1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Features shared by parsing and pre-parsing scanners.
6
7 #include "src/parsing/scanner.h"
8
9 #include <stdint.h>
10
11 #include <cmath>
12
13 #include "src/ast/ast-value-factory.h"
14 #include "src/char-predicates-inl.h"
15 #include "src/conversions-inl.h"
16 #include "src/list-inl.h"
17 #include "src/parsing/duplicate-finder.h" // For Scanner::FindSymbol
18
19 namespace v8 {
20 namespace internal {
21
Internalize(Isolate * isolate) const22 Handle<String> Scanner::LiteralBuffer::Internalize(Isolate* isolate) const {
23 if (is_one_byte()) {
24 return isolate->factory()->InternalizeOneByteString(one_byte_literal());
25 }
26 return isolate->factory()->InternalizeTwoByteString(two_byte_literal());
27 }
28
29 // ----------------------------------------------------------------------------
30 // Scanner::BookmarkScope
31
32 const size_t Scanner::BookmarkScope::kBookmarkAtFirstPos =
33 std::numeric_limits<size_t>::max() - 2;
34 const size_t Scanner::BookmarkScope::kNoBookmark =
35 std::numeric_limits<size_t>::max() - 1;
36 const size_t Scanner::BookmarkScope::kBookmarkWasApplied =
37 std::numeric_limits<size_t>::max();
38
Set()39 void Scanner::BookmarkScope::Set() {
40 DCHECK_EQ(bookmark_, kNoBookmark);
41 DCHECK_EQ(scanner_->next_next_.token, Token::UNINITIALIZED);
42
43 // The first token is a bit special, since current_ will still be
44 // uninitialized. In this case, store kBookmarkAtFirstPos and special-case it
45 // when
46 // applying the bookmark.
47 DCHECK_IMPLIES(
48 scanner_->current_.token == Token::UNINITIALIZED,
49 scanner_->current_.location.beg_pos == scanner_->next_.location.beg_pos);
50 bookmark_ = (scanner_->current_.token == Token::UNINITIALIZED)
51 ? kBookmarkAtFirstPos
52 : scanner_->location().beg_pos;
53 }
54
Apply()55 void Scanner::BookmarkScope::Apply() {
56 DCHECK(HasBeenSet()); // Caller hasn't called SetBookmark.
57 if (bookmark_ == kBookmarkAtFirstPos) {
58 scanner_->SeekNext(0);
59 } else {
60 scanner_->SeekNext(bookmark_);
61 scanner_->Next();
62 DCHECK_EQ(scanner_->location().beg_pos, static_cast<int>(bookmark_));
63 }
64 bookmark_ = kBookmarkWasApplied;
65 }
66
HasBeenSet()67 bool Scanner::BookmarkScope::HasBeenSet() {
68 return bookmark_ != kNoBookmark && bookmark_ != kBookmarkWasApplied;
69 }
70
HasBeenApplied()71 bool Scanner::BookmarkScope::HasBeenApplied() {
72 return bookmark_ == kBookmarkWasApplied;
73 }
74
75 // ----------------------------------------------------------------------------
76 // Scanner
77
Scanner(UnicodeCache * unicode_cache)78 Scanner::Scanner(UnicodeCache* unicode_cache)
79 : unicode_cache_(unicode_cache),
80 octal_pos_(Location::invalid()),
81 decimal_with_leading_zero_pos_(Location::invalid()),
82 found_html_comment_(false) {
83 }
84
85
Initialize(Utf16CharacterStream * source)86 void Scanner::Initialize(Utf16CharacterStream* source) {
87 source_ = source;
88 // Need to capture identifiers in order to recognize "get" and "set"
89 // in object literals.
90 Init();
91 // Skip initial whitespace allowing HTML comment ends just like
92 // after a newline and scan first token.
93 has_line_terminator_before_next_ = true;
94 SkipWhiteSpace();
95 Scan();
96 }
97
98 template <bool capture_raw, bool unicode>
ScanHexNumber(int expected_length)99 uc32 Scanner::ScanHexNumber(int expected_length) {
100 DCHECK(expected_length <= 4); // prevent overflow
101
102 int begin = source_pos() - 2;
103 uc32 x = 0;
104 for (int i = 0; i < expected_length; i++) {
105 int d = HexValue(c0_);
106 if (d < 0) {
107 ReportScannerError(Location(begin, begin + expected_length + 2),
108 unicode
109 ? MessageTemplate::kInvalidUnicodeEscapeSequence
110 : MessageTemplate::kInvalidHexEscapeSequence);
111 return -1;
112 }
113 x = x * 16 + d;
114 Advance<capture_raw>();
115 }
116
117 return x;
118 }
119
120 template <bool capture_raw>
ScanUnlimitedLengthHexNumber(int max_value,int beg_pos)121 uc32 Scanner::ScanUnlimitedLengthHexNumber(int max_value, int beg_pos) {
122 uc32 x = 0;
123 int d = HexValue(c0_);
124 if (d < 0) return -1;
125
126 while (d >= 0) {
127 x = x * 16 + d;
128 if (x > max_value) {
129 ReportScannerError(Location(beg_pos, source_pos() + 1),
130 MessageTemplate::kUndefinedUnicodeCodePoint);
131 return -1;
132 }
133 Advance<capture_raw>();
134 d = HexValue(c0_);
135 }
136
137 return x;
138 }
139
140
141 // Ensure that tokens can be stored in a byte.
142 STATIC_ASSERT(Token::NUM_TOKENS <= 0x100);
143
144 // Table of one-character tokens, by character (0x00..0x7f only).
145 static const byte one_char_tokens[] = {
146 Token::ILLEGAL,
147 Token::ILLEGAL,
148 Token::ILLEGAL,
149 Token::ILLEGAL,
150 Token::ILLEGAL,
151 Token::ILLEGAL,
152 Token::ILLEGAL,
153 Token::ILLEGAL,
154 Token::ILLEGAL,
155 Token::ILLEGAL,
156 Token::ILLEGAL,
157 Token::ILLEGAL,
158 Token::ILLEGAL,
159 Token::ILLEGAL,
160 Token::ILLEGAL,
161 Token::ILLEGAL,
162 Token::ILLEGAL,
163 Token::ILLEGAL,
164 Token::ILLEGAL,
165 Token::ILLEGAL,
166 Token::ILLEGAL,
167 Token::ILLEGAL,
168 Token::ILLEGAL,
169 Token::ILLEGAL,
170 Token::ILLEGAL,
171 Token::ILLEGAL,
172 Token::ILLEGAL,
173 Token::ILLEGAL,
174 Token::ILLEGAL,
175 Token::ILLEGAL,
176 Token::ILLEGAL,
177 Token::ILLEGAL,
178 Token::ILLEGAL,
179 Token::ILLEGAL,
180 Token::ILLEGAL,
181 Token::ILLEGAL,
182 Token::ILLEGAL,
183 Token::ILLEGAL,
184 Token::ILLEGAL,
185 Token::ILLEGAL,
186 Token::LPAREN, // 0x28
187 Token::RPAREN, // 0x29
188 Token::ILLEGAL,
189 Token::ILLEGAL,
190 Token::COMMA, // 0x2c
191 Token::ILLEGAL,
192 Token::ILLEGAL,
193 Token::ILLEGAL,
194 Token::ILLEGAL,
195 Token::ILLEGAL,
196 Token::ILLEGAL,
197 Token::ILLEGAL,
198 Token::ILLEGAL,
199 Token::ILLEGAL,
200 Token::ILLEGAL,
201 Token::ILLEGAL,
202 Token::ILLEGAL,
203 Token::ILLEGAL,
204 Token::COLON, // 0x3a
205 Token::SEMICOLON, // 0x3b
206 Token::ILLEGAL,
207 Token::ILLEGAL,
208 Token::ILLEGAL,
209 Token::CONDITIONAL, // 0x3f
210 Token::ILLEGAL,
211 Token::ILLEGAL,
212 Token::ILLEGAL,
213 Token::ILLEGAL,
214 Token::ILLEGAL,
215 Token::ILLEGAL,
216 Token::ILLEGAL,
217 Token::ILLEGAL,
218 Token::ILLEGAL,
219 Token::ILLEGAL,
220 Token::ILLEGAL,
221 Token::ILLEGAL,
222 Token::ILLEGAL,
223 Token::ILLEGAL,
224 Token::ILLEGAL,
225 Token::ILLEGAL,
226 Token::ILLEGAL,
227 Token::ILLEGAL,
228 Token::ILLEGAL,
229 Token::ILLEGAL,
230 Token::ILLEGAL,
231 Token::ILLEGAL,
232 Token::ILLEGAL,
233 Token::ILLEGAL,
234 Token::ILLEGAL,
235 Token::ILLEGAL,
236 Token::ILLEGAL,
237 Token::LBRACK, // 0x5b
238 Token::ILLEGAL,
239 Token::RBRACK, // 0x5d
240 Token::ILLEGAL,
241 Token::ILLEGAL,
242 Token::ILLEGAL,
243 Token::ILLEGAL,
244 Token::ILLEGAL,
245 Token::ILLEGAL,
246 Token::ILLEGAL,
247 Token::ILLEGAL,
248 Token::ILLEGAL,
249 Token::ILLEGAL,
250 Token::ILLEGAL,
251 Token::ILLEGAL,
252 Token::ILLEGAL,
253 Token::ILLEGAL,
254 Token::ILLEGAL,
255 Token::ILLEGAL,
256 Token::ILLEGAL,
257 Token::ILLEGAL,
258 Token::ILLEGAL,
259 Token::ILLEGAL,
260 Token::ILLEGAL,
261 Token::ILLEGAL,
262 Token::ILLEGAL,
263 Token::ILLEGAL,
264 Token::ILLEGAL,
265 Token::ILLEGAL,
266 Token::ILLEGAL,
267 Token::ILLEGAL,
268 Token::ILLEGAL,
269 Token::LBRACE, // 0x7b
270 Token::ILLEGAL,
271 Token::RBRACE, // 0x7d
272 Token::BIT_NOT, // 0x7e
273 Token::ILLEGAL
274 };
275
276
Next()277 Token::Value Scanner::Next() {
278 if (next_.token == Token::EOS) {
279 next_.location.beg_pos = current_.location.beg_pos;
280 next_.location.end_pos = current_.location.end_pos;
281 }
282 current_ = next_;
283 if (V8_UNLIKELY(next_next_.token != Token::UNINITIALIZED)) {
284 next_ = next_next_;
285 next_next_.token = Token::UNINITIALIZED;
286 has_line_terminator_before_next_ = has_line_terminator_after_next_;
287 return current_.token;
288 }
289 has_line_terminator_before_next_ = false;
290 has_multiline_comment_before_next_ = false;
291 if (static_cast<unsigned>(c0_) <= 0x7f) {
292 Token::Value token = static_cast<Token::Value>(one_char_tokens[c0_]);
293 if (token != Token::ILLEGAL) {
294 int pos = source_pos();
295 next_.token = token;
296 next_.location.beg_pos = pos;
297 next_.location.end_pos = pos + 1;
298 next_.literal_chars = nullptr;
299 next_.raw_literal_chars = nullptr;
300 Advance();
301 return current_.token;
302 }
303 }
304 Scan();
305 return current_.token;
306 }
307
308
PeekAhead()309 Token::Value Scanner::PeekAhead() {
310 DCHECK(next_.token != Token::DIV);
311 DCHECK(next_.token != Token::ASSIGN_DIV);
312
313 if (next_next_.token != Token::UNINITIALIZED) {
314 return next_next_.token;
315 }
316 TokenDesc prev = current_;
317 bool has_line_terminator_before_next =
318 has_line_terminator_before_next_ || has_multiline_comment_before_next_;
319 Next();
320 has_line_terminator_after_next_ =
321 has_line_terminator_before_next_ || has_multiline_comment_before_next_;
322 has_line_terminator_before_next_ = has_line_terminator_before_next;
323 Token::Value ret = next_.token;
324 next_next_ = next_;
325 next_ = current_;
326 current_ = prev;
327 return ret;
328 }
329
330
331 // TODO(yangguo): check whether this is actually necessary.
IsLittleEndianByteOrderMark(uc32 c)332 static inline bool IsLittleEndianByteOrderMark(uc32 c) {
333 // The Unicode value U+FFFE is guaranteed never to be assigned as a
334 // Unicode character; this implies that in a Unicode context the
335 // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF
336 // character expressed in little-endian byte order (since it could
337 // not be a U+FFFE character expressed in big-endian byte
338 // order). Nevertheless, we check for it to be compatible with
339 // Spidermonkey.
340 return c == 0xFFFE;
341 }
342
SkipWhiteSpace()343 bool Scanner::SkipWhiteSpace() {
344 int start_position = source_pos();
345
346 while (true) {
347 while (true) {
348 // Don't skip behind the end of input.
349 if (c0_ == kEndOfInput) break;
350
351 // Advance as long as character is a WhiteSpace or LineTerminator.
352 // Remember if the latter is the case.
353 if (unicode_cache_->IsLineTerminator(c0_)) {
354 has_line_terminator_before_next_ = true;
355 } else if (!unicode_cache_->IsWhiteSpace(c0_) &&
356 !IsLittleEndianByteOrderMark(c0_)) {
357 break;
358 }
359 Advance();
360 }
361
362 // If there is an HTML comment end '-->' at the beginning of a
363 // line (with only whitespace in front of it), we treat the rest
364 // of the line as a comment. This is in line with the way
365 // SpiderMonkey handles it.
366 if (c0_ != '-' || !has_line_terminator_before_next_) break;
367
368 Advance();
369 if (c0_ != '-') {
370 PushBack('-'); // undo Advance()
371 break;
372 }
373
374 Advance();
375 if (c0_ != '>') {
376 PushBack2('-', '-'); // undo 2x Advance();
377 break;
378 }
379
380 // Treat the rest of the line as a comment.
381 SkipSingleLineComment();
382 }
383
384 // Return whether or not we skipped any characters.
385 return source_pos() != start_position;
386 }
387
SkipSingleLineComment()388 Token::Value Scanner::SkipSingleLineComment() {
389 Advance();
390
391 // The line terminator at the end of the line is not considered
392 // to be part of the single-line comment; it is recognized
393 // separately by the lexical grammar and becomes part of the
394 // stream of input elements for the syntactic grammar (see
395 // ECMA-262, section 7.4).
396 while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) {
397 Advance();
398 }
399
400 return Token::WHITESPACE;
401 }
402
403
SkipSourceURLComment()404 Token::Value Scanner::SkipSourceURLComment() {
405 TryToParseSourceURLComment();
406 while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) {
407 Advance();
408 }
409
410 return Token::WHITESPACE;
411 }
412
413
TryToParseSourceURLComment()414 void Scanner::TryToParseSourceURLComment() {
415 // Magic comments are of the form: //[#@]\s<name>=\s*<value>\s*.* and this
416 // function will just return if it cannot parse a magic comment.
417 if (c0_ == kEndOfInput || !unicode_cache_->IsWhiteSpace(c0_)) return;
418 Advance();
419 LiteralBuffer name;
420 while (c0_ != kEndOfInput &&
421 !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) && c0_ != '=') {
422 name.AddChar(c0_);
423 Advance();
424 }
425 if (!name.is_one_byte()) return;
426 Vector<const uint8_t> name_literal = name.one_byte_literal();
427 LiteralBuffer* value;
428 if (name_literal == STATIC_CHAR_VECTOR("sourceURL")) {
429 value = &source_url_;
430 } else if (name_literal == STATIC_CHAR_VECTOR("sourceMappingURL")) {
431 value = &source_mapping_url_;
432 } else {
433 return;
434 }
435 if (c0_ != '=')
436 return;
437 Advance();
438 value->Reset();
439 while (c0_ != kEndOfInput && unicode_cache_->IsWhiteSpace(c0_)) {
440 Advance();
441 }
442 while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) {
443 // Disallowed characters.
444 if (c0_ == '"' || c0_ == '\'') {
445 value->Reset();
446 return;
447 }
448 if (unicode_cache_->IsWhiteSpace(c0_)) {
449 break;
450 }
451 value->AddChar(c0_);
452 Advance();
453 }
454 // Allow whitespace at the end.
455 while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) {
456 if (!unicode_cache_->IsWhiteSpace(c0_)) {
457 value->Reset();
458 break;
459 }
460 Advance();
461 }
462 }
463
464
SkipMultiLineComment()465 Token::Value Scanner::SkipMultiLineComment() {
466 DCHECK(c0_ == '*');
467 Advance();
468
469 while (c0_ != kEndOfInput) {
470 uc32 ch = c0_;
471 Advance();
472 if (c0_ != kEndOfInput && unicode_cache_->IsLineTerminator(ch)) {
473 // Following ECMA-262, section 7.4, a comment containing
474 // a newline will make the comment count as a line-terminator.
475 has_multiline_comment_before_next_ = true;
476 }
477 // If we have reached the end of the multi-line comment, we
478 // consume the '/' and insert a whitespace. This way all
479 // multi-line comments are treated as whitespace.
480 if (ch == '*' && c0_ == '/') {
481 c0_ = ' ';
482 return Token::WHITESPACE;
483 }
484 }
485
486 // Unterminated multi-line comment.
487 return Token::ILLEGAL;
488 }
489
ScanHtmlComment()490 Token::Value Scanner::ScanHtmlComment() {
491 // Check for <!-- comments.
492 DCHECK(c0_ == '!');
493 Advance();
494 if (c0_ != '-') {
495 PushBack('!'); // undo Advance()
496 return Token::LT;
497 }
498
499 Advance();
500 if (c0_ != '-') {
501 PushBack2('-', '!'); // undo 2x Advance()
502 return Token::LT;
503 }
504
505 found_html_comment_ = true;
506 return SkipSingleLineComment();
507 }
508
Scan()509 void Scanner::Scan() {
510 next_.literal_chars = NULL;
511 next_.raw_literal_chars = NULL;
512 Token::Value token;
513 do {
514 // Remember the position of the next token
515 next_.location.beg_pos = source_pos();
516
517 switch (c0_) {
518 case ' ':
519 case '\t':
520 Advance();
521 token = Token::WHITESPACE;
522 break;
523
524 case '\n':
525 Advance();
526 has_line_terminator_before_next_ = true;
527 token = Token::WHITESPACE;
528 break;
529
530 case '"': case '\'':
531 token = ScanString();
532 break;
533
534 case '<':
535 // < <= << <<= <!--
536 Advance();
537 if (c0_ == '=') {
538 token = Select(Token::LTE);
539 } else if (c0_ == '<') {
540 token = Select('=', Token::ASSIGN_SHL, Token::SHL);
541 } else if (c0_ == '!') {
542 token = ScanHtmlComment();
543 } else {
544 token = Token::LT;
545 }
546 break;
547
548 case '>':
549 // > >= >> >>= >>> >>>=
550 Advance();
551 if (c0_ == '=') {
552 token = Select(Token::GTE);
553 } else if (c0_ == '>') {
554 // >> >>= >>> >>>=
555 Advance();
556 if (c0_ == '=') {
557 token = Select(Token::ASSIGN_SAR);
558 } else if (c0_ == '>') {
559 token = Select('=', Token::ASSIGN_SHR, Token::SHR);
560 } else {
561 token = Token::SAR;
562 }
563 } else {
564 token = Token::GT;
565 }
566 break;
567
568 case '=':
569 // = == === =>
570 Advance();
571 if (c0_ == '=') {
572 token = Select('=', Token::EQ_STRICT, Token::EQ);
573 } else if (c0_ == '>') {
574 token = Select(Token::ARROW);
575 } else {
576 token = Token::ASSIGN;
577 }
578 break;
579
580 case '!':
581 // ! != !==
582 Advance();
583 if (c0_ == '=') {
584 token = Select('=', Token::NE_STRICT, Token::NE);
585 } else {
586 token = Token::NOT;
587 }
588 break;
589
590 case '+':
591 // + ++ +=
592 Advance();
593 if (c0_ == '+') {
594 token = Select(Token::INC);
595 } else if (c0_ == '=') {
596 token = Select(Token::ASSIGN_ADD);
597 } else {
598 token = Token::ADD;
599 }
600 break;
601
602 case '-':
603 // - -- --> -=
604 Advance();
605 if (c0_ == '-') {
606 Advance();
607 if (c0_ == '>' && HasAnyLineTerminatorBeforeNext()) {
608 // For compatibility with SpiderMonkey, we skip lines that
609 // start with an HTML comment end '-->'.
610 token = SkipSingleLineComment();
611 } else {
612 token = Token::DEC;
613 }
614 } else if (c0_ == '=') {
615 token = Select(Token::ASSIGN_SUB);
616 } else {
617 token = Token::SUB;
618 }
619 break;
620
621 case '*':
622 // * *=
623 Advance();
624 if (c0_ == '*') {
625 token = Select('=', Token::ASSIGN_EXP, Token::EXP);
626 } else if (c0_ == '=') {
627 token = Select(Token::ASSIGN_MUL);
628 } else {
629 token = Token::MUL;
630 }
631 break;
632
633 case '%':
634 // % %=
635 token = Select('=', Token::ASSIGN_MOD, Token::MOD);
636 break;
637
638 case '/':
639 // / // /* /=
640 Advance();
641 if (c0_ == '/') {
642 Advance();
643 if (c0_ == '#' || c0_ == '@') {
644 Advance();
645 token = SkipSourceURLComment();
646 } else {
647 PushBack(c0_);
648 token = SkipSingleLineComment();
649 }
650 } else if (c0_ == '*') {
651 token = SkipMultiLineComment();
652 } else if (c0_ == '=') {
653 token = Select(Token::ASSIGN_DIV);
654 } else {
655 token = Token::DIV;
656 }
657 break;
658
659 case '&':
660 // & && &=
661 Advance();
662 if (c0_ == '&') {
663 token = Select(Token::AND);
664 } else if (c0_ == '=') {
665 token = Select(Token::ASSIGN_BIT_AND);
666 } else {
667 token = Token::BIT_AND;
668 }
669 break;
670
671 case '|':
672 // | || |=
673 Advance();
674 if (c0_ == '|') {
675 token = Select(Token::OR);
676 } else if (c0_ == '=') {
677 token = Select(Token::ASSIGN_BIT_OR);
678 } else {
679 token = Token::BIT_OR;
680 }
681 break;
682
683 case '^':
684 // ^ ^=
685 token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR);
686 break;
687
688 case '.':
689 // . Number
690 Advance();
691 if (IsDecimalDigit(c0_)) {
692 token = ScanNumber(true);
693 } else {
694 token = Token::PERIOD;
695 if (c0_ == '.') {
696 Advance();
697 if (c0_ == '.') {
698 Advance();
699 token = Token::ELLIPSIS;
700 } else {
701 PushBack('.');
702 }
703 }
704 }
705 break;
706
707 case ':':
708 token = Select(Token::COLON);
709 break;
710
711 case ';':
712 token = Select(Token::SEMICOLON);
713 break;
714
715 case ',':
716 token = Select(Token::COMMA);
717 break;
718
719 case '(':
720 token = Select(Token::LPAREN);
721 break;
722
723 case ')':
724 token = Select(Token::RPAREN);
725 break;
726
727 case '[':
728 token = Select(Token::LBRACK);
729 break;
730
731 case ']':
732 token = Select(Token::RBRACK);
733 break;
734
735 case '{':
736 token = Select(Token::LBRACE);
737 break;
738
739 case '}':
740 token = Select(Token::RBRACE);
741 break;
742
743 case '?':
744 token = Select(Token::CONDITIONAL);
745 break;
746
747 case '~':
748 token = Select(Token::BIT_NOT);
749 break;
750
751 case '`':
752 token = ScanTemplateStart();
753 break;
754
755 default:
756 if (c0_ == kEndOfInput) {
757 token = Token::EOS;
758 } else if (unicode_cache_->IsIdentifierStart(c0_)) {
759 token = ScanIdentifierOrKeyword();
760 } else if (IsDecimalDigit(c0_)) {
761 token = ScanNumber(false);
762 } else if (SkipWhiteSpace()) {
763 token = Token::WHITESPACE;
764 } else {
765 token = Select(Token::ILLEGAL);
766 }
767 break;
768 }
769
770 // Continue scanning for tokens as long as we're just skipping
771 // whitespace.
772 } while (token == Token::WHITESPACE);
773
774 next_.location.end_pos = source_pos();
775 next_.token = token;
776
777 #ifdef DEBUG
778 SanityCheckTokenDesc(current_);
779 SanityCheckTokenDesc(next_);
780 SanityCheckTokenDesc(next_next_);
781 #endif
782 }
783
784 #ifdef DEBUG
SanityCheckTokenDesc(const TokenDesc & token) const785 void Scanner::SanityCheckTokenDesc(const TokenDesc& token) const {
786 // Most tokens should not have literal_chars or even raw_literal chars.
787 // The rules are:
788 // - UNINITIALIZED: we don't care.
789 // - TEMPLATE_*: need both literal + raw literal chars.
790 // - IDENTIFIERS, STRINGS, etc.: need a literal, but no raw literal.
791 // - all others: should have neither.
792
793 switch (token.token) {
794 case Token::UNINITIALIZED:
795 // token.literal_chars & other members might be garbage. That's ok.
796 break;
797 case Token::TEMPLATE_SPAN:
798 case Token::TEMPLATE_TAIL:
799 DCHECK_NOT_NULL(token.raw_literal_chars);
800 DCHECK_NOT_NULL(token.literal_chars);
801 break;
802 case Token::ESCAPED_KEYWORD:
803 case Token::ESCAPED_STRICT_RESERVED_WORD:
804 case Token::FUTURE_STRICT_RESERVED_WORD:
805 case Token::IDENTIFIER:
806 case Token::NUMBER:
807 case Token::REGEXP_LITERAL:
808 case Token::SMI:
809 case Token::STRING:
810 DCHECK_NOT_NULL(token.literal_chars);
811 DCHECK_NULL(token.raw_literal_chars);
812 break;
813 default:
814 DCHECK_NULL(token.literal_chars);
815 DCHECK_NULL(token.raw_literal_chars);
816 break;
817 }
818 }
819 #endif // DEBUG
820
SeekForward(int pos)821 void Scanner::SeekForward(int pos) {
822 // After this call, we will have the token at the given position as
823 // the "next" token. The "current" token will be invalid.
824 if (pos == next_.location.beg_pos) return;
825 int current_pos = source_pos();
826 DCHECK_EQ(next_.location.end_pos, current_pos);
827 // Positions inside the lookahead token aren't supported.
828 DCHECK(pos >= current_pos);
829 if (pos != current_pos) {
830 source_->Seek(pos);
831 Advance();
832 // This function is only called to seek to the location
833 // of the end of a function (at the "}" token). It doesn't matter
834 // whether there was a line terminator in the part we skip.
835 has_line_terminator_before_next_ = false;
836 has_multiline_comment_before_next_ = false;
837 }
838 Scan();
839 }
840
841
842 template <bool capture_raw, bool in_template_literal>
ScanEscape()843 bool Scanner::ScanEscape() {
844 uc32 c = c0_;
845 Advance<capture_raw>();
846
847 // Skip escaped newlines.
848 if (!in_template_literal && c0_ != kEndOfInput &&
849 unicode_cache_->IsLineTerminator(c)) {
850 // Allow CR+LF newlines in multiline string literals.
851 if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance<capture_raw>();
852 // Allow LF+CR newlines in multiline string literals.
853 if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance<capture_raw>();
854 return true;
855 }
856
857 switch (c) {
858 case '\'': // fall through
859 case '"' : // fall through
860 case '\\': break;
861 case 'b' : c = '\b'; break;
862 case 'f' : c = '\f'; break;
863 case 'n' : c = '\n'; break;
864 case 'r' : c = '\r'; break;
865 case 't' : c = '\t'; break;
866 case 'u' : {
867 c = ScanUnicodeEscape<capture_raw>();
868 if (c < 0) return false;
869 break;
870 }
871 case 'v':
872 c = '\v';
873 break;
874 case 'x': {
875 c = ScanHexNumber<capture_raw>(2);
876 if (c < 0) return false;
877 break;
878 }
879 case '0': // Fall through.
880 case '1': // fall through
881 case '2': // fall through
882 case '3': // fall through
883 case '4': // fall through
884 case '5': // fall through
885 case '6': // fall through
886 case '7':
887 c = ScanOctalEscape<capture_raw>(c, 2);
888 break;
889 }
890
891 // According to ECMA-262, section 7.8.4, characters not covered by the
892 // above cases should be illegal, but they are commonly handled as
893 // non-escaped characters by JS VMs.
894 AddLiteralChar(c);
895 return true;
896 }
897
898
899 // Octal escapes of the forms '\0xx' and '\xxx' are not a part of
900 // ECMA-262. Other JS VMs support them.
901 template <bool capture_raw>
ScanOctalEscape(uc32 c,int length)902 uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
903 uc32 x = c - '0';
904 int i = 0;
905 for (; i < length; i++) {
906 int d = c0_ - '0';
907 if (d < 0 || d > 7) break;
908 int nx = x * 8 + d;
909 if (nx >= 256) break;
910 x = nx;
911 Advance<capture_raw>();
912 }
913 // Anything except '\0' is an octal escape sequence, illegal in strict mode.
914 // Remember the position of octal escape sequences so that an error
915 // can be reported later (in strict mode).
916 // We don't report the error immediately, because the octal escape can
917 // occur before the "use strict" directive.
918 if (c != '0' || i > 0) {
919 octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1);
920 }
921 return x;
922 }
923
924
ScanString()925 Token::Value Scanner::ScanString() {
926 uc32 quote = c0_;
927 Advance<false, false>(); // consume quote
928
929 LiteralScope literal(this);
930 while (true) {
931 if (c0_ > kMaxAscii) {
932 HandleLeadSurrogate();
933 break;
934 }
935 if (c0_ == kEndOfInput || c0_ == '\n' || c0_ == '\r') return Token::ILLEGAL;
936 if (c0_ == quote) {
937 literal.Complete();
938 Advance<false, false>();
939 return Token::STRING;
940 }
941 char c = static_cast<char>(c0_);
942 if (c == '\\') break;
943 Advance<false, false>();
944 AddLiteralChar(c);
945 }
946
947 while (c0_ != quote && c0_ != kEndOfInput &&
948 !unicode_cache_->IsLineTerminator(c0_)) {
949 uc32 c = c0_;
950 Advance();
951 if (c == '\\') {
952 if (c0_ == kEndOfInput || !ScanEscape<false, false>()) {
953 return Token::ILLEGAL;
954 }
955 } else {
956 AddLiteralChar(c);
957 }
958 }
959 if (c0_ != quote) return Token::ILLEGAL;
960 literal.Complete();
961
962 Advance(); // consume quote
963 return Token::STRING;
964 }
965
966
ScanTemplateSpan()967 Token::Value Scanner::ScanTemplateSpan() {
968 // When scanning a TemplateSpan, we are looking for the following construct:
969 // TEMPLATE_SPAN ::
970 // ` LiteralChars* ${
971 // | } LiteralChars* ${
972 //
973 // TEMPLATE_TAIL ::
974 // ` LiteralChars* `
975 // | } LiteralChar* `
976 //
977 // A TEMPLATE_SPAN should always be followed by an Expression, while a
978 // TEMPLATE_TAIL terminates a TemplateLiteral and does not need to be
979 // followed by an Expression.
980
981 Token::Value result = Token::TEMPLATE_SPAN;
982 LiteralScope literal(this);
983 StartRawLiteral();
984 const bool capture_raw = true;
985 const bool in_template_literal = true;
986 while (true) {
987 uc32 c = c0_;
988 Advance<capture_raw>();
989 if (c == '`') {
990 result = Token::TEMPLATE_TAIL;
991 ReduceRawLiteralLength(1);
992 break;
993 } else if (c == '$' && c0_ == '{') {
994 Advance<capture_raw>(); // Consume '{'
995 ReduceRawLiteralLength(2);
996 break;
997 } else if (c == '\\') {
998 if (c0_ != kEndOfInput && unicode_cache_->IsLineTerminator(c0_)) {
999 // The TV of LineContinuation :: \ LineTerminatorSequence is the empty
1000 // code unit sequence.
1001 uc32 lastChar = c0_;
1002 Advance<capture_raw>();
1003 if (lastChar == '\r') {
1004 ReduceRawLiteralLength(1); // Remove \r
1005 if (c0_ == '\n') {
1006 Advance<capture_raw>(); // Adds \n
1007 } else {
1008 AddRawLiteralChar('\n');
1009 }
1010 }
1011 } else if (!ScanEscape<capture_raw, in_template_literal>()) {
1012 return Token::ILLEGAL;
1013 }
1014 } else if (c < 0) {
1015 // Unterminated template literal
1016 PushBack(c);
1017 break;
1018 } else {
1019 // The TRV of LineTerminatorSequence :: <CR> is the CV 0x000A.
1020 // The TRV of LineTerminatorSequence :: <CR><LF> is the sequence
1021 // consisting of the CV 0x000A.
1022 if (c == '\r') {
1023 ReduceRawLiteralLength(1); // Remove \r
1024 if (c0_ == '\n') {
1025 Advance<capture_raw>(); // Adds \n
1026 } else {
1027 AddRawLiteralChar('\n');
1028 }
1029 c = '\n';
1030 }
1031 AddLiteralChar(c);
1032 }
1033 }
1034 literal.Complete();
1035 next_.location.end_pos = source_pos();
1036 next_.token = result;
1037 return result;
1038 }
1039
1040
ScanTemplateStart()1041 Token::Value Scanner::ScanTemplateStart() {
1042 DCHECK(next_next_.token == Token::UNINITIALIZED);
1043 DCHECK(c0_ == '`');
1044 next_.location.beg_pos = source_pos();
1045 Advance(); // Consume `
1046 return ScanTemplateSpan();
1047 }
1048
1049
ScanTemplateContinuation()1050 Token::Value Scanner::ScanTemplateContinuation() {
1051 DCHECK_EQ(next_.token, Token::RBRACE);
1052 next_.location.beg_pos = source_pos() - 1; // We already consumed }
1053 return ScanTemplateSpan();
1054 }
1055
1056
ScanDecimalDigits()1057 void Scanner::ScanDecimalDigits() {
1058 while (IsDecimalDigit(c0_))
1059 AddLiteralCharAdvance();
1060 }
1061
1062
ScanNumber(bool seen_period)1063 Token::Value Scanner::ScanNumber(bool seen_period) {
1064 DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction
1065
1066 enum {
1067 DECIMAL,
1068 DECIMAL_WITH_LEADING_ZERO,
1069 HEX,
1070 OCTAL,
1071 IMPLICIT_OCTAL,
1072 BINARY
1073 } kind = DECIMAL;
1074
1075 LiteralScope literal(this);
1076 bool at_start = !seen_period;
1077 int start_pos = source_pos(); // For reporting octal positions.
1078 if (seen_period) {
1079 // we have already seen a decimal point of the float
1080 AddLiteralChar('.');
1081 ScanDecimalDigits(); // we know we have at least one digit
1082
1083 } else {
1084 // if the first character is '0' we must check for octals and hex
1085 if (c0_ == '0') {
1086 AddLiteralCharAdvance();
1087
1088 // either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or
1089 // an octal number.
1090 if (c0_ == 'x' || c0_ == 'X') {
1091 // hex number
1092 kind = HEX;
1093 AddLiteralCharAdvance();
1094 if (!IsHexDigit(c0_)) {
1095 // we must have at least one hex digit after 'x'/'X'
1096 return Token::ILLEGAL;
1097 }
1098 while (IsHexDigit(c0_)) {
1099 AddLiteralCharAdvance();
1100 }
1101 } else if (c0_ == 'o' || c0_ == 'O') {
1102 kind = OCTAL;
1103 AddLiteralCharAdvance();
1104 if (!IsOctalDigit(c0_)) {
1105 // we must have at least one octal digit after 'o'/'O'
1106 return Token::ILLEGAL;
1107 }
1108 while (IsOctalDigit(c0_)) {
1109 AddLiteralCharAdvance();
1110 }
1111 } else if (c0_ == 'b' || c0_ == 'B') {
1112 kind = BINARY;
1113 AddLiteralCharAdvance();
1114 if (!IsBinaryDigit(c0_)) {
1115 // we must have at least one binary digit after 'b'/'B'
1116 return Token::ILLEGAL;
1117 }
1118 while (IsBinaryDigit(c0_)) {
1119 AddLiteralCharAdvance();
1120 }
1121 } else if ('0' <= c0_ && c0_ <= '7') {
1122 // (possible) octal number
1123 kind = IMPLICIT_OCTAL;
1124 while (true) {
1125 if (c0_ == '8' || c0_ == '9') {
1126 at_start = false;
1127 kind = DECIMAL_WITH_LEADING_ZERO;
1128 break;
1129 }
1130 if (c0_ < '0' || '7' < c0_) {
1131 // Octal literal finished.
1132 octal_pos_ = Location(start_pos, source_pos());
1133 break;
1134 }
1135 AddLiteralCharAdvance();
1136 }
1137 } else if (c0_ == '8' || c0_ == '9') {
1138 kind = DECIMAL_WITH_LEADING_ZERO;
1139 }
1140 }
1141
1142 // Parse decimal digits and allow trailing fractional part.
1143 if (kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO) {
1144 if (at_start) {
1145 uint64_t value = 0;
1146 while (IsDecimalDigit(c0_)) {
1147 value = 10 * value + (c0_ - '0');
1148
1149 uc32 first_char = c0_;
1150 Advance<false, false>();
1151 AddLiteralChar(first_char);
1152 }
1153
1154 if (next_.literal_chars->one_byte_literal().length() <= 10 &&
1155 value <= Smi::kMaxValue && c0_ != '.' && c0_ != 'e' && c0_ != 'E') {
1156 next_.smi_value_ = static_cast<uint32_t>(value);
1157 literal.Complete();
1158 HandleLeadSurrogate();
1159
1160 if (kind == DECIMAL_WITH_LEADING_ZERO)
1161 decimal_with_leading_zero_pos_ = Location(start_pos, source_pos());
1162 return Token::SMI;
1163 }
1164 HandleLeadSurrogate();
1165 }
1166
1167 ScanDecimalDigits(); // optional
1168 if (c0_ == '.') {
1169 AddLiteralCharAdvance();
1170 ScanDecimalDigits(); // optional
1171 }
1172 }
1173 }
1174
1175 // scan exponent, if any
1176 if (c0_ == 'e' || c0_ == 'E') {
1177 DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
1178 if (!(kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO))
1179 return Token::ILLEGAL;
1180 // scan exponent
1181 AddLiteralCharAdvance();
1182 if (c0_ == '+' || c0_ == '-')
1183 AddLiteralCharAdvance();
1184 if (!IsDecimalDigit(c0_)) {
1185 // we must have at least one decimal digit after 'e'/'E'
1186 return Token::ILLEGAL;
1187 }
1188 ScanDecimalDigits();
1189 }
1190
1191 // The source character immediately following a numeric literal must
1192 // not be an identifier start or a decimal digit; see ECMA-262
1193 // section 7.8.3, page 17 (note that we read only one decimal digit
1194 // if the value is 0).
1195 if (IsDecimalDigit(c0_) ||
1196 (c0_ != kEndOfInput && unicode_cache_->IsIdentifierStart(c0_)))
1197 return Token::ILLEGAL;
1198
1199 literal.Complete();
1200
1201 if (kind == DECIMAL_WITH_LEADING_ZERO)
1202 decimal_with_leading_zero_pos_ = Location(start_pos, source_pos());
1203 return Token::NUMBER;
1204 }
1205
1206
ScanIdentifierUnicodeEscape()1207 uc32 Scanner::ScanIdentifierUnicodeEscape() {
1208 Advance();
1209 if (c0_ != 'u') return -1;
1210 Advance();
1211 return ScanUnicodeEscape<false>();
1212 }
1213
1214
1215 template <bool capture_raw>
ScanUnicodeEscape()1216 uc32 Scanner::ScanUnicodeEscape() {
1217 // Accept both \uxxxx and \u{xxxxxx}. In the latter case, the number of
1218 // hex digits between { } is arbitrary. \ and u have already been read.
1219 if (c0_ == '{') {
1220 int begin = source_pos() - 2;
1221 Advance<capture_raw>();
1222 uc32 cp = ScanUnlimitedLengthHexNumber<capture_raw>(0x10ffff, begin);
1223 if (cp < 0 || c0_ != '}') {
1224 ReportScannerError(source_pos(),
1225 MessageTemplate::kInvalidUnicodeEscapeSequence);
1226 return -1;
1227 }
1228 Advance<capture_raw>();
1229 return cp;
1230 }
1231 const bool unicode = true;
1232 return ScanHexNumber<capture_raw, unicode>(4);
1233 }
1234
1235
1236 // ----------------------------------------------------------------------------
1237 // Keyword Matcher
1238
1239 #define KEYWORDS(KEYWORD_GROUP, KEYWORD) \
1240 KEYWORD_GROUP('a') \
1241 KEYWORD("async", Token::ASYNC) \
1242 KEYWORD("await", Token::AWAIT) \
1243 KEYWORD_GROUP('b') \
1244 KEYWORD("break", Token::BREAK) \
1245 KEYWORD_GROUP('c') \
1246 KEYWORD("case", Token::CASE) \
1247 KEYWORD("catch", Token::CATCH) \
1248 KEYWORD("class", Token::CLASS) \
1249 KEYWORD("const", Token::CONST) \
1250 KEYWORD("continue", Token::CONTINUE) \
1251 KEYWORD_GROUP('d') \
1252 KEYWORD("debugger", Token::DEBUGGER) \
1253 KEYWORD("default", Token::DEFAULT) \
1254 KEYWORD("delete", Token::DELETE) \
1255 KEYWORD("do", Token::DO) \
1256 KEYWORD_GROUP('e') \
1257 KEYWORD("else", Token::ELSE) \
1258 KEYWORD("enum", Token::ENUM) \
1259 KEYWORD("export", Token::EXPORT) \
1260 KEYWORD("extends", Token::EXTENDS) \
1261 KEYWORD_GROUP('f') \
1262 KEYWORD("false", Token::FALSE_LITERAL) \
1263 KEYWORD("finally", Token::FINALLY) \
1264 KEYWORD("for", Token::FOR) \
1265 KEYWORD("function", Token::FUNCTION) \
1266 KEYWORD_GROUP('i') \
1267 KEYWORD("if", Token::IF) \
1268 KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \
1269 KEYWORD("import", Token::IMPORT) \
1270 KEYWORD("in", Token::IN) \
1271 KEYWORD("instanceof", Token::INSTANCEOF) \
1272 KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \
1273 KEYWORD_GROUP('l') \
1274 KEYWORD("let", Token::LET) \
1275 KEYWORD_GROUP('n') \
1276 KEYWORD("new", Token::NEW) \
1277 KEYWORD("null", Token::NULL_LITERAL) \
1278 KEYWORD_GROUP('p') \
1279 KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \
1280 KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \
1281 KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \
1282 KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \
1283 KEYWORD_GROUP('r') \
1284 KEYWORD("return", Token::RETURN) \
1285 KEYWORD_GROUP('s') \
1286 KEYWORD("static", Token::STATIC) \
1287 KEYWORD("super", Token::SUPER) \
1288 KEYWORD("switch", Token::SWITCH) \
1289 KEYWORD_GROUP('t') \
1290 KEYWORD("this", Token::THIS) \
1291 KEYWORD("throw", Token::THROW) \
1292 KEYWORD("true", Token::TRUE_LITERAL) \
1293 KEYWORD("try", Token::TRY) \
1294 KEYWORD("typeof", Token::TYPEOF) \
1295 KEYWORD_GROUP('v') \
1296 KEYWORD("var", Token::VAR) \
1297 KEYWORD("void", Token::VOID) \
1298 KEYWORD_GROUP('w') \
1299 KEYWORD("while", Token::WHILE) \
1300 KEYWORD("with", Token::WITH) \
1301 KEYWORD_GROUP('y') \
1302 KEYWORD("yield", Token::YIELD)
1303
KeywordOrIdentifierToken(const uint8_t * input,int input_length)1304 static Token::Value KeywordOrIdentifierToken(const uint8_t* input,
1305 int input_length) {
1306 DCHECK(input_length >= 1);
1307 const int kMinLength = 2;
1308 const int kMaxLength = 10;
1309 if (input_length < kMinLength || input_length > kMaxLength) {
1310 return Token::IDENTIFIER;
1311 }
1312 switch (input[0]) {
1313 default:
1314 #define KEYWORD_GROUP_CASE(ch) \
1315 break; \
1316 case ch:
1317 #define KEYWORD(keyword, token) \
1318 { \
1319 /* 'keyword' is a char array, so sizeof(keyword) is */ \
1320 /* strlen(keyword) plus 1 for the NUL char. */ \
1321 const int keyword_length = sizeof(keyword) - 1; \
1322 STATIC_ASSERT(keyword_length >= kMinLength); \
1323 STATIC_ASSERT(keyword_length <= kMaxLength); \
1324 if (input_length == keyword_length && input[1] == keyword[1] && \
1325 (keyword_length <= 2 || input[2] == keyword[2]) && \
1326 (keyword_length <= 3 || input[3] == keyword[3]) && \
1327 (keyword_length <= 4 || input[4] == keyword[4]) && \
1328 (keyword_length <= 5 || input[5] == keyword[5]) && \
1329 (keyword_length <= 6 || input[6] == keyword[6]) && \
1330 (keyword_length <= 7 || input[7] == keyword[7]) && \
1331 (keyword_length <= 8 || input[8] == keyword[8]) && \
1332 (keyword_length <= 9 || input[9] == keyword[9])) { \
1333 return token; \
1334 } \
1335 }
1336 KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD)
1337 }
1338 return Token::IDENTIFIER;
1339 }
1340
1341
IdentifierIsFutureStrictReserved(const AstRawString * string) const1342 bool Scanner::IdentifierIsFutureStrictReserved(
1343 const AstRawString* string) const {
1344 // Keywords are always 1-byte strings.
1345 if (!string->is_one_byte()) return false;
1346 if (string->IsOneByteEqualTo("let") || string->IsOneByteEqualTo("static") ||
1347 string->IsOneByteEqualTo("yield")) {
1348 return true;
1349 }
1350 return Token::FUTURE_STRICT_RESERVED_WORD ==
1351 KeywordOrIdentifierToken(string->raw_data(), string->length());
1352 }
1353
1354
ScanIdentifierOrKeyword()1355 Token::Value Scanner::ScanIdentifierOrKeyword() {
1356 DCHECK(unicode_cache_->IsIdentifierStart(c0_));
1357 LiteralScope literal(this);
1358 if (IsInRange(c0_, 'a', 'z')) {
1359 do {
1360 char first_char = static_cast<char>(c0_);
1361 Advance<false, false>();
1362 AddLiteralChar(first_char);
1363 } while (IsInRange(c0_, 'a', 'z'));
1364
1365 if (IsDecimalDigit(c0_) || IsInRange(c0_, 'A', 'Z') || c0_ == '_' ||
1366 c0_ == '$') {
1367 // Identifier starting with lowercase.
1368 char first_char = static_cast<char>(c0_);
1369 Advance<false, false>();
1370 AddLiteralChar(first_char);
1371 while (IsAsciiIdentifier(c0_)) {
1372 char first_char = static_cast<char>(c0_);
1373 Advance<false, false>();
1374 AddLiteralChar(first_char);
1375 }
1376 if (c0_ <= kMaxAscii && c0_ != '\\') {
1377 literal.Complete();
1378 return Token::IDENTIFIER;
1379 }
1380 } else if (c0_ <= kMaxAscii && c0_ != '\\') {
1381 // Only a-z+: could be a keyword or identifier.
1382 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1383 Token::Value token =
1384 KeywordOrIdentifierToken(chars.start(), chars.length());
1385 if (token == Token::IDENTIFIER ||
1386 token == Token::FUTURE_STRICT_RESERVED_WORD)
1387 literal.Complete();
1388 return token;
1389 }
1390
1391 HandleLeadSurrogate();
1392 } else if (IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') {
1393 do {
1394 char first_char = static_cast<char>(c0_);
1395 Advance<false, false>();
1396 AddLiteralChar(first_char);
1397 } while (IsAsciiIdentifier(c0_));
1398
1399 if (c0_ <= kMaxAscii && c0_ != '\\') {
1400 literal.Complete();
1401 return Token::IDENTIFIER;
1402 }
1403
1404 HandleLeadSurrogate();
1405 } else if (c0_ == '\\') {
1406 // Scan identifier start character.
1407 uc32 c = ScanIdentifierUnicodeEscape();
1408 // Only allow legal identifier start characters.
1409 if (c < 0 ||
1410 c == '\\' || // No recursive escapes.
1411 !unicode_cache_->IsIdentifierStart(c)) {
1412 return Token::ILLEGAL;
1413 }
1414 AddLiteralChar(c);
1415 return ScanIdentifierSuffix(&literal, true);
1416 } else {
1417 uc32 first_char = c0_;
1418 Advance();
1419 AddLiteralChar(first_char);
1420 }
1421
1422 // Scan the rest of the identifier characters.
1423 while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) {
1424 if (c0_ != '\\') {
1425 uc32 next_char = c0_;
1426 Advance();
1427 AddLiteralChar(next_char);
1428 continue;
1429 }
1430 // Fallthrough if no longer able to complete keyword.
1431 return ScanIdentifierSuffix(&literal, false);
1432 }
1433
1434 if (next_.literal_chars->is_one_byte()) {
1435 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1436 Token::Value token =
1437 KeywordOrIdentifierToken(chars.start(), chars.length());
1438 if (token == Token::IDENTIFIER) literal.Complete();
1439 return token;
1440 }
1441 literal.Complete();
1442 return Token::IDENTIFIER;
1443 }
1444
1445
ScanIdentifierSuffix(LiteralScope * literal,bool escaped)1446 Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal,
1447 bool escaped) {
1448 // Scan the rest of the identifier characters.
1449 while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) {
1450 if (c0_ == '\\') {
1451 uc32 c = ScanIdentifierUnicodeEscape();
1452 escaped = true;
1453 // Only allow legal identifier part characters.
1454 if (c < 0 ||
1455 c == '\\' ||
1456 !unicode_cache_->IsIdentifierPart(c)) {
1457 return Token::ILLEGAL;
1458 }
1459 AddLiteralChar(c);
1460 } else {
1461 AddLiteralChar(c0_);
1462 Advance();
1463 }
1464 }
1465 literal->Complete();
1466
1467 if (escaped && next_.literal_chars->is_one_byte()) {
1468 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1469 Token::Value token =
1470 KeywordOrIdentifierToken(chars.start(), chars.length());
1471 /* TODO(adamk): YIELD should be handled specially. */
1472 if (token == Token::IDENTIFIER) {
1473 return Token::IDENTIFIER;
1474 } else if (token == Token::FUTURE_STRICT_RESERVED_WORD ||
1475 token == Token::LET || