());
2525 DeletedMul = true;
2526 }
2527
2528 // If we deleted at least one mul, we added operands to the end of the list,
2529 // and they are not necessarily sorted. Recurse to resort and resimplify
2530 // any operands we just acquired.
2531 if (DeletedMul)
2532 return getMulExpr(Ops);
2533 }
2534
2535 // If there are any add recurrences in the operands list, see if any other
2536 // added values are loop invariant. If so, we can fold them into the
2537 // recurrence.
2538 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539 ++Idx;
2540
2541 // Scan over all recurrences, trying to fold loop invariants into them.
2542 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543 // Scan all of the other operands to this mul and add them to the vector if
2544 // they are loop invariant w.r.t. the recurrence.
2545 SmallVector<const SCEV *, 8> LIOps;
2546 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2547 const Loop *AddRecLoop = AddRec->getLoop();
2548 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2549 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2550 LIOps.push_back(Ops[i]);
2551 Ops.erase(Ops.begin()+i);
2552 --i; --e;
2553 }
2554
2555 // If we found some loop invariants, fold them into the recurrence.
2556 if (!LIOps.empty()) {
2557 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2558 SmallVector<const SCEV *, 4> NewOps;
2559 NewOps.reserve(AddRec->getNumOperands());
2560 const SCEV *Scale = getMulExpr(LIOps);
2561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2563
2564 // Build the new addrec. Propagate the NUW and NSW flags if both the
2565 // outer mul and the inner addrec are guaranteed to have no overflow.
2566 //
2567 // No self-wrap cannot be guaranteed after changing the step size, but
2568 // will be inferred if either NUW or NSW is true.
2569 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2571
2572 // If all of the other operands were loop invariant, we are done.
2573 if (Ops.size() == 1) return NewRec;
2574
2575 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2576 for (unsigned i = 0;; ++i)
2577 if (Ops[i] == AddRec) {
2578 Ops[i] = NewRec;
2579 break;
2580 }
2581 return getMulExpr(Ops);
2582 }
2583
2584 // Okay, if there weren't any loop invariants to be folded, check to see if
2585 // there are multiple AddRec's with the same loop induction variable being
2586 // multiplied together. If so, we can fold them.
2587
2588 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591 // ]]],+,...up to x=2n}.
2592 // Note that the arguments to choose() are always integers with values
2593 // known at compile time, never SCEV objects.
2594 //
2595 // The implementation avoids pointless extra computations when the two
2596 // addrec's are of different length (mathematically, it's equivalent to
2597 // an infinite stream of zeros on the right).
2598 bool OpsModified = false;
2599 for (unsigned OtherIdx = Idx+1;
2600 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2601 ++OtherIdx) {
2602 const SCEVAddRecExpr *OtherAddRec =
2603 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2605 continue;
2606
2607 bool Overflow = false;
2608 Type *Ty = AddRec->getType();
2609 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610 SmallVector<const SCEV*, 7> AddRecOps;
2611 for (int x = 0, xe = AddRec->getNumOperands() +
2612 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2613 const SCEV *Term = getZero(Ty);
2614 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618 z < ze && !Overflow; ++z) {
2619 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620 uint64_t Coeff;
2621 if (LargerThan64Bits)
2622 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623 else
2624 Coeff = Coeff1*Coeff2;
2625 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626 const SCEV *Term1 = AddRec->getOperand(y-z);
2627 const SCEV *Term2 = OtherAddRec->getOperand(z);
2628 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2629 }
2630 }
2631 AddRecOps.push_back(Term);
2632 }
2633 if (!Overflow) {
2634 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635 SCEV::FlagAnyWrap);
2636 if (Ops.size() == 2) return NewAddRec;
2637 Ops[Idx] = NewAddRec;
2638 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639 OpsModified = true;
2640 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641 if (!AddRec)
2642 break;
2643 }
2644 }
2645 if (OpsModified)
2646 return getMulExpr(Ops);
2647
2648 // Otherwise couldn't fold anything into this recurrence. Move onto the
2649 // next one.
2650 }
2651
2652 // Okay, it looks like we really DO need an mul expr. Check to see if we
2653 // already have one, otherwise create a new one.
2654 FoldingSetNodeID ID;
2655 ID.AddInteger(scMulExpr);
2656 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657 ID.AddPointer(Ops[i]);
2658 void *IP = nullptr;
2659 SCEVMulExpr *S =
2660 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661 if (!S) {
2662 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2664 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665 O, Ops.size());
2666 UniqueSCEVs.InsertNode(S, IP);
2667 }
2668 S->setNoWrapFlags(Flags);
2669 return S;
2670 }
2671
2672 /// Get a canonical unsigned division expression, or something simpler if
2673 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675 const SCEV *RHS) {
2676 assert(getEffectiveSCEVType(LHS->getType()) ==
2677 getEffectiveSCEVType(RHS->getType()) &&
2678 "SCEVUDivExpr operand types don't match!");
2679
2680 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2681 if (RHSC->getValue()->equalsInt(1))
2682 return LHS; // X udiv 1 --> x
2683 // If the denominator is zero, the result of the udiv is undefined. Don't
2684 // try to analyze it, because the resolution chosen here may differ from
2685 // the resolution chosen in other parts of the compiler.
2686 if (!RHSC->getValue()->isZero()) {
2687 // Determine if the division can be folded into the operands of
2688 // its operands.
2689 // TODO: Generalize this to non-constants by using known-bits information.
2690 Type *Ty = LHS->getType();
2691 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2692 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2693 // For non-power-of-two values, effectively round the value up to the
2694 // nearest power of two.
2695 if (!RHSC->getAPInt().isPowerOf2())
2696 ++MaxShiftAmt;
2697 IntegerType *ExtTy =
2698 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700 if (const SCEVConstant *Step =
2701 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2703 const APInt &StepInt = Step->getAPInt();
2704 const APInt &DivInt = RHSC->getAPInt();
2705 if (!StepInt.urem(DivInt) &&
2706 getZeroExtendExpr(AR, ExtTy) ==
2707 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708 getZeroExtendExpr(Step, ExtTy),
2709 AR->getLoop(), SCEV::FlagAnyWrap)) {
2710 SmallVector<const SCEV *, 4> Operands;
2711 for (const SCEV *Op : AR->operands())
2712 Operands.push_back(getUDivExpr(Op, RHS));
2713 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2714 }
2715 /// Get a canonical UDivExpr for a recurrence.
2716 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717 // We can currently only fold X%N if X is constant.
2718 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719 if (StartC && !DivInt.urem(StepInt) &&
2720 getZeroExtendExpr(AR, ExtTy) ==
2721 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722 getZeroExtendExpr(Step, ExtTy),
2723 AR->getLoop(), SCEV::FlagAnyWrap)) {
2724 const APInt &StartInt = StartC->getAPInt();
2725 const APInt &StartRem = StartInt.urem(StepInt);
2726 if (StartRem != 0)
2727 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728 AR->getLoop(), SCEV::FlagNW);
2729 }
2730 }
2731 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733 SmallVector<const SCEV *, 4> Operands;
2734 for (const SCEV *Op : M->operands())
2735 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2736 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737 // Find an operand that's safely divisible.
2738 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739 const SCEV *Op = M->getOperand(i);
2740 const SCEV *Div = getUDivExpr(Op, RHSC);
2741 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743 M->op_end());
2744 Operands[i] = Div;
2745 return getMulExpr(Operands);
2746 }
2747 }
2748 }
2749 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2750 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2751 SmallVector<const SCEV *, 4> Operands;
2752 for (const SCEV *Op : A->operands())
2753 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2754 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755 Operands.clear();
2756 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758 if (isa<SCEVUDivExpr>(Op) ||
2759 getMulExpr(Op, RHS) != A->getOperand(i))
2760 break;
2761 Operands.push_back(Op);
2762 }
2763 if (Operands.size() == A->getNumOperands())
2764 return getAddExpr(Operands);
2765 }
2766 }
2767
2768 // Fold if both operands are constant.
2769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770 Constant *LHSCV = LHSC->getValue();
2771 Constant *RHSCV = RHSC->getValue();
2772 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773 RHSCV)));
2774 }
2775 }
2776 }
2777
2778 FoldingSetNodeID ID;
2779 ID.AddInteger(scUDivExpr);
2780 ID.AddPointer(LHS);
2781 ID.AddPointer(RHS);
2782 void *IP = nullptr;
2783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2784 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785 LHS, RHS);
2786 UniqueSCEVs.InsertNode(S, IP);
2787 return S;
2788 }
2789
gcd(const SCEVConstant * C1,const SCEVConstant * C2)2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2791 APInt A = C1->getAPInt().abs();
2792 APInt B = C2->getAPInt().abs();
2793 uint32_t ABW = A.getBitWidth();
2794 uint32_t BBW = B.getBitWidth();
2795
2796 if (ABW > BBW)
2797 B = B.zext(ABW);
2798 else if (ABW < BBW)
2799 A = A.zext(BBW);
2800
2801 return APIntOps::GreatestCommonDivisor(A, B);
2802 }
2803
2804 /// Get a canonical unsigned division expression, or something simpler if
2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2806 /// can attempt to remove factors from the LHS and RHS. We can't do this when
2807 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809 const SCEV *RHS) {
2810 // TODO: we could try to find factors in all sorts of things, but for now we
2811 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812 // end of this file for inspiration.
2813
2814 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815 if (!Mul)
2816 return getUDivExpr(LHS, RHS);
2817
2818 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819 // If the mulexpr multiplies by a constant, then that constant must be the
2820 // first element of the mulexpr.
2821 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2822 if (LHSCst == RHSCst) {
2823 SmallVector<const SCEV *, 2> Operands;
2824 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825 return getMulExpr(Operands);
2826 }
2827
2828 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829 // that there's a factor provided by one of the other terms. We need to
2830 // check.
2831 APInt Factor = gcd(LHSCst, RHSCst);
2832 if (!Factor.isIntN(1)) {
2833 LHSCst =
2834 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835 RHSCst =
2836 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2837 SmallVector<const SCEV *, 2> Operands;
2838 Operands.push_back(LHSCst);
2839 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840 LHS = getMulExpr(Operands);
2841 RHS = RHSCst;
2842 Mul = dyn_cast<SCEVMulExpr>(LHS);
2843 if (!Mul)
2844 return getUDivExactExpr(LHS, RHS);
2845 }
2846 }
2847 }
2848
2849 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850 if (Mul->getOperand(i) == RHS) {
2851 SmallVector<const SCEV *, 2> Operands;
2852 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854 return getMulExpr(Operands);
2855 }
2856 }
2857
2858 return getUDivExpr(LHS, RHS);
2859 }
2860
2861 /// Get an add recurrence expression for the specified loop. Simplify the
2862 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864 const Loop *L,
2865 SCEV::NoWrapFlags Flags) {
2866 SmallVector<const SCEV *, 4> Operands;
2867 Operands.push_back(Start);
2868 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2869 if (StepChrec->getLoop() == L) {
2870 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2871 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2872 }
2873
2874 Operands.push_back(Step);
2875 return getAddRecExpr(Operands, L, Flags);
2876 }
2877
2878 /// Get an add recurrence expression for the specified loop. Simplify the
2879 /// expression as much as possible.
2880 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2882 const Loop *L, SCEV::NoWrapFlags Flags) {
2883 if (Operands.size() == 1) return Operands[0];
2884 #ifndef NDEBUG
2885 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2886 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2887 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2888 "SCEVAddRecExpr operand types don't match!");
2889 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2890 assert(isLoopInvariant(Operands[i], L) &&
2891 "SCEVAddRecExpr operand is not loop-invariant!");
2892 #endif
2893
2894 if (Operands.back()->isZero()) {
2895 Operands.pop_back();
2896 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2897 }
2898
2899 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900 // use that information to infer NUW and NSW flags. However, computing a
2901 // BE count requires calling getAddRecExpr, so we may not yet have a
2902 // meaningful BE count at this point (and if we don't, we'd be stuck
2903 // with a SCEVCouldNotCompute as the cached BE count).
2904
2905 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2906
2907 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2908 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2909 const Loop *NestedLoop = NestedAR->getLoop();
2910 if (L->contains(NestedLoop)
2911 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912 : (!NestedLoop->contains(L) &&
2913 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2914 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2915 NestedAR->op_end());
2916 Operands[0] = NestedAR->getStart();
2917 // AddRecs require their operands be loop-invariant with respect to their
2918 // loops. Don't perform this transformation if it would break this
2919 // requirement.
2920 bool AllInvariant = all_of(
2921 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2922
2923 if (AllInvariant) {
2924 // Create a recurrence for the outer loop with the same step size.
2925 //
2926 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927 // inner recurrence has the same property.
2928 SCEV::NoWrapFlags OuterFlags =
2929 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2930
2931 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2932 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933 return isLoopInvariant(Op, NestedLoop);
2934 });
2935
2936 if (AllInvariant) {
2937 // Ok, both add recurrences are valid after the transformation.
2938 //
2939 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940 // the outer recurrence has the same property.
2941 SCEV::NoWrapFlags InnerFlags =
2942 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2943 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944 }
2945 }
2946 // Reset Operands to its original state.
2947 Operands[0] = NestedAR;
2948 }
2949 }
2950
2951 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2952 // already have one, otherwise create a new one.
2953 FoldingSetNodeID ID;
2954 ID.AddInteger(scAddRecExpr);
2955 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956 ID.AddPointer(Operands[i]);
2957 ID.AddPointer(L);
2958 void *IP = nullptr;
2959 SCEVAddRecExpr *S =
2960 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961 if (!S) {
2962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2964 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965 O, Operands.size(), L);
2966 UniqueSCEVs.InsertNode(S, IP);
2967 }
2968 S->setNoWrapFlags(Flags);
2969 return S;
2970 }
2971
2972 const SCEV *
getGEPExpr(Type * PointeeType,const SCEV * BaseExpr,const SmallVectorImpl<const SCEV * > & IndexExprs,bool InBounds)2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974 const SmallVectorImpl<const SCEV *> &IndexExprs,
2975 bool InBounds) {
2976 // getSCEV(Base)->getType() has the same address space as Base->getType()
2977 // because SCEV::getType() preserves the address space.
2978 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980 // instruction to its SCEV, because the Instruction may be guarded by control
2981 // flow and the no-overflow bits may not be valid for the expression in any
2982 // context. This can be fixed similarly to how these flags are handled for
2983 // adds.
2984 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985
2986 const SCEV *TotalOffset = getZero(IntPtrTy);
2987 // The address space is unimportant. The first thing we do on CurTy is getting
2988 // its element type.
2989 Type *CurTy = PointerType::getUnqual(PointeeType);
2990 for (const SCEV *IndexExpr : IndexExprs) {
2991 // Compute the (potentially symbolic) offset in bytes for this index.
2992 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993 // For a struct, add the member offset.
2994 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995 unsigned FieldNo = Index->getZExtValue();
2996 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997
2998 // Add the field offset to the running total offset.
2999 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000
3001 // Update CurTy to the type of the field at Index.
3002 CurTy = STy->getTypeAtIndex(Index);
3003 } else {
3004 // Update CurTy to its element type.
3005 CurTy = cast<SequentialType>(CurTy)->getElementType();
3006 // For an array, add the element offset, explicitly scaled.
3007 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008 // Getelementptr indices are signed.
3009 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010
3011 // Multiply the index by the element size to compute the element offset.
3012 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013
3014 // Add the element offset to the running total offset.
3015 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016 }
3017 }
3018
3019 // Add the total offset from all the GEP indices to the base.
3020 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021 }
3022
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024 const SCEV *RHS) {
3025 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3026 return getSMaxExpr(Ops);
3027 }
3028
3029 const SCEV *
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3030 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3031 assert(!Ops.empty() && "Cannot get empty smax!");
3032 if (Ops.size() == 1) return Ops[0];
3033 #ifndef NDEBUG
3034 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3035 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3036 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3037 "SCEVSMaxExpr operand types don't match!");
3038 #endif
3039
3040 // Sort by complexity, this groups all similar expression types together.
3041 GroupByComplexity(Ops, &LI);
3042
3043 // If there are any constants, fold them together.
3044 unsigned Idx = 0;
3045 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3046 ++Idx;
3047 assert(Idx < Ops.size());
3048 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3049 // We found two constants, fold them together!
3050 ConstantInt *Fold = ConstantInt::get(
3051 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3052 Ops[0] = getConstant(Fold);
3053 Ops.erase(Ops.begin()+1); // Erase the folded element
3054 if (Ops.size() == 1) return Ops[0];
3055 LHSC = cast<SCEVConstant>(Ops[0]);
3056 }
3057
3058 // If we are left with a constant minimum-int, strip it off.
3059 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3060 Ops.erase(Ops.begin());
3061 --Idx;
3062 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3063 // If we have an smax with a constant maximum-int, it will always be
3064 // maximum-int.
3065 return Ops[0];
3066 }
3067
3068 if (Ops.size() == 1) return Ops[0];
3069 }
3070
3071 // Find the first SMax
3072 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3073 ++Idx;
3074
3075 // Check to see if one of the operands is an SMax. If so, expand its operands
3076 // onto our operand list, and recurse to simplify.
3077 if (Idx < Ops.size()) {
3078 bool DeletedSMax = false;
3079 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3080 Ops.erase(Ops.begin()+Idx);
3081 Ops.append(SMax->op_begin(), SMax->op_end());
3082 DeletedSMax = true;
3083 }
3084
3085 if (DeletedSMax)
3086 return getSMaxExpr(Ops);
3087 }
3088
3089 // Okay, check to see if the same value occurs in the operand list twice. If
3090 // so, delete one. Since we sorted the list, these values are required to
3091 // be adjacent.
3092 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3093 // X smax Y smax Y --> X smax Y
3094 // X smax Y --> X, if X is always greater than Y
3095 if (Ops[i] == Ops[i+1] ||
3096 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3097 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3098 --i; --e;
3099 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3100 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3101 --i; --e;
3102 }
3103
3104 if (Ops.size() == 1) return Ops[0];
3105
3106 assert(!Ops.empty() && "Reduced smax down to nothing!");
3107
3108 // Okay, it looks like we really DO need an smax expr. Check to see if we
3109 // already have one, otherwise create a new one.
3110 FoldingSetNodeID ID;
3111 ID.AddInteger(scSMaxExpr);
3112 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3113 ID.AddPointer(Ops[i]);
3114 void *IP = nullptr;
3115 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3116 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3117 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3118 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3119 O, Ops.size());
3120 UniqueSCEVs.InsertNode(S, IP);
3121 return S;
3122 }
3123
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3124 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3125 const SCEV *RHS) {
3126 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3127 return getUMaxExpr(Ops);
3128 }
3129
3130 const SCEV *
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3131 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3132 assert(!Ops.empty() && "Cannot get empty umax!");
3133 if (Ops.size() == 1) return Ops[0];
3134 #ifndef NDEBUG
3135 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3136 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3137 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3138 "SCEVUMaxExpr operand types don't match!");
3139 #endif
3140
3141 // Sort by complexity, this groups all similar expression types together.
3142 GroupByComplexity(Ops, &LI);
3143
3144 // If there are any constants, fold them together.
3145 unsigned Idx = 0;
3146 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3147 ++Idx;
3148 assert(Idx < Ops.size());
3149 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3150 // We found two constants, fold them together!
3151 ConstantInt *Fold = ConstantInt::get(
3152 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3153 Ops[0] = getConstant(Fold);
3154 Ops.erase(Ops.begin()+1); // Erase the folded element
3155 if (Ops.size() == 1) return Ops[0];
3156 LHSC = cast<SCEVConstant>(Ops[0]);
3157 }
3158
3159 // If we are left with a constant minimum-int, strip it off.
3160 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3161 Ops.erase(Ops.begin());
3162 --Idx;
3163 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3164 // If we have an umax with a constant maximum-int, it will always be
3165 // maximum-int.
3166 return Ops[0];
3167 }
3168
3169 if (Ops.size() == 1) return Ops[0];
3170 }
3171
3172 // Find the first UMax
3173 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3174 ++Idx;
3175
3176 // Check to see if one of the operands is a UMax. If so, expand its operands
3177 // onto our operand list, and recurse to simplify.
3178 if (Idx < Ops.size()) {
3179 bool DeletedUMax = false;
3180 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3181 Ops.erase(Ops.begin()+Idx);
3182 Ops.append(UMax->op_begin(), UMax->op_end());
3183 DeletedUMax = true;
3184 }
3185
3186 if (DeletedUMax)
3187 return getUMaxExpr(Ops);
3188 }
3189
3190 // Okay, check to see if the same value occurs in the operand list twice. If
3191 // so, delete one. Since we sorted the list, these values are required to
3192 // be adjacent.
3193 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3194 // X umax Y umax Y --> X umax Y
3195 // X umax Y --> X, if X is always greater than Y
3196 if (Ops[i] == Ops[i+1] ||
3197 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3198 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3199 --i; --e;
3200 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3201 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3202 --i; --e;
3203 }
3204
3205 if (Ops.size() == 1) return Ops[0];
3206
3207 assert(!Ops.empty() && "Reduced umax down to nothing!");
3208
3209 // Okay, it looks like we really DO need a umax expr. Check to see if we
3210 // already have one, otherwise create a new one.
3211 FoldingSetNodeID ID;
3212 ID.AddInteger(scUMaxExpr);
3213 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3214 ID.AddPointer(Ops[i]);
3215 void *IP = nullptr;
3216 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3217 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3218 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3219 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3220 O, Ops.size());
3221 UniqueSCEVs.InsertNode(S, IP);
3222 return S;
3223 }
3224
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3225 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3226 const SCEV *RHS) {
3227 // ~smax(~x, ~y) == smin(x, y).
3228 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3229 }
3230
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3231 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3232 const SCEV *RHS) {
3233 // ~umax(~x, ~y) == umin(x, y)
3234 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3235 }
3236
getSizeOfExpr(Type * IntTy,Type * AllocTy)3237 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3238 // We can bypass creating a target-independent
3239 // constant expression and then folding it back into a ConstantInt.
3240 // This is just a compile-time optimization.
3241 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3242 }
3243
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3245 StructType *STy,
3246 unsigned FieldNo) {
3247 // We can bypass creating a target-independent
3248 // constant expression and then folding it back into a ConstantInt.
3249 // This is just a compile-time optimization.
3250 return getConstant(
3251 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3252 }
3253
getUnknown(Value * V)3254 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3255 // Don't attempt to do anything other than create a SCEVUnknown object
3256 // here. createSCEV only calls getUnknown after checking for all other
3257 // interesting possibilities, and any other code that calls getUnknown
3258 // is doing so in order to hide a value from SCEV canonicalization.
3259
3260 FoldingSetNodeID ID;
3261 ID.AddInteger(scUnknown);
3262 ID.AddPointer(V);
3263 void *IP = nullptr;
3264 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3265 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3266 "Stale SCEVUnknown in uniquing map!");
3267 return S;
3268 }
3269 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3270 FirstUnknown);
3271 FirstUnknown = cast<SCEVUnknown>(S);
3272 UniqueSCEVs.InsertNode(S, IP);
3273 return S;
3274 }
3275
3276 //===----------------------------------------------------------------------===//
3277 // Basic SCEV Analysis and PHI Idiom Recognition Code
3278 //
3279
3280 /// Test if values of the given type are analyzable within the SCEV
3281 /// framework. This primarily includes integer types, and it can optionally
3282 /// include pointer types if the ScalarEvolution class has access to
3283 /// target-specific information.
isSCEVable(Type * Ty) const3284 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3285 // Integers and pointers are always SCEVable.
3286 return Ty->isIntegerTy() || Ty->isPointerTy();
3287 }
3288
3289 /// Return the size in bits of the specified type, for which isSCEVable must
3290 /// return true.
getTypeSizeInBits(Type * Ty) const3291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3292 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3293 return getDataLayout().getTypeSizeInBits(Ty);
3294 }
3295
3296 /// Return a type with the same bitwidth as the given type and which represents
3297 /// how SCEV will treat the given type, for which isSCEVable must return
3298 /// true. For pointer types, this is the pointer-sized integer type.
getEffectiveSCEVType(Type * Ty) const3299 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3300 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3301
3302 if (Ty->isIntegerTy())
3303 return Ty;
3304
3305 // The only other support type is pointer.
3306 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3307 return getDataLayout().getIntPtrType(Ty);
3308 }
3309
getCouldNotCompute()3310 const SCEV *ScalarEvolution::getCouldNotCompute() {
3311 return CouldNotCompute.get();
3312 }
3313
3314
checkValidity(const SCEV * S) const3315 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3316 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3317 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3318 // is set iff if find such SCEVUnknown.
3319 //
3320 struct FindInvalidSCEVUnknown {
3321 bool FindOne;
3322 FindInvalidSCEVUnknown() { FindOne = false; }
3323 bool follow(const SCEV *S) {
3324 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3325 case scConstant:
3326 return false;
3327 case scUnknown:
3328 if (!cast<SCEVUnknown>(S)->getValue())
3329 FindOne = true;
3330 return false;
3331 default:
3332 return true;
3333 }
3334 }
3335 bool isDone() const { return FindOne; }
3336 };
3337
3338 FindInvalidSCEVUnknown F;
3339 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3340 ST.visitAll(S);
3341
3342 return !F.FindOne;
3343 }
3344
3345 namespace {
3346 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3347 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3348 // iff if such sub scAddRecExpr type SCEV is found.
3349 struct FindAddRecurrence {
3350 bool FoundOne;
FindAddRecurrence__anond3aa2a800711::FindAddRecurrence3351 FindAddRecurrence() : FoundOne(false) {}
3352
follow__anond3aa2a800711::FindAddRecurrence3353 bool follow(const SCEV *S) {
3354 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3355 case scAddRecExpr:
3356 FoundOne = true;
3357 case scConstant:
3358 case scUnknown:
3359 case scCouldNotCompute:
3360 return false;
3361 default:
3362 return true;
3363 }
3364 }
isDone__anond3aa2a800711::FindAddRecurrence3365 bool isDone() const { return FoundOne; }
3366 };
3367 }
3368
containsAddRecurrence(const SCEV * S)3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3370 HasRecMapType::iterator I = HasRecMap.find_as(S);
3371 if (I != HasRecMap.end())
3372 return I->second;
3373
3374 FindAddRecurrence F;
3375 SCEVTraversal<FindAddRecurrence> ST(F);
3376 ST.visitAll(S);
3377 HasRecMap.insert({S, F.FoundOne});
3378 return F.FoundOne;
3379 }
3380
3381 /// Return the Value set from S.
getSCEVValues(const SCEV * S)3382 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3383 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3384 if (SI == ExprValueMap.end())
3385 return nullptr;
3386 #ifndef NDEBUG
3387 if (VerifySCEVMap) {
3388 // Check there is no dangling Value in the set returned.
3389 for (const auto &VE : SI->second)
3390 assert(ValueExprMap.count(VE));
3391 }
3392 #endif
3393 return &SI->second;
3394 }
3395
3396 /// Erase Value from ValueExprMap and ExprValueMap. If ValueExprMap.erase(V) is
3397 /// not used together with forgetMemoizedResults(S), eraseValueFromMap should be
3398 /// used instead to ensure whenever V->S is removed from ValueExprMap, V is also
3399 /// removed from the set of ExprValueMap[S].
eraseValueFromMap(Value * V)3400 void ScalarEvolution::eraseValueFromMap(Value *V) {
3401 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3402 if (I != ValueExprMap.end()) {
3403 const SCEV *S = I->second;
3404 SetVector<Value *> *SV = getSCEVValues(S);
3405 // Remove V from the set of ExprValueMap[S]
3406 if (SV)
3407 SV->remove(V);
3408 ValueExprMap.erase(V);
3409 }
3410 }
3411
3412 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3413 /// create a new one.
getSCEV(Value * V)3414 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3415 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3416
3417 const SCEV *S = getExistingSCEV(V);
3418 if (S == nullptr) {
3419 S = createSCEV(V);
3420 // During PHI resolution, it is possible to create two SCEVs for the same
3421 // V, so it is needed to double check whether V->S is inserted into
3422 // ValueExprMap before insert S->V into ExprValueMap.
3423 std::pair<ValueExprMapType::iterator, bool> Pair =
3424 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3425 if (Pair.second)
3426 ExprValueMap[S].insert(V);
3427 }
3428 return S;
3429 }
3430
getExistingSCEV(Value * V)3431 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3432 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3433
3434 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3435 if (I != ValueExprMap.end()) {
3436 const SCEV *S = I->second;
3437 if (checkValidity(S))
3438 return S;
3439 forgetMemoizedResults(S);
3440 ValueExprMap.erase(I);
3441 }
3442 return nullptr;
3443 }
3444
3445 /// Return a SCEV corresponding to -V = -1*V
3446 ///
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3447 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3448 SCEV::NoWrapFlags Flags) {
3449 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3450 return getConstant(
3451 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3452
3453 Type *Ty = V->getType();
3454 Ty = getEffectiveSCEVType(Ty);
3455 return getMulExpr(
3456 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3457 }
3458
3459 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3460 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3461 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3462 return getConstant(
3463 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3464
3465 Type *Ty = V->getType();
3466 Ty = getEffectiveSCEVType(Ty);
3467 const SCEV *AllOnes =
3468 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3469 return getMinusSCEV(AllOnes, V);
3470 }
3471
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags)3472 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3473 SCEV::NoWrapFlags Flags) {
3474 // Fast path: X - X --> 0.
3475 if (LHS == RHS)
3476 return getZero(LHS->getType());
3477
3478 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3479 // makes it so that we cannot make much use of NUW.
3480 auto AddFlags = SCEV::FlagAnyWrap;
3481 const bool RHSIsNotMinSigned =
3482 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3483 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3484 // Let M be the minimum representable signed value. Then (-1)*RHS
3485 // signed-wraps if and only if RHS is M. That can happen even for
3486 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3487 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3488 // (-1)*RHS, we need to prove that RHS != M.
3489 //
3490 // If LHS is non-negative and we know that LHS - RHS does not
3491 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3492 // either by proving that RHS > M or that LHS >= 0.
3493 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3494 AddFlags = SCEV::FlagNSW;
3495 }
3496 }
3497
3498 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3499 // RHS is NSW and LHS >= 0.
3500 //
3501 // The difficulty here is that the NSW flag may have been proven
3502 // relative to a loop that is to be found in a recurrence in LHS and
3503 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3504 // larger scope than intended.
