1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_PPC_CONSTANTS_PPC_H_
6 #define V8_PPC_CONSTANTS_PPC_H_
7 
8 #include <stdint.h>
9 
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/globals.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // Number of registers
18 const int kNumRegisters = 32;
19 
20 // FP support.
21 const int kNumDoubleRegisters = 32;
22 
23 const int kNoRegister = -1;
24 
25 // Used in embedded constant pool builder - max reach in bits for
26 // various load instructions (one less due to unsigned)
27 const int kLoadPtrMaxReachBits = 15;
28 const int kLoadDoubleMaxReachBits = 15;
29 
30 // sign-extend the least significant 16-bits of value <imm>
31 #define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)
32 
33 // sign-extend the least significant 26-bits of value <imm>
34 #define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)
35 
36 // -----------------------------------------------------------------------------
37 // Conditions.
38 
39 // Defines constants and accessor classes to assemble, disassemble and
40 // simulate PPC instructions.
41 //
42 // Section references in the code refer to the "PowerPC Microprocessor
43 // Family: The Programmer.s Reference Guide" from 10/95
44 // https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
45 //
46 
47 // Constants for specific fields are defined in their respective named enums.
48 // General constants are in an anonymous enum in class Instr.
49 enum Condition {
50   kNoCondition = -1,
51   eq = 0,         // Equal.
52   ne = 1,         // Not equal.
53   ge = 2,         // Greater or equal.
54   lt = 3,         // Less than.
55   gt = 4,         // Greater than.
56   le = 5,         // Less then or equal
57   unordered = 6,  // Floating-point unordered
58   ordered = 7,
59   overflow = 8,  // Summary overflow
60   nooverflow = 9,
61   al = 10  // Always.
62 };
63 
64 
NegateCondition(Condition cond)65 inline Condition NegateCondition(Condition cond) {
66   DCHECK(cond != al);
67   return static_cast<Condition>(cond ^ ne);
68 }
69 
70 
71 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cond)72 inline Condition CommuteCondition(Condition cond) {
73   switch (cond) {
74     case lt:
75       return gt;
76     case gt:
77       return lt;
78     case ge:
79       return le;
80     case le:
81       return ge;
82     default:
83       return cond;
84   }
85 }
86 
87 // -----------------------------------------------------------------------------
88 // Instructions encoding.
89 
90 // Instr is merely used by the Assembler to distinguish 32bit integers
91 // representing instructions from usual 32 bit values.
92 // Instruction objects are pointers to 32bit values, and provide methods to
93 // access the various ISA fields.
94 typedef int32_t Instr;
95 
96 // Opcodes as defined in section 4.2 table 34 (32bit PowerPC)
97 enum Opcode {
98   TWI = 3 << 26,       // Trap Word Immediate
99   MULLI = 7 << 26,     // Multiply Low Immediate
100   SUBFIC = 8 << 26,    // Subtract from Immediate Carrying
101   CMPLI = 10 << 26,    // Compare Logical Immediate
102   CMPI = 11 << 26,     // Compare Immediate
103   ADDIC = 12 << 26,    // Add Immediate Carrying
104   ADDICx = 13 << 26,   // Add Immediate Carrying and Record
105   ADDI = 14 << 26,     // Add Immediate
106   ADDIS = 15 << 26,    // Add Immediate Shifted
107   BCX = 16 << 26,      // Branch Conditional
108   SC = 17 << 26,       // System Call
109   BX = 18 << 26,       // Branch
110   EXT1 = 19 << 26,     // Extended code set 1
111   RLWIMIX = 20 << 26,  // Rotate Left Word Immediate then Mask Insert
112   RLWINMX = 21 << 26,  // Rotate Left Word Immediate then AND with Mask
113   RLWNMX = 23 << 26,   // Rotate Left Word then AND with Mask
114   ORI = 24 << 26,      // OR Immediate
115   ORIS = 25 << 26,     // OR Immediate Shifted
116   XORI = 26 << 26,     // XOR Immediate
117   XORIS = 27 << 26,    // XOR Immediate Shifted
118   ANDIx = 28 << 26,    // AND Immediate
119   ANDISx = 29 << 26,   // AND Immediate Shifted
120   EXT5 = 30 << 26,     // Extended code set 5 - 64bit only
121   EXT2 = 31 << 26,     // Extended code set 2
122   LWZ = 32 << 26,      // Load Word and Zero
123   LWZU = 33 << 26,     // Load Word with Zero Update
124   LBZ = 34 << 26,      // Load Byte and Zero
125   LBZU = 35 << 26,     // Load Byte and Zero with Update
126   STW = 36 << 26,      // Store
127   STWU = 37 << 26,     // Store Word with Update
128   STB = 38 << 26,      // Store Byte
129   STBU = 39 << 26,     // Store Byte with Update
130   LHZ = 40 << 26,      // Load Half and Zero
131   LHZU = 41 << 26,     // Load Half and Zero with Update
132   LHA = 42 << 26,      // Load Half Algebraic
133   LHAU = 43 << 26,     // Load Half Algebraic with Update
134   STH = 44 << 26,      // Store Half
135   STHU = 45 << 26,     // Store Half with Update
136   LMW = 46 << 26,      // Load Multiple Word
137   STMW = 47 << 26,     // Store Multiple Word
138   LFS = 48 << 26,      // Load Floating-Point Single
139   LFSU = 49 << 26,     // Load Floating-Point Single with Update
140   LFD = 50 << 26,      // Load Floating-Point Double
141   LFDU = 51 << 26,     // Load Floating-Point Double with Update
142   STFS = 52 << 26,     // Store Floating-Point Single
143   STFSU = 53 << 26,    // Store Floating-Point Single with Update
144   STFD = 54 << 26,     // Store Floating-Point Double
145   STFDU = 55 << 26,    // Store Floating-Point Double with Update
146   LD = 58 << 26,       // Load Double Word
147   EXT3 = 59 << 26,     // Extended code set 3
148   STD = 62 << 26,      // Store Double Word (optionally with Update)
149   EXT4 = 63 << 26      // Extended code set 4
150 };
151 
152 // Bits 10-1
153 enum OpcodeExt1 {
154   MCRF = 0 << 1,      // Move Condition Register Field
155   BCLRX = 16 << 1,    // Branch Conditional Link Register
156   CRNOR = 33 << 1,    // Condition Register NOR)
157   RFI = 50 << 1,      // Return from Interrupt
158   CRANDC = 129 << 1,  // Condition Register AND with Complement
159   ISYNC = 150 << 1,   // Instruction Synchronize
160   CRXOR = 193 << 1,   // Condition Register XOR
161   CRNAND = 225 << 1,  // Condition Register NAND
162   CRAND = 257 << 1,   // Condition Register AND
163   CREQV = 289 << 1,   // Condition Register Equivalent
164   CRORC = 417 << 1,   // Condition Register OR with Complement
165   CROR = 449 << 1,    // Condition Register OR
166   BCCTRX = 528 << 1   // Branch Conditional to Count Register
167 };
168 
169 // Bits 9-1 or 10-1
170 enum OpcodeExt2 {
171   CMP = 0 << 1,
172   TW = 4 << 1,
173   SUBFCX = 8 << 1,
174   ADDCX = 10 << 1,
175   MULHWUX = 11 << 1,
176   ISEL = 15 << 1,
177   MFCR = 19 << 1,
178   LWARX = 20 << 1,
179   LDX = 21 << 1,
180   LWZX = 23 << 1,  // load word zero w/ x-form
181   SLWX = 24 << 1,
182   CNTLZWX = 26 << 1,
183   SLDX = 27 << 1,
184   ANDX = 28 << 1,
185   CMPL = 32 << 1,
186   SUBFX = 40 << 1,
187   MFVSRD = 51 << 1,  // Move From VSR Doubleword
188   LDUX = 53 << 1,
189   DCBST = 54 << 1,
190   LWZUX = 55 << 1,  // load word zero w/ update x-form
191   CNTLZDX = 58 << 1,
192   ANDCX = 60 << 1,
193   MULHWX = 75 << 1,
194   DCBF = 86 << 1,
195   LBZX = 87 << 1,  // load byte zero w/ x-form
196   NEGX = 104 << 1,
197   MFVSRWZ = 115 << 1,  // Move From VSR Word And Zero
198   LBZUX = 119 << 1,    // load byte zero w/ update x-form
199   NORX = 124 << 1,
200   SUBFEX = 136 << 1,
201   ADDEX = 138 << 1,
202   STDX = 149 << 1,
203   STWX = 151 << 1,    // store word w/ x-form
204   MTVSRD = 179 << 1,  // Move To VSR Doubleword
205   STDUX = 181 << 1,
206   STWUX = 183 << 1,    // store word w/ update x-form
207                        /*
208       MTCRF
209       MTMSR
210       STWCXx
211       SUBFZEX
212     */
213   ADDZEX = 202 << 1,   // Add to Zero Extended
214                        /*
215      MTSR
216    */
217   MTVSRWA = 211 << 1,  // Move To VSR Word Algebraic
218   STBX = 215 << 1,     // store byte w/ x-form
219   MULLD = 233 << 1,    // Multiply Low Double Word
220   MULLW = 235 << 1,    // Multiply Low Word
221   MTVSRWZ = 243 << 1,  // Move To VSR Word And Zero
222   STBUX = 247 << 1,    // store byte w/ update x-form
223   ADDX = 266 << 1,     // Add
224   LHZX = 279 << 1,     // load half-word zero w/ x-form
225   LHZUX = 311 << 1,    // load half-word zero w/ update x-form
226   LWAX = 341 << 1,     // load word algebraic w/ x-form
227   LHAX = 343 << 1,     // load half-word algebraic w/ x-form
228   LHAUX = 375 << 1,    // load half-word algebraic w/ update x-form
229   XORX = 316 << 1,     // Exclusive OR
230   MFSPR = 339 << 1,    // Move from Special-Purpose-Register
231   POPCNTW = 378 << 1,  // Population Count Words
232   STHX = 407 << 1,     // store half-word w/ x-form
233   ORC = 412 << 1,      // Or with Complement
234   STHUX = 439 << 1,    // store half-word w/ update x-form
235   ORX = 444 << 1,      // Or
236   DIVDU = 457 << 1,    // Divide Double Word Unsigned
237   DIVWU = 459 << 1,    // Divide Word Unsigned
238   MTSPR = 467 << 1,    // Move to Special-Purpose-Register
239   DIVD = 489 << 1,     // Divide Double Word
240   DIVW = 491 << 1,     // Divide Word
241   POPCNTD = 506 << 1,  // Population Count Doubleword
242 
243   // Below represent bits 10-1  (any value >= 512)
244   LDBRX = 532 << 1,   // load double word byte reversed w/ x-form
245   LWBRX = 534 << 1,   // load word byte reversed w/ x-form
246   LFSX = 535 << 1,    // load float-single w/ x-form
247   SRWX = 536 << 1,    // Shift Right Word
248   SRDX = 539 << 1,    // Shift Right Double Word
249   LFSUX = 567 << 1,   // load float-single w/ update x-form
250   SYNC = 598 << 1,    // Synchronize
251   LFDX = 599 << 1,    // load float-double w/ x-form
252   LFDUX = 631 << 1,   // load float-double w/ update X-form
253   STFSX = 663 << 1,   // store float-single w/ x-form
254   STFSUX = 695 << 1,  // store float-single w/ update x-form
255   STFDX = 727 << 1,   // store float-double w/ x-form
256   STFDUX = 759 << 1,  // store float-double w/ update x-form
257   LHBRX = 790 << 1,   // load half word byte reversed w/ x-form
258   SRAW = 792 << 1,    // Shift Right Algebraic Word
259   SRAD = 794 << 1,    // Shift Right Algebraic Double Word
260   SRAWIX = 824 << 1,  // Shift Right Algebraic Word Immediate
261   SRADIX = 413 << 2,  // Shift Right Algebraic Double Word Immediate
262   EXTSH = 922 << 1,   // Extend Sign Halfword
263   EXTSB = 954 << 1,   // Extend Sign Byte
264   ICBI = 982 << 1,    // Instruction Cache Block Invalidate
265   EXTSW = 986 << 1    // Extend Sign Word
266 };
267 
268 // Some use Bits 10-1 and other only 5-1 for the opcode
269 enum OpcodeExt4 {
270   // Bits 5-1
271   FDIV = 18 << 1,   // Floating Divide
272   FSUB = 20 << 1,   // Floating Subtract
273   FADD = 21 << 1,   // Floating Add
274   FSQRT = 22 << 1,  // Floating Square Root
275   FSEL = 23 << 1,   // Floating Select
276   FMUL = 25 << 1,   // Floating Multiply
277   FMSUB = 28 << 1,  // Floating Multiply-Subtract
278   FMADD = 29 << 1,  // Floating Multiply-Add
279 
280   // Bits 10-1
281   FCMPU = 0 << 1,      // Floating Compare Unordered
282   FRSP = 12 << 1,      // Floating-Point Rounding
283   FCTIW = 14 << 1,     // Floating Convert to Integer Word X-form
284   FCTIWZ = 15 << 1,    // Floating Convert to Integer Word with Round to Zero
285   MTFSB1 = 38 << 1,    // Move to FPSCR Bit 1
286   FNEG = 40 << 1,      // Floating Negate
287   MCRFS = 64 << 1,     // Move to Condition Register from FPSCR
288   MTFSB0 = 70 << 1,    // Move to FPSCR Bit 0
289   FMR = 72 << 1,       // Floating Move Register
290   MTFSFI = 134 << 1,   // Move to FPSCR Field Immediate
291   FABS = 264 << 1,     // Floating Absolute Value
292   FRIN = 392 << 1,     // Floating Round to Integer Nearest
293   FRIZ = 424 << 1,     // Floating Round to Integer Toward Zero
294   FRIP = 456 << 1,     // Floating Round to Integer Plus
295   FRIM = 488 << 1,     // Floating Round to Integer Minus
296   MFFS = 583 << 1,     // move from FPSCR x-form
297   MTFSF = 711 << 1,    // move to FPSCR fields XFL-form
298   FCTID = 814 << 1,    // Floating convert to integer doubleword
299   FCTIDZ = 815 << 1,   // ^^^ with round toward zero
300   FCFID = 846 << 1,    // Floating convert from integer doubleword
301   FCTIDU = 942 << 1,   // Floating convert to integer doubleword unsigned
302   FCTIDUZ = 943 << 1,  // ^^^ with round toward zero
303   FCFIDU = 974 << 1    // Floating convert from integer doubleword unsigned
304 };
305 
306 enum OpcodeExt5 {
307   // Bits 4-2
308   RLDICL = 0 << 1,  // Rotate Left Double Word Immediate then Clear Left
309   RLDICR = 2 << 1,  // Rotate Left Double Word Immediate then Clear Right
310   RLDIC = 4 << 1,   // Rotate Left Double Word Immediate then Clear
311   RLDIMI = 6 << 1,  // Rotate Left Double Word Immediate then Mask Insert
312   // Bits 4-1
313   RLDCL = 8 << 1,  // Rotate Left Double Word then Clear Left
314   RLDCR = 9 << 1   // Rotate Left Double Word then Clear Right
315 };
316 
317 // Instruction encoding bits and masks.
318 enum {
319   // Instruction encoding bit
320   B1 = 1 << 1,
321   B4 = 1 << 4,
322   B5 = 1 << 5,
323   B7 = 1 << 7,
324   B8 = 1 << 8,
325   B9 = 1 << 9,
326   B12 = 1 << 12,
327   B18 = 1 << 18,
328   B19 = 1 << 19,
329   B20 = 1 << 20,
330   B22 = 1 << 22,
331   B23 = 1 << 23,
332   B24 = 1 << 24,
333   B25 = 1 << 25,
334   B26 = 1 << 26,
335   B27 = 1 << 27,
336   B28 = 1 << 28,
337   B6 = 1 << 6,
338   B10 = 1 << 10,
339   B11 = 1 << 11,
340   B16 = 1 << 16,
341   B17 = 1 << 17,
342   B21 = 1 << 21,
343 
344   // Instruction bit masks
345   kCondMask = 0x1F << 21,
346   kOff12Mask = (1 << 12) - 1,
347   kImm24Mask = (1 << 24) - 1,
348   kOff16Mask = (1 << 16) - 1,
349   kImm16Mask = (1 << 16) - 1,
350   kImm26Mask = (1 << 26) - 1,
351   kBOfieldMask = 0x1f << 21,
352   kOpcodeMask = 0x3f << 26,
353   kExt1OpcodeMask = 0x3ff << 1,
354   kExt2OpcodeMask = 0x3ff << 1,
355   kExt2OpcodeVariant2Mask = 0x1ff << 2,
356   kExt5OpcodeMask = 0x3 << 2,
357   kBOMask = 0x1f << 21,
358   kBIMask = 0x1F << 16,
359   kBDMask = 0x14 << 2,
360   kAAMask = 0x01 << 1,
361   kLKMask = 0x01,
362   kRCMask = 0x01,
363   kTOMask = 0x1f << 21
364 };
365 
366 // -----------------------------------------------------------------------------
367 // Addressing modes and instruction variants.
368 
369 // Overflow Exception
370 enum OEBit {
371   SetOE = 1 << 10,   // Set overflow exception
372   LeaveOE = 0 << 10  // No overflow exception
373 };
374 
375 // Record bit
376 enum RCBit {   // Bit 0
377   SetRC = 1,   // LT,GT,EQ,SO
378   LeaveRC = 0  // None
379 };
380 
381 // Link bit
382 enum LKBit {   // Bit 0
383   SetLK = 1,   // Load effective address of next instruction
384   LeaveLK = 0  // No action
385 };
386 
387 enum BOfield {        // Bits 25-21
388   DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
389   DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
390   BF = 4 << 21,       // Branch if condition false
391   DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
392   DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
393   BT = 12 << 21,      // Branch if condition true
394   DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
395   DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
396   BA = 20 << 21       // Branch always
397 };
398 
399 #if V8_OS_AIX
400 #undef CR_LT
401 #undef CR_GT
402 #undef CR_EQ
403 #undef CR_SO
404 #endif
405 
406 enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };
407 
408 #define CRWIDTH 4
409 
410 // These are the documented bit positions biased down by 32
411 enum FPSCRBit {
412   VXSOFT = 21,  // 53: Software-Defined Condition
413   VXSQRT = 22,  // 54: Invalid Square Root
414   VXCVI = 23    // 55: Invalid Integer Convert
415 };
416 
417 // -----------------------------------------------------------------------------
418 // Supervisor Call (svc) specific support.
419 
420 // Special Software Interrupt codes when used in the presence of the PPC
421 // simulator.
422 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
423 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
424 enum SoftwareInterruptCodes {
425   // transition to C code
426   kCallRtRedirected = 0x10,
427   // break point
428   kBreakpoint = 0x821008,  // bits23-0 of 0x7d821008 = twge r2, r2
429   // stop
430   kStopCode = 1 << 23
431 };
432 const uint32_t kStopCodeMask = kStopCode - 1;
433 const uint32_t kMaxStopCode = kStopCode - 1;
434 const int32_t kDefaultStopCode = -1;
435 
436 // FP rounding modes.
437 enum FPRoundingMode {
438   RN = 0,  // Round to Nearest.
439   RZ = 1,  // Round towards zero.
440   RP = 2,  // Round towards Plus Infinity.
441   RM = 3,  // Round towards Minus Infinity.
442 
443   // Aliases.
444   kRoundToNearest = RN,
445   kRoundToZero = RZ,
446   kRoundToPlusInf = RP,
447   kRoundToMinusInf = RM
448 };
449 
450 const uint32_t kFPRoundingModeMask = 3;
451 
452 enum CheckForInexactConversion {
453   kCheckForInexactConversion,
454   kDontCheckForInexactConversion
455 };
456 
457 // -----------------------------------------------------------------------------
458 // Specific instructions, constants, and masks.
459 // These constants are declared in assembler-arm.cc, as they use named registers
460 // and other constants.
461 
462 
463 // add(sp, sp, 4) instruction (aka Pop())
464 extern const Instr kPopInstruction;
465 
466 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
467 // register r is not encoded.
468 extern const Instr kPushRegPattern;
469 
470 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
471 // register r is not encoded.
472 extern const Instr kPopRegPattern;
473 
474 // use TWI to indicate redirection call for simulation mode
475 const Instr rtCallRedirInstr = TWI;
476 
477 // -----------------------------------------------------------------------------
478 // Instruction abstraction.
479 
480 // The class Instruction enables access to individual fields defined in the PPC
481 // architecture instruction set encoding.
482 // Note that the Assembler uses typedef int32_t Instr.
483 //
484 // Example: Test whether the instruction at ptr does set the condition code
485 // bits.
486 //
487 // bool InstructionSetsConditionCodes(byte* ptr) {
488 //   Instruction* instr = Instruction::At(ptr);
489 //   int type = instr->TypeValue();
490 //   return ((type == 0) || (type == 1)) && instr->HasS();
491 // }
492 //
493 class Instruction {
494  public:
495   enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };
496 
497 // Helper macro to define static accessors.
498 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
499 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
500   static inline return_type Name(Instr instr) {          \
501     char* temp = reinterpret_cast<char*>(&instr);        \
502     return reinterpret_cast<Instruction*>(temp)->Name(); \
503   }
504 
505 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
506 
507   // Get the raw instruction bits.
InstructionBits()508   inline Instr InstructionBits() const {
509     return *reinterpret_cast<const Instr*>(this);
510   }
511 
512   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)513   inline void SetInstructionBits(Instr value) {
514     *reinterpret_cast<Instr*>(this) = value;
515   }
516 
517   // Read one particular bit out of the instruction bits.
Bit(int nr)518   inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
519 
520   // Read a bit field's value out of the instruction bits.
Bits(int hi,int lo)521   inline int Bits(int hi, int lo) const {
522     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
523   }
524 
525   // Read a bit field out of the instruction bits.
BitField(int hi,int lo)526   inline int BitField(int hi, int lo) const {
527     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
528   }
529 
530   // Static support.
531 
532   // Read one particular bit out of the instruction bits.
Bit(Instr instr,int nr)533   static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
534 
535   // Read the value of a bit field out of the instruction bits.
Bits(Instr instr,int hi,int lo)536   static inline int Bits(Instr instr, int hi, int lo) {
537     return (instr >> lo) & ((2 << (hi - lo)) - 1);
538   }
539 
540 
541   // Read a bit field out of the instruction bits.
BitField(Instr instr,int hi,int lo)542   static inline int BitField(Instr instr, int hi, int lo) {
543     return instr & (((2 << (hi - lo)) - 1) << lo);
544   }
545 
RSValue()546   inline int RSValue() const { return Bits(25, 21); }
RTValue()547   inline int RTValue() const { return Bits(25, 21); }
RAValue()548   inline int RAValue() const { return Bits(20, 16); }
549   DECLARE_STATIC_ACCESSOR(RAValue);
RBValue()550   inline int RBValue() const { return Bits(15, 11); }
551   DECLARE_STATIC_ACCESSOR(RBValue);
RCValue()552   inline int RCValue() const { return Bits(10, 6); }
553   DECLARE_STATIC_ACCESSOR(RCValue);
554 
OpcodeValue()555   inline int OpcodeValue() const { return static_cast<Opcode>(Bits(31, 26)); }
OpcodeField()556   inline Opcode OpcodeField() const {
557     return static_cast<Opcode>(BitField(24, 21));
558   }
559 
560   // Fields used in Software interrupt instructions
SvcValue()561   inline SoftwareInterruptCodes SvcValue() const {
562     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
563   }
564 
565   // Instructions are read of out a code stream. The only way to get a
566   // reference to an instruction is to convert a pointer. There is no way
567   // to allocate or create instances of class Instruction.
568   // Use the At(pc) function to create references to Instruction.
At(byte * pc)569   static Instruction* At(byte* pc) {
570     return reinterpret_cast<Instruction*>(pc);
571   }
572 
573 
574  private:
575   // We need to prevent the creation of instances of class Instruction.
576   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
577 };
578 
579 
580 // Helper functions for converting between register numbers and names.
581 class Registers {
582  public:
583   // Lookup the register number for the name provided.
584   static int Number(const char* name);
585 
586  private:
587   static const char* names_[kNumRegisters];
588 };
589 
590 // Helper functions for converting between FP register numbers and names.
591 class DoubleRegisters {
592  public:
593   // Lookup the register number for the name provided.
594   static int Number(const char* name);
595 
596  private:
597   static const char* names_[kNumDoubleRegisters];
598 };
599 }  // namespace internal
600 }  // namespace v8
601 
602 #endif  // V8_PPC_CONSTANTS_PPC_H_
603