3505 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3506
3507 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3508 }
3509
3510 const SCEV *
getTruncateOrZeroExtend(const SCEV * V,Type * Ty)3511 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3512 Type *SrcTy = V->getType();
3513 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3514 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3515 "Cannot truncate or zero extend with non-integer arguments!");
3516 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3517 return V; // No conversion
3518 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3519 return getTruncateExpr(V, Ty);
3520 return getZeroExtendExpr(V, Ty);
3521 }
3522
3523 const SCEV *
getTruncateOrSignExtend(const SCEV * V,Type * Ty)3524 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3525 Type *Ty) {
3526 Type *SrcTy = V->getType();
3527 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3528 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3529 "Cannot truncate or zero extend with non-integer arguments!");
3530 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3531 return V; // No conversion
3532 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3533 return getTruncateExpr(V, Ty);
3534 return getSignExtendExpr(V, Ty);
3535 }
3536
3537 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)3538 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3539 Type *SrcTy = V->getType();
3540 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3541 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3542 "Cannot noop or zero extend with non-integer arguments!");
3543 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3544 "getNoopOrZeroExtend cannot truncate!");
3545 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3546 return V; // No conversion
3547 return getZeroExtendExpr(V, Ty);
3548 }
3549
3550 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)3551 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3552 Type *SrcTy = V->getType();
3553 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3554 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3555 "Cannot noop or sign extend with non-integer arguments!");
3556 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3557 "getNoopOrSignExtend cannot truncate!");
3558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3559 return V; // No conversion
3560 return getSignExtendExpr(V, Ty);
3561 }
3562
3563 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)3564 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3565 Type *SrcTy = V->getType();
3566 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3567 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3568 "Cannot noop or any extend with non-integer arguments!");
3569 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3570 "getNoopOrAnyExtend cannot truncate!");
3571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3572 return V; // No conversion
3573 return getAnyExtendExpr(V, Ty);
3574 }
3575
3576 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)3577 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3578 Type *SrcTy = V->getType();
3579 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3580 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3581 "Cannot truncate or noop with non-integer arguments!");
3582 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3583 "getTruncateOrNoop cannot extend!");
3584 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3585 return V; // No conversion
3586 return getTruncateExpr(V, Ty);
3587 }
3588
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3589 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3590 const SCEV *RHS) {
3591 const SCEV *PromotedLHS = LHS;
3592 const SCEV *PromotedRHS = RHS;
3593
3594 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3595 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3596 else
3597 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3598
3599 return getUMaxExpr(PromotedLHS, PromotedRHS);
3600 }
3601
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3602 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3603 const SCEV *RHS) {
3604 const SCEV *PromotedLHS = LHS;
3605 const SCEV *PromotedRHS = RHS;
3606
3607 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3608 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3609 else
3610 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3611
3612 return getUMinExpr(PromotedLHS, PromotedRHS);
3613 }
3614
getPointerBase(const SCEV * V)3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3616 // A pointer operand may evaluate to a nonpointer expression, such as null.
3617 if (!V->getType()->isPointerTy())
3618 return V;
3619
3620 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3621 return getPointerBase(Cast->getOperand());
3622 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3623 const SCEV *PtrOp = nullptr;
3624 for (const SCEV *NAryOp : NAry->operands()) {
3625 if (NAryOp->getType()->isPointerTy()) {
3626 // Cannot find the base of an expression with multiple pointer operands.
3627 if (PtrOp)
3628 return V;
3629 PtrOp = NAryOp;
3630 }
3631 }
3632 if (!PtrOp)
3633 return V;
3634 return getPointerBase(PtrOp);
3635 }
3636 return V;
3637 }
3638
3639 /// Push users of the given Instruction onto the given Worklist.
3640 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)3641 PushDefUseChildren(Instruction *I,
3642 SmallVectorImpl<Instruction *> &Worklist) {
3643 // Push the def-use children onto the Worklist stack.
3644 for (User *U : I->users())
3645 Worklist.push_back(cast<Instruction>(U));
3646 }
3647
forgetSymbolicName(Instruction * PN,const SCEV * SymName)3648 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3649 SmallVector<Instruction *, 16> Worklist;
3650 PushDefUseChildren(PN, Worklist);
3651
3652 SmallPtrSet<Instruction *, 8> Visited;
3653 Visited.insert(PN);
3654 while (!Worklist.empty()) {
3655 Instruction *I = Worklist.pop_back_val();
3656 if (!Visited.insert(I).second)
3657 continue;
3658
3659 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3660 if (It != ValueExprMap.end()) {
3661 const SCEV *Old = It->second;
3662
3663 // Short-circuit the def-use traversal if the symbolic name
3664 // ceases to appear in expressions.
3665 if (Old != SymName && !hasOperand(Old, SymName))
3666 continue;
3667
3668 // SCEVUnknown for a PHI either means that it has an unrecognized
3669 // structure, it's a PHI that's in the progress of being computed
3670 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3671 // additional loop trip count information isn't going to change anything.
3672 // In the second case, createNodeForPHI will perform the necessary
3673 // updates on its own when it gets to that point. In the third, we do
3674 // want to forget the SCEVUnknown.
3675 if (!isa<PHINode>(I) ||
3676 !isa<SCEVUnknown>(Old) ||
3677 (I != PN && Old == SymName)) {
3678 forgetMemoizedResults(Old);
3679 ValueExprMap.erase(It);
3680 }
3681 }
3682
3683 PushDefUseChildren(I, Worklist);
3684 }
3685 }
3686
3687 namespace {
3688 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3689 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)3690 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3691 ScalarEvolution &SE) {
3692 SCEVInitRewriter Rewriter(L, SE);
3693 const SCEV *Result = Rewriter.visit(S);
3694 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3695 }
3696
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)3697 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3698 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3699
visitUnknown(const SCEVUnknown * Expr)3700 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3701 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3702 Valid = false;
3703 return Expr;
3704 }
3705
visitAddRecExpr(const SCEVAddRecExpr * Expr)3706 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3707 // Only allow AddRecExprs for this loop.
3708 if (Expr->getLoop() == L)
3709 return Expr->getStart();
3710 Valid = false;
3711 return Expr;
3712 }
3713
isValid()3714 bool isValid() { return Valid; }
3715
3716 private:
3717 const Loop *L;
3718 bool Valid;
3719 };
3720
3721 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3722 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)3723 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3724 ScalarEvolution &SE) {
3725 SCEVShiftRewriter Rewriter(L, SE);
3726 const SCEV *Result = Rewriter.visit(S);
3727 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3728 }
3729
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)3730 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3731 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3732
visitUnknown(const SCEVUnknown * Expr)3733 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3734 // Only allow AddRecExprs for this loop.
3735 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3736 Valid = false;
3737 return Expr;
3738 }
3739
visitAddRecExpr(const SCEVAddRecExpr * Expr)3740 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3741 if (Expr->getLoop() == L && Expr->isAffine())
3742 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3743 Valid = false;
3744 return Expr;
3745 }
isValid()3746 bool isValid() { return Valid; }
3747
3748 private:
3749 const Loop *L;
3750 bool Valid;
3751 };
3752 } // end anonymous namespace
3753
3754 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)3755 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3756 if (!AR->isAffine())
3757 return SCEV::FlagAnyWrap;
3758
3759 typedef OverflowingBinaryOperator OBO;
3760 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3761
3762 if (!AR->hasNoSignedWrap()) {
3763 ConstantRange AddRecRange = getSignedRange(AR);
3764 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3765
3766 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3767 Instruction::Add, IncRange, OBO::NoSignedWrap);
3768 if (NSWRegion.contains(AddRecRange))
3769 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3770 }
3771
3772 if (!AR->hasNoUnsignedWrap()) {
3773 ConstantRange AddRecRange = getUnsignedRange(AR);
3774 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3775
3776 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3777 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3778 if (NUWRegion.contains(AddRecRange))
3779 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3780 }
3781
3782 return Result;
3783 }
3784
3785 namespace {
3786 /// Represents an abstract binary operation. This may exist as a
3787 /// normal instruction or constant expression, or may have been
3788 /// derived from an expression tree.
3789 struct BinaryOp {
3790 unsigned Opcode;
3791 Value *LHS;
3792 Value *RHS;
3793 bool IsNSW;
3794 bool IsNUW;
3795
3796 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3797 /// constant expression.
3798 Operator *Op;
3799
BinaryOp__anond3aa2a800911::BinaryOp3800 explicit BinaryOp(Operator *Op)
3801 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3802 IsNSW(false), IsNUW(false), Op(Op) {
3803 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3804 IsNSW = OBO->hasNoSignedWrap();
3805 IsNUW = OBO->hasNoUnsignedWrap();
3806 }
3807 }
3808
BinaryOp__anond3aa2a800911::BinaryOp3809 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3810 bool IsNUW = false)
3811 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3812 Op(nullptr) {}
3813 };
3814 }
3815
3816
3817 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)3818 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3819 auto *Op = dyn_cast<Operator>(V);
3820 if (!Op)
3821 return None;
3822
3823 // Implementation detail: all the cleverness here should happen without
3824 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3825 // SCEV expressions when possible, and we should not break that.
3826
3827 switch (Op->getOpcode()) {
3828 case Instruction::Add:
3829 case Instruction::Sub:
3830 case Instruction::Mul:
3831 case Instruction::UDiv:
3832 case Instruction::And:
3833 case Instruction::Or:
3834 case Instruction::AShr:
3835 case Instruction::Shl:
3836 return BinaryOp(Op);
3837
3838 case Instruction::Xor:
3839 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3840 // If the RHS of the xor is a signbit, then this is just an add.
3841 // Instcombine turns add of signbit into xor as a strength reduction step.
3842 if (RHSC->getValue().isSignBit())
3843 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3844 return BinaryOp(Op);
3845
3846 case Instruction::LShr:
3847 // Turn logical shift right of a constant into a unsigned divide.
3848 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3849 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3850
3851 // If the shift count is not less than the bitwidth, the result of
3852 // the shift is undefined. Don't try to analyze it, because the
3853 // resolution chosen here may differ from the resolution chosen in
3854 // other parts of the compiler.
3855 if (SA->getValue().ult(BitWidth)) {
3856 Constant *X =
3857 ConstantInt::get(SA->getContext(),
3858 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3859 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3860 }
3861 }
3862 return BinaryOp(Op);
3863
3864 case Instruction::ExtractValue: {
3865 auto *EVI = cast<ExtractValueInst>(Op);
3866 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3867 break;
3868
3869 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3870 if (!CI)
3871 break;
3872
3873 if (auto *F = CI->getCalledFunction())
3874 switch (F->getIntrinsicID()) {
3875 case Intrinsic::sadd_with_overflow:
3876 case Intrinsic::uadd_with_overflow: {
3877 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3878 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3879 CI->getArgOperand(1));
3880
3881 // Now that we know that all uses of the arithmetic-result component of
3882 // CI are guarded by the overflow check, we can go ahead and pretend
3883 // that the arithmetic is non-overflowing.
3884 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3885 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3886 CI->getArgOperand(1), /* IsNSW = */ true,
3887 /* IsNUW = */ false);
3888 else
3889 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3890 CI->getArgOperand(1), /* IsNSW = */ false,
3891 /* IsNUW*/ true);
3892 }
3893
3894 case Intrinsic::ssub_with_overflow:
3895 case Intrinsic::usub_with_overflow:
3896 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3897 CI->getArgOperand(1));
3898
3899 case Intrinsic::smul_with_overflow:
3900 case Intrinsic::umul_with_overflow:
3901 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3902 CI->getArgOperand(1));
3903 default:
3904 break;
3905 }
3906 }
3907
3908 default:
3909 break;
3910 }
3911
3912 return None;
3913 }
3914
createAddRecFromPHI(PHINode * PN)3915 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3916 const Loop *L = LI.getLoopFor(PN->getParent());
3917 if (!L || L->getHeader() != PN->getParent())
3918 return nullptr;
3919
3920 // The loop may have multiple entrances or multiple exits; we can analyze
3921 // this phi as an addrec if it has a unique entry value and a unique
3922 // backedge value.
3923 Value *BEValueV = nullptr, *StartValueV = nullptr;
3924 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3925 Value *V = PN->getIncomingValue(i);
3926 if (L->contains(PN->getIncomingBlock(i))) {
3927 if (!BEValueV) {
3928 BEValueV = V;
3929 } else if (BEValueV != V) {
3930 BEValueV = nullptr;
3931 break;
3932 }
3933 } else if (!StartValueV) {
3934 StartValueV = V;
3935 } else if (StartValueV != V) {
3936 StartValueV = nullptr;
3937 break;
3938 }
3939 }
3940 if (BEValueV && StartValueV) {
3941 // While we are analyzing this PHI node, handle its value symbolically.
3942 const SCEV *SymbolicName = getUnknown(PN);
3943 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3944 "PHI node already processed?");
3945 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3946
3947 // Using this symbolic name for the PHI, analyze the value coming around
3948 // the back-edge.
3949 const SCEV *BEValue = getSCEV(BEValueV);
3950
3951 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3952 // has a special value for the first iteration of the loop.
3953
3954 // If the value coming around the backedge is an add with the symbolic
3955 // value we just inserted, then we found a simple induction variable!
3956 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3957 // If there is a single occurrence of the symbolic value, replace it
3958 // with a recurrence.
3959 unsigned FoundIndex = Add->getNumOperands();
3960 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3961 if (Add->getOperand(i) == SymbolicName)
3962 if (FoundIndex == e) {
3963 FoundIndex = i;
3964 break;
3965 }
3966
3967 if (FoundIndex != Add->getNumOperands()) {
3968 // Create an add with everything but the specified operand.
3969 SmallVector<const SCEV *, 8> Ops;
3970 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3971 if (i != FoundIndex)
3972 Ops.push_back(Add->getOperand(i));
3973 const SCEV *Accum = getAddExpr(Ops);
3974
3975 // This is not a valid addrec if the step amount is varying each
3976 // loop iteration, but is not itself an addrec in this loop.
3977 if (isLoopInvariant(Accum, L) ||
3978 (isa<SCEVAddRecExpr>(Accum) &&
3979 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3980 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3981
3982 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
3983 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3984 if (BO->IsNUW)
3985 Flags = setFlags(Flags, SCEV::FlagNUW);
3986 if (BO->IsNSW)
3987 Flags = setFlags(Flags, SCEV::FlagNSW);
3988 }
3989 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3990 // If the increment is an inbounds GEP, then we know the address
3991 // space cannot be wrapped around. We cannot make any guarantee
3992 // about signed or unsigned overflow because pointers are
3993 // unsigned but we may have a negative index from the base
3994 // pointer. We can guarantee that no unsigned wrap occurs if the
3995 // indices form a positive value.
3996 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3997 Flags = setFlags(Flags, SCEV::FlagNW);
3998
3999 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4000 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4001 Flags = setFlags(Flags, SCEV::FlagNUW);
4002 }
4003
4004 // We cannot transfer nuw and nsw flags from subtraction
4005 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4006 // for instance.
4007 }
4008
4009 const SCEV *StartVal = getSCEV(StartValueV);
4010 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4011
4012 // Okay, for the entire analysis of this edge we assumed the PHI
4013 // to be symbolic. We now need to go back and purge all of the
4014 // entries for the scalars that use the symbolic expression.
4015 forgetSymbolicName(PN, SymbolicName);
4016 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4017
4018 // We can add Flags to the post-inc expression only if we
4019 // know that it us *undefined behavior* for BEValueV to
4020 // overflow.
4021 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4022 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4023 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4024
4025 return PHISCEV;
4026 }
4027 }
4028 } else {
4029 // Otherwise, this could be a loop like this:
4030 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4031 // In this case, j = {1,+,1} and BEValue is j.
4032 // Because the other in-value of i (0) fits the evolution of BEValue
4033 // i really is an addrec evolution.
4034 //
4035 // We can generalize this saying that i is the shifted value of BEValue
4036 // by one iteration:
4037 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4038 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4039 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4040 if (Shifted != getCouldNotCompute() &&
4041 Start != getCouldNotCompute()) {
4042 const SCEV *StartVal = getSCEV(StartValueV);
4043 if (Start == StartVal) {
4044 // Okay, for the entire analysis of this edge we assumed the PHI
4045 // to be symbolic. We now need to go back and purge all of the
4046 // entries for the scalars that use the symbolic expression.
4047 forgetSymbolicName(PN, SymbolicName);
4048 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4049 return Shifted;
4050 }
4051 }
4052 }
4053
4054 // Remove the temporary PHI node SCEV that has been inserted while intending
4055 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4056 // as it will prevent later (possibly simpler) SCEV expressions to be added
4057 // to the ValueExprMap.
4058 ValueExprMap.erase(PN);
4059 }
4060
4061 return nullptr;
4062 }
4063
4064 // Checks if the SCEV S is available at BB. S is considered available at BB
4065 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)4066 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4067 BasicBlock *BB) {
4068 struct CheckAvailable {
4069 bool TraversalDone = false;
4070 bool Available = true;
4071
4072 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4073 BasicBlock *BB = nullptr;
4074 DominatorTree &DT;
4075
4076 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4077 : L(L), BB(BB), DT(DT) {}
4078
4079 bool setUnavailable() {
4080 TraversalDone = true;
4081 Available = false;
4082 return false;
4083 }
4084
4085 bool follow(const SCEV *S) {
4086 switch (S->getSCEVType()) {
4087 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4088 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4089 // These expressions are available if their operand(s) is/are.
4090 return true;
4091
4092 case scAddRecExpr: {
4093 // We allow add recurrences that are on the loop BB is in, or some
4094 // outer loop. This guarantees availability because the value of the
4095 // add recurrence at BB is simply the "current" value of the induction
4096 // variable. We can relax this in the future; for instance an add
4097 // recurrence on a sibling dominating loop is also available at BB.
4098 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4099 if (L && (ARLoop == L || ARLoop->contains(L)))
4100 return true;
4101
4102 return setUnavailable();
4103 }
4104
4105 case scUnknown: {
4106 // For SCEVUnknown, we check for simple dominance.
4107 const auto *SU = cast<SCEVUnknown>(S);
4108 Value *V = SU->getValue();
4109
4110 if (isa<Argument>(V))
4111 return false;
4112
4113 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4114 return false;
4115
4116 return setUnavailable();
4117 }
4118
4119 case scUDivExpr:
4120 case scCouldNotCompute:
4121 // We do not try to smart about these at all.
4122 return setUnavailable();
4123 }
4124 llvm_unreachable("switch should be fully covered!");
4125 }
4126
4127 bool isDone() { return TraversalDone; }
4128 };
4129
4130 CheckAvailable CA(L, BB, DT);
4131 SCEVTraversal<CheckAvailable> ST(CA);
4132
4133 ST.visitAll(S);
4134 return CA.Available;
4135 }
4136
4137 // Try to match a control flow sequence that branches out at BI and merges back
4138 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4139 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)4140 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4141 Value *&C, Value *&LHS, Value *&RHS) {
4142 C = BI->getCondition();
4143
4144 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4145 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4146
4147 if (!LeftEdge.isSingleEdge())
4148 return false;
4149
4150 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4151
4152 Use &LeftUse = Merge->getOperandUse(0);
4153 Use &RightUse = Merge->getOperandUse(1);
4154
4155 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4156 LHS = LeftUse;
4157 RHS = RightUse;
4158 return true;
4159 }
4160
4161 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4162 LHS = RightUse;
4163 RHS = LeftUse;
4164 return true;
4165 }
4166
4167 return false;
4168 }
4169
createNodeFromSelectLikePHI(PHINode * PN)4170 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4171 if (PN->getNumIncomingValues() == 2) {
4172 const Loop *L = LI.getLoopFor(PN->getParent());
4173
4174 // We don't want to break LCSSA, even in a SCEV expression tree.
4175 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4176 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4177 return nullptr;
4178
4179 // Try to match
4180 //
4181 // br %cond, label %left, label %right
4182 // left:
4183 // br label %merge
4184 // right:
4185 // br label %merge
4186 // merge:
4187 // V = phi [ %x, %left ], [ %y, %right ]
4188 //
4189 // as "select %cond, %x, %y"
4190
4191 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4192 assert(IDom && "At least the entry block should dominate PN");
4193
4194 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4195 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4196
4197 if (BI && BI->isConditional() &&
4198 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4199 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4200 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4201 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4202 }
4203
4204 return nullptr;
4205 }
4206
createNodeForPHI(PHINode * PN)4207 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4208 if (const SCEV *S = createAddRecFromPHI(PN))
4209 return S;
4210
4211 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4212 return S;
4213
4214 // If the PHI has a single incoming value, follow that value, unless the
4215 // PHI's incoming blocks are in a different loop, in which case doing so
4216 // risks breaking LCSSA form. Instcombine would normally zap these, but
4217 // it doesn't have DominatorTree information, so it may miss cases.
4218 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4219 if (LI.replacementPreservesLCSSAForm(PN, V))
4220 return getSCEV(V);
4221
4222 // If it's not a loop phi, we can't handle it yet.
4223 return getUnknown(PN);
4224 }
4225
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)4226 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4227 Value *Cond,
4228 Value *TrueVal,
4229 Value *FalseVal) {
4230 // Handle "constant" branch or select. This can occur for instance when a
4231 // loop pass transforms an inner loop and moves on to process the outer loop.
4232 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4233 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4234
4235 // Try to match some simple smax or umax patterns.
4236 auto *ICI = dyn_cast<ICmpInst>(Cond);
4237 if (!ICI)
4238 return getUnknown(I);
4239
4240 Value *LHS = ICI->getOperand(0);
4241 Value *RHS = ICI->getOperand(1);
4242
4243 switch (ICI->getPredicate()) {
4244 case ICmpInst::ICMP_SLT:
4245 case ICmpInst::ICMP_SLE:
4246 std::swap(LHS, RHS);
4247 // fall through
4248 case ICmpInst::ICMP_SGT:
4249 case ICmpInst::ICMP_SGE:
4250 // a >s b ? a+x : b+x -> smax(a, b)+x
4251 // a >s b ? b+x : a+x -> smin(a, b)+x
4252 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4253 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4254 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4255 const SCEV *LA = getSCEV(TrueVal);
4256 const SCEV *RA = getSCEV(FalseVal);
4257 const SCEV *LDiff = getMinusSCEV(LA, LS);
4258 const SCEV *RDiff = getMinusSCEV(RA, RS);
4259 if (LDiff == RDiff)
4260 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4261 LDiff = getMinusSCEV(LA, RS);
4262 RDiff = getMinusSCEV(RA, LS);
4263 if (LDiff == RDiff)
4264 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4265 }
4266 break;
4267 case ICmpInst::ICMP_ULT:
4268 case ICmpInst::ICMP_ULE:
4269 std::swap(LHS, RHS);
4270 // fall through
4271 case ICmpInst::ICMP_UGT:
4272 case ICmpInst::ICMP_UGE:
4273 // a >u b ? a+x : b+x -> umax(a, b)+x
4274 // a >u b ? b+x : a+x -> umin(a, b)+x
4275 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4276 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4277 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4278 const SCEV *LA = getSCEV(TrueVal);
4279 const SCEV *RA = getSCEV(FalseVal);
4280 const SCEV *LDiff = getMinusSCEV(LA, LS);
4281 const SCEV *RDiff = getMinusSCEV(RA, RS);
4282 if (LDiff == RDiff)
4283 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4284 LDiff = getMinusSCEV(LA, RS);
4285 RDiff = getMinusSCEV(RA, LS);
4286 if (LDiff == RDiff)
4287 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4288 }
4289 break;
4290 case ICmpInst::ICMP_NE:
4291 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4292 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4293 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4294 const SCEV *One = getOne(I->getType());
4295 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4296 const SCEV *LA = getSCEV(TrueVal);
4297 const SCEV *RA = getSCEV(FalseVal);
4298 const SCEV *LDiff = getMinusSCEV(LA, LS);
4299 const SCEV *RDiff = getMinusSCEV(RA, One);
4300 if (LDiff == RDiff)
4301 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4302 }
4303 break;
4304 case ICmpInst::ICMP_EQ:
4305 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4306 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4307 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4308 const SCEV *One = getOne(I->getType());
4309 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4310 const SCEV *LA = getSCEV(TrueVal);
4311 const SCEV *RA = getSCEV(FalseVal);
4312 const SCEV *LDiff = getMinusSCEV(LA, One);
4313 const SCEV *RDiff = getMinusSCEV(RA, LS);
4314 if (LDiff == RDiff)
4315 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4316 }
4317 break;
4318 default:
4319 break;
4320 }
4321
4322 return getUnknown(I);
4323 }
4324
4325 /// Expand GEP instructions into add and multiply operations. This allows them
4326 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)4327 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4328 // Don't attempt to analyze GEPs over unsized objects.
4329 if (!GEP->getSourceElementType()->isSized())
4330 return getUnknown(GEP);
4331
4332 SmallVector<const SCEV *, 4> IndexExprs;
4333 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4334 IndexExprs.push_back(getSCEV(*Index));
4335 return getGEPExpr(GEP->getSourceElementType(),
4336 getSCEV(GEP->getPointerOperand()),
4337 IndexExprs, GEP->isInBounds());
4338 }
4339
4340 uint32_t
GetMinTrailingZeros(const SCEV * S)4341 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4342 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4343 return C->getAPInt().countTrailingZeros();
4344
4345 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4346 return std::min(GetMinTrailingZeros(T->getOperand()),
4347 (uint32_t)getTypeSizeInBits(T->getType()));
4348
4349 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4350 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4351 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4352 getTypeSizeInBits(E->getType()) : OpRes;
4353 }
4354
4355 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4356 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4357 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4358 getTypeSizeInBits(E->getType()) : OpRes;
4359 }
4360
4361 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4362 // The result is the min of all operands results.
4363 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4364 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4365 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4366 return MinOpRes;
4367 }
4368
4369 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4370 // The result is the sum of all operands results.
4371 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4372 uint32_t BitWidth = getTypeSizeInBits(M->getType());
4373 for (unsigned i = 1, e = M->getNumOperands();
4374 SumOpRes != BitWidth && i != e; ++i)
4375 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4376 BitWidth);
4377 return SumOpRes;
4378 }
4379
4380 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4381 // The result is the min of all operands results.
4382 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4383 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4384 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4385 return MinOpRes;
4386 }
4387
4388 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4389 // The result is the min of all operands results.
4390 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4391 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4392 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4393 return MinOpRes;
4394 }
4395
4396 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4397 // The result is the min of all operands results.
4398 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4399 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4400 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4401 return MinOpRes;
4402 }
4403
4404 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4405 // For a SCEVUnknown, ask ValueTracking.
4406 unsigned BitWidth = getTypeSizeInBits(U->getType());
4407 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4408 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4409 nullptr, &DT);
4410 return Zeros.countTrailingOnes();
4411 }
4412
4413 // SCEVUDivExpr
4414 return 0;
4415 }
4416
4417 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)4418 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4419 if (Instruction *I = dyn_cast<Instruction>(V))
4420 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4421 return getConstantRangeFromMetadata(*MD);
4422
4423 return None;
4424 }
4425
4426 /// Determine the range for a particular SCEV. If SignHint is
4427 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4428 /// with a "cleaner" unsigned (resp. signed) representation.
4429 ConstantRange
getRange(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)4430 ScalarEvolution::getRange(const SCEV *S,
4431 ScalarEvolution::RangeSignHint SignHint) {
4432 DenseMap<const SCEV *, ConstantRange> &Cache =
4433 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4434 : SignedRanges;
4435
4436 // See if we've computed this range already.
4437 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4438 if (I != Cache.end())
4439 return I->second;
4440
4441 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4442 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4443
4444 unsigned BitWidth = getTypeSizeInBits(S->getType());
4445 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4446
4447 // If the value has known zeros, the maximum value will have those known zeros
4448 // as well.
4449 uint32_t TZ = GetMinTrailingZeros(S);
4450 if (TZ != 0) {
4451 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4452 ConservativeResult =
4453 ConstantRange(APInt::getMinValue(BitWidth),
4454 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4455 else
4456 ConservativeResult = ConstantRange(
4457 APInt::getSignedMinValue(BitWidth),
4458 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4459 }
4460
4461 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4462 ConstantRange X = getRange(Add->getOperand(0), SignHint);
4463 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4464 X = X.add(getRange(Add->getOperand(i), SignHint));
4465 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4466 }
4467
4468 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4469 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4470 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4471 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4472 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4473 }
4474
4475 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4476 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4477 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4478 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4479 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4480 }
4481
4482 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4483 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4484 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4485 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4486 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4487 }
4488
4489 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4490 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4491 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4492 return setRange(UDiv, SignHint,
4493 ConservativeResult.intersectWith(X.udiv(Y)));
4494 }
4495
4496 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4497 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4498 return setRange(ZExt, SignHint,
4499 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4500 }
4501
4502 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4503 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4504 return setRange(SExt, SignHint,
4505 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4506 }
4507
4508 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4509 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4510 return setRange(Trunc, SignHint,
4511 ConservativeResult.intersectWith(X.truncate(BitWidth)));
4512 }
4513
4514 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4515 // If there's no unsigned wrap, the value will never be less than its
4516 // initial value.
4517 if (AddRec->hasNoUnsignedWrap())
4518 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4519 if (!C->getValue()->isZero())
4520 ConservativeResult = ConservativeResult.intersectWith(
4521 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4522
4523 // If there's no signed wrap, and all the operands have the same sign or
4524 // zero, the value won't ever change sign.
4525 if (AddRec->hasNoSignedWrap()) {
4526 bool AllNonNeg = true;
4527 bool AllNonPos = true;
4528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4529 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4530 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4531 }
4532 if (AllNonNeg)
4533 ConservativeResult = ConservativeResult.intersectWith(
4534 ConstantRange(APInt(BitWidth, 0),
4535 APInt::getSignedMinValue(BitWidth)));
4536 else if (AllNonPos)
4537 ConservativeResult = ConservativeResult.intersectWith(
4538 ConstantRange(APInt::getSignedMinValue(BitWidth),
4539 APInt(BitWidth, 1)));
4540 }
4541
4542 // TODO: non-affine addrec
4543 if (AddRec->isAffine()) {
4544 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4545 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4546 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4547 auto RangeFromAffine = getRangeForAffineAR(
4548 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4549 BitWidth);
4550 if (!RangeFromAffine.isFullSet())
4551 ConservativeResult =
4552 ConservativeResult.intersectWith(RangeFromAffine);
4553
4554 auto RangeFromFactoring = getRangeViaFactoring(
4555 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4556 BitWidth);
4557 if (!RangeFromFactoring.isFullSet())
4558 ConservativeResult =
4559 ConservativeResult.intersectWith(RangeFromFactoring);
4560 }
4561 }
4562
4563 return setRange(AddRec, SignHint, ConservativeResult);
4564 }
4565
4566 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4567 // Check if the IR explicitly contains !range metadata.
4568 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4569 if (MDRange.hasValue())
4570 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4571
4572 // Split here to avoid paying the compile-time cost of calling both
4573 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4574 // if needed.
4575 const DataLayout &DL = getDataLayout();
4576 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4577 // For a SCEVUnknown, ask ValueTracking.
4578 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4579 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4580 if (Ones != ~Zeros + 1)
4581 ConservativeResult =
4582 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4583 } else {
4584 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4585 "generalize as needed!");
4586 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4587 if (NS > 1)
4588 ConservativeResult = ConservativeResult.intersectWith(
4589 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4590 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4591 }
4592
4593 return setRange(U, SignHint, ConservativeResult);
4594 }
4595
4596 return setRange(S, SignHint, ConservativeResult);
4597 }
4598
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)4599 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4600 const SCEV *Step,
4601 const SCEV *MaxBECount,
4602 unsigned BitWidth) {
4603 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4604 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4605 "Precondition!");
4606
4607 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4608
4609 // Check for overflow. This must be done with ConstantRange arithmetic
4610 // because we could be called from within the ScalarEvolution overflow
4611 // checking code.
4612
4613 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4614 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4615 ConstantRange ZExtMaxBECountRange =
4616 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4617
4618 ConstantRange StepSRange = getSignedRange(Step);
4619 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4620
4621 ConstantRange StartURange = getUnsignedRange(Start);
4622 ConstantRange EndURange =
4623 StartURange.add(MaxBECountRange.multiply(StepSRange));
4624
4625 // Check for unsigned overflow.
4626 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4627 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4628 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4629 ZExtEndURange) {
4630 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4631 EndURange.getUnsignedMin());
4632 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4633 EndURange.getUnsignedMax());
4634 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4635 if (!IsFullRange)
4636 Result =
4637 Result.intersectWith(ConstantRange(Min, Max + 1));
4638 }
4639
4640 ConstantRange StartSRange = getSignedRange(Start);
4641 ConstantRange EndSRange =
4642 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4643
4644 // Check for signed overflow. This must be done with ConstantRange
4645 // arithmetic because we could be called from within the ScalarEvolution
4646 // overflow checking code.
4647 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4648 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4649 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4650 SExtEndSRange) {
4651 APInt Min =
4652 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4653 APInt Max =
4654 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4655 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4656 if (!IsFullRange)
4657 Result =
4658 Result.intersectWith(ConstantRange(Min, Max + 1));
4659 }
4660
4661 return Result;
4662 }
4663
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)4664 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4665 const SCEV *Step,
4666 const SCEV *MaxBECount,
4667 unsigned BitWidth) {
4668 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4669 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4670
4671 struct SelectPattern {
4672 Value *Condition = nullptr;
4673 APInt TrueValue;
4674 APInt FalseValue;
4675
4676 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4677 const SCEV *S) {
4678 Optional<unsigned> CastOp;
4679 APInt Offset(BitWidth, 0);
4680
4681 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4682 "Should be!");
4683
4684 // Peel off a constant offset:
4685 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4686 // In the future we could consider being smarter here and handle
4687 // {Start+Step,+,Step} too.
4688 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4689 return;
4690
4691 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4692 S = SA->getOperand(1);
4693 }
4694
4695 // Peel off a cast operation
4696 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4697 CastOp = SCast->getSCEVType();
4698 S = SCast->getOperand();
4699 }
4700
4701 using namespace llvm::PatternMatch;
4702
4703 auto *SU = dyn_cast<SCEVUnknown>(S);
4704 const APInt *TrueVal, *FalseVal;
4705 if (!SU ||
4706 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4707 m_APInt(FalseVal)))) {
4708 Condition = nullptr;
4709 return;
4710 }
4711
4712 TrueValue = *TrueVal;
4713 FalseValue = *FalseVal;
4714
4715 // Re-apply the cast we peeled off earlier
4716 if (CastOp.hasValue())
4717 switch (*CastOp) {
4718 default:
4719 llvm_unreachable("Unknown SCEV cast type!");
4720
4721 case scTruncate:
4722 TrueValue = TrueValue.trunc(BitWidth);
4723 FalseValue = FalseValue.trunc(BitWidth);
4724 break;
4725 case scZeroExtend:
4726 TrueValue = TrueValue.zext(BitWidth);
4727 FalseValue = FalseValue.zext(BitWidth);
4728 break;
4729 case scSignExtend:
4730 TrueValue = TrueValue.sext(BitWidth);
4731 FalseValue = FalseValue.sext(BitWidth);
4732 break;
4733 }
4734
4735 // Re-apply the constant offset we peeled off earlier
4736 TrueValue += Offset;
4737 FalseValue += Offset;
4738 }
4739
4740 bool isRecognized() { return Condition != nullptr; }
4741 };
4742
4743 SelectPattern StartPattern(*this, BitWidth, Start);
4744 if (!StartPattern.isRecognized())
4745 return ConstantRange(BitWidth, /* isFullSet = */ true);
4746
4747 SelectPattern StepPattern(*this, BitWidth, Step);
4748 if (!StepPattern.isRecognized())
4749 return ConstantRange(BitWidth, /* isFullSet = */ true);
4750
4751 if (StartPattern.Condition != StepPattern.Condition) {
4752 // We don't handle this case today; but we could, by considering four
4753 // possibilities below instead of two. I'm not sure if there are cases where
4754 // that will help over what getRange already does, though.
4755 return ConstantRange(BitWidth, /* isFullSet = */ true);
4756 }
4757
4758 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4759 // construct arbitrary general SCEV expressions here. This function is called
4760 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4761 // say) can end up caching a suboptimal value.
4762
4763 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4764 // C2352 and C2512 (otherwise it isn't needed).
4765
4766 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4767 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4768 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4769 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4770
4771 ConstantRange TrueRange =
4772 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4773 ConstantRange FalseRange =
4774 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4775
4776 return TrueRange.unionWith(FalseRange);
4777 }
4778
getNoWrapFlagsFromUB(const Value * V)4779 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4780 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4781 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4782
4783 // Return early if there are no flags to propagate to the SCEV.
4784 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4785 if (BinOp->hasNoUnsignedWrap())
4786 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4787 if (BinOp->hasNoSignedWrap())
4788 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4789 if (Flags == SCEV::FlagAnyWrap)
4790 return SCEV::FlagAnyWrap;
4791
4792 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4793 }
4794
isSCEVExprNeverPoison(const Instruction * I)4795 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4796 // Here we check that I is in the header of the innermost loop containing I,
4797 // since we only deal with instructions in the loop header. The actual loop we
4798 // need to check later will come from an add recurrence, but getting that
4799 // requires computing the SCEV of the operands, which can be expensive. This
4800 // check we can do cheaply to rule out some cases early.
4801 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4802 if (InnermostContainingLoop == nullptr ||
4803 InnermostContainingLoop->getHeader() != I->getParent())
4804 return false;
4805
4806 // Only proceed if we can prove that I does not yield poison.
4807 if (!isKnownNotFullPoison(I)) return false;
4808
4809 // At this point we know that if I is executed, then it does not wrap
4810 // according to at least one of NSW or NUW. If I is not executed, then we do
4811 // not know if the calculation that I represents would wrap. Multiple
4812 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4813 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4814 // derived from other instructions that map to the same SCEV. We cannot make
4815 // that guarantee for cases where I is not executed. So we need to find the
4816 // loop that I is considered in relation to and prove that I is executed for
4817 // every iteration of that loop. That implies that the value that I
4818 // calculates does not wrap anywhere in the loop, so then we can apply the
4819 // flags to the SCEV.
4820 //
4821 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4822 // from different loops, so that we know which loop to prove that I is
4823 // executed in.
4824 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4825 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4826 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4827 bool AllOtherOpsLoopInvariant = true;
4828 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4829 ++OtherOpIndex) {
4830 if (OtherOpIndex != OpIndex) {
4831 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4832 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4833 AllOtherOpsLoopInvariant = false;
4834 break;
4835 }
4836 }
4837 }
4838 if (AllOtherOpsLoopInvariant &&
4839 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4840 return true;
4841 }
4842 }
4843 return false;
4844 }
4845
isAddRecNeverPoison(const Instruction * I,const Loop * L)4846 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4847 // If we know that \c I can never be poison period, then that's enough.
4848 if (isSCEVExprNeverPoison(I))
4849 return true;
4850
4851 // For an add recurrence specifically, we assume that infinite loops without
4852 // side effects are undefined behavior, and then reason as follows:
4853 //
4854 // If the add recurrence is poison in any iteration, it is poison on all
4855 // future iterations (since incrementing poison yields poison). If the result
4856 // of the add recurrence is fed into the loop latch condition and the loop
4857 // does not contain any throws or exiting blocks other than the latch, we now
4858 // have the ability to "choose" whether the backedge is taken or not (by
4859 // choosing a sufficiently evil value for the poison feeding into the branch)
4860 // for every iteration including and after the one in which \p I first became
4861 // poison. There are two possibilities (let's call the iteration in which \p
4862 // I first became poison as K):
4863 //
4864 // 1. In the set of iterations including and after K, the loop body executes
4865 // no side effects. In this case executing the backege an infinte number
4866 // of times will yield undefined behavior.
4867 //
4868 // 2. In the set of iterations including and after K, the loop body executes
4869 // at least one side effect. In this case, that specific instance of side
4870 // effect is control dependent on poison, which also yields undefined
4871 // behavior.
4872
4873 auto *ExitingBB = L->getExitingBlock();
4874 auto *LatchBB = L->getLoopLatch();
4875 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4876 return false;
4877
4878 SmallPtrSet<const Instruction *, 16> Pushed;
4879 SmallVector<const Instruction *, 8> PoisonStack;
4880
4881 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
4882 // things that are known to be fully poison under that assumption go on the
4883 // PoisonStack.
4884 Pushed.insert(I);
4885 PoisonStack.push_back(I);
4886
4887 bool LatchControlDependentOnPoison = false;
4888 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4889 const Instruction *Poison = PoisonStack.pop_back_val();
4890
4891 for (auto *PoisonUser : Poison->users()) {
4892 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4893 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4894 PoisonStack.push_back(cast<Instruction>(PoisonUser));
4895 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4896 assert(BI->isConditional() && "Only possibility!");
4897 if (BI->getParent() == LatchBB) {
4898 LatchControlDependentOnPoison = true;
4899 break;
4900 }
4901 }
4902 }
4903 }
4904
4905 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4906 }
4907
loopHasNoAbnormalExits(const Loop * L)4908 bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
4909 auto Itr = LoopHasNoAbnormalExits.find(L);
4910 if (Itr == LoopHasNoAbnormalExits.end()) {
4911 auto NoAbnormalExitInBB = [&](BasicBlock *BB) {
4912 return all_of(*BB, [](Instruction &I) {
4913 return isGuaranteedToTransferExecutionToSuccessor(&I);
4914 });
4915 };
4916
4917 auto InsertPair = LoopHasNoAbnormalExits.insert(
4918 {L, all_of(L->getBlocks(), NoAbnormalExitInBB)});
4919 assert(InsertPair.second && "We just checked!");
4920 Itr = InsertPair.first;
4921 }
4922
4923 return Itr->second;
4924 }
4925
createSCEV(Value * V)4926 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4927 if (!isSCEVable(V->getType()))
4928 return getUnknown(V);
4929
4930 if (Instruction *I = dyn_cast<Instruction>(V)) {
4931 // Don't attempt to analyze instructions in blocks that aren't
4932 // reachable. Such instructions don't matter, and they aren't required
4933 // to obey basic rules for definitions dominating uses which this
4934 // analysis depends on.
4935 if (!DT.isReachableFromEntry(I->getParent()))
4936 return getUnknown(V);
4937 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4938 return getConstant(CI);
4939 else if (isa<ConstantPointerNull>(V))
4940 return getZero(V->getType());
4941 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4942 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4943 else if (!isa<ConstantExpr>(V))
4944 return getUnknown(V);
4945
4946 Operator *U = cast<Operator>(V);
4947 if (auto BO = MatchBinaryOp(U, DT)) {
4948 switch (BO->Opcode) {
4949 case Instruction::Add: {
4950 // The simple thing to do would be to just call getSCEV on both operands
4951 // and call getAddExpr with the result. However if we're looking at a
4952 // bunch of things all added together, this can be quite inefficient,
4953 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4954 // Instead, gather up all the operands and make a single getAddExpr call.
4955 // LLVM IR canonical form means we need only traverse the left operands.
4956 SmallVector<const SCEV *, 4> AddOps;
4957 do {
4958 if (BO->Op) {
4959 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4960 AddOps.push_back(OpSCEV);
4961 break;
4962 }
4963
4964 // If a NUW or NSW flag can be applied to the SCEV for this
4965 // addition, then compute the SCEV for this addition by itself
4966 // with a separate call to getAddExpr. We need to do that
4967 // instead of pushing the operands of the addition onto AddOps,
4968 // since the flags are only known to apply to this particular
4969 // addition - they may not apply to other additions that can be
4970 // formed with operands from AddOps.
4971 const SCEV *RHS = getSCEV(BO->RHS);
4972 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4973 if (Flags != SCEV::FlagAnyWrap) {
4974 const SCEV *LHS = getSCEV(BO->LHS);
4975 if (BO->Opcode == Instruction::Sub)
4976 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4977 else
4978 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4979 break;
4980 }
4981 }
4982
4983 if (BO->Opcode == Instruction::Sub)
4984 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4985 else
4986 AddOps.push_back(getSCEV(BO->RHS));
4987
4988 auto NewBO = MatchBinaryOp(BO->LHS, DT);
4989 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4990 NewBO->Opcode != Instruction::Sub)) {
4991 AddOps.push_back(getSCEV(BO->LHS));
4992 break;
4993 }
4994 BO = NewBO;
4995 } while (true);
4996
4997 return getAddExpr(AddOps);
4998 }
4999
5000 case Instruction::Mul: {
5001 SmallVector<const SCEV *, 4> MulOps;
5002 do {
5003 if (BO->Op) {
5004 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5005 MulOps.push_back(OpSCEV);
5006 break;
5007 }
5008
5009 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5010 if (Flags != SCEV::FlagAnyWrap) {
5011 MulOps.push_back(
5012 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5013 break;
5014 }
5015 }
5016
5017 MulOps.push_back(getSCEV(BO->RHS));
5018 auto NewBO = MatchBinaryOp(BO->LHS, DT);
5019 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5020 MulOps.push_back(getSCEV(BO->LHS));
5021 break;
5022 }
5023 BO = NewBO;
5024 } while (true);
5025
5026 return getMulExpr(MulOps);
5027 }
5028 case Instruction::UDiv:
5029 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5030 case Instruction::Sub: {
5031 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5032 if (BO->Op)
5033 Flags = getNoWrapFlagsFromUB(BO->Op);
5034 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5035 }
5036 case Instruction::And:
5037 // For an expression like x&255 that merely masks off the high bits,
5038 // use zext(trunc(x)) as the SCEV expression.
5039 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5040 if (CI->isNullValue())
5041 return getSCEV(BO->RHS);
5042 if (CI->isAllOnesValue())
5043 return getSCEV(BO->LHS);
5044 const APInt &A = CI->getValue();
5045
5046 // Instcombine's ShrinkDemandedConstant may strip bits out of
5047 // constants, obscuring what would otherwise be a low-bits mask.
5048 // Use computeKnownBits to compute what ShrinkDemandedConstant
5049 // knew about to reconstruct a low-bits mask value.
5050 unsigned LZ = A.countLeadingZeros();
5051 unsigned TZ = A.countTrailingZeros();
5052 unsigned BitWidth = A.getBitWidth();
5053 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5054 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5055 0, &AC, nullptr, &DT);
5056
5057 APInt EffectiveMask =
5058 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5059 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5060 const SCEV *MulCount = getConstant(ConstantInt::get(
5061 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5062 return getMulExpr(
5063 getZeroExtendExpr(
5064 getTruncateExpr(
5065 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5066 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5067 BO->LHS->getType()),
5068 MulCount);
5069 }
5070 }
5071 break;
5072
5073 case Instruction::Or:
5074 // If the RHS of the Or is a constant, we may have something like:
5075 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
5076 // optimizations will transparently handle this case.
5077 //
5078 // In order for this transformation to be safe, the LHS must be of the
5079 // form X*(2^n) and the Or constant must be less than 2^n.
5080 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5081 const SCEV *LHS = getSCEV(BO->LHS);
5082 const APInt &CIVal = CI->getValue();
5083 if (GetMinTrailingZeros(LHS) >=
5084 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5085 // Build a plain add SCEV.
5086 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5087 // If the LHS of the add was an addrec and it has no-wrap flags,
5088 // transfer the no-wrap flags, since an or won't introduce a wrap.
5089 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5090 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5091 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5092 OldAR->getNoWrapFlags());
5093 }
5094 return S;
5095 }
5096 }
5097 break;
5098
5099 case Instruction::Xor:
5100 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5101 // If the RHS of xor is -1, then this is a not operation.
5102 if (CI->isAllOnesValue())
5103 return getNotSCEV(getSCEV(BO->LHS));
5104
5105 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5106 // This is a variant of the check for xor with -1, and it handles
5107 // the case where instcombine has trimmed non-demanded bits out
5108 // of an xor with -1.
5109 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5110 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5111 if (LBO->getOpcode() == Instruction::And &&
5112 LCI->getValue() == CI->getValue())
5113 if (const SCEVZeroExtendExpr *Z =
5114 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5115 Type *UTy = BO->LHS->getType();
5116 const SCEV *Z0 = Z->getOperand();
5117 Type *Z0Ty = Z0->getType();
5118 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5119
5120 // If C is a low-bits mask, the zero extend is serving to
5121 // mask off the high bits. Complement the operand and
5122 // re-apply the zext.
5123 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5124 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5125
5126 // If C is a single bit, it may be in the sign-bit position
5127 // before the zero-extend. In this case, represent the xor
5128 // using an add, which is equivalent, and re-apply the zext.
5129 APInt Trunc = CI->getValue().trunc(Z0TySize);
5130 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5131 Trunc.isSignBit())
5132 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5133 UTy);
5134 }
5135 }
5136 break;
5137
5138 case Instruction::Shl:
5139 // Turn shift left of a constant amount into a multiply.
5140 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5141 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5142
5143 // If the shift count is not less than the bitwidth, the result of
5144 // the shift is undefined. Don't try to analyze it, because the
5145 // resolution chosen here may differ from the resolution chosen in
5146 // other parts of the compiler.
5147 if (SA->getValue().uge(BitWidth))
5148 break;
5149
5150 // It is currently not resolved how to interpret NSW for left
5151 // shift by BitWidth - 1, so we avoid applying flags in that
5152 // case. Remove this check (or this comment) once the situation
5153 // is resolved. See
5154 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5155 // and http://reviews.llvm.org/D8890 .
5156 auto Flags = SCEV::FlagAnyWrap;
5157 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5158 Flags = getNoWrapFlagsFromUB(BO->Op);
5159
5160 Constant *X = ConstantInt::get(getContext(),
5161 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5162 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5163 }
5164 break;
5165
5166 case Instruction::AShr:
5167 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5168 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5169 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5170 if (L->getOpcode() == Instruction::Shl &&
5171 L->getOperand(1) == BO->RHS) {
5172 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5173
5174 // If the shift count is not less than the bitwidth, the result of
5175 // the shift is undefined. Don't try to analyze it, because the
5176 // resolution chosen here may differ from the resolution chosen in
5177 // other parts of the compiler.
5178 if (CI->getValue().uge(BitWidth))
5179 break;
5180
5181 uint64_t Amt = BitWidth - CI->getZExtValue();
5182 if (Amt == BitWidth)
5183 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5184 return getSignExtendExpr(
5185 getTruncateExpr(getSCEV(L->getOperand(0)),
5186 IntegerType::get(getContext(), Amt)),
5187 BO->LHS->getType());
5188 }
5189 break;
5190 }
5191 }
5192
5193 switch (U->getOpcode()) {
5194 case Instruction::Trunc:
5195 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5196
5197 case Instruction::ZExt:
5198 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5199
5200 case Instruction::SExt:
5201 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5202
5203 case Instruction::BitCast:
5204 // BitCasts are no-op casts so we just eliminate the cast.
5205 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5206 return getSCEV(U->getOperand(0));
5207 break;
5208
5209 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5210 // lead to pointer expressions which cannot safely be expanded to GEPs,
5211 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5212 // simplifying integer expressions.
5213
5214 case Instruction::GetElementPtr:
5215 return createNodeForGEP(cast<GEPOperator>(U));
5216
5217 case Instruction::PHI:
5218 return createNodeForPHI(cast<PHINode>(U));
5219
5220 case Instruction::Select:
5221 // U can also be a select constant expr, which let fall through. Since
5222 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5223 // constant expressions cannot have instructions as operands, we'd have
5224 // returned getUnknown for a select constant expressions anyway.
5225 if (isa<Instruction>(U))
5226 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5227 U->getOperand(1), U->getOperand(2));
5228 break;
5229
5230 case Instruction::Call:
5231 case Instruction::Invoke:
5232 if (Value *RV = CallSite(U).getReturnedArgOperand())
5233 return getSCEV(RV);
5234 break;
5235 }
5236
5237 return getUnknown(V);
5238 }
5239
5240
5241
5242 //===----------------------------------------------------------------------===//
5243 // Iteration Count Computation Code
5244 //
5245
getSmallConstantTripCount(Loop * L)5246 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5247 if (BasicBlock *ExitingBB = L->getExitingBlock())
5248 return getSmallConstantTripCount(L, ExitingBB);
5249
5250 // No trip count information for multiple exits.
5251 return 0;
5252 }
5253
getSmallConstantTripCount(Loop * L,BasicBlock * ExitingBlock)5254 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5255 BasicBlock *ExitingBlock) {
5256 assert(ExitingBlock && "Must pass a non-null exiting block!");
5257 assert(L->isLoopExiting(ExitingBlock) &&
5258 "Exiting block must actually branch out of the loop!");
5259 const SCEVConstant *ExitCount =
5260 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5261 if (!ExitCount)
5262 return 0;
5263
5264 ConstantInt *ExitConst = ExitCount->getValue();
5265
5266 // Guard against huge trip counts.
5267 if (ExitConst->getValue().getActiveBits() > 32)
5268 return 0;
5269
5270 // In case of integer overflow, this returns 0, which is correct.
5271 return ((unsigned)ExitConst->getZExtValue()) + 1;
5272 }
5273
getSmallConstantTripMultiple(Loop * L)5274 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5275 if (BasicBlock *ExitingBB = L->getExitingBlock())
5276 return getSmallConstantTripMultiple(L, ExitingBB);
5277
5278 // No trip multiple information for multiple exits.
5279 return 0;
5280 }
5281
5282 /// Returns the largest constant divisor of the trip count of this loop as a
5283 /// normal unsigned value, if possible. This means that the actual trip count is
5284 /// always a multiple of the returned value (don't forget the trip count could
5285 /// very well be zero as well!).
5286 ///
5287 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5288 /// multiple of a constant (which is also the case if the trip count is simply
5289 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5290 /// if the trip count is very large (>= 2^32).
5291 ///
5292 /// As explained in the comments for getSmallConstantTripCount, this assumes
5293 /// that control exits the loop via ExitingBlock.
5294 unsigned
getSmallConstantTripMultiple(Loop * L,BasicBlock * ExitingBlock)5295 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5296 BasicBlock *ExitingBlock) {
5297 assert(ExitingBlock && "Must pass a non-null exiting block!");
5298 assert(L->isLoopExiting(ExitingBlock) &&
5299 "Exiting block must actually branch out of the loop!");
5300 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5301 if (ExitCount == getCouldNotCompute())
5302 return 1;
5303
5304 // Get the trip count from the BE count by adding 1.
5305 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5306 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5307 // to factor simple cases.
5308 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5309 TCMul = Mul->getOperand(0);
5310
5311 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5312 if (!MulC)
5313 return 1;
5314
5315 ConstantInt *Result = MulC->getValue();
5316
5317 // Guard against huge trip counts (this requires checking
5318 // for zero to handle the case where the trip count == -1 and the
5319 // addition wraps).
5320 if (!Result || Result->getValue().getActiveBits() > 32 ||
5321 Result->getValue().getActiveBits() == 0)
5322 return 1;
5323
5324 return (unsigned)Result->getZExtValue();
5325 }
5326
5327 /// Get the expression for the number of loop iterations for which this loop is
5328 /// guaranteed not to exit via ExitingBlock. Otherwise return
5329 /// SCEVCouldNotCompute.
getExitCount(Loop * L,BasicBlock * ExitingBlock)5330 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5331 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5332 }
5333
5334 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)5335 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5336 SCEVUnionPredicate &Preds) {
5337 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5338 }
5339
getBackedgeTakenCount(const Loop * L)5340 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5341 return getBackedgeTakenInfo(L).getExact(this);
5342 }
5343
5344 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5345 /// known never to be less than the actual backedge taken count.
getMaxBackedgeTakenCount(const Loop * L)5346 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5347 return getBackedgeTakenInfo(L).getMax(this);
5348 }
5349
5350 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5351 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)5352 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5353 BasicBlock *Header = L->getHeader();
5354
5355 // Push all Loop-header PHIs onto the Worklist stack.
5356 for (BasicBlock::iterator I = Header->begin();
5357 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5358 Worklist.push_back(PN);
5359 }
5360
5361 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)5362 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5363 auto &BTI = getBackedgeTakenInfo(L);
5364 if (BTI.hasFullInfo())
5365 return BTI;
5366
5367 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5368
5369 if (!Pair.second)
5370 return Pair.first->second;
5371
5372 BackedgeTakenInfo Result =
5373 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5374
5375 return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5376 }
5377
5378 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)5379 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5380 // Initially insert an invalid entry for this loop. If the insertion
5381 // succeeds, proceed to actually compute a backedge-taken count and
5382 // update the value. The temporary CouldNotCompute value tells SCEV
5383 // code elsewhere that it shouldn't attempt to request a new
5384 // backedge-taken count, which could result in infinite recursion.
5385 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5386 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5387 if (!Pair.second)
5388 return Pair.first->second;
5389
5390 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5391 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5392 // must be cleared in this scope.
5393 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5394
5395 if (Result.getExact(this) != getCouldNotCompute()) {
5396 assert(isLoopInvariant(Result.getExact(this), L) &&
5397 isLoopInvariant(Result.getMax(this), L) &&
5398 "Computed backedge-taken count isn't loop invariant for loop!");
5399 ++NumTripCountsComputed;
5400 }
5401 else if (Result.getMax(this) == getCouldNotCompute() &&
5402 isa<PHINode>(L->getHeader()->begin())) {
5403 // Only count loops that have phi nodes as not being computable.
5404 ++NumTripCountsNotComputed;
5405 }
5406
5407 // Now that we know more about the trip count for this loop, forget any
5408 // existing SCEV values for PHI nodes in this loop since they are only
5409 // conservative estimates made without the benefit of trip count
5410 // information. This is similar to the code in forgetLoop, except that
5411 // it handles SCEVUnknown PHI nodes specially.
5412 if (Result.hasAnyInfo()) {
5413 SmallVector<Instruction *, 16> Worklist;
5414 PushLoopPHIs(L, Worklist);
5415
5416 SmallPtrSet<Instruction *, 8> Visited;
5417 while (!Worklist.empty()) {
5418 Instruction *I = Worklist.pop_back_val();
5419 if (!Visited.insert(I).second)
5420 continue;
5421
5422 ValueExprMapType::iterator It =
5423 ValueExprMap.find_as(static_cast<Value *>(I));
5424 if (It != ValueExprMap.end()) {
5425 const SCEV *Old = It->second;
5426
5427 // SCEVUnknown for a PHI either means that it has an unrecognized
5428 // structure, or it's a PHI that's in the progress of being computed
5429 // by createNodeForPHI. In the former case, additional loop trip
5430 // count information isn't going to change anything. In the later
5431 // case, createNodeForPHI will perform the necessary updates on its
5432 // own when it gets to that point.
5433 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5434 forgetMemoizedResults(Old);
5435 ValueExprMap.erase(It);
5436 }
5437 if (PHINode *PN = dyn_cast<PHINode>(I))
5438 ConstantEvolutionLoopExitValue.erase(PN);
5439 }
5440
5441 PushDefUseChildren(I, Worklist);
5442 }
5443 }
5444
5445 // Re-lookup the insert position, since the call to
5446 // computeBackedgeTakenCount above could result in a
5447 // recusive call to getBackedgeTakenInfo (on a different
5448 // loop), which would invalidate the iterator computed
5449 // earlier.
5450 return BackedgeTakenCounts.find(L)->second = Result;
5451 }
5452
forgetLoop(const Loop * L)5453 void ScalarEvolution::forgetLoop(const Loop *L) {
5454 // Drop any stored trip count value.
5455 auto RemoveLoopFromBackedgeMap =
5456 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5457 auto BTCPos = Map.find(L);
5458 if (BTCPos != Map.end()) {
5459 BTCPos->second.clear();
5460 Map.erase(BTCPos);
5461 }
5462 };
5463
5464 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5465 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5466
5467 // Drop information about expressions based on loop-header PHIs.
5468 SmallVector<Instruction *, 16> Worklist;
5469 PushLoopPHIs(L, Worklist);
5470
5471 SmallPtrSet<Instruction *, 8> Visited;
5472 while (!Worklist.empty()) {
5473 Instruction *I = Worklist.pop_back_val();
5474 if (!Visited.insert(I).second)
5475 continue;
5476
5477 ValueExprMapType::iterator It =
5478 ValueExprMap.find_as(static_cast<Value *>(I));
5479 if (It != ValueExprMap.end()) {
5480 forgetMemoizedResults(It->second);
5481 ValueExprMap.erase(It);
5482 if (PHINode *PN = dyn_cast<PHINode>(I))
5483 ConstantEvolutionLoopExitValue.erase(PN);
5484 }
5485
5486 PushDefUseChildren(I, Worklist);
5487 }
5488
5489 // Forget all contained loops too, to avoid dangling entries in the
5490 // ValuesAtScopes map.
5491 for (Loop *I : *L)
5492 forgetLoop(I);
5493
5494 LoopHasNoAbnormalExits.erase(L);
5495 }
5496
forgetValue(Value * V)5497 void ScalarEvolution::forgetValue(Value *V) {
5498 Instruction *I = dyn_cast<Instruction>(V);
5499 if (!I) return;
5500
5501 // Drop information about expressions based on loop-header PHIs.
5502 SmallVector<Instruction *, 16> Worklist;
5503 Worklist.push_back(I);
5504
5505 SmallPtrSet<Instruction *, 8> Visited;
5506 while (!Worklist.empty()) {
5507 I = Worklist.pop_back_val();
5508 if (!Visited.insert(I).second)
5509 continue;
5510
5511 ValueExprMapType::iterator It =
5512 ValueExprMap.find_as(static_cast<Value *>(I));
5513 if (It != ValueExprMap.end()) {
5514 forgetMemoizedResults(It->second);
5515 ValueExprMap.erase(It);
5516 if (PHINode *PN = dyn_cast<PHINode>(I))
5517 ConstantEvolutionLoopExitValue.erase(PN);
5518 }
5519
5520 PushDefUseChildren(I, Worklist);
5521 }
5522 }
5523
5524 /// Get the exact loop backedge taken count considering all loop exits. A
5525 /// computable result can only be returned for loops with a single exit.
5526 /// Returning the minimum taken count among all exits is incorrect because one
5527 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5528 /// the limit of each loop test is never skipped. This is a valid assumption as
5529 /// long as the loop exits via that test. For precise results, it is the
5530 /// caller's responsibility to specify the relevant loop exit using
5531 /// getExact(ExitingBlock, SE).
5532 const SCEV *
getExact(ScalarEvolution * SE,SCEVUnionPredicate * Preds) const5533 ScalarEvolution::BackedgeTakenInfo::getExact(
5534 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5535 // If any exits were not computable, the loop is not computable.
5536 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5537
5538 // We need exactly one computable exit.
5539 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5540 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5541
5542 const SCEV *BECount = nullptr;
5543 for (auto &ENT : ExitNotTaken) {
5544 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5545
5546 if (!BECount)
5547 BECount = ENT.ExactNotTaken;
5548 else if (BECount != ENT.ExactNotTaken)
5549 return SE->getCouldNotCompute();
5550 if (Preds && ENT.getPred())
5551 Preds->add(ENT.getPred());
5552
5553 assert((Preds || ENT.hasAlwaysTruePred()) &&
5554 "Predicate should be always true!");
5555 }
5556
5557 assert(BECount && "Invalid not taken count for loop exit");
5558 return BECount;
5559 }
5560
5561 /// Get the exact not taken count for this loop exit.
5562 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const5563 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5564 ScalarEvolution *SE) const {
5565 for (auto &ENT : ExitNotTaken)
5566 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5567 return ENT.ExactNotTaken;
5568
5569 return SE->getCouldNotCompute();
5570 }
5571
5572 /// getMax - Get the max backedge taken count for the loop.
5573 const SCEV *
getMax(ScalarEvolution * SE) const5574 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5575 for (auto &ENT : ExitNotTaken)
5576 if (!ENT.hasAlwaysTruePred())
5577 return SE->getCouldNotCompute();
5578
5579 return Max ? Max : SE->getCouldNotCompute();
5580 }
5581
hasOperand(const SCEV * S,ScalarEvolution * SE) const5582 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5583 ScalarEvolution *SE) const {
5584 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5585 return true;
5586
5587 if (!ExitNotTaken.ExitingBlock)
5588 return false;
5589
5590 for (auto &ENT : ExitNotTaken)
5591 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5592 SE->hasOperand(ENT.ExactNotTaken, S))
5593 return true;
5594
5595 return false;
5596 }
5597
5598 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5599 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> & ExitCounts,bool Complete,const SCEV * MaxCount)5600 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5601 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5602 : Max(MaxCount) {
5603
5604 if (!Complete)
5605 ExitNotTaken.setIncomplete();
5606
5607 unsigned NumExits = ExitCounts.size();
5608 if (NumExits == 0) return;
5609
5610 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5611 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5612
5613 // Determine the number of ExitNotTakenExtras structures that we need.
5614 unsigned ExtraInfoSize = 0;
5615 if (NumExits > 1)
5616 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5617 ExitCounts.end(), [](EdgeInfo &Entry) {
5618 return !Entry.Pred.isAlwaysTrue();
5619 });
5620 else if (!ExitCounts[0].Pred.isAlwaysTrue())
5621 ExtraInfoSize = 1;
5622
5623 ExitNotTakenExtras *ENT = nullptr;
5624
5625 // Allocate the ExitNotTakenExtras structures and initialize the first
5626 // element (ExitNotTaken).
5627 if (ExtraInfoSize > 0) {
5628 ENT = new ExitNotTakenExtras[ExtraInfoSize];
5629 ExitNotTaken.ExtraInfo = &ENT[0];
5630 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5631 }
5632
5633 if (NumExits == 1)
5634 return;
5635
5636 assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5637
5638 auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5639
5640 // Handle the rare case of multiple computable exits.
5641 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5642 ExitNotTakenExtras *Ptr = nullptr;
5643 if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5644 Ptr = &ENT[PredPos++];
5645 Ptr->Pred = std::move(ExitCounts[i].Pred);
5646 }
5647
5648 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5649 }
5650 }
5651
5652 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()5653 void ScalarEvolution::BackedgeTakenInfo::clear() {
5654 ExitNotTaken.ExitingBlock = nullptr;
5655 ExitNotTaken.ExactNotTaken = nullptr;
5656 delete[] ExitNotTaken.ExtraInfo;
5657 }
5658
5659 /// Compute the number of times the backedge of the specified loop will execute.
5660 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)5661 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5662 bool AllowPredicates) {
5663 SmallVector<BasicBlock *, 8> ExitingBlocks;
5664 L->getExitingBlocks(ExitingBlocks);
5665
5666 SmallVector<EdgeInfo, 4> ExitCounts;
5667 bool CouldComputeBECount = true;
5668 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5669 const SCEV *MustExitMaxBECount = nullptr;
5670 const SCEV *MayExitMaxBECount = nullptr;
5671
5672 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5673 // and compute maxBECount.
5674 // Do a union of all the predicates here.
5675 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5676 BasicBlock *ExitBB = ExitingBlocks[i];
5677 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5678
5679 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5680 "Predicated exit limit when predicates are not allowed!");
5681
5682 // 1. For each exit that can be computed, add an entry to ExitCounts.
5683 // CouldComputeBECount is true only if all exits can be computed.
5684 if (EL.Exact == getCouldNotCompute())
5685 // We couldn't compute an exact value for this exit, so
5686 // we won't be able to compute an exact value for the loop.
5687 CouldComputeBECount = false;
5688 else
5689 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5690
5691 // 2. Derive the loop's MaxBECount from each exit's max number of
5692 // non-exiting iterations. Partition the loop exits into two kinds:
5693 // LoopMustExits and LoopMayExits.
5694 //
5695 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5696 // is a LoopMayExit. If any computable LoopMustExit is found, then
5697 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5698 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5699 // considered greater than any computable EL.Max.
5700 if (EL.Max != getCouldNotCompute() && Latch &&
5701 DT.dominates(ExitBB, Latch)) {
5702 if (!MustExitMaxBECount)
5703 MustExitMaxBECount = EL.Max;
5704 else {
5705 MustExitMaxBECount =
5706 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5707 }
5708 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5709 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5710 MayExitMaxBECount = EL.Max;
5711 else {
5712 MayExitMaxBECount =
5713 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5714 }
5715 }
5716 }
5717 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5718 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5719 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5720 }
5721
5722 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)5723 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5724 bool AllowPredicates) {
5725
5726 // Okay, we've chosen an exiting block. See what condition causes us to exit
5727 // at this block and remember the exit block and whether all other targets
5728 // lead to the loop header.
5729 bool MustExecuteLoopHeader = true;
5730 BasicBlock *Exit = nullptr;
5731 for (auto *SBB : successors(ExitingBlock))
5732 if (!L->contains(SBB)) {
5733 if (Exit) // Multiple exit successors.
5734 return getCouldNotCompute();
5735 Exit = SBB;
5736 } else if (SBB != L->getHeader()) {
5737 MustExecuteLoopHeader = false;
5738 }
5739
5740 // At this point, we know we have a conditional branch that determines whether
5741 // the loop is exited. However, we don't know if the branch is executed each
5742 // time through the loop. If not, then the execution count of the branch will
5743 // not be equal to the trip count of the loop.
5744 //
5745 // Currently we check for this by checking to see if the Exit branch goes to
5746 // the loop header. If so, we know it will always execute the same number of
5747 // times as the loop. We also handle the case where the exit block *is* the
5748 // loop header. This is common for un-rotated loops.
5749 //
5750 // If both of those tests fail, walk up the unique predecessor chain to the
5751 // header, stopping if there is an edge that doesn't exit the loop. If the
5752 // header is reached, the execution count of the branch will be equal to the
5753 // trip count of the loop.
5754 //
5755 // More extensive analysis could be done to handle more cases here.
5756 //
5757 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5758 // The simple checks failed, try climbing the unique predecessor chain
5759 // up to the header.
5760 bool Ok = false;
5761 for (BasicBlock *BB = ExitingBlock; BB; ) {
5762 BasicBlock *Pred = BB->getUniquePredecessor();
5763 if (!Pred)
5764 return getCouldNotCompute();
5765 TerminatorInst *PredTerm = Pred->getTerminator();
5766 for (const BasicBlock *PredSucc : PredTerm->successors()) {
5767 if (PredSucc == BB)
5768 continue;
5769 // If the predecessor has a successor that isn't BB and isn't
5770 // outside the loop, assume the worst.
5771 if (L->contains(PredSucc))
5772 return getCouldNotCompute();
5773 }
5774 if (Pred == L->getHeader()) {
5775 Ok = true;
5776 break;
5777 }
5778 BB = Pred;
5779 }
5780 if (!Ok)
5781 return getCouldNotCompute();
5782 }
5783
5784 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5785 TerminatorInst *Term = ExitingBlock->getTerminator();
5786 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5787 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5788 // Proceed to the next level to examine the exit condition expression.
5789 return computeExitLimitFromCond(
5790 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5791 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5792 }
5793
5794 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5795 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5796 /*ControlsExit=*/IsOnlyExit);
5797
5798 return getCouldNotCompute();
5799 }
5800
5801 ScalarEvolution::ExitLimit
computeExitLimitFromCond(const Loop * L,Value * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool ControlsExit,bool AllowPredicates)5802 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5803 Value *ExitCond,
5804 BasicBlock *TBB,
5805 BasicBlock *FBB,
5806 bool ControlsExit,
5807 bool AllowPredicates) {
5808 // Check if the controlling expression for this loop is an And or Or.
5809 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5810 if (BO->getOpcode() == Instruction::And) {
5811 // Recurse on the operands of the and.
5812 bool EitherMayExit = L->contains(TBB);
5813 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5814 ControlsExit && !EitherMayExit,
5815 AllowPredicates);
5816 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5817 ControlsExit && !EitherMayExit,
5818 AllowPredicates);
5819 const SCEV *BECount = getCouldNotCompute();
5820 const SCEV *MaxBECount = getCouldNotCompute();
5821 if (EitherMayExit) {
5822 // Both conditions must be true for the loop to continue executing.
5823 // Choose the less conservative count.
5824 if (EL0.Exact == getCouldNotCompute() ||
5825 EL1.Exact == getCouldNotCompute())
5826 BECount = getCouldNotCompute();
5827 else
5828 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5829 if (EL0.Max == getCouldNotCompute())
5830 MaxBECount = EL1.Max;
5831 else if (EL1.Max == getCouldNotCompute())
5832 MaxBECount = EL0.Max;
5833 else
5834 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5835 } else {
5836 // Both conditions must be true at the same time for the loop to exit.
5837 // For now, be conservative.
5838 assert(L->contains(FBB) && "Loop block has no successor in loop!");
5839 if (EL0.Max == EL1.Max)
5840 MaxBECount = EL0.Max;
5841 if (EL0.Exact == EL1.Exact)
5842 BECount = EL0.Exact;
5843 }
5844
5845 SCEVUnionPredicate NP;
5846 NP.add(&EL0.Pred);
5847 NP.add(&EL1.Pred);
5848 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5849 // to be more aggressive when computing BECount than when computing
5850 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5851 // to match, but for EL0.Max and EL1.Max to not.
5852 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5853 !isa<SCEVCouldNotCompute>(BECount))
5854 MaxBECount = BECount;
5855
5856 return ExitLimit(BECount, MaxBECount, NP);
5857 }
5858 if (BO->getOpcode() == Instruction::Or) {
5859 // Recurse on the operands of the or.
5860 bool EitherMayExit = L->contains(FBB);
5861 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5862 ControlsExit && !EitherMayExit,
5863 AllowPredicates);
5864 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5865 ControlsExit && !EitherMayExit,
5866 AllowPredicates);
5867 const SCEV *BECount = getCouldNotCompute();
5868 const SCEV *MaxBECount = getCouldNotCompute();
5869 if (EitherMayExit) {
5870 // Both conditions must be false for the loop to continue executing.
5871 // Choose the less conservative count.
5872 if (EL0.Exact == getCouldNotCompute() ||
5873 EL1.Exact == getCouldNotCompute())
5874 BECount = getCouldNotCompute();
5875 else
5876 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5877 if (EL0.Max == getCouldNotCompute())
5878 MaxBECount = EL1.Max;
5879 else if (EL1.Max == getCouldNotCompute())
5880 MaxBECount = EL0.Max;
5881 else
5882 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5883 } else {
5884 // Both conditions must be false at the same time for the loop to exit.
5885 // For now, be conservative.
5886 assert(L->contains(TBB) && "Loop block has no successor in loop!");
5887 if (EL0.Max == EL1.Max)
5888 MaxBECount = EL0.Max;
5889 if (EL0.Exact == EL1.Exact)
5890 BECount = EL0.Exact;
5891 }
5892
5893 SCEVUnionPredicate NP;
5894 NP.add(&EL0.Pred);
5895 NP.add(&EL1.Pred);
5896 return ExitLimit(BECount, MaxBECount, NP);
5897 }
5898 }
5899
5900 // With an icmp, it may be feasible to compute an exact backedge-taken count.
5901 // Proceed to the next level to examine the icmp.
5902 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5903 ExitLimit EL =
5904 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5905 if (EL.hasFullInfo() || !AllowPredicates)
5906 return EL;
5907
5908 // Try again, but use SCEV predicates this time.
5909 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5910 /*AllowPredicates=*/true);
5911 }
5912
5913 // Check for a constant condition. These are normally stripped out by
5914 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5915 // preserve the CFG and is temporarily leaving constant conditions
5916 // in place.
5917 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5918 if (L->contains(FBB) == !CI->getZExtValue())
5919 // The backedge is always taken.
5920 return getCouldNotCompute();
5921 else
5922 // The backedge is never taken.
5923 return getZero(CI->getType());
5924 }
5925
5926 // If it's not an integer or pointer comparison then compute it the hard way.
5927 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5928 }
5929
5930 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool ControlsExit,bool AllowPredicates)5931 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5932 ICmpInst *ExitCond,
5933 BasicBlock *TBB,
5934 BasicBlock *FBB,
5935 bool ControlsExit,
5936 bool AllowPredicates) {
5937
5938 // If the condition was exit on true, convert the condition to exit on false
5939 ICmpInst::Predicate Cond;
5940 if (!L->contains(FBB))
5941 Cond = ExitCond->getPredicate();
5942 else
5943 Cond = ExitCond->getInversePredicate();
5944
5945 // Handle common loops like: for (X = "string"; *X; ++X)
5946 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5947 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5948 ExitLimit ItCnt =
5949 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5950 if (ItCnt.hasAnyInfo())
5951 return ItCnt;
5952 }
5953
5954 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5955 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5956
5957 // Try to evaluate any dependencies out of the loop.
5958 LHS = getSCEVAtScope(LHS, L);
5959 RHS = getSCEVAtScope(RHS, L);
5960
5961 // At this point, we would like to compute how many iterations of the
5962 // loop the predicate will return true for these inputs.
5963 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5964 // If there is a loop-invariant, force it into the RHS.
5965 std::swap(LHS, RHS);
5966 Cond = ICmpInst::getSwappedPredicate(Cond);
5967 }
5968
5969 // Simplify the operands before analyzing them.
5970 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5971
5972 // If we have a comparison of a chrec against a constant, try to use value
5973 // ranges to answer this query.
5974 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5975 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5976 if (AddRec->getLoop() == L) {
5977 // Form the constant range.
5978 ConstantRange CompRange(
5979 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5980
5981 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5982 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5983 }
5984
5985 switch (Cond) {
5986 case ICmpInst::ICMP_NE: { // while (X != Y)
5987 // Convert to: while (X-Y != 0)
5988 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5989 AllowPredicates);
5990 if (EL.hasAnyInfo()) return EL;
5991 break;
5992 }
5993 case ICmpInst::ICMP_EQ: { // while (X == Y)
5994 // Convert to: while (X-Y == 0)
5995 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
5996 if (EL.hasAnyInfo()) return EL;
5997 break;
5998 }
5999 case ICmpInst::ICMP_SLT:
6000 case ICmpInst::ICMP_ULT: { // while (X < Y)
6001 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6002 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6003 AllowPredicates);
6004 if (EL.hasAnyInfo()) return EL;
6005 break;
6006 }
6007 case ICmpInst::ICMP_SGT:
6008 case ICmpInst::ICMP_UGT: { // while (X > Y)
6009 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6010 ExitLimit EL =
6011 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6012 AllowPredicates);
6013 if (EL.hasAnyInfo()) return EL;
6014 break;
6015 }
6016 default:
6017 break;
6018 }
6019
6020 auto *ExhaustiveCount =
6021 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6022
6023 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6024 return ExhaustiveCount;
6025
6026 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6027 ExitCond->getOperand(1), L, Cond);
6028 }
6029
6030 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)6031 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6032 SwitchInst *Switch,
6033 BasicBlock *ExitingBlock,
6034 bool ControlsExit) {
6035 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6036
6037 // Give up if the exit is the default dest of a switch.
6038 if (Switch->getDefaultDest() == ExitingBlock)
6039 return getCouldNotCompute();
6040
6041 assert(L->contains(Switch->getDefaultDest()) &&
6042 "Default case must not exit the loop!");
6043 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6044 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6045
6046 // while (X != Y) --> while (X-Y != 0)
6047 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6048 if (EL.hasAnyInfo())
6049 return EL;
6050
6051 return getCouldNotCompute();
6052 }
6053
6054 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)6055 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6056 ScalarEvolution &SE) {
6057 const SCEV *InVal = SE.getConstant(C);
6058 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6059 assert(isa<SCEVConstant>(Val) &&
6060 "Evaluation of SCEV at constant didn't fold correctly?");
6061 return cast<SCEVConstant>(Val)->getValue();
6062 }
6063
6064 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6065 /// compute the backedge execution count.
6066 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)6067 ScalarEvolution::computeLoadConstantCompareExitLimit(
6068 LoadInst *LI,
6069 Constant *RHS,
6070 const Loop *L,
6071 ICmpInst::Predicate predicate) {
6072
6073 if (LI->isVolatile()) return getCouldNotCompute();
6074
6075 // Check to see if the loaded pointer is a getelementptr of a global.
6076 // TODO: Use SCEV instead of manually grubbing with GEPs.
6077 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6078 if (!GEP) return getCouldNotCompute();
6079
6080 // Make sure that it is really a constant global we are gepping, with an
6081 // initializer, and make sure the first IDX is really 0.
6082 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6083 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6084 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6085 !cast<Constant>(GEP->getOperand(1))->isNullValue())
6086 return getCouldNotCompute();
6087
6088 // Okay, we allow one non-constant index into the GEP instruction.
6089 Value *VarIdx = nullptr;
6090 std::vector<Constant*> Indexes;
6091 unsigned VarIdxNum = 0;
6092 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6093 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6094 Indexes.push_back(CI);
6095 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6096 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
6097 VarIdx = GEP->getOperand(i);
6098 VarIdxNum = i-2;
6099 Indexes.push_back(nullptr);
6100 }
6101
6102 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6103 if (!VarIdx)
6104 return getCouldNotCompute();
6105
6106 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6107 // Check to see if X is a loop variant variable value now.
6108 const SCEV *Idx = getSCEV(VarIdx);
6109 Idx = getSCEVAtScope(Idx, L);
6110
6111 // We can only recognize very limited forms of loop index expressions, in
6112 // particular, only affine AddRec's like {C1,+,C2}.
6113 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6114 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6115 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6116 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6117 return getCouldNotCompute();
6118
6119 unsigned MaxSteps = MaxBruteForceIterations;
6120 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6121 ConstantInt *ItCst = ConstantInt::get(
6122 cast<IntegerType>(IdxExpr->getType()), IterationNum);
6123 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6124
6125 // Form the GEP offset.
6126 Indexes[VarIdxNum] = Val;
6127
6128 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6129 Indexes);
6130 if (!Result) break; // Cannot compute!
6131
6132 // Evaluate the condition for this iteration.
6133 Result = ConstantExpr::getICmp(predicate, Result, RHS);
6134 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
6135 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6136 ++NumArrayLenItCounts;
6137 return getConstant(ItCst); // Found terminating iteration!
6138 }
6139 }
6140 return getCouldNotCompute();
6141 }
6142
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)6143 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6144 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6145 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6146 if (!RHS)
6147 return getCouldNotCompute();
6148
6149 const BasicBlock *Latch = L->getLoopLatch();
6150 if (!Latch)
6151 return getCouldNotCompute();
6152
6153 const BasicBlock *Predecessor = L->getLoopPredecessor();
6154 if (!Predecessor)
6155 return getCouldNotCompute();
6156
6157 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6158 // Return LHS in OutLHS and shift_opt in OutOpCode.
6159 auto MatchPositiveShift =
6160 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6161
6162 using namespace PatternMatch;
6163
6164 ConstantInt *ShiftAmt;
6165 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6166 OutOpCode = Instruction::LShr;
6167 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6168 OutOpCode = Instruction::AShr;
6169 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6170 OutOpCode = Instruction::Shl;
6171 else
6172 return false;
6173
6174 return ShiftAmt->getValue().isStrictlyPositive();
6175 };
6176
6177 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6178 //
6179 // loop:
6180 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6181 // %iv.shifted = lshr i32 %iv, <positive constant>
6182 //
6183 // Return true on a succesful match. Return the corresponding PHI node (%iv
6184 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6185 auto MatchShiftRecurrence =
6186 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6187 Optional<Instruction::BinaryOps> PostShiftOpCode;
6188
6189 {
6190 Instruction::BinaryOps OpC;
6191 Value *V;
6192
6193 // If we encounter a shift instruction, "peel off" the shift operation,
6194 // and remember that we did so. Later when we inspect %iv's backedge
6195 // value, we will make sure that the backedge value uses the same
6196 // operation.
6197 //
6198 // Note: the peeled shift operation does not have to be the same
6199 // instruction as the one feeding into the PHI's backedge value. We only
6200 // really care about it being the same *kind* of shift instruction --
6201 // that's all that is required for our later inferences to hold.
6202 if (MatchPositiveShift(LHS, V, OpC)) {
6203 PostShiftOpCode = OpC;
6204 LHS = V;
6205 }
6206 }
6207
6208 PNOut = dyn_cast<PHINode>(LHS);
6209 if (!PNOut || PNOut->getParent() != L->getHeader())
6210 return false;
6211
6212 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6213 Value *OpLHS;
6214
6215 return
6216 // The backedge value for the PHI node must be a shift by a positive
6217 // amount
6218 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6219
6220 // of the PHI node itself
6221 OpLHS == PNOut &&
6222
6223 // and the kind of shift should be match the kind of shift we peeled
6224 // off, if any.
6225 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6226 };
6227
6228 PHINode *PN;
6229 Instruction::BinaryOps OpCode;
6230 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6231 return getCouldNotCompute();
6232
6233 const DataLayout &DL = getDataLayout();
6234
6235 // The key rationale for this optimization is that for some kinds of shift
6236 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6237 // within a finite number of iterations. If the condition guarding the
6238 // backedge (in the sense that the backedge is taken if the condition is true)
6239 // is false for the value the shift recurrence stabilizes to, then we know
6240 // that the backedge is taken only a finite number of times.
6241
6242 ConstantInt *StableValue = nullptr;
6243 switch (OpCode) {
6244 default:
6245 llvm_unreachable("Impossible case!");
6246
6247 case Instruction::AShr: {
6248 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6249 // bitwidth(K) iterations.
6250 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6251 bool KnownZero, KnownOne;
6252 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6253 Predecessor->getTerminator(), &DT);
6254 auto *Ty = cast<IntegerType>(RHS->getType());
6255 if (KnownZero)
6256 StableValue = ConstantInt::get(Ty, 0);
6257 else if (KnownOne)
6258 StableValue = ConstantInt::get(Ty, -1, true);
6259 else
6260 return getCouldNotCompute();
6261
6262 break;
6263 }
6264 case Instruction::LShr:
6265 case Instruction::Shl:
6266 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6267 // stabilize to 0 in at most bitwidth(K) iterations.
6268 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6269 break;
6270 }
6271
6272 auto *Result =
6273 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6274 assert(Result->getType()->isIntegerTy(1) &&
6275 "Otherwise cannot be an operand to a branch instruction");
6276
6277 if (Result->isZeroValue()) {
6278 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6279 const SCEV *UpperBound =
6280 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6281 SCEVUnionPredicate P;
6282 return ExitLimit(getCouldNotCompute(), UpperBound, P);
6283 }
6284
6285 return getCouldNotCompute();
6286 }
6287
6288 /// Return true if we can constant fold an instruction of the specified type,
6289 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)6290 static bool CanConstantFold(const Instruction *I) {
6291 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6292 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6293 isa<LoadInst>(I))
6294 return true;
6295
6296 if (const CallInst *CI = dyn_cast<CallInst>(I))
6297 if (const Function *F = CI->getCalledFunction())
6298 return canConstantFoldCallTo(F);
6299 return false;
6300 }
6301
6302 /// Determine whether this instruction can constant evolve within this loop
6303 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)6304 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6305 // An instruction outside of the loop can't be derived from a loop PHI.
6306 if (!L->contains(I)) return false;
6307
6308 if (isa<PHINode>(I)) {
6309 // We don't currently keep track of the control flow needed to evaluate
6310 // PHIs, so we cannot handle PHIs inside of loops.
6311 return L->getHeader() == I->getParent();
6312 }
6313
6314 // If we won't be able to constant fold this expression even if the operands
6315 // are constants, bail early.
6316 return CanConstantFold(I);
6317 }
6318
6319 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6320 /// recursing through each instruction operand until reaching a loop header phi.
6321 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap)6322 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6323 DenseMap<Instruction *, PHINode *> &PHIMap) {
6324
6325 // Otherwise, we can evaluate this instruction if all of its operands are
6326 // constant or derived from a PHI node themselves.
6327 PHINode *PHI = nullptr;
6328 for (Value *Op : UseInst->operands()) {
6329 if (isa<Constant>(Op)) continue;
6330
6331 Instruction *OpInst = dyn_cast<Instruction>(Op);
6332 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6333
6334 PHINode *P = dyn_cast<PHINode>(OpInst);
6335 if (!P)
6336 // If this operand is already visited, reuse the prior result.
6337 // We may have P != PHI if this is the deepest point at which the
6338 // inconsistent paths meet.
6339 P = PHIMap.lookup(OpInst);
6340 if (!P) {
6341 // Recurse and memoize the results, whether a phi is found or not.
6342 // This recursive call invalidates pointers into PHIMap.
6343 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6344 PHIMap[OpInst] = P;
6345 }
6346 if (!P)
6347 return nullptr; // Not evolving from PHI
6348 if (PHI && PHI != P)
6349 return nullptr; // Evolving from multiple different PHIs.
6350 PHI = P;
6351 }
6352 // This is a expression evolving from a constant PHI!
6353 return PHI;
6354 }
6355
6356 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6357 /// in the loop that V is derived from. We allow arbitrary operations along the
6358 /// way, but the operands of an operation must either be constants or a value
6359 /// derived from a constant PHI. If this expression does not fit with these
6360 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)6361 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6362 Instruction *I = dyn_cast<Instruction>(V);
6363 if (!I || !canConstantEvolve(I, L)) return nullptr;
6364
6365 if (PHINode *PN = dyn_cast<PHINode>(I))
6366 return PN;
6367
6368 // Record non-constant instructions contained by the loop.
6369 DenseMap<Instruction *, PHINode *> PHIMap;
6370 return getConstantEvolvingPHIOperands(I, L, PHIMap);
6371 }
6372
6373 /// EvaluateExpression - Given an expression that passes the
6374 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6375 /// in the loop has the value PHIVal. If we can't fold this expression for some
6376 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)6377 static Constant *EvaluateExpression(Value *V, const Loop *L,
6378 DenseMap<Instruction *, Constant *> &Vals,
6379 const DataLayout &DL,
6380 const TargetLibraryInfo *TLI) {
6381 // Convenient constant check, but redundant for recursive calls.
6382 if (Constant *C = dyn_cast<Constant>(V)) return C;
6383 Instruction *I = dyn_cast<Instruction>(V);
6384 if (!I) return nullptr;
6385
6386 if (Constant *C = Vals.lookup(I)) return C;
6387
6388 // An instruction inside the loop depends on a value outside the loop that we
6389 // weren't given a mapping for, or a value such as a call inside the loop.
6390 if (!canConstantEvolve(I, L)) return nullptr;
6391
6392 // An unmapped PHI can be due to a branch or another loop inside this loop,
6393 // or due to this not being the initial iteration through a loop where we
6394 // couldn't compute the evolution of this particular PHI last time.
6395 if (isa<PHINode>(I)) return nullptr;
6396
6397 std::vector<Constant*> Operands(I->getNumOperands());
6398
6399 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6400 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6401 if (!Operand) {
6402 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6403 if (!Operands[i]) return nullptr;
6404 continue;
6405 }
6406 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6407 Vals[Operand] = C;
6408 if (!C) return nullptr;
6409 Operands[i] = C;
6410 }
6411
6412 if (CmpInst *CI = dyn_cast<CmpInst>(I))
6413 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6414 Operands[1], DL, TLI);
6415 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6416 if (!LI->isVolatile())
6417 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6418 }
6419 return ConstantFoldInstOperands(I, Operands, DL, TLI);
6420 }
6421
6422
6423 // If every incoming value to PN except the one for BB is a specific Constant,
6424 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)6425 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6426 Constant *IncomingVal = nullptr;
6427
6428 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6429 if (PN->getIncomingBlock(i) == BB)
6430 continue;
6431
6432 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6433 if (!CurrentVal)
6434 return nullptr;
6435
6436 if (IncomingVal != CurrentVal) {
6437 if (IncomingVal)
6438 return nullptr;
6439 IncomingVal = CurrentVal;
6440 }
6441 }
6442
6443 return IncomingVal;
6444 }
6445
6446 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6447 /// in the header of its containing loop, we know the loop executes a
6448 /// constant number of times, and the PHI node is just a recurrence
6449 /// involving constants, fold it.
6450 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)6451 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6452 const APInt &BEs,
6453 const Loop *L) {
6454 auto I = ConstantEvolutionLoopExitValue.find(PN);
6455 if (I != ConstantEvolutionLoopExitValue.end())
6456 return I->second;
6457
6458 if (BEs.ugt(MaxBruteForceIterations))
6459 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
6460
6461 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6462
6463 DenseMap<Instruction *, Constant *> CurrentIterVals;
6464 BasicBlock *Header = L->getHeader();
6465 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6466
6467 BasicBlock *Latch = L->getLoopLatch();
6468 if (!Latch)
6469 return nullptr;
6470
6471 for (auto &I : *Header) {
6472 PHINode *PHI = dyn_cast<PHINode>(&I);
6473 if (!PHI) break;
6474 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6475 if (!StartCST) continue;
6476 CurrentIterVals[PHI] = StartCST;
6477 }
6478 if (!CurrentIterVals.count(PN))
6479 return RetVal = nullptr;
6480
6481 Value *BEValue = PN->getIncomingValueForBlock(Latch);
6482
6483 // Execute the loop symbolically to determine the exit value.
6484 if (BEs.getActiveBits() >= 32)
6485 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6486
6487 unsigned NumIterations = BEs.getZExtValue(); // must be in range
6488 unsigned IterationNum = 0;
6489 const DataLayout &DL = getDataLayout();
6490 for (; ; ++IterationNum) {
6491 if (IterationNum == NumIterations)
6492 return RetVal = CurrentIterVals[PN]; // Got exit value!
6493
6494 // Compute the value of the PHIs for the next iteration.
6495 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6496 DenseMap<Instruction *, Constant *> NextIterVals;
6497 Constant *NextPHI =
6498 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6499 if (!NextPHI)
6500 return nullptr; // Couldn't evaluate!
6501 NextIterVals[PN] = NextPHI;
6502
6503 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6504
6505 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6506 // cease to be able to evaluate one of them or if they stop evolving,
6507 // because that doesn't necessarily prevent us from computing PN.
6508 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6509 for (const auto &I : CurrentIterVals) {
6510 PHINode *PHI = dyn_cast<PHINode>(I.first);
6511 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6512 PHIsToCompute.emplace_back(PHI, I.second);
6513 }
6514 // We use two distinct loops because EvaluateExpression may invalidate any
6515 // iterators into CurrentIterVals.
6516 for (const auto &I : PHIsToCompute) {
6517 PHINode *PHI = I.first;
6518 Constant *&NextPHI = NextIterVals[PHI];
6519 if (!NextPHI) { // Not already computed.
6520 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6521 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6522 }
6523 if (NextPHI != I.second)
6524 StoppedEvolving = false;
6525 }
6526
6527 // If all entries in CurrentIterVals == NextIterVals then we can stop
6528 // iterating, the loop can't continue to change.
6529 if (StoppedEvolving)
6530 return RetVal = CurrentIterVals[PN];
6531
6532 CurrentIterVals.swap(NextIterVals);
6533 }
6534 }
6535
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)6536 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6537 Value *Cond,
6538 bool ExitWhen) {
6539 PHINode *PN = getConstantEvolvingPHI(Cond, L);
6540 if (!PN) return getCouldNotCompute();
6541
6542 // If the loop is canonicalized, the PHI will have exactly two entries.
6543 // That's the only form we support here.
6544 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6545
6546 DenseMap<Instruction *, Constant *> CurrentIterVals;
6547 BasicBlock *Header = L->getHeader();
6548 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6549
6550 BasicBlock *Latch = L->getLoopLatch();
6551 assert(Latch && "Should follow from NumIncomingValues == 2!");
6552
6553 for (auto &I : *Header) {
6554 PHINode *PHI = dyn_cast<PHINode>(&I);
6555 if (!PHI)
6556 break;
6557 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6558 if (!StartCST) continue;
6559 CurrentIterVals[PHI] = StartCST;
6560 }
6561 if (!CurrentIterVals.count(PN))
6562 return getCouldNotCompute();
6563
6564 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6565 // the loop symbolically to determine when the condition gets a value of
6566 // "ExitWhen".
6567 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
6568 const DataLayout &DL = getDataLayout();
6569 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6570 auto *CondVal = dyn_cast_or_null<ConstantInt>(
6571 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6572
6573 // Couldn't symbolically evaluate.
6574 if (!CondVal) return getCouldNotCompute();
6575
6576 if (CondVal->getValue() == uint64_t(ExitWhen)) {
6577 ++NumBruteForceTripCountsComputed;
6578 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6579 }
6580
6581 // Update all the PHI nodes for the next iteration.
6582 DenseMap<Instruction *, Constant *> NextIterVals;
6583
6584 // Create a list of which PHIs we need to compute. We want to do this before
6585 // calling EvaluateExpression on them because that may invalidate iterators
6586 // into CurrentIterVals.
6587 SmallVector<PHINode *, 8> PHIsToCompute;
6588 for (const auto &I : CurrentIterVals) {
6589 PHINode *PHI = dyn_cast<PHINode>(I.first);
6590 if (!PHI || PHI->getParent() != Header) continue;
6591 PHIsToCompute.push_back(PHI);
6592 }
6593 for (PHINode *PHI : PHIsToCompute) {
6594 Constant *&NextPHI = NextIterVals[PHI];
6595 if (NextPHI) continue; // Already computed!
6596
6597 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6598 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6599 }
6600 CurrentIterVals.swap(NextIterVals);
6601 }
6602
6603 // Too many iterations were needed to evaluate.
6604 return getCouldNotCompute();
6605 }
6606
getSCEVAtScope(const SCEV * V,const Loop * L)6607 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6608 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6609 ValuesAtScopes[V];
6610 // Check to see if we've folded this expression at this loop before.
6611 for (auto &LS : Values)
6612 if (LS.first == L)
6613 return LS.second ? LS.second : V;
6614
6615 Values.emplace_back(L, nullptr);
6616
6617 // Otherwise compute it.
6618 const SCEV *C = computeSCEVAtScope(V, L);
6619 for (auto &LS : reverse(ValuesAtScopes[V]))
6620 if (LS.first == L) {
6621 LS.second = C;
6622 break;
6623 }
6624 return C;
6625 }
6626
6627 /// This builds up a Constant using the ConstantExpr interface. That way, we
6628 /// will return Constants for objects which aren't represented by a
6629 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6630 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)6631 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6632 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6633 case scCouldNotCompute:
6634 case scAddRecExpr:
6635 break;
6636 case scConstant:
6637 return cast<SCEVConstant>(V)->getValue();
6638 case scUnknown:
6639 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6640 case scSignExtend: {
6641 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6642 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6643 return ConstantExpr::getSExt(CastOp, SS->getType());
6644 break;
6645 }
6646 case scZeroExtend: {
6647 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6648 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6649 return ConstantExpr::getZExt(CastOp, SZ->getType());
6650 break;
6651 }
6652 case scTruncate: {
6653 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6654 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6655 return ConstantExpr::getTrunc(CastOp, ST->getType());
6656 break;
6657 }
6658 case scAddExpr: {
6659 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6660 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6661 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6662 unsigned AS = PTy->getAddressSpace();
6663 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6664 C = ConstantExpr::getBitCast(C, DestPtrTy);
6665 }
6666 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6667 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6668 if (!C2) return nullptr;
6669
6670 // First pointer!
6671 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6672 unsigned AS = C2->getType()->getPointerAddressSpace();
6673 std::swap(C, C2);
6674 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6675 // The offsets have been converted to bytes. We can add bytes to an
6676 // i8* by GEP with the byte count in the first index.
6677 C = ConstantExpr::getBitCast(C, DestPtrTy);
6678 }
6679
6680 // Don't bother trying to sum two pointers. We probably can't
6681 // statically compute a load that results from it anyway.
6682 if (C2->getType()->isPointerTy())
6683 return nullptr;
6684
6685 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6686 if (PTy->getElementType()->isStructTy())
6687 C2 = ConstantExpr::getIntegerCast(
6688 C2, Type::getInt32Ty(C->getContext()), true);
6689 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6690 } else
6691 C = ConstantExpr::getAdd(C, C2);
6692 }
6693 return C;
6694 }
6695 break;
6696 }
6697 case scMulExpr: {
6698 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6699 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6700 // Don't bother with pointers at all.
6701 if (C->getType()->isPointerTy()) return nullptr;
6702 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6703 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6704 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6705 C = ConstantExpr::getMul(C, C2);
6706 }
6707 return C;
6708 }
6709 break;
6710 }
6711 case scUDivExpr: {
6712 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6713 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6714 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6715 if (LHS->getType() == RHS->getType())
6716 return ConstantExpr::getUDiv(LHS, RHS);
6717 break;
6718 }
6719 case scSMaxExpr:
6720 case scUMaxExpr:
6721 break; // TODO: smax, umax.
6722 }
6723 return nullptr;
6724 }
6725
computeSCEVAtScope(const SCEV * V,const Loop * L)6726 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6727 if (isa<SCEVConstant>(V)) return V;
6728
6729 // If this instruction is evolved from a constant-evolving PHI, compute the
6730 // exit value from the loop without using SCEVs.
6731 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6732 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6733 const Loop *LI = this->LI[I->getParent()];
6734 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6735 if (PHINode *PN = dyn_cast<PHINode>(I))
6736 if (PN->getParent() == LI->getHeader()) {
6737 // Okay, there is no closed form solution for the PHI node. Check
6738 // to see if the loop that contains it has a known backedge-taken
6739 // count. If so, we may be able to force computation of the exit
6740 // value.
6741 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6742 if (const SCEVConstant *BTCC =
6743 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6744 // Okay, we know how many times the containing loop executes. If
6745 // this is a constant evolving PHI node, get the final value at
6746 // the specified iteration number.
6747 Constant *RV =
6748 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6749 if (RV) return getSCEV(RV);
6750 }
6751 }
6752
6753 // Okay, this is an expression that we cannot symbolically evaluate
6754 // into a SCEV. Check to see if it's possible to symbolically evaluate
6755 // the arguments into constants, and if so, try to constant propagate the
6756 // result. This is particularly useful for computing loop exit values.
6757 if (CanConstantFold(I)) {
6758 SmallVector<Constant *, 4> Operands;
6759 bool MadeImprovement = false;
6760 for (Value *Op : I->operands()) {
6761 if (Constant *C = dyn_cast<Constant>(Op)) {
6762 Operands.push_back(C);
6763 continue;
6764 }
6765
6766 // If any of the operands is non-constant and if they are
6767 // non-integer and non-pointer, don't even try to analyze them
6768 // with scev techniques.
6769 if (!isSCEVable(Op->getType()))
6770 return V;
6771
6772 const SCEV *OrigV = getSCEV(Op);
6773 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6774 MadeImprovement |= OrigV != OpV;
6775
6776 Constant *C = BuildConstantFromSCEV(OpV);
6777 if (!C) return V;
6778 if (C->getType() != Op->getType())
6779 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6780 Op->getType(),
6781 false),
6782 C, Op->getType());
6783 Operands.push_back(C);
6784 }
6785
6786 // Check to see if getSCEVAtScope actually made an improvement.
6787 if (MadeImprovement) {
6788 Constant *C = nullptr;
6789 const DataLayout &DL = getDataLayout();
6790 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6791 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6792 Operands[1], DL, &TLI);
6793 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6794 if (!LI->isVolatile())
6795 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6796 } else
6797 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6798 if (!C) return V;
6799 return getSCEV(C);
6800 }
6801 }
6802 }
6803
6804 // This is some other type of SCEVUnknown, just return it.
6805 return V;
6806 }
6807
6808 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6809 // Avoid performing the look-up in the common case where the specified
6810 // expression has no loop-variant portions.
6811 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6812 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6813 if (OpAtScope != Comm->getOperand(i)) {
6814 // Okay, at least one of these operands is loop variant but might be
6815 // foldable. Build a new instance of the folded commutative expression.
6816 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6817 Comm->op_begin()+i);
6818 NewOps.push_back(OpAtScope);
6819
6820 for (++i; i != e; ++i) {
6821 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6822 NewOps.push_back(OpAtScope);
6823 }
6824 if (isa<SCEVAddExpr>(Comm))
6825 return getAddExpr(NewOps);
6826 if (isa<SCEVMulExpr>(Comm))
6827 return getMulExpr(NewOps);
6828 if (isa<SCEVSMaxExpr>(Comm))
6829 return getSMaxExpr(NewOps);
6830 if (isa<SCEVUMaxExpr>(Comm))
6831 return getUMaxExpr(NewOps);
6832 llvm_unreachable("Unknown commutative SCEV type!");
6833 }
6834 }
6835 // If we got here, all operands are loop invariant.
6836 return Comm;
6837 }
6838
6839 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6840 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6841 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6842 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6843 return Div; // must be loop invariant
6844 return getUDivExpr(LHS, RHS);
6845 }
6846
6847 // If this is a loop recurrence for a loop that does not contain L, then we
6848 // are dealing with the final value computed by the loop.
6849 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6850 // First, attempt to evaluate each operand.
6851 // Avoid performing the look-up in the common case where the specified
6852 // expression has no loop-variant portions.
6853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6854 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6855 if (OpAtScope == AddRec->getOperand(i))
6856 continue;
6857
6858 // Okay, at least one of these operands is loop variant but might be
6859 // foldable. Build a new instance of the folded commutative expression.
6860 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6861 AddRec->op_begin()+i);
6862 NewOps.push_back(OpAtScope);
6863 for (++i; i != e; ++i)
6864 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6865
6866 const SCEV *FoldedRec =
6867 getAddRecExpr(NewOps, AddRec->getLoop(),
6868 AddRec->getNoWrapFlags(SCEV::FlagNW));
6869 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6870 // The addrec may be folded to a nonrecurrence, for example, if the
6871 // induction variable is multiplied by zero after constant folding. Go
6872 // ahead and return the folded value.
6873 if (!AddRec)
6874 return FoldedRec;
6875 break;
6876 }
6877
6878 // If the scope is outside the addrec's loop, evaluate it by using the
6879 // loop exit value of the addrec.
6880 if (!AddRec->getLoop()->contains(L)) {
6881 // To evaluate this recurrence, we need to know how many times the AddRec
6882 // loop iterates. Compute this now.
6883 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6884 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6885
6886 // Then, evaluate the AddRec.
6887 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6888 }
6889
6890 return AddRec;
6891 }
6892
6893 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6894 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6895 if (Op == Cast->getOperand())
6896 return Cast; // must be loop invariant
6897 return getZeroExtendExpr(Op, Cast->getType());
6898 }
6899
6900 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6901 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6902 if (Op == Cast->getOperand())
6903 return Cast; // must be loop invariant
6904 return getSignExtendExpr(Op, Cast->getType());
6905 }
6906
6907 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6908 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6909 if (Op == Cast->getOperand())
6910 return Cast; // must be loop invariant
6911 return getTruncateExpr(Op, Cast->getType());
6912 }
6913
6914 llvm_unreachable("Unknown SCEV type!");
6915 }
6916
getSCEVAtScope(Value * V,const Loop * L)6917 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6918 return getSCEVAtScope(getSCEV(V), L);
6919 }
6920
6921 /// Finds the minimum unsigned root of the following equation:
6922 ///
6923 /// A * X = B (mod N)
6924 ///
6925 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6926 /// A and B isn't important.
6927 ///
6928 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const APInt & B,ScalarEvolution & SE)6929 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6930 ScalarEvolution &SE) {
6931 uint32_t BW = A.getBitWidth();
6932 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6933 assert(A != 0 && "A must be non-zero.");
6934
6935 // 1. D = gcd(A, N)
6936 //
6937 // The gcd of A and N may have only one prime factor: 2. The number of
6938 // trailing zeros in A is its multiplicity
6939 uint32_t Mult2 = A.countTrailingZeros();
6940 // D = 2^Mult2
6941
6942 // 2. Check if B is divisible by D.
6943 //
6944 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6945 // is not less than multiplicity of this prime factor for D.
6946 if (B.countTrailingZeros() < Mult2)
6947 return SE.getCouldNotCompute();
6948
6949 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6950 // modulo (N / D).
6951 //
6952 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6953 // bit width during computations.
6954 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6955 APInt Mod(BW + 1, 0);
6956 Mod.setBit(BW - Mult2); // Mod = N / D
6957 APInt I = AD.multiplicativeInverse(Mod);
6958
6959 // 4. Compute the minimum unsigned root of the equation:
6960 // I * (B / D) mod (N / D)
6961 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6962
6963 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6964 // bits.
6965 return SE.getConstant(Result.trunc(BW));
6966 }
6967
6968 /// Find the roots of the quadratic equation for the given quadratic chrec
6969 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or
6970 /// two SCEVCouldNotCompute objects.
6971 ///
6972 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
SolveQuadraticEquation(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)6973 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6974 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6975 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6976 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6977 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6978
6979 // We currently can only solve this if the coefficients are constants.
6980 if (!LC || !MC || !NC)
6981 return None;
6982
6983 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6984 const APInt &L = LC->getAPInt();
6985 const APInt &M = MC->getAPInt();
6986 const APInt &N = NC->getAPInt();
6987 APInt Two(BitWidth, 2);
6988 APInt Four(BitWidth, 4);
6989
6990 {
6991 using namespace APIntOps;
6992 const APInt& C = L;
6993 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6994 // The B coefficient is M-N/2
6995 APInt B(M);
6996 B -= sdiv(N,Two);
6997
6998 // The A coefficient is N/2
6999 APInt A(N.sdiv(Two));
7000
7001 // Compute the B^2-4ac term.
7002 APInt SqrtTerm(B);
7003 SqrtTerm *= B;
7004 SqrtTerm -= Four * (A * C);
7005
7006 if (SqrtTerm.isNegative()) {
7007 // The loop is provably infinite.
7008 return None;
7009 }
7010
7011 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7012 // integer value or else APInt::sqrt() will assert.
7013 APInt SqrtVal(SqrtTerm.sqrt());
7014
7015 // Compute the two solutions for the quadratic formula.
7016 // The divisions must be performed as signed divisions.
7017 APInt NegB(-B);
7018 APInt TwoA(A << 1);
7019 if (TwoA.isMinValue())
7020 return None;
7021
7022 LLVMContext &Context = SE.getContext();
7023
7024 ConstantInt *Solution1 =
7025 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7026 ConstantInt *Solution2 =
7027 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7028
7029 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7030 cast<SCEVConstant>(SE.getConstant(Solution2)));
7031 } // end APIntOps namespace
7032 }
7033
7034 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)7035 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7036 bool AllowPredicates) {
7037
7038 // This is only used for loops with a "x != y" exit test. The exit condition
7039 // is now expressed as a single expression, V = x-y. So the exit test is
7040 // effectively V != 0. We know and take advantage of the fact that this
7041 // expression only being used in a comparison by zero context.
7042
7043 SCEVUnionPredicate P;
7044 // If the value is a constant
7045 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7046 // If the value is already zero, the branch will execute zero times.
7047 if (C->getValue()->isZero()) return C;
7048 return getCouldNotCompute(); // Otherwise it will loop infinitely.
7049 }
7050
7051 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7052 if (!AddRec && AllowPredicates)
7053 // Try to make this an AddRec using runtime tests, in the first X
7054 // iterations of this loop, where X is the SCEV expression found by the
7055 // algorithm below.
7056 AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7057
7058 if (!AddRec || AddRec->getLoop() != L)
7059 return getCouldNotCompute();
7060
7061 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7062 // the quadratic equation to solve it.
7063 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7064 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7065 const SCEVConstant *R1 = Roots->first;
7066 const SCEVConstant *R2 = Roots->second;
7067 // Pick the smallest positive root value.
7068 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7069 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7070 if (!CB->getZExtValue())
7071 std::swap(R1, R2); // R1 is the minimum root now.
7072
7073 // We can only use this value if the chrec ends up with an exact zero
7074 // value at this index. When solving for "X*X != 5", for example, we
7075 // should not accept a root of 2.
7076 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7077 if (Val->isZero())
7078 return ExitLimit(R1, R1, P); // We found a quadratic root!
7079 }
7080 }
7081 return getCouldNotCompute();
7082 }
7083
7084 // Otherwise we can only handle this if it is affine.
7085 if (!AddRec->isAffine())
7086 return getCouldNotCompute();
7087
7088 // If this is an affine expression, the execution count of this branch is
7089 // the minimum unsigned root of the following equation:
7090 //
7091 // Start + Step*N = 0 (mod 2^BW)
7092 //
7093 // equivalent to:
7094 //
7095 // Step*N = -Start (mod 2^BW)
7096 //
7097 // where BW is the common bit width of Start and Step.
7098
7099 // Get the initial value for the loop.
7100 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7101 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7102
7103 // For now we handle only constant steps.
7104 //
7105 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7106 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7107 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7108 // We have not yet seen any such cases.
7109 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7110 if (!StepC || StepC->getValue()->equalsInt(0))
7111 return getCouldNotCompute();
7112
7113 // For positive steps (counting up until unsigned overflow):
7114 // N = -Start/Step (as unsigned)
7115 // For negative steps (counting down to zero):
7116 // N = Start/-Step
7117 // First compute the unsigned distance from zero in the direction of Step.
7118 bool CountDown = StepC->getAPInt().isNegative();
7119 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7120
7121 // Handle unitary steps, which cannot wraparound.
7122 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7123 // N = Distance (as unsigned)
7124 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7125 ConstantRange CR = getUnsignedRange(Start);
7126 const SCEV *MaxBECount;
7127 if (!CountDown && CR.getUnsignedMin().isMinValue())
7128 // When counting up, the worst starting value is 1, not 0.
7129 MaxBECount = CR.getUnsignedMax().isMinValue()
7130 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7131 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7132 else
7133 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7134 : -CR.getUnsignedMin());
7135 return ExitLimit(Distance, MaxBECount, P);
7136 }
7137
7138 // As a special case, handle the instance where Step is a positive power of
7139 // two. In this case, determining whether Step divides Distance evenly can be
7140 // done by counting and comparing the number of trailing zeros of Step and
7141 // Distance.
7142 if (!CountDown) {
7143 const APInt &StepV = StepC->getAPInt();
7144 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7145 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7146 // case is not handled as this code is guarded by !CountDown.
7147 if (StepV.isPowerOf2() &&
7148 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7149 // Here we've constrained the equation to be of the form
7150 //
7151 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7152 //
7153 // where we're operating on a W bit wide integer domain and k is
7154 // non-negative. The smallest unsigned solution for X is the trip count.
7155 //
7156 // (0) is equivalent to:
7157 //
7158 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7159 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7160 // <=> 2^k * Distance' - X = L * 2^(W - N)
7161 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7162 //
7163 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7164 // by 2^(W - N).
7165 //
7166 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7167 //
7168 // E.g. say we're solving
7169 //
7170 // 2 * Val = 2 * X (in i8) ... (3)
7171 //
7172 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7173 //
7174 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7175 // necessarily the smallest unsigned value of X that satisfies (3).
7176 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7177 // is i8 1, not i8 -127
7178
7179 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7180
7181 // Since SCEV does not have a URem node, we construct one using a truncate
7182 // and a zero extend.
7183
7184 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7185 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7186 auto *WideTy = Distance->getType();
7187
7188 const SCEV *Limit =
7189 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7190 return ExitLimit(Limit, Limit, P);
7191 }
7192 }
7193
7194 // If the condition controls loop exit (the loop exits only if the expression
7195 // is true) and the addition is no-wrap we can use unsigned divide to
7196 // compute the backedge count. In this case, the step may not divide the
7197 // distance, but we don't care because if the condition is "missed" the loop
7198 // will have undefined behavior due to wrapping.
7199 if (ControlsExit && AddRec->hasNoSelfWrap() &&
7200 loopHasNoAbnormalExits(AddRec->getLoop())) {
7201 const SCEV *Exact =
7202 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7203 return ExitLimit(Exact, Exact, P);
7204 }
7205
7206 // Then, try to solve the above equation provided that Start is constant.
7207 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7208 const SCEV *E = SolveLinEquationWithOverflow(
7209 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7210 return ExitLimit(E, E, P);
7211 }
7212 return getCouldNotCompute();
7213 }
7214
7215 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)7216 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7217 // Loops that look like: while (X == 0) are very strange indeed. We don't
7218 // handle them yet except for the trivial case. This could be expanded in the
7219 // future as needed.
7220
7221 // If the value is a constant, check to see if it is known to be non-zero
7222 // already. If so, the backedge will execute zero times.
7223 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7224 if (!C->getValue()->isNullValue())
7225 return getZero(C->getType());
7226 return getCouldNotCompute(); // Otherwise it will loop infinitely.
7227 }
7228
7229 // We could implement others, but I really doubt anyone writes loops like
7230 // this, and if they did, they would already be constant folded.
7231 return getCouldNotCompute();
7232 }
7233
7234 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)7235 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7236 // If the block has a unique predecessor, then there is no path from the
7237 // predecessor to the block that does not go through the direct edge
7238 // from the predecessor to the block.
7239 if (BasicBlock *Pred = BB->getSinglePredecessor())
7240 return {Pred, BB};
7241
7242 // A loop's header is defined to be a block that dominates the loop.
7243 // If the header has a unique predecessor outside the loop, it must be
7244 // a block that has exactly one successor that can reach the loop.
7245 if (Loop *L = LI.getLoopFor(BB))
7246 return {L->getLoopPredecessor(), L->getHeader()};
7247
7248 return {nullptr, nullptr};
7249 }
7250
7251 /// SCEV structural equivalence is usually sufficient for testing whether two
7252 /// expressions are equal, however for the purposes of looking for a condition
7253 /// guarding a loop, it can be useful to be a little more general, since a
7254 /// front-end may have replicated the controlling expression.
7255 ///
HasSameValue(const SCEV * A,const SCEV * B)7256 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7257 // Quick check to see if they are the same SCEV.
7258 if (A == B) return true;
7259
7260 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7261 // Not all instructions that are "identical" compute the same value. For
7262 // instance, two distinct alloca instructions allocating the same type are
7263 // identical and do not read memory; but compute distinct values.
7264 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7265 };
7266
7267 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7268 // two different instructions with the same value. Check for this case.
7269 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7270 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7271 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7272 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7273 if (ComputesEqualValues(AI, BI))
7274 return true;
7275
7276 // Otherwise assume they may have a different value.
7277 return false;
7278 }
7279
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)7280 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7281 const SCEV *&LHS, const SCEV *&RHS,
7282 unsigned Depth) {
7283 bool Changed = false;
7284
7285 // If we hit the max recursion limit bail out.
7286 if (Depth >= 3)
7287 return false;
7288
7289 // Canonicalize a constant to the right side.
7290 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7291 // Check for both operands constant.
7292 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7293 if (ConstantExpr::getICmp(Pred,
7294 LHSC->getValue(),
7295 RHSC->getValue())->isNullValue())
7296 goto trivially_false;
7297 else
7298 goto trivially_true;
7299 }
7300 // Otherwise swap the operands to put the constant on the right.
7301 std::swap(LHS, RHS);
7302 Pred = ICmpInst::getSwappedPredicate(Pred);
7303 Changed = true;
7304 }
7305
7306 // If we're comparing an addrec with a value which is loop-invariant in the
7307 // addrec's loop, put the addrec on the left. Also make a dominance check,
7308 // as both operands could be addrecs loop-invariant in each other's loop.
7309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7310 const Loop *L = AR->getLoop();
7311 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7312 std::swap(LHS, RHS);
7313 Pred = ICmpInst::getSwappedPredicate(Pred);
7314 Changed = true;
7315 }
7316 }
7317
7318 // If there's a constant operand, canonicalize comparisons with boundary
7319 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7320 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7321 const APInt &RA = RC->getAPInt();
7322 switch (Pred) {
7323 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7324 case ICmpInst::ICMP_EQ:
7325 case ICmpInst::ICMP_NE:
7326 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7327 if (!RA)
7328 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7329 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7330 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7331 ME->getOperand(0)->isAllOnesValue()) {
7332 RHS = AE->getOperand(1);
7333 LHS = ME->getOperand(1);
7334 Changed = true;
7335 }
7336 break;
7337 case ICmpInst::ICMP_UGE:
7338 if ((RA - 1).isMinValue()) {
7339 Pred = ICmpInst::ICMP_NE;
7340 RHS = getConstant(RA - 1);
7341 Changed = true;
7342 break;
7343 }
7344 if (RA.isMaxValue()) {
7345 Pred = ICmpInst::ICMP_EQ;
7346 Changed = true;
7347 break;
7348 }
7349 if (RA.isMinValue()) goto trivially_true;
7350
7351 Pred = ICmpInst::ICMP_UGT;
7352 RHS = getConstant(RA - 1);
7353 Changed = true;
7354 break;
7355 case ICmpInst::ICMP_ULE:
7356 if ((RA + 1).isMaxValue()) {
7357 Pred = ICmpInst::ICMP_NE;
7358 RHS = getConstant(RA + 1);
7359 Changed = true;
7360 break;
7361 }
7362 if (RA.isMinValue()) {
7363 Pred = ICmpInst::ICMP_EQ;
7364 Changed = true;
7365 break;
7366 }
7367 if (RA.isMaxValue()) goto trivially_true;
7368
7369 Pred = ICmpInst::ICMP_ULT;
7370 RHS = getConstant(RA + 1);
7371 Changed = true;
7372 break;
7373 case ICmpInst::ICMP_SGE:
7374 if ((RA - 1).isMinSignedValue()) {
7375 Pred = ICmpInst::ICMP_NE;
7376 RHS = getConstant(RA - 1);
7377 Changed = true;
7378 break;
7379 }
7380 if (RA.isMaxSignedValue()) {
7381 Pred = ICmpInst::ICMP_EQ;
7382 Changed = true;
7383 break;
7384 }
7385 if (RA.isMinSignedValue()) goto trivially_true;
7386
7387 Pred = ICmpInst::ICMP_SGT;
7388 RHS = getConstant(RA - 1);
7389 Changed = true;
7390 break;
7391 case ICmpInst::ICMP_SLE:
7392 if ((RA + 1).isMaxSignedValue()) {
7393 Pred = ICmpInst::ICMP_NE;
7394 RHS = getConstant(RA + 1);
7395 Changed = true;
7396 break;
7397 }
7398 if (RA.isMinSignedValue()) {
7399 Pred = ICmpInst::ICMP_EQ;
7400 Changed = true;
7401 break;
7402 }
7403 if (RA.isMaxSignedValue()) goto trivially_true;
7404
7405 Pred = ICmpInst::ICMP_SLT;
7406 RHS = getConstant(RA + 1);
7407 Changed = true;
7408 break;
7409 case ICmpInst::ICMP_UGT:
7410 if (RA.isMinValue()) {
7411 Pred = ICmpInst::ICMP_NE;
7412 Changed = true;
7413 break;
7414 }
7415 if ((RA + 1).isMaxValue()) {
7416 Pred = ICmpInst::ICMP_EQ;
7417 RHS = getConstant(RA + 1);
7418 Changed = true;
7419 break;
7420 }
7421 if (RA.isMaxValue()) goto trivially_false;
7422 break;
7423 case ICmpInst::ICMP_ULT:
7424 if (RA.isMaxValue()) {
7425 Pred = ICmpInst::ICMP_NE;
7426 Changed = true;
7427 break;
7428 }
7429 if ((RA - 1).isMinValue()) {
7430 Pred = ICmpInst::ICMP_EQ;
7431 RHS = getConstant(RA - 1);
7432 Changed = true;
7433 break;
7434 }
7435 if (RA.isMinValue()) goto trivially_false;
7436 break;
7437 case ICmpInst::ICMP_SGT:
7438 if (RA.isMinSignedValue()) {
7439 Pred = ICmpInst::ICMP_NE;
7440 Changed = true;
7441 break;
7442 }
7443 if ((RA + 1).isMaxSignedValue()) {
7444 Pred = ICmpInst::ICMP_EQ;
7445 RHS = getConstant(RA + 1);
7446 Changed = true;
7447 break;
7448 }
7449 if (RA.isMaxSignedValue()) goto trivially_false;
7450 break;
7451 case ICmpInst::ICMP_SLT:
7452 if (RA.isMaxSignedValue()) {
7453 Pred = ICmpInst::ICMP_NE;
7454 Changed = true;
7455 break;
7456 }
7457 if ((RA - 1).isMinSignedValue()) {
7458 Pred = ICmpInst::ICMP_EQ;
7459 RHS = getConstant(RA - 1);
7460 Changed = true;
7461 break;
7462 }
7463 if (RA.isMinSignedValue()) goto trivially_false;
7464 break;
7465 }
7466 }
7467
7468 // Check for obvious equality.
7469 if (HasSameValue(LHS, RHS)) {
7470 if (ICmpInst::isTrueWhenEqual(Pred))
7471 goto trivially_true;
7472 if (ICmpInst::isFalseWhenEqual(Pred))
7473 goto trivially_false;
7474 }
7475
7476 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7477 // adding or subtracting 1 from one of the operands.
7478 switch (Pred) {
7479 case ICmpInst::ICMP_SLE:
7480 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7481 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7482 SCEV::FlagNSW);
7483 Pred = ICmpInst::ICMP_SLT;
7484 Changed = true;
7485 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7486 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7487 SCEV::FlagNSW);
7488 Pred = ICmpInst::ICMP_SLT;
7489 Changed = true;
7490 }
7491 break;
7492 case ICmpInst::ICMP_SGE:
7493 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7494 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7495 SCEV::FlagNSW);
7496 Pred = ICmpInst::ICMP_SGT;
7497 Changed = true;
7498 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7499 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7500 SCEV::FlagNSW);
7501 Pred = ICmpInst::ICMP_SGT;
7502 Changed = true;
7503 }
7504 break;
7505 case ICmpInst::ICMP_ULE:
7506 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7507 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7508 SCEV::FlagNUW);
7509 Pred = ICmpInst::ICMP_ULT;
7510 Changed = true;
7511 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7512 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7513 Pred = ICmpInst::ICMP_ULT;
7514 Changed = true;
7515 }
7516 break;
7517 case ICmpInst::ICMP_UGE:
7518 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7519 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7520 Pred = ICmpInst::ICMP_UGT;
7521 Changed = true;
7522 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7523 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7524 SCEV::FlagNUW);
7525 Pred = ICmpInst::ICMP_UGT;
7526 Changed = true;
7527 }
7528 break;
7529 default:
7530 break;
7531 }
7532
7533 // TODO: More simplifications are possible here.
7534
7535 // Recursively simplify until we either hit a recursion limit or nothing
7536 // changes.
7537 if (Changed)
7538 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7539
7540 return Changed;
7541
7542 trivially_true:
7543 // Return 0 == 0.
7544 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7545 Pred = ICmpInst::ICMP_EQ;
7546 return true;
7547
7548 trivially_false:
7549 // Return 0 != 0.
7550 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7551 Pred = ICmpInst::ICMP_NE;
7552 return true;
7553 }
7554
isKnownNegative(const SCEV * S)7555 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7556 return getSignedRange(S).getSignedMax().isNegative();
7557 }
7558
isKnownPositive(const SCEV * S)7559 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7560 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7561 }
7562
isKnownNonNegative(const SCEV * S)7563 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7564 return !getSignedRange(S).getSignedMin().isNegative();
7565 }
7566
isKnownNonPositive(const SCEV * S)7567 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7568 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7569 }
7570
isKnownNonZero(const SCEV * S)7571 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7572 return isKnownNegative(S) || isKnownPositive(S);
7573 }
7574
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7575 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7576 const SCEV *LHS, const SCEV *RHS) {
7577 // Canonicalize the inputs first.
7578 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7579
7580 // If LHS or RHS is an addrec, check to see if the condition is true in
7581 // every iteration of the loop.
7582 // If LHS and RHS are both addrec, both conditions must be true in
7583 // every iteration of the loop.
7584 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7585 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7586 bool LeftGuarded = false;
7587 bool RightGuarded = false;
7588 if (LAR) {
7589 const Loop *L = LAR->getLoop();
7590 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7591 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7592 if (!RAR) return true;
7593 LeftGuarded = true;
7594 }
7595 }
7596 if (RAR) {
7597 const Loop *L = RAR->getLoop();
7598 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7599 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7600 if (!LAR) return true;
7601 RightGuarded = true;
7602 }
7603 }
7604 if (LeftGuarded && RightGuarded)
7605 return true;
7606
7607 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7608 return true;
7609
7610 // Otherwise see what can be done with known constant ranges.
7611 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7612 }
7613
isMonotonicPredicate(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)7614 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7615 ICmpInst::Predicate Pred,
7616 bool &Increasing) {
7617 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7618
7619 #ifndef NDEBUG
7620 // Verify an invariant: inverting the predicate should turn a monotonically
7621 // increasing change to a monotonically decreasing one, and vice versa.
7622 bool IncreasingSwapped;
7623 bool ResultSwapped = isMonotonicPredicateImpl(
7624 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7625
7626 assert(Result == ResultSwapped && "should be able to analyze both!");
7627 if (ResultSwapped)
7628 assert(Increasing == !IncreasingSwapped &&
7629 "monotonicity should flip as we flip the predicate");
7630 #endif
7631
7632 return Result;
7633 }
7634
isMonotonicPredicateImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)7635 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7636 ICmpInst::Predicate Pred,
7637 bool &Increasing) {
7638
7639 // A zero step value for LHS means the induction variable is essentially a
7640 // loop invariant value. We don't really depend on the predicate actually
7641 // flipping from false to true (for increasing predicates, and the other way
7642 // around for decreasing predicates), all we care about is that *if* the
7643 // predicate changes then it only changes from false to true.
7644 //
7645 // A zero step value in itself is not very useful, but there may be places
7646 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7647 // as general as possible.
7648
7649 switch (Pred) {
7650 default:
7651 return false; // Conservative answer
7652
7653 case ICmpInst::ICMP_UGT:
7654 case ICmpInst::ICMP_UGE:
7655 case ICmpInst::ICMP_ULT:
7656 case ICmpInst::ICMP_ULE:
7657 if (!LHS->hasNoUnsignedWrap())
7658 return false;
7659
7660 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7661 return true;
7662
7663 case ICmpInst::ICMP_SGT:
7664 case ICmpInst::ICMP_SGE:
7665 case ICmpInst::ICMP_SLT:
7666 case ICmpInst::ICMP_SLE: {
7667 if (!LHS->hasNoSignedWrap())
7668 return false;
7669
7670 const SCEV *Step = LHS->getStepRecurrence(*this);
7671
7672 if (isKnownNonNegative(Step)) {
7673 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7674 return true;
7675 }
7676
7677 if (isKnownNonPositive(Step)) {
7678 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7679 return true;
7680 }
7681
7682 return false;
7683 }
7684
7685 }
7686
7687 llvm_unreachable("switch has default clause!");
7688 }
7689
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)7690 bool ScalarEvolution::isLoopInvariantPredicate(
7691 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7692 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7693 const SCEV *&InvariantRHS) {
7694
7695 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7696 if (!isLoopInvariant(RHS, L)) {
7697 if (!isLoopInvariant(LHS, L))
7698 return false;
7699
7700 std::swap(LHS, RHS);
7701 Pred = ICmpInst::getSwappedPredicate(Pred);
7702 }
7703
7704 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7705 if (!ArLHS || ArLHS->getLoop() != L)
7706 return false;
7707
7708 bool Increasing;
7709 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7710 return false;
7711
7712 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7713 // true as the loop iterates, and the backedge is control dependent on
7714 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7715 //
7716 // * if the predicate was false in the first iteration then the predicate
7717 // is never evaluated again, since the loop exits without taking the
7718 // backedge.
7719 // * if the predicate was true in the first iteration then it will
7720 // continue to be true for all future iterations since it is
7721 // monotonically increasing.
7722 //
7723 // For both the above possibilities, we can replace the loop varying
7724 // predicate with its value on the first iteration of the loop (which is
7725 // loop invariant).
7726 //
7727 // A similar reasoning applies for a monotonically decreasing predicate, by
7728 // replacing true with false and false with true in the above two bullets.
7729
7730 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7731
7732 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7733 return false;
7734
7735 InvariantPred = Pred;
7736 InvariantLHS = ArLHS->getStart();
7737 InvariantRHS = RHS;
7738 return true;
7739 }
7740
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7741 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7742 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7743 if (HasSameValue(LHS, RHS))
7744 return ICmpInst::isTrueWhenEqual(Pred);
7745
7746 // This code is split out from isKnownPredicate because it is called from
7747 // within isLoopEntryGuardedByCond.
7748
7749 auto CheckRanges =
7750 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7751 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7752 .contains(RangeLHS);
7753 };
7754
7755 // The check at the top of the function catches the case where the values are
7756 // known to be equal.
7757 if (Pred == CmpInst::ICMP_EQ)
7758 return false;
7759
7760 if (Pred == CmpInst::ICMP_NE)
7761 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7762 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7763 isKnownNonZero(getMinusSCEV(LHS, RHS));
7764
7765 if (CmpInst::isSigned(Pred))
7766 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7767
7768 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7769 }
7770
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7771 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7772 const SCEV *LHS,
7773 const SCEV *RHS) {
7774
7775 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7776 // Return Y via OutY.
7777 auto MatchBinaryAddToConst =
7778 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7779 SCEV::NoWrapFlags ExpectedFlags) {
7780 const SCEV *NonConstOp, *ConstOp;
7781 SCEV::NoWrapFlags FlagsPresent;
7782
7783 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7784 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7785 return false;
7786
7787 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7788 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7789 };
7790
7791 APInt C;
7792
7793 switch (Pred) {
7794 default:
7795 break;
7796
7797 case ICmpInst::ICMP_SGE:
7798 std::swap(LHS, RHS);
7799 case ICmpInst::ICMP_SLE:
7800 // X s<= (X + C)<nsw> if C >= 0
7801 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7802 return true;
7803
7804 // (X + C)<nsw> s<= X if C <= 0
7805 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7806 !C.isStrictlyPositive())
7807 return true;
7808 break;
7809
7810 case ICmpInst::ICMP_SGT:
7811 std::swap(LHS, RHS);
7812 case ICmpInst::ICMP_SLT:
7813 // X s< (X + C)<nsw> if C > 0
7814 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7815 C.isStrictlyPositive())
7816 return true;
7817
7818 // (X + C)<nsw> s< X if C < 0
7819 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7820 return true;
7821 break;
7822 }
7823
7824 return false;
7825 }
7826
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7827 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7828 const SCEV *LHS,
7829 const SCEV *RHS) {
7830 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7831 return false;
7832
7833 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7834 // the stack can result in exponential time complexity.
7835 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7836
7837 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7838 //
7839 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7840 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7841 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7842 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7843 // use isKnownPredicate later if needed.
7844 return isKnownNonNegative(RHS) &&
7845 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7846 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7847 }
7848
isImpliedViaGuard(BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7849 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7850 ICmpInst::Predicate Pred,
7851 const SCEV *LHS, const SCEV *RHS) {
7852 // No need to even try if we know the module has no guards.
7853 if (!HasGuards)
7854 return false;
7855
7856 return any_of(*BB, [&](Instruction &I) {
7857 using namespace llvm::PatternMatch;
7858
7859 Value *Condition;
7860 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7861 m_Value(Condition))) &&
7862 isImpliedCond(Pred, LHS, RHS, Condition, false);
7863 });
7864 }
7865
7866 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7867 /// protected by a conditional between LHS and RHS. This is used to
7868 /// to eliminate casts.
7869 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7870 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7871 ICmpInst::Predicate Pred,
7872 const SCEV *LHS, const SCEV *RHS) {
7873 // Interpret a null as meaning no loop, where there is obviously no guard
7874 // (interprocedural conditions notwithstanding).
7875 if (!L) return true;
7876
7877 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7878 return true;
7879
7880 BasicBlock *Latch = L->getLoopLatch();
7881 if (!Latch)
7882 return false;
7883
7884 BranchInst *LoopContinuePredicate =
7885 dyn_cast<BranchInst>(Latch->getTerminator());
7886 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7887 isImpliedCond(Pred, LHS, RHS,
7888 LoopContinuePredicate->getCondition(),
7889 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7890 return true;
7891
7892 // We don't want more than one activation of the following loops on the stack
7893 // -- that can lead to O(n!) time complexity.
7894 if (WalkingBEDominatingConds)
7895 return false;
7896
7897 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7898
7899 // See if we can exploit a trip count to prove the predicate.
7900 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7901 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7902 if (LatchBECount != getCouldNotCompute()) {
7903 // We know that Latch branches back to the loop header exactly
7904 // LatchBECount times. This means the backdege condition at Latch is
7905 // equivalent to "{0,+,1} u< LatchBECount".
7906 Type *Ty = LatchBECount->getType();
7907 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7908 const SCEV *LoopCounter =
7909 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7910 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7911 LatchBECount))
7912 return true;
7913 }
7914
7915 // Check conditions due to any @llvm.assume intrinsics.
7916 for (auto &AssumeVH : AC.assumptions()) {
7917 if (!AssumeVH)
7918 continue;
7919 auto *CI = cast<CallInst>(AssumeVH);
7920 if (!DT.dominates(CI, Latch->getTerminator()))
7921 continue;
7922
7923 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7924 return true;
7925 }
7926
7927 // If the loop is not reachable from the entry block, we risk running into an
7928 // infinite loop as we walk up into the dom tree. These loops do not matter
7929 // anyway, so we just return a conservative answer when we see them.
7930 if (!DT.isReachableFromEntry(L->getHeader()))
7931 return false;
7932
7933 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7934 return true;
7935
7936 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7937 DTN != HeaderDTN; DTN = DTN->getIDom()) {
7938
7939 assert(DTN && "should reach the loop header before reaching the root!");
7940
7941 BasicBlock *BB = DTN->getBlock();
7942 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7943 return true;
7944
7945 BasicBlock *PBB = BB->getSinglePredecessor();
7946 if (!PBB)
7947 continue;
7948
7949 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7950 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7951 continue;
7952
7953 Value *Condition = ContinuePredicate->getCondition();
7954
7955 // If we have an edge `E` within the loop body that dominates the only
7956 // latch, the condition guarding `E` also guards the backedge. This
7957 // reasoning works only for loops with a single latch.
7958
7959 BasicBlockEdge DominatingEdge(PBB, BB);
7960 if (DominatingEdge.isSingleEdge()) {
7961 // We're constructively (and conservatively) enumerating edges within the
7962 // loop body that dominate the latch. The dominator tree better agree
7963 // with us on this:
7964 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7965
7966 if (isImpliedCond(Pred, LHS, RHS, Condition,
7967 BB != ContinuePredicate->getSuccessor(0)))
7968 return true;
7969 }
7970 }
7971
7972 return false;
7973 }
7974
7975 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)7976 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7977 ICmpInst::Predicate Pred,
7978 const SCEV *LHS, const SCEV *RHS) {
7979 // Interpret a null as meaning no loop, where there is obviously no guard
7980 // (interprocedural conditions notwithstanding).
7981 if (!L) return false;
7982
7983 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7984 return true;
7985
7986 // Starting at the loop predecessor, climb up the predecessor chain, as long
7987 // as there are predecessors that can be found that have unique successors
7988 // leading to the original header.
7989 for (std::pair<BasicBlock *, BasicBlock *>
7990 Pair(L->getLoopPredecessor(), L->getHeader());
7991 Pair.first;
7992 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7993
7994 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7995 return true;
7996
7997 BranchInst *LoopEntryPredicate =
7998 dyn_cast<BranchInst>(Pair.first->getTerminator());
7999 if (!LoopEntryPredicate ||
8000 LoopEntryPredicate->isUnconditional())
8001 continue;
8002
8003 if (isImpliedCond(Pred, LHS, RHS,
8004 LoopEntryPredicate->getCondition(),
8005 LoopEntryPredicate->getSuccessor(0) != Pair.second))
8006 return true;
8007 }
8008
8009 // Check conditions due to any @llvm.assume intrinsics.
8010 for (auto &AssumeVH : AC.assumptions()) {
8011 if (!AssumeVH)
8012 continue;
8013 auto *CI = cast<CallInst>(AssumeVH);
8014 if (!DT.dominates(CI, L->getHeader()))
8015 continue;
8016
8017 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8018 return true;
8019 }
8020
8021 return false;
8022 }
8023
8024 namespace {
8025 /// RAII wrapper to prevent recursive application of isImpliedCond.
8026 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8027 /// currently evaluating isImpliedCond.
8028 struct MarkPendingLoopPredicate {
8029 Value *Cond;
8030 DenseSet<Value*> &LoopPreds;
8031 bool Pending;
8032
MarkPendingLoopPredicate__anond3aa2a801411::MarkPendingLoopPredicate8033 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8034 : Cond(C), LoopPreds(LP) {
8035 Pending = !LoopPreds.insert(Cond).second;
8036 }
~MarkPendingLoopPredicate__anond3aa2a801411::MarkPendingLoopPredicate8037 ~MarkPendingLoopPredicate() {
8038 if (!Pending)
8039 LoopPreds.erase(Cond);
8040 }
8041 };
8042 } // end anonymous namespace
8043
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)8044 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8045 const SCEV *LHS, const SCEV *RHS,
8046 Value *FoundCondValue,
8047 bool Inverse) {
8048 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8049 if (Mark.Pending)
8050 return false;
8051
8052 // Recursively handle And and Or conditions.
8053 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8054 if (BO->getOpcode() == Instruction::And) {
8055 if (!Inverse)
8056 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8057 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8058 } else if (BO->getOpcode() == Instruction::Or) {
8059 if (Inverse)
8060 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8061 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8062 }
8063 }
8064
8065 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8066 if (!ICI) return false;
8067
8068 // Now that we found a conditional branch that dominates the loop or controls
8069 // the loop latch. Check to see if it is the comparison we are looking for.
8070 ICmpInst::Predicate FoundPred;
8071 if (Inverse)
8072 FoundPred = ICI->getInversePredicate();
8073 else
8074 FoundPred = ICI->getPredicate();
8075
8076 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8077 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8078
8079 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8080 }
8081
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)8082 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8083 const SCEV *RHS,
8084 ICmpInst::Predicate FoundPred,
8085 const SCEV *FoundLHS,
8086 const SCEV *FoundRHS) {
8087 // Balance the types.
8088 if (getTypeSizeInBits(LHS->getType()) <
8089 getTypeSizeInBits(FoundLHS->getType())) {
8090 if (CmpInst::isSigned(Pred)) {
8091 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8092 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8093 } else {
8094 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8095 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8096 }
8097 } else if (getTypeSizeInBits(LHS->getType()) >
8098 getTypeSizeInBits(FoundLHS->getType())) {
8099 if (CmpInst::isSigned(FoundPred)) {
8100 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8101 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8102 } else {
8103 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8104 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8105 }
8106 }
8107
8108 // Canonicalize the query to match the way instcombine will have
8109 // canonicalized the comparison.
8110 if (SimplifyICmpOperands(Pred, LHS, RHS))
8111 if (LHS == RHS)
8112 return CmpInst::isTrueWhenEqual(Pred);
8113 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8114 if (FoundLHS == FoundRHS)
8115 return CmpInst::isFalseWhenEqual(FoundPred);
8116
8117 // Check to see if we can make the LHS or RHS match.
8118 if (LHS == FoundRHS || RHS == FoundLHS) {
8119 if (isa<SCEVConstant>(RHS)) {
8120 std::swap(FoundLHS, FoundRHS);
8121 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8122 } else {
8123 std::swap(LHS, RHS);
8124 Pred = ICmpInst::getSwappedPredicate(Pred);
8125 }
8126 }
8127
8128 // Check whether the found predicate is the same as the desired predicate.
8129 if (FoundPred == Pred)
8130 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8131
8132 // Check whether swapping the found predicate makes it the same as the
8133 // desired predicate.
8134 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8135 if (isa<SCEVConstant>(RHS))
8136 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8137 else
8138 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8139 RHS, LHS, FoundLHS, FoundRHS);
8140 }
8141
8142 // Unsigned comparison is the same as signed comparison when both the operands
8143 // are non-negative.
8144 if (CmpInst::isUnsigned(FoundPred) &&
8145 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8146 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8147 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8148
8149 // Check if we can make progress by sharpening ranges.
8150 if (FoundPred == ICmpInst::ICMP_NE &&
8151 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8152
8153 const SCEVConstant *C = nullptr;
8154 const SCEV *V = nullptr;
8155
8156 if (isa<SCEVConstant>(FoundLHS)) {
8157 C = cast<SCEVConstant>(FoundLHS);
8158 V = FoundRHS;
8159 } else {
8160 C = cast<SCEVConstant>(FoundRHS);
8161 V = FoundLHS;
8162 }
8163
8164 // The guarding predicate tells us that C != V. If the known range
8165 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8166 // range we consider has to correspond to same signedness as the
8167 // predicate we're interested in folding.
8168
8169 APInt Min = ICmpInst::isSigned(Pred) ?
8170 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8171
8172 if (Min == C->getAPInt()) {
8173 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8174 // This is true even if (Min + 1) wraps around -- in case of
8175 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8176
8177 APInt SharperMin = Min + 1;
8178
8179 switch (Pred) {
8180 case ICmpInst::ICMP_SGE:
8181 case ICmpInst::ICMP_UGE:
8182 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8183 // RHS, we're done.
8184 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8185 getConstant(SharperMin)))
8186 return true;
8187
8188 case ICmpInst::ICMP_SGT:
8189 case ICmpInst::ICMP_UGT:
8190 // We know from the range information that (V `Pred` Min ||
8191 // V == Min). We know from the guarding condition that !(V
8192 // == Min). This gives us
8193 //
8194 // V `Pred` Min || V == Min && !(V == Min)
8195 // => V `Pred` Min
8196 //
8197 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8198
8199 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8200 return true;
8201
8202 default:
8203 // No change
8204 break;
8205 }
8206 }
8207 }
8208
8209 // Check whether the actual condition is beyond sufficient.
8210 if (FoundPred == ICmpInst::ICMP_EQ)
8211 if (ICmpInst::isTrueWhenEqual(Pred))
8212 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8213 return true;
8214 if (Pred == ICmpInst::ICMP_NE)
8215 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8216 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8217 return true;
8218
8219 // Otherwise assume the worst.
8220 return false;
8221 }
8222
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)8223 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8224 const SCEV *&L, const SCEV *&R,
8225 SCEV::NoWrapFlags &Flags) {
8226 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8227 if (!AE || AE->getNumOperands() != 2)
8228 return false;
8229
8230 L = AE->getOperand(0);
8231 R = AE->getOperand(1);
8232 Flags = AE->getNoWrapFlags();
8233 return true;
8234 }
8235
computeConstantDifference(const SCEV * Less,const SCEV * More,APInt & C)8236 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8237 const SCEV *More,
8238 APInt &C) {
8239 // We avoid subtracting expressions here because this function is usually
8240 // fairly deep in the call stack (i.e. is called many times).
8241
8242 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8243 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8244 const auto *MAR = cast<SCEVAddRecExpr>(More);
8245
8246 if (LAR->getLoop() != MAR->getLoop())
8247 return false;
8248
8249 // We look at affine expressions only; not for correctness but to keep
8250 // getStepRecurrence cheap.
8251 if (!LAR->isAffine() || !MAR->isAffine())
8252 return false;
8253
8254 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8255 return false;
8256
8257 Less = LAR->getStart();
8258 More = MAR->getStart();
8259
8260 // fall through
8261 }
8262
8263 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8264 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8265 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8266 C = M - L;
8267 return true;
8268 }
8269
8270 const SCEV *L, *R;
8271 SCEV::NoWrapFlags Flags;
8272 if (splitBinaryAdd(Less, L, R, Flags))
8273 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8274 if (R == More) {
8275 C = -(LC->getAPInt());
8276 return true;
8277 }
8278
8279 if (splitBinaryAdd(More, L, R, Flags))
8280 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8281 if (R == Less) {
8282 C = LC->getAPInt();
8283 return true;
8284 }
8285
8286 return false;
8287 }
8288
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)8289 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8290 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8291 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8292 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8293 return false;
8294
8295 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8296 if (!AddRecLHS)
8297 return false;
8298
8299 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8300 if (!AddRecFoundLHS)
8301 return false;
8302
8303 // We'd like to let SCEV reason about control dependencies, so we constrain
8304 // both the inequalities to be about add recurrences on the same loop. This
8305 // way we can use isLoopEntryGuardedByCond later.
8306
8307 const Loop *L = AddRecFoundLHS->getLoop();
8308 if (L != AddRecLHS->getLoop())
8309 return false;
8310
8311 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8312 //
8313 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8314 // ... (2)
8315 //
8316 // Informal proof for (2), assuming (1) [*]:
8317 //
8318 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8319 //
8320 // Then
8321 //
8322 // FoundLHS s< FoundRHS s< INT_MIN - C
8323 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8324 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8325 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8326 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8327 // <=> FoundLHS + C s< FoundRHS + C
8328 //
8329 // [*]: (1) can be proved by ruling out overflow.
8330 //
8331 // [**]: This can be proved by analyzing all the four possibilities:
8332 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8333 // (A s>= 0, B s>= 0).
8334 //
8335 // Note:
8336 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8337 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8338 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8339 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8340 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8341 // C)".
8342
8343 APInt LDiff, RDiff;
8344 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8345 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8346 LDiff != RDiff)
8347 return false;
8348
8349 if (LDiff == 0)
8350 return true;
8351
8352 APInt FoundRHSLimit;
8353
8354 if (Pred == CmpInst::ICMP_ULT) {
8355 FoundRHSLimit = -RDiff;
8356 } else {
8357 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8358 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8359 }
8360
8361 // Try to prove (1) or (2), as needed.
8362 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8363 getConstant(FoundRHSLimit));
8364 }
8365
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)8366 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8367 const SCEV *LHS, const SCEV *RHS,
8368 const SCEV *FoundLHS,
8369 const SCEV *FoundRHS) {
8370 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8371 return true;
8372
8373 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8374 return true;
8375
8376 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8377 FoundLHS, FoundRHS) ||
8378 // ~x < ~y --> x > y
8379 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8380 getNotSCEV(FoundRHS),
8381 getNotSCEV(FoundLHS));
8382 }
8383
8384
8385 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)8386 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8387 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8388 if (!Add || Add->getNumOperands() != 2 ||
8389 !Add->getOperand(0)->isAllOnesValue())
8390 return nullptr;
8391
8392 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8393 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8394 !AddRHS->getOperand(0)->isAllOnesValue())
8395 return nullptr;
8396
8397 return AddRHS->getOperand(1);
8398 }
8399
8400
8401 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8402 template<typename MaxExprType>
IsMaxConsistingOf(const SCEV * MaybeMaxExpr,const SCEV * Candidate)8403 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8404 const SCEV *Candidate) {
8405 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8406 if (!MaxExpr) return false;
8407
8408 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8409 }
8410
8411
8412 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8413 template<typename MaxExprType>
IsMinConsistingOf(ScalarEvolution & SE,const SCEV * MaybeMinExpr,const SCEV * Candidate)8414 static bool IsMinConsistingOf(ScalarEvolution &SE,
8415 const SCEV *MaybeMinExpr,
8416 const SCEV *Candidate) {
8417 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8418 if (!MaybeMaxExpr)
8419 return false;
8420
8421 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8422 }
8423
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8424 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8425 ICmpInst::Predicate Pred,
8426 const SCEV *LHS, const SCEV *RHS) {
8427
8428 // If both sides are affine addrecs for the same loop, with equal
8429 // steps, and we know the recurrences don't wrap, then we only
8430 // need to check the predicate on the starting values.
8431
8432 if (!ICmpInst::isRelational(Pred))
8433 return false;
8434
8435 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8436 if (!LAR)
8437 return false;
8438 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8439 if (!RAR)
8440 return false;
8441 if (LAR->getLoop() != RAR->getLoop())
8442 return false;
8443 if (!LAR->isAffine() || !RAR->isAffine())
8444 return false;
8445
8446 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8447 return false;
8448
8449 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8450 SCEV::FlagNSW : SCEV::FlagNUW;
8451 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8452 return false;
8453
8454 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8455 }
8456
8457 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8458 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8459 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8460 ICmpInst::Predicate Pred,
8461 const SCEV *LHS, const SCEV *RHS) {
8462 switch (Pred) {
8463 default:
8464 return false;
8465
8466 case ICmpInst::ICMP_SGE:
8467 std::swap(LHS, RHS);
8468 // fall through
8469 case ICmpInst::ICMP_SLE:
8470 return
8471 // min(A, ...) <= A
8472 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8473 // A <= max(A, ...)
8474 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8475
8476 case ICmpInst::ICMP_UGE:
8477 std::swap(LHS, RHS);
8478 // fall through
8479 case ICmpInst::ICMP_ULE:
8480 return
8481 // min(A, ...) <= A
8482 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8483 // A <= max(A, ...)
8484 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8485 }
8486
8487 llvm_unreachable("covered switch fell through?!");
8488 }
8489
8490 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)8491 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8492 const SCEV *LHS, const SCEV *RHS,
8493 const SCEV *FoundLHS,
8494 const SCEV *FoundRHS) {
8495 auto IsKnownPredicateFull =
8496 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8497 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8498 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8499 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8500 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8501 };
8502
8503 switch (Pred) {
8504 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8505 case ICmpInst::ICMP_EQ:
8506 case ICmpInst::ICMP_NE:
8507 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8508 return true;
8509 break;
8510 case ICmpInst::ICMP_SLT:
8511 case ICmpInst::ICMP_SLE:
8512 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8513 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8514 return true;
8515 break;
8516 case ICmpInst::ICMP_SGT:
8517 case ICmpInst::ICMP_SGE:
8518 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8519 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8520 return true;
8521 break;
8522 case ICmpInst::ICMP_ULT:
8523 case ICmpInst::ICMP_ULE:
8524 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8525 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8526 return true;
8527 break;
8528 case ICmpInst::ICMP_UGT:
8529 case ICmpInst::ICMP_UGE:
8530 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8531 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8532 return true;
8533 break;
8534 }
8535
8536 return false;
8537 }
8538
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)8539 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8540 const SCEV *LHS,
8541 const SCEV *RHS,
8542 const SCEV *FoundLHS,
8543 const SCEV *FoundRHS) {
8544 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8545 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8546 // reduce the compile time impact of this optimization.
8547 return false;
8548
8549 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8550 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8551 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8552 return false;
8553
8554 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8555
8556 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8557 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8558 ConstantRange FoundLHSRange =
8559 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8560
8561 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8562 // for `LHS`:
8563 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8564 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8565
8566 // We can also compute the range of values for `LHS` that satisfy the
8567 // consequent, "`LHS` `Pred` `RHS`":
8568 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8569 ConstantRange SatisfyingLHSRange =
8570 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8571
8572 // The antecedent implies the consequent if every value of `LHS` that
8573 // satisfies the antecedent also satisfies the consequent.
8574 return SatisfyingLHSRange.contains(LHSRange);
8575 }
8576
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)8577 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8578 bool IsSigned, bool NoWrap) {
8579 if (NoWrap) return false;
8580
8581 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8582 const SCEV *One = getOne(Stride->getType());
8583
8584 if (IsSigned) {
8585 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8586 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8587 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8588 .getSignedMax();
8589
8590 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8591 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8592 }
8593
8594 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8595 APInt MaxValue = APInt::getMaxValue(BitWidth);
8596 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8597 .getUnsignedMax();
8598
8599 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8600 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8601 }
8602
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)8603 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8604 bool IsSigned, bool NoWrap) {
8605 if (NoWrap) return false;
8606
8607 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8608 const SCEV *One = getOne(Stride->getType());
8609
8610 if (IsSigned) {
8611 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8612 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8613 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8614 .getSignedMax();
8615
8616 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8617 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8618 }
8619
8620 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8621 APInt MinValue = APInt::getMinValue(BitWidth);
8622 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8623 .getUnsignedMax();
8624
8625 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8626 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8627 }
8628
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)8629 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8630 bool Equality) {
8631 const SCEV *One = getOne(Step->getType());
8632 Delta = Equality ? getAddExpr(Delta, Step)
8633 : getAddExpr(Delta, getMinusSCEV(Step, One));
8634 return getUDivExpr(Delta, Step);
8635 }
8636
8637 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)8638 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8639 const Loop *L, bool IsSigned,
8640 bool ControlsExit, bool AllowPredicates) {
8641 SCEVUnionPredicate P;
8642 // We handle only IV < Invariant
8643 if (!isLoopInvariant(RHS, L))
8644 return getCouldNotCompute();
8645
8646 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8647 if (!IV && AllowPredicates)
8648 // Try to make this an AddRec using runtime tests, in the first X
8649 // iterations of this loop, where X is the SCEV expression found by the
8650 // algorithm below.
8651 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8652
8653 // Avoid weird loops
8654 if (!IV || IV->getLoop() != L || !IV->isAffine())
8655 return getCouldNotCompute();
8656
8657 bool NoWrap = ControlsExit &&
8658 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8659
8660 const SCEV *Stride = IV->getStepRecurrence(*this);
8661
8662 // Avoid negative or zero stride values
8663 if (!isKnownPositive(Stride))
8664 return getCouldNotCompute();
8665
8666 // Avoid proven overflow cases: this will ensure that the backedge taken count
8667 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8668 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8669 // behaviors like the case of C language.
8670 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8671 return getCouldNotCompute();
8672
8673 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8674 : ICmpInst::ICMP_ULT;
8675 const SCEV *Start = IV->getStart();
8676 const SCEV *End = RHS;
8677 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8678 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8679
8680 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8681
8682 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8683 : getUnsignedRange(Start).getUnsignedMin();
8684
8685 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8686 : getUnsignedRange(Stride).getUnsignedMin();
8687
8688 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8689 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8690 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8691
8692 // Although End can be a MAX expression we estimate MaxEnd considering only
8693 // the case End = RHS. This is safe because in the other case (End - Start)
8694 // is zero, leading to a zero maximum backedge taken count.
8695 APInt MaxEnd =
8696 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8697 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8698
8699 const SCEV *MaxBECount;
8700 if (isa<SCEVConstant>(BECount))
8701 MaxBECount = BECount;
8702 else
8703 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8704 getConstant(MinStride), false);
8705
8706 if (isa<SCEVCouldNotCompute>(MaxBECount))
8707 MaxBECount = BECount;
8708
8709 return ExitLimit(BECount, MaxBECount, P);
8710 }
8711
8712 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)8713 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8714 const Loop *L, bool IsSigned,
8715 bool ControlsExit, bool AllowPredicates) {
8716 SCEVUnionPredicate P;
8717 // We handle only IV > Invariant
8718 if (!isLoopInvariant(RHS, L))
8719 return getCouldNotCompute();
8720
8721 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8722 if (!IV && AllowPredicates)
8723 // Try to make this an AddRec using runtime tests, in the first X
8724 // iterations of this loop, where X is the SCEV expression found by the
8725 // algorithm below.
8726 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8727
8728 // Avoid weird loops
8729 if (!IV || IV->getLoop() != L || !IV->isAffine())
8730 return getCouldNotCompute();
8731
8732 bool NoWrap = ControlsExit &&
8733 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8734
8735 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8736
8737 // Avoid negative or zero stride values
8738 if (!isKnownPositive(Stride))
8739 return getCouldNotCompute();
8740
8741 // Avoid proven overflow cases: this will ensure that the backedge taken count
8742 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8743 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8744 // behaviors like the case of C language.
8745 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8746 return getCouldNotCompute();
8747
8748 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8749 : ICmpInst::ICMP_UGT;
8750
8751 const SCEV *Start = IV->getStart();
8752 const SCEV *End = RHS;
8753 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8754 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8755
8756 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8757
8758 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8759 : getUnsignedRange(Start).getUnsignedMax();
8760
8761 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8762 : getUnsignedRange(Stride).getUnsignedMin();
8763
8764 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8765 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8766 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8767
8768 // Although End can be a MIN expression we estimate MinEnd considering only
8769 // the case End = RHS. This is safe because in the other case (Start - End)
8770 // is zero, leading to a zero maximum backedge taken count.
8771 APInt MinEnd =
8772 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8773 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8774
8775
8776 const SCEV *MaxBECount = getCouldNotCompute();
8777 if (isa<SCEVConstant>(BECount))
8778 MaxBECount = BECount;
8779 else
8780 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8781 getConstant(MinStride), false);
8782
8783 if (isa<SCEVCouldNotCompute>(MaxBECount))
8784 MaxBECount = BECount;
8785
8786 return ExitLimit(BECount, MaxBECount, P);
8787 }
8788
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const8789 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8790 ScalarEvolution &SE) const {
8791 if (Range.isFullSet()) // Infinite loop.
8792 return SE.getCouldNotCompute();
8793
8794 // If the start is a non-zero constant, shift the range to simplify things.
8795 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8796 if (!SC->getValue()->isZero()) {
8797 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8798 Operands[0] = SE.getZero(SC->getType());
8799 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8800 getNoWrapFlags(FlagNW));
8801 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8802 return ShiftedAddRec->getNumIterationsInRange(
8803 Range.subtract(SC->getAPInt()), SE);
8804 // This is strange and shouldn't happen.
8805 return SE.getCouldNotCompute();
8806 }
8807
8808 // The only time we can solve this is when we have all constant indices.
8809 // Otherwise, we cannot determine the overflow conditions.
8810 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8811 return SE.getCouldNotCompute();
8812
8813 // Okay at this point we know that all elements of the chrec are constants and
8814 // that the start element is zero.
8815
8816 // First check to see if the range contains zero. If not, the first
8817 // iteration exits.
8818 unsigned BitWidth = SE.getTypeSizeInBits(getType());
8819 if (!Range.contains(APInt(BitWidth, 0)))
8820 return SE.getZero(getType());
8821
8822 if (isAffine()) {
8823 // If this is an affine expression then we have this situation:
8824 // Solve {0,+,A} in Range === Ax in Range
8825
8826 // We know that zero is in the range. If A is positive then we know that
8827 // the upper value of the range must be the first possible exit value.
8828 // If A is negative then the lower of the range is the last possible loop
8829 // value. Also note that we already checked for a full range.
8830 APInt One(BitWidth,1);
8831 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8832 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8833
8834 // The exit value should be (End+A)/A.
8835 APInt ExitVal = (End + A).udiv(A);
8836 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8837
8838 // Evaluate at the exit value. If we really did fall out of the valid
8839 // range, then we computed our trip count, otherwise wrap around or other
8840 // things must have happened.
8841 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8842 if (Range.contains(Val->getValue()))
8843 return SE.getCouldNotCompute(); // Something strange happened
8844
8845 // Ensure that the previous value is in the range. This is a sanity check.
8846 assert(Range.contains(
8847 EvaluateConstantChrecAtConstant(this,
8848 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8849 "Linear scev computation is off in a bad way!");
8850 return SE.getConstant(ExitValue);
8851 } else if (isQuadratic()) {
8852 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8853 // quadratic equation to solve it. To do this, we must frame our problem in
8854 // terms of figuring out when zero is crossed, instead of when
8855 // Range.getUpper() is crossed.
8856 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8857 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8858 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8859 // getNoWrapFlags(FlagNW)
8860 FlagAnyWrap);
8861
8862 // Next, solve the constructed addrec
8863 if (auto Roots =
8864 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8865 const SCEVConstant *R1 = Roots->first;
8866 const SCEVConstant *R2 = Roots->second;
8867 // Pick the smallest positive root value.
8868 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8869 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8870 if (!CB->getZExtValue())
8871 std::swap(R1, R2); // R1 is the minimum root now.
8872
8873 // Make sure the root is not off by one. The returned iteration should
8874 // not be in the range, but the previous one should be. When solving
8875 // for "X*X < 5", for example, we should not return a root of 2.
8876 ConstantInt *R1Val =
8877 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8878 if (Range.contains(R1Val->getValue())) {
8879 // The next iteration must be out of the range...
8880 ConstantInt *NextVal =
8881 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8882
8883 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8884 if (!Range.contains(R1Val->getValue()))
8885 return SE.getConstant(NextVal);
8886 return SE.getCouldNotCompute(); // Something strange happened
8887 }
8888
8889 // If R1 was not in the range, then it is a good return value. Make
8890 // sure that R1-1 WAS in the range though, just in case.
8891 ConstantInt *NextVal =
8892 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8893 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8894 if (Range.contains(R1Val->getValue()))
8895 return R1;
8896 return SE.getCouldNotCompute(); // Something strange happened
8897 }
8898 }
8899 }
8900
8901 return SE.getCouldNotCompute();
8902 }
8903
8904 namespace {
8905 struct FindUndefs {
8906 bool Found;
FindUndefs__anond3aa2a801711::FindUndefs8907 FindUndefs() : Found(false) {}
8908
follow__anond3aa2a801711::FindUndefs8909 bool follow(const SCEV *S) {
8910 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8911 if (isa<UndefValue>(C->getValue()))
8912 Found = true;
8913 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8914 if (isa<UndefValue>(C->getValue()))
8915 Found = true;
8916 }
8917
8918 // Keep looking if we haven't found it yet.
8919 return !Found;
8920 }
isDone__anond3aa2a801711::FindUndefs8921 bool isDone() const {
8922 // Stop recursion if we have found an undef.
8923 return Found;
8924 }
8925 };
8926 }
8927
8928 // Return true when S contains at least an undef value.
8929 static inline bool
containsUndefs(const SCEV * S)8930 containsUndefs(const SCEV *S) {
8931 FindUndefs F;
8932 SCEVTraversal<FindUndefs> ST(F);
8933 ST.visitAll(S);
8934
8935 return F.Found;
8936 }
8937
8938 namespace {
8939 // Collect all steps of SCEV expressions.
8940 struct SCEVCollectStrides {
8941 ScalarEvolution &SE;
8942 SmallVectorImpl<const SCEV *> &Strides;
8943
SCEVCollectStrides__anond3aa2a801811::SCEVCollectStrides8944 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8945 : SE(SE), Strides(S) {}
8946
follow__anond3aa2a801811::SCEVCollectStrides8947 bool follow(const SCEV *S) {
8948 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8949 Strides.push_back(AR->getStepRecurrence(SE));
8950 return true;
8951 }
isDone__anond3aa2a801811::SCEVCollectStrides8952 bool isDone() const { return false; }
8953 };
8954
8955 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8956 struct SCEVCollectTerms {
8957 SmallVectorImpl<const SCEV *> &Terms;
8958
SCEVCollectTerms__anond3aa2a801811::SCEVCollectTerms8959 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8960 : Terms(T) {}
8961
follow__anond3aa2a801811::SCEVCollectTerms8962 bool follow(const SCEV *S) {
8963 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8964 if (!containsUndefs(S))
8965 Terms.push_back(S);
8966
8967 // Stop recursion: once we collected a term, do not walk its operands.
8968 return false;
8969 }
8970
8971 // Keep looking.
8972 return true;
8973 }
isDone__anond3aa2a801811::SCEVCollectTerms8974 bool isDone() const { return false; }
8975 };
8976
8977 // Check if a SCEV contains an AddRecExpr.
8978 struct SCEVHasAddRec {
8979 bool &ContainsAddRec;
8980
SCEVHasAddRec__anond3aa2a801811::SCEVHasAddRec8981 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8982 ContainsAddRec = false;
8983 }
8984
follow__anond3aa2a801811::SCEVHasAddRec8985 bool follow(const SCEV *S) {
8986 if (isa<SCEVAddRecExpr>(S)) {
8987 ContainsAddRec = true;
8988
8989 // Stop recursion: once we collected a term, do not walk its operands.
8990 return false;
8991 }
8992
8993 // Keep looking.
8994 return true;
8995 }
isDone__anond3aa2a801811::SCEVHasAddRec8996 bool isDone() const { return false; }
8997 };
8998
8999 // Find factors that are multiplied with an expression that (possibly as a
9000 // subexpression) contains an AddRecExpr. In the expression:
9001 //
9002 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
9003 //
9004 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9005 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9006 // parameters as they form a product with an induction variable.
9007 //
9008 // This collector expects all array size parameters to be in the same MulExpr.
9009 // It might be necessary to later add support for collecting parameters that are
9010 // spread over different nested MulExpr.
9011 struct SCEVCollectAddRecMultiplies {
9012 SmallVectorImpl<const SCEV *> &Terms;
9013 ScalarEvolution &SE;
9014
SCEVCollectAddRecMultiplies__anond3aa2a801811::SCEVCollectAddRecMultiplies9015 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9016 : Terms(T), SE(SE) {}
9017
follow__anond3aa2a801811::SCEVCollectAddRecMultiplies9018 bool follow(const SCEV *S) {
9019 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9020 bool HasAddRec = false;
9021 SmallVector<const SCEV *, 0> Operands;
9022 for (auto Op : Mul->operands()) {
9023 if (isa<SCEVUnknown>(Op)) {
9024 Operands.push_back(Op);
9025 } else {
9026 bool ContainsAddRec;
9027 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9028 visitAll(Op, ContiansAddRec);
9029 HasAddRec |= ContainsAddRec;
9030 }
9031 }
9032 if (Operands.size() == 0)
9033 return true;
9034
9035 if (!HasAddRec)
9036 return false;
9037
9038 Terms.push_back(SE.getMulExpr(Operands));
9039 // Stop recursion: once we collected a term, do not walk its operands.
9040 return false;
9041 }
9042
9043 // Keep looking.
9044 return true;
9045 }
isDone__anond3aa2a801811::SCEVCollectAddRecMultiplies9046 bool isDone() const { return false; }
9047 };
9048 }
9049
9050 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9051 /// two places:
9052 /// 1) The strides of AddRec expressions.
9053 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)9054 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9055 SmallVectorImpl<const SCEV *> &Terms) {
9056 SmallVector<const SCEV *, 4> Strides;
9057 SCEVCollectStrides StrideCollector(*this, Strides);
9058 visitAll(Expr, StrideCollector);
9059
9060 DEBUG({
9061 dbgs() << "Strides:\n";
9062 for (const SCEV *S : Strides)
9063 dbgs() << *S << "\n";
9064 });
9065
9066 for (const SCEV *S : Strides) {
9067 SCEVCollectTerms TermCollector(Terms);
9068 visitAll(S, TermCollector);
9069 }
9070
9071 DEBUG({
9072 dbgs() << "Terms:\n";
9073 for (const SCEV *T : Terms)
9074 dbgs() << *T << "\n";
9075 });
9076
9077 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9078 visitAll(Expr, MulCollector);
9079 }
9080
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)9081 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9082 SmallVectorImpl<const SCEV *> &Terms,
9083 SmallVectorImpl<const SCEV *> &Sizes) {
9084 int Last = Terms.size() - 1;
9085 const SCEV *Step = Terms[Last];
9086
9087 // End of recursion.
9088 if (Last == 0) {
9089 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9090 SmallVector<const SCEV *, 2> Qs;
9091 for (const SCEV *Op : M->operands())
9092 if (!isa<SCEVConstant>(Op))
9093 Qs.push_back(Op);
9094
9095 Step = SE.getMulExpr(Qs);
9096 }
9097
9098 Sizes.push_back(Step);
9099 return true;
9100 }
9101
9102 for (const SCEV *&Term : Terms) {
9103 // Normalize the terms before the next call to findArrayDimensionsRec.
9104 const SCEV *Q, *R;
9105 SCEVDivision::divide(SE, Term, Step, &Q, &R);
9106
9107 // Bail out when GCD does not evenly divide one of the terms.
9108 if (!R->isZero())
9109 return false;
9110
9111 Term = Q;
9112 }
9113
9114 // Remove all SCEVConstants.
9115 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9116 return isa<SCEVConstant>(E);
9117 }),
9118 Terms.end());
9119
9120 if (Terms.size() > 0)
9121 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9122 return false;
9123
9124 Sizes.push_back(Step);
9125 return true;
9126 }
9127
9128 // Returns true when S contains at least a SCEVUnknown parameter.
9129 static inline bool
containsParameters(const SCEV * S)9130 containsParameters(const SCEV *S) {
9131 struct FindParameter {
9132 bool FoundParameter;
9133 FindParameter() : FoundParameter(false) {}
9134
9135 bool follow(const SCEV *S) {
9136 if (isa<SCEVUnknown>(S)) {
9137 FoundParameter = true;
9138 // Stop recursion: we found a parameter.
9139 return false;
9140 }
9141 // Keep looking.
9142 return true;
9143 }
9144 bool isDone() const {
9145 // Stop recursion if we have found a parameter.
9146 return FoundParameter;
9147 }
9148 };
9149
9150 FindParameter F;
9151 SCEVTraversal<FindParameter> ST(F);
9152 ST.visitAll(S);
9153
9154 return F.FoundParameter;
9155 }
9156
9157 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9158 static inline bool
containsParameters(SmallVectorImpl<const SCEV * > & Terms)9159 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9160 for (const SCEV *T : Terms)
9161 if (containsParameters(T))
9162 return true;
9163 return false;
9164 }
9165
9166 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)9167 static inline int numberOfTerms(const SCEV *S) {
9168 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9169 return Expr->getNumOperands();
9170 return 1;
9171 }
9172
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)9173 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9174 if (isa<SCEVConstant>(T))
9175 return nullptr;
9176
9177 if (isa<SCEVUnknown>(T))
9178 return T;
9179
9180 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9181 SmallVector<const SCEV *, 2> Factors;
9182 for (const SCEV *Op : M->operands())
9183 if (!isa<SCEVConstant>(Op))
9184 Factors.push_back(Op);
9185
9186 return SE.getMulExpr(Factors);
9187 }
9188
9189 return T;
9190 }
9191
9192 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)9193 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9194 Type *Ty;
9195 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9196 Ty = Store->getValueOperand()->getType();
9197 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9198 Ty = Load->getType();
9199 else
9200 return nullptr;
9201
9202 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9203 return getSizeOfExpr(ETy, Ty);
9204 }
9205
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize) const9206 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9207 SmallVectorImpl<const SCEV *> &Sizes,
9208 const SCEV *ElementSize) const {
9209 if (Terms.size() < 1 || !ElementSize)
9210 return;
9211
9212 // Early return when Terms do not contain parameters: we do not delinearize
9213 // non parametric SCEVs.
9214 if (!containsParameters(Terms))
9215 return;
9216
9217 DEBUG({
9218 dbgs() << "Terms:\n";
9219 for (const SCEV *T : Terms)
9220 dbgs() << *T << "\n";
9221 });
9222
9223 // Remove duplicates.
9224 std::sort(Terms.begin(), Terms.end());
9225 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9226
9227 // Put larger terms first.
9228 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9229 return numberOfTerms(LHS) > numberOfTerms(RHS);
9230 });
9231
9232 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9233
9234 // Try to divide all terms by the element size. If term is not divisible by
9235 // element size, proceed with the original term.
9236 for (const SCEV *&Term : Terms) {
9237 const SCEV *Q, *R;
9238 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9239 if (!Q->isZero())
9240 Term = Q;
9241 }
9242
9243 SmallVector<const SCEV *, 4> NewTerms;
9244
9245 // Remove constant factors.
9246 for (const SCEV *T : Terms)
9247 if (const SCEV *NewT = removeConstantFactors(SE, T))
9248 NewTerms.push_back(NewT);
9249
9250 DEBUG({
9251 dbgs() << "Terms after sorting:\n";
9252 for (const SCEV *T : NewTerms)
9253 dbgs() << *T << "\n";
9254 });
9255
9256 if (NewTerms.empty() ||
9257 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9258 Sizes.clear();
9259 return;
9260 }
9261
9262 // The last element to be pushed into Sizes is the size of an element.
9263 Sizes.push_back(ElementSize);
9264
9265 DEBUG({
9266 dbgs() << "Sizes:\n";
9267 for (const SCEV *S : Sizes)
9268 dbgs() << *S << "\n";
9269 });
9270 }
9271
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)9272 void ScalarEvolution::computeAccessFunctions(
9273 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9274 SmallVectorImpl<const SCEV *> &Sizes) {
9275
9276 // Early exit in case this SCEV is not an affine multivariate function.
9277 if (Sizes.empty())
9278 return;
9279
9280 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9281 if (!AR->isAffine())
9282 return;
9283
9284 const SCEV *Res = Expr;
9285 int Last = Sizes.size() - 1;
9286 for (int i = Last; i >= 0; i--) {
9287 const SCEV *Q, *R;
9288 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9289
9290 DEBUG({
9291 dbgs() << "Res: " << *Res << "\n";
9292 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9293 dbgs() << "Res divided by Sizes[i]:\n";
9294 dbgs() << "Quotient: " << *Q << "\n";
9295 dbgs() << "Remainder: " << *R << "\n";
9296 });
9297
9298 Res = Q;
9299
9300 // Do not record the last subscript corresponding to the size of elements in
9301 // the array.
9302 if (i == Last) {
9303
9304 // Bail out if the remainder is too complex.
9305 if (isa<SCEVAddRecExpr>(R)) {
9306 Subscripts.clear();
9307 Sizes.clear();
9308 return;
9309 }
9310
9311 continue;
9312 }
9313
9314 // Record the access function for the current subscript.
9315 Subscripts.push_back(R);
9316 }
9317
9318 // Also push in last position the remainder of the last division: it will be
9319 // the access function of the innermost dimension.
9320 Subscripts.push_back(Res);
9321
9322 std::reverse(Subscripts.begin(), Subscripts.end());
9323
9324 DEBUG({
9325 dbgs() << "Subscripts:\n";
9326 for (const SCEV *S : Subscripts)
9327 dbgs() << *S << "\n";
9328 });
9329 }
9330
9331 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9332 /// sizes of an array access. Returns the remainder of the delinearization that
9333 /// is the offset start of the array. The SCEV->delinearize algorithm computes
9334 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9335 /// expressions in the stride and base of a SCEV corresponding to the
9336 /// computation of a GCD (greatest common divisor) of base and stride. When
9337 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9338 ///
9339 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9340 ///
9341 /// void foo(long n, long m, long o, double A[n][m][o]) {
9342 ///
9343 /// for (long i = 0; i < n; i++)
9344 /// for (long j = 0; j < m; j++)
9345 /// for (long k = 0; k < o; k++)
9346 /// A[i][j][k] = 1.0;
9347 /// }
9348 ///
9349 /// the delinearization input is the following AddRec SCEV:
9350 ///
9351 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9352 ///
9353 /// From this SCEV, we are able to say that the base offset of the access is %A
9354 /// because it appears as an offset that does not divide any of the strides in
9355 /// the loops:
9356 ///
9357 /// CHECK: Base offset: %A
9358 ///
9359 /// and then SCEV->delinearize determines the size of some of the dimensions of
9360 /// the array as these are the multiples by which the strides are happening:
9361 ///
9362 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9363 ///
9364 /// Note that the outermost dimension remains of UnknownSize because there are
9365 /// no strides that would help identifying the size of the last dimension: when
9366 /// the array has been statically allocated, one could compute the size of that
9367 /// dimension by dividing the overall size of the array by the size of the known
9368 /// dimensions: %m * %o * 8.
9369 ///
9370 /// Finally delinearize provides the access functions for the array reference
9371 /// that does correspond to A[i][j][k] of the above C testcase:
9372 ///
9373 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9374 ///
9375 /// The testcases are checking the output of a function pass:
9376 /// DelinearizationPass that walks through all loads and stores of a function
9377 /// asking for the SCEV of the memory access with respect to all enclosing
9378 /// loops, calling SCEV->delinearize on that and printing the results.
9379
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)9380 void ScalarEvolution::delinearize(const SCEV *Expr,
9381 SmallVectorImpl<const SCEV *> &Subscripts,
9382 SmallVectorImpl<const SCEV *> &Sizes,
9383 const SCEV *ElementSize) {
9384 // First step: collect parametric terms.
9385 SmallVector<const SCEV *, 4> Terms;
9386 collectParametricTerms(Expr, Terms);
9387
9388 if (Terms.empty())
9389 return;
9390
9391 // Second step: find subscript sizes.
9392 findArrayDimensions(Terms, Sizes, ElementSize);
9393
9394 if (Sizes.empty())
9395 return;
9396
9397 // Third step: compute the access functions for each subscript.
9398 computeAccessFunctions(Expr, Subscripts, Sizes);
9399
9400 if (Subscripts.empty())
9401 return;
9402
9403 DEBUG({
9404 dbgs() << "succeeded to delinearize " << *Expr << "\n";
9405 dbgs() << "ArrayDecl[UnknownSize]";
9406 for (const SCEV *S : Sizes)
9407 dbgs() << "[" << *S << "]";
9408
9409 dbgs() << "\nArrayRef";
9410 for (const SCEV *S : Subscripts)
9411 dbgs() << "[" << *S << "]";
9412 dbgs() << "\n";
9413 });
9414 }
9415
9416 //===----------------------------------------------------------------------===//
9417 // SCEVCallbackVH Class Implementation
9418 //===----------------------------------------------------------------------===//
9419
deleted()9420 void ScalarEvolution::SCEVCallbackVH::deleted() {
9421 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9422 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9423 SE->ConstantEvolutionLoopExitValue.erase(PN);
9424 SE->eraseValueFromMap(getValPtr());
9425 // this now dangles!
9426 }
9427
allUsesReplacedWith(Value * V)9428 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9429 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9430
9431 // Forget all the expressions associated with users of the old value,
9432 // so that future queries will recompute the expressions using the new
9433 // value.
9434 Value *Old = getValPtr();
9435 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9436 SmallPtrSet<User *, 8> Visited;
9437 while (!Worklist.empty()) {
9438 User *U = Worklist.pop_back_val();
9439 // Deleting the Old value will cause this to dangle. Postpone
9440 // that until everything else is done.
9441 if (U == Old)
9442 continue;
9443 if (!Visited.insert(U).second)
9444 continue;
9445 if (PHINode *PN = dyn_cast<PHINode>(U))
9446 SE->ConstantEvolutionLoopExitValue.erase(PN);
9447 SE->eraseValueFromMap(U);
9448 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9449 }
9450 // Delete the Old value.
9451 if (PHINode *PN = dyn_cast<PHINode>(Old))
9452 SE->ConstantEvolutionLoopExitValue.erase(PN);
9453 SE->eraseValueFromMap(Old);
9454 // this now dangles!
9455 }
9456
SCEVCallbackVH(Value * V,ScalarEvolution * se)9457 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9458 : CallbackVH(V), SE(se) {}
9459
9460 //===----------------------------------------------------------------------===//
9461 // ScalarEvolution Class Implementation
9462 //===----------------------------------------------------------------------===//
9463
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)9464 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9465 AssumptionCache &AC, DominatorTree &DT,
9466 LoopInfo &LI)
9467 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9468 CouldNotCompute(new SCEVCouldNotCompute()),
9469 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9470 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9471 FirstUnknown(nullptr) {
9472
9473 // To use guards for proving predicates, we need to scan every instruction in
9474 // relevant basic blocks, and not just terminators. Doing this is a waste of
9475 // time if the IR does not actually contain any calls to
9476 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9477 //
9478 // This pessimizes the case where a pass that preserves ScalarEvolution wants
9479 // to _add_ guards to the module when there weren't any before, and wants
9480 // ScalarEvolution to optimize based on those guards. For now we prefer to be
9481 // efficient in lieu of being smart in that rather obscure case.
9482
9483 auto *GuardDecl = F.getParent()->getFunction(
9484 Intrinsic::getName(Intrinsic::experimental_guard));
9485 HasGuards = GuardDecl && !GuardDecl->use_empty();
9486 }
9487
ScalarEvolution(ScalarEvolution && Arg)9488 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9489 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9490 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9491 ValueExprMap(std::move(Arg.ValueExprMap)),
9492 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9493 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9494 PredicatedBackedgeTakenCounts(
9495 std::move(Arg.PredicatedBackedgeTakenCounts)),
9496 ConstantEvolutionLoopExitValue(
9497 std::move(Arg.ConstantEvolutionLoopExitValue)),
9498 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9499 LoopDispositions(std::move(Arg.LoopDispositions)),
9500 BlockDispositions(std::move(Arg.BlockDispositions)),
9501 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9502 SignedRanges(std::move(Arg.SignedRanges)),
9503 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9504 UniquePreds(std::move(Arg.UniquePreds)),
9505 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9506 FirstUnknown(Arg.FirstUnknown) {
9507 Arg.FirstUnknown = nullptr;
9508 }
9509
~ScalarEvolution()9510 ScalarEvolution::~ScalarEvolution() {
9511 // Iterate through all the SCEVUnknown instances and call their
9512 // destructors, so that they release their references to their values.
9513 for (SCEVUnknown *U = FirstUnknown; U;) {
9514 SCEVUnknown *Tmp = U;
9515 U = U->Next;
9516 Tmp->~SCEVUnknown();
9517 }
9518 FirstUnknown = nullptr;
9519
9520 ExprValueMap.clear();
9521 ValueExprMap.clear();
9522 HasRecMap.clear();
9523
9524 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9525 // that a loop had multiple computable exits.
9526 for (auto &BTCI : BackedgeTakenCounts)
9527 BTCI.second.clear();
9528 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9529 BTCI.second.clear();
9530
9531 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9532 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9533 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9534 }
9535
hasLoopInvariantBackedgeTakenCount(const Loop * L)9536 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9537 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9538 }
9539
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)9540 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9541 const Loop *L) {
9542 // Print all inner loops first
9543 for (Loop *I : *L)
9544 PrintLoopInfo(OS, SE, I);
9545
9546 OS << "Loop ";
9547 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9548 OS << ": ";
9549
9550 SmallVector<BasicBlock *, 8> ExitBlocks;
9551 L->getExitBlocks(ExitBlocks);
9552 if (ExitBlocks.size() != 1)
9553 OS << "<multiple exits> ";
9554
9555 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9556 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9557 } else {
9558 OS << "Unpredictable backedge-taken count. ";
9559 }
9560
9561 OS << "\n"
9562 "Loop ";
9563 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9564 OS << ": ";
9565
9566 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9567 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9568 } else {
9569 OS << "Unpredictable max backedge-taken count. ";
9570 }
9571
9572 OS << "\n"
9573 "Loop ";
9574 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9575 OS << ": ";
9576
9577 SCEVUnionPredicate Pred;
9578 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9579 if (!isa<SCEVCouldNotCompute>(PBT)) {
9580 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9581 OS << " Predicates:\n";
9582 Pred.print(OS, 4);
9583 } else {
9584 OS << "Unpredictable predicated backedge-taken count. ";
9585 }
9586 OS << "\n";
9587 }
9588
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)9589 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9590 switch (LD) {
9591 case ScalarEvolution::LoopVariant:
9592 return "Variant";
9593 case ScalarEvolution::LoopInvariant:
9594 return "Invariant";
9595 case ScalarEvolution::LoopComputable:
9596 return "Computable";
9597 }
9598 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9599 }
9600
print(raw_ostream & OS) const9601 void ScalarEvolution::print(raw_ostream &OS) const {
9602 // ScalarEvolution's implementation of the print method is to print
9603 // out SCEV values of all instructions that are interesting. Doing
9604 // this potentially causes it to create new SCEV objects though,
9605 // which technically conflicts with the const qualifier. This isn't
9606 // observable from outside the class though, so casting away the
9607 // const isn't dangerous.
9608 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9609
9610 OS << "Classifying expressions for: ";
9611 F.printAsOperand(OS, /*PrintType=*/false);
9612 OS << "\n";
9613 for (Instruction &I : instructions(F))
9614 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9615 OS << I << '\n';
9616 OS << " --> ";
9617 const SCEV *SV = SE.getSCEV(&I);
9618 SV->print(OS);
9619 if (!isa<SCEVCouldNotCompute>(SV)) {
9620 OS << " U: ";
9621 SE.getUnsignedRange(SV).print(OS);
9622 OS << " S: ";
9623 SE.getSignedRange(SV).print(OS);
9624 }
9625
9626 const Loop *L = LI.getLoopFor(I.getParent());
9627
9628 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9629 if (AtUse != SV) {
9630 OS << " --> ";
9631 AtUse->print(OS);
9632 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9633 OS << " U: ";
9634 SE.getUnsignedRange(AtUse).print(OS);
9635 OS << " S: ";
9636 SE.getSignedRange(AtUse).print(OS);
9637 }
9638 }
9639
9640 if (L) {
9641 OS << "\t\t" "Exits: ";
9642 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9643 if (!SE.isLoopInvariant(ExitValue, L)) {
9644 OS << "<<Unknown>>";
9645 } else {
9646 OS << *ExitValue;
9647 }
9648
9649 bool First = true;
9650 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9651 if (First) {
9652 OS << "\t\t" "LoopDispositions: { ";
9653 First = false;
9654 } else {
9655 OS << ", ";
9656 }
9657
9658 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9659 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9660 }
9661
9662 for (auto *InnerL : depth_first(L)) {
9663 if (InnerL == L)
9664 continue;
9665 if (First) {
9666 OS << "\t\t" "LoopDispositions: { ";
9667 First = false;
9668 } else {
9669 OS << ", ";
9670 }
9671
9672 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9673 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9674 }
9675
9676 OS << " }";
9677 }
9678
9679 OS << "\n";
9680 }
9681
9682 OS << "Determining loop execution counts for: ";
9683 F.printAsOperand(OS, /*PrintType=*/false);
9684 OS << "\n";
9685 for (Loop *I : LI)
9686 PrintLoopInfo(OS, &SE, I);
9687 }
9688
9689 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)9690 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9691 auto &Values = LoopDispositions[S];
9692 for (auto &V : Values) {
9693 if (V.getPointer() == L)
9694 return V.getInt();
9695 }
9696 Values.emplace_back(L, LoopVariant);
9697 LoopDisposition D = computeLoopDisposition(S, L);
9698 auto &Values2 = LoopDispositions[S];
9699 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9700 if (V.getPointer() == L) {
9701 V.setInt(D);
9702 break;
9703 }
9704 }
9705 return D;
9706 }
9707
9708 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)9709 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9710 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9711 case scConstant:
9712 return LoopInvariant;
9713 case scTruncate:
9714 case scZeroExtend:
9715 case scSignExtend:
9716 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9717 case scAddRecExpr: {
9718 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9719
9720 // If L is the addrec's loop, it's computable.
9721 if (AR->getLoop() == L)
9722 return LoopComputable;
9723
9724 // Add recurrences are never invariant in the function-body (null loop).
9725 if (!L)
9726 return LoopVariant;
9727
9728 // This recurrence is variant w.r.t. L if L contains AR's loop.
9729 if (L->contains(AR->getLoop()))
9730 return LoopVariant;
9731
9732 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9733 if (AR->getLoop()->contains(L))
9734 return LoopInvariant;
9735
9736 // This recurrence is variant w.r.t. L if any of its operands
9737 // are variant.
9738 for (auto *Op : AR->operands())
9739 if (!isLoopInvariant(Op, L))
9740 return LoopVariant;
9741
9742 // Otherwise it's loop-invariant.
9743 return LoopInvariant;
9744 }
9745 case scAddExpr:
9746 case scMulExpr:
9747 case scUMaxExpr:
9748 case scSMaxExpr: {
9749 bool HasVarying = false;
9750 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9751 LoopDisposition D = getLoopDisposition(Op, L);
9752 if (D == LoopVariant)
9753 return LoopVariant;
9754 if (D == LoopComputable)
9755 HasVarying = true;
9756 }
9757 return HasVarying ? LoopComputable : LoopInvariant;
9758 }
9759 case scUDivExpr: {
9760 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9761 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9762 if (LD == LoopVariant)
9763 return LoopVariant;
9764 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9765 if (RD == LoopVariant)
9766 return LoopVariant;
9767 return (LD == LoopInvariant && RD == LoopInvariant) ?
9768 LoopInvariant : LoopComputable;
9769 }
9770 case scUnknown:
9771 // All non-instruction values are loop invariant. All instructions are loop
9772 // invariant if they are not contained in the specified loop.
9773 // Instructions are never considered invariant in the function body
9774 // (null loop) because they are defined within the "loop".
9775 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9776 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9777 return LoopInvariant;
9778 case scCouldNotCompute:
9779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9780 }
9781 llvm_unreachable("Unknown SCEV kind!");
9782 }
9783
isLoopInvariant(const SCEV * S,const Loop * L)9784 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9785 return getLoopDisposition(S, L) == LoopInvariant;
9786 }
9787
hasComputableLoopEvolution(const SCEV * S,const Loop * L)9788 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9789 return getLoopDisposition(S, L) == LoopComputable;
9790 }
9791
9792 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)9793 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9794 auto &Values = BlockDispositions[S];
9795 for (auto &V : Values) {
9796 if (V.getPointer() == BB)
9797 return V.getInt();
9798 }
9799 Values.emplace_back(BB, DoesNotDominateBlock);
9800 BlockDisposition D = computeBlockDisposition(S, BB);
9801 auto &Values2 = BlockDispositions[S];
9802 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9803 if (V.getPointer() == BB) {
9804 V.setInt(D);
9805 break;
9806 }
9807 }
9808 return D;
9809 }
9810
9811 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)9812 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9813 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9814 case scConstant:
9815 return ProperlyDominatesBlock;
9816 case scTruncate:
9817 case scZeroExtend:
9818 case scSignExtend:
9819 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9820 case scAddRecExpr: {
9821 // This uses a "dominates" query instead of "properly dominates" query
9822 // to test for proper dominance too, because the instruction which
9823 // produces the addrec's value is a PHI, and a PHI effectively properly
9824 // dominates its entire containing block.
9825 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9826 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9827 return DoesNotDominateBlock;
9828 }
9829 // FALL THROUGH into SCEVNAryExpr handling.
9830 case scAddExpr:
9831 case scMulExpr:
9832 case scUMaxExpr:
9833 case scSMaxExpr: {
9834 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9835 bool Proper = true;
9836 for (const SCEV *NAryOp : NAry->operands()) {
9837 BlockDisposition D = getBlockDisposition(NAryOp, BB);
9838 if (D == DoesNotDominateBlock)
9839 return DoesNotDominateBlock;
9840 if (D == DominatesBlock)
9841 Proper = false;
9842 }
9843 return Proper ? ProperlyDominatesBlock : DominatesBlock;
9844 }
9845 case scUDivExpr: {
9846 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9847 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9848 BlockDisposition LD = getBlockDisposition(LHS, BB);
9849 if (LD == DoesNotDominateBlock)
9850 return DoesNotDominateBlock;
9851 BlockDisposition RD = getBlockDisposition(RHS, BB);
9852 if (RD == DoesNotDominateBlock)
9853 return DoesNotDominateBlock;
9854 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9855 ProperlyDominatesBlock : DominatesBlock;
9856 }
9857 case scUnknown:
9858 if (Instruction *I =
9859 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9860 if (I->getParent() == BB)
9861 return DominatesBlock;
9862 if (DT.properlyDominates(I->getParent(), BB))
9863 return ProperlyDominatesBlock;
9864 return DoesNotDominateBlock;
9865 }
9866 return ProperlyDominatesBlock;
9867 case scCouldNotCompute:
9868 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9869 }
9870 llvm_unreachable("Unknown SCEV kind!");
9871 }
9872
dominates(const SCEV * S,const BasicBlock * BB)9873 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9874 return getBlockDisposition(S, BB) >= DominatesBlock;
9875 }
9876
properlyDominates(const SCEV * S,const BasicBlock * BB)9877 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9878 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9879 }
9880
hasOperand(const SCEV * S,const SCEV * Op) const9881 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9882 // Search for a SCEV expression node within an expression tree.
9883 // Implements SCEVTraversal::Visitor.
9884 struct SCEVSearch {
9885 const SCEV *Node;
9886 bool IsFound;
9887
9888 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9889
9890 bool follow(const SCEV *S) {
9891 IsFound |= (S == Node);
9892 return !IsFound;
9893 }
9894 bool isDone() const { return IsFound; }
9895 };
9896
9897 SCEVSearch Search(Op);
9898 visitAll(S, Search);
9899 return Search.IsFound;
9900 }
9901
forgetMemoizedResults(const SCEV * S)9902 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9903 ValuesAtScopes.erase(S);
9904 LoopDispositions.erase(S);
9905 BlockDispositions.erase(S);
9906 UnsignedRanges.erase(S);
9907 SignedRanges.erase(S);
9908 ExprValueMap.erase(S);
9909 HasRecMap.erase(S);
9910
9911 auto RemoveSCEVFromBackedgeMap =
9912 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9913 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9914 BackedgeTakenInfo &BEInfo = I->second;
9915 if (BEInfo.hasOperand(S, this)) {
9916 BEInfo.clear();
9917 Map.erase(I++);
9918 } else
9919 ++I;
9920 }
9921 };
9922
9923 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9924 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9925 }
9926
9927 typedef DenseMap<const Loop *, std::string> VerifyMap;
9928
9929 /// replaceSubString - Replaces all occurrences of From in Str with To.
replaceSubString(std::string & Str,StringRef From,StringRef To)9930 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9931 size_t Pos = 0;
9932 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9933 Str.replace(Pos, From.size(), To.data(), To.size());
9934 Pos += To.size();
9935 }
9936 }
9937
9938 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9939 static void
getLoopBackedgeTakenCounts(Loop * L,VerifyMap & Map,ScalarEvolution & SE)9940 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9941 std::string &S = Map[L];
9942 if (S.empty()) {
9943 raw_string_ostream OS(S);
9944 SE.getBackedgeTakenCount(L)->print(OS);
9945
9946 // false and 0 are semantically equivalent. This can happen in dead loops.
9947 replaceSubString(OS.str(), "false", "0");
9948 // Remove wrap flags, their use in SCEV is highly fragile.
9949 // FIXME: Remove this when SCEV gets smarter about them.
9950 replaceSubString(OS.str(), "<nw>", "");
9951 replaceSubString(OS.str(), "<nsw>", "");
9952 replaceSubString(OS.str(), "<nuw>", "");
9953 }
9954
9955 for (auto *R : reverse(*L))
9956 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9957 }
9958
verify() const9959 void ScalarEvolution::verify() const {
9960 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9961
9962 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9963 // FIXME: It would be much better to store actual values instead of strings,
9964 // but SCEV pointers will change if we drop the caches.
9965 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9966 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9967 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9968
9969 // Gather stringified backedge taken counts for all loops using a fresh
9970 // ScalarEvolution object.
9971 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9972 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9973 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9974
9975 // Now compare whether they're the same with and without caches. This allows
9976 // verifying that no pass changed the cache.
9977 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9978 "New loops suddenly appeared!");
9979
9980 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9981 OldE = BackedgeDumpsOld.end(),
9982 NewI = BackedgeDumpsNew.begin();
9983 OldI != OldE; ++OldI, ++NewI) {
9984 assert(OldI->first == NewI->first && "Loop order changed!");
9985
9986 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9987 // changes.
9988 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9989 // means that a pass is buggy or SCEV has to learn a new pattern but is
9990 // usually not harmful.
9991 if (OldI->second != NewI->second &&
9992 OldI->second.find("undef") == std::string::npos &&
9993 NewI->second.find("undef") == std::string::npos &&
9994 OldI->second != "***COULDNOTCOMPUTE***" &&
9995 NewI->second != "***COULDNOTCOMPUTE***") {
9996 dbgs() << "SCEVValidator: SCEV for loop '"
9997 << OldI->first->getHeader()->getName()
9998 << "' changed from '" << OldI->second
9999 << "' to '" << NewI->second << "'!\n";
10000 std::abort();
10001 }
10002 }
10003
10004 // TODO: Verify more things.
10005 }
10006
10007 char ScalarEvolutionAnalysis::PassID;
10008
run(Function & F,AnalysisManager<Function> & AM)10009 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10010 AnalysisManager<Function> &AM) {
10011 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10012 AM.getResult<AssumptionAnalysis>(F),
10013 AM.getResult<DominatorTreeAnalysis>(F),
10014 AM.getResult<LoopAnalysis>(F));
10015 }
10016
10017 PreservedAnalyses
run(Function & F,AnalysisManager<Function> & AM)10018 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10019 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10020 return PreservedAnalyses::all();
10021 }
10022
10023 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10024 "Scalar Evolution Analysis", false, true)
10025 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10026 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10027 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10028 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10029 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10030 "Scalar Evolution Analysis", false, true)
10031 char ScalarEvolutionWrapperPass::ID = 0;
10032
ScalarEvolutionWrapperPass()10033 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10034 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10035 }
10036
runOnFunction(Function & F)10037 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10038 SE.reset(new ScalarEvolution(
10039 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10040 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10041 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10042 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10043 return false;
10044 }
10045
releaseMemory()10046 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10047
print(raw_ostream & OS,const Module *) const10048 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10049 SE->print(OS);
10050 }
10051
verifyAnalysis() const10052 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10053 if (!VerifySCEV)
10054 return;
10055
10056 SE->verify();
10057 }
10058
getAnalysisUsage(AnalysisUsage & AU) const10059 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10060 AU.setPreservesAll();
10061 AU.addRequiredTransitive<AssumptionCacheTracker>();
10062 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10063 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10064 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10065 }
10066
10067 const SCEVPredicate *
getEqualPredicate(const SCEVUnknown * LHS,const SCEVConstant * RHS)10068 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10069 const SCEVConstant *RHS) {
10070 FoldingSetNodeID ID;
10071 // Unique this node based on the arguments
10072 ID.AddInteger(SCEVPredicate::P_Equal);
10073 ID.AddPointer(LHS);
10074 ID.AddPointer(RHS);
10075 void *IP = nullptr;
10076 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10077 return S;
10078 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10079 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10080 UniquePreds.InsertNode(Eq, IP);
10081 return Eq;
10082 }
10083
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)10084 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10085 const SCEVAddRecExpr *AR,
10086 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10087 FoldingSetNodeID ID;
10088 // Unique this node based on the arguments
10089 ID.AddInteger(SCEVPredicate::P_Wrap);
10090 ID.AddPointer(AR);
10091 ID.AddInteger(AddedFlags);
10092 void *IP = nullptr;
10093 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10094 return S;
10095 auto *OF = new (SCEVAllocator)
10096 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10097 UniquePreds.InsertNode(OF, IP);
10098 return OF;
10099 }
10100
10101 namespace {
10102
10103 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10104 public:
10105 // Rewrites \p S in the context of a loop L and the predicate A.
10106 // If Assume is true, rewrite is free to add further predicates to A
10107 // such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SCEVUnionPredicate & A,bool Assume)10108 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10109 SCEVUnionPredicate &A, bool Assume) {
10110 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10111 return Rewriter.visit(S);
10112 }
10113
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SCEVUnionPredicate & P,bool Assume)10114 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10115 SCEVUnionPredicate &P, bool Assume)
10116 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10117
visitUnknown(const SCEVUnknown * Expr)10118 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10119 auto ExprPreds = P.getPredicatesForExpr(Expr);
10120 for (auto *Pred : ExprPreds)
10121 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10122 if (IPred->getLHS() == Expr)
10123 return IPred->getRHS();
10124
10125 return Expr;
10126 }
10127
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)10128 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10129 const SCEV *Operand = visit(Expr->getOperand());
10130 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10131 if (AR && AR->getLoop() == L && AR->isAffine()) {
10132 // This couldn't be folded because the operand didn't have the nuw
10133 // flag. Add the nusw flag as an assumption that we could make.
10134 const SCEV *Step = AR->getStepRecurrence(SE);
10135 Type *Ty = Expr->getType();
10136 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10137 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10138 SE.getSignExtendExpr(Step, Ty), L,
10139 AR->getNoWrapFlags());
10140 }
10141 return SE.getZeroExtendExpr(Operand, Expr->getType());
10142 }
10143
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)10144 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10145 const SCEV *Operand = visit(Expr->getOperand());
10146 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10147 if (AR && AR->getLoop() == L && AR->isAffine()) {
10148 // This couldn't be folded because the operand didn't have the nsw
10149 // flag. Add the nssw flag as an assumption that we could make.
10150 const SCEV *Step = AR->getStepRecurrence(SE);
10151 Type *Ty = Expr->getType();
10152 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10153 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10154 SE.getSignExtendExpr(Step, Ty), L,
10155 AR->getNoWrapFlags());
10156 }
10157 return SE.getSignExtendExpr(Operand, Expr->getType());
10158 }
10159
10160 private:
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)10161 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10162 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10163 auto *A = SE.getWrapPredicate(AR, AddedFlags);
10164 if (!Assume) {
10165 // Check if we've already made this assumption.
10166 if (P.implies(A))
10167 return true;
10168 return false;
10169 }
10170 P.add(A);
10171 return true;
10172 }
10173
10174 SCEVUnionPredicate &P;
10175 const Loop *L;
10176 bool Assume;
10177 };
10178 } // end anonymous namespace
10179
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)10180 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10181 SCEVUnionPredicate &Preds) {
10182 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10183 }
10184
10185 const SCEVAddRecExpr *
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)10186 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10187 SCEVUnionPredicate &Preds) {
10188 SCEVUnionPredicate TransformPreds;
10189 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10190 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10191
10192 if (!AddRec)
10193 return nullptr;
10194
10195 // Since the transformation was successful, we can now transfer the SCEV
10196 // predicates.
10197 Preds.add(&TransformPreds);
10198 return AddRec;
10199 }
10200
10201 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)10202 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10203 SCEVPredicateKind Kind)
10204 : FastID(ID), Kind(Kind) {}
10205
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEVUnknown * LHS,const SCEVConstant * RHS)10206 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10207 const SCEVUnknown *LHS,
10208 const SCEVConstant *RHS)
10209 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10210
implies(const SCEVPredicate * N) const10211 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10212 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10213
10214 if (!Op)
10215 return false;
10216
10217 return Op->LHS == LHS && Op->RHS == RHS;
10218 }
10219
isAlwaysTrue() const10220 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10221
getExpr() const10222 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10223
print(raw_ostream & OS,unsigned Depth) const10224 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10225 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10226 }
10227
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)10228 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10229 const SCEVAddRecExpr *AR,
10230 IncrementWrapFlags Flags)
10231 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10232
getExpr() const10233 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10234
implies(const SCEVPredicate * N) const10235 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10236 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10237
10238 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10239 }
10240
isAlwaysTrue() const10241 bool SCEVWrapPredicate::isAlwaysTrue() const {
10242 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10243 IncrementWrapFlags IFlags = Flags;
10244
10245 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10246 IFlags = clearFlags(IFlags, IncrementNSSW);
10247
10248 return IFlags == IncrementAnyWrap;
10249 }
10250
print(raw_ostream & OS,unsigned Depth) const10251 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10252 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10253 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10254 OS << "<nusw>";
10255 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10256 OS << "<nssw>";
10257 OS << "\n";
10258 }
10259
10260 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)10261 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10262 ScalarEvolution &SE) {
10263 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10264 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10265
10266 // We can safely transfer the NSW flag as NSSW.
10267 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10268 ImpliedFlags = IncrementNSSW;
10269
10270 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10271 // If the increment is positive, the SCEV NUW flag will also imply the
10272 // WrapPredicate NUSW flag.
10273 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10274 if (Step->getValue()->getValue().isNonNegative())
10275 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10276 }
10277
10278 return ImpliedFlags;
10279 }
10280
10281 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()10282 SCEVUnionPredicate::SCEVUnionPredicate()
10283 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10284
isAlwaysTrue() const10285 bool SCEVUnionPredicate::isAlwaysTrue() const {
10286 return all_of(Preds,
10287 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10288 }
10289
10290 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)10291 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10292 auto I = SCEVToPreds.find(Expr);
10293 if (I == SCEVToPreds.end())
10294 return ArrayRef<const SCEVPredicate *>();
10295 return I->second;
10296 }
10297
implies(const SCEVPredicate * N) const10298 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10299 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10300 return all_of(Set->Preds,
10301 [this](const SCEVPredicate *I) { return this->implies(I); });
10302
10303 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10304 if (ScevPredsIt == SCEVToPreds.end())
10305 return false;
10306 auto &SCEVPreds = ScevPredsIt->second;
10307
10308 return any_of(SCEVPreds,
10309 [N](const SCEVPredicate *I) { return I->implies(N); });
10310 }
10311
getExpr() const10312 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10313
print(raw_ostream & OS,unsigned Depth) const10314 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10315 for (auto Pred : Preds)
10316 Pred->print(OS, Depth);
10317 }
10318
add(const SCEVPredicate * N)10319 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10320 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10321 for (auto Pred : Set->Preds)
10322 add(Pred);
10323 return;
10324 }
10325
10326 if (implies(N))
10327 return;
10328
10329 const SCEV *Key = N->getExpr();
10330 assert(Key && "Only SCEVUnionPredicate doesn't have an "
10331 " associated expression!");
10332
10333 SCEVToPreds[Key].push_back(N);
10334 Preds.push_back(N);
10335 }
10336
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)10337 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10338 Loop &L)
10339 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10340
getSCEV(Value * V)10341 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10342 const SCEV *Expr = SE.getSCEV(V);
10343 RewriteEntry &Entry = RewriteMap[Expr];
10344
10345 // If we already have an entry and the version matches, return it.
10346 if (Entry.second && Generation == Entry.first)
10347 return Entry.second;
10348
10349 // We found an entry but it's stale. Rewrite the stale entry
10350 // acording to the current predicate.
10351 if (Entry.second)
10352 Expr = Entry.second;
10353
10354 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10355 Entry = {Generation, NewSCEV};
10356
10357 return NewSCEV;
10358 }
10359
getBackedgeTakenCount()10360 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10361 if (!BackedgeCount) {
10362 SCEVUnionPredicate BackedgePred;
10363 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10364 addPredicate(BackedgePred);
10365 }
10366 return BackedgeCount;
10367 }
10368
addPredicate(const SCEVPredicate & Pred)10369 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10370 if (Preds.implies(&Pred))
10371 return;
10372 Preds.add(&Pred);
10373 updateGeneration();
10374 }
10375
getUnionPredicate() const10376 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10377 return Preds;
10378 }
10379
updateGeneration()10380 void PredicatedScalarEvolution::updateGeneration() {
10381 // If the generation number wrapped recompute everything.
10382 if (++Generation == 0) {
10383 for (auto &II : RewriteMap) {
10384 const SCEV *Rewritten = II.second.second;
10385 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10386 }
10387 }
10388 }
10389
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)10390 void PredicatedScalarEvolution::setNoOverflow(
10391 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10392 const SCEV *Expr = getSCEV(V);
10393 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10394
10395 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10396
10397 // Clear the statically implied flags.
10398 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10399 addPredicate(*SE.getWrapPredicate(AR, Flags));
10400
10401 auto II = FlagsMap.insert({V, Flags});
10402 if (!II.second)
10403 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10404 }
10405
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)10406 bool PredicatedScalarEvolution::hasNoOverflow(
10407 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10408 const SCEV *Expr = getSCEV(V);
10409 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10410
10411 Flags = SCEVWrapPredicate::clearFlags(
10412 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10413
10414 auto II = FlagsMap.find(V);
10415
10416 if (II != FlagsMap.end())
10417 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10418
10419 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10420 }
10421
getAsAddRec(Value * V)10422 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10423 const SCEV *Expr = this->getSCEV(V);
10424 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10425
10426 if (!New)
10427 return nullptr;
10428
10429 updateGeneration();
10430 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10431 return New;
10432 }
10433
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)10434 PredicatedScalarEvolution::PredicatedScalarEvolution(
10435 const PredicatedScalarEvolution &Init)
10436 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10437 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10438 for (const auto &I : Init.FlagsMap)
10439 FlagsMap.insert(I);
10440 }
10441
print(raw_ostream & OS,unsigned Depth) const10442 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10443 // For each block.
10444 for (auto *BB : L.getBlocks())
10445 for (auto &I : *BB) {
10446 if (!SE.isSCEVable(I.getType()))
10447 continue;
10448
10449 auto *Expr = SE.getSCEV(&I);
10450 auto II = RewriteMap.find(Expr);
10451
10452 if (II == RewriteMap.end())
10453 continue;
10454
10455 // Don't print things that are not interesting.
10456 if (II->second.second == Expr)
10457 continue;
10458
10459 OS.indent(Depth) << "[PSE]" << I << ":\n";
10460 OS.indent(Depth + 2) << *Expr << "\n";
10461 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10462 }
10463 }
10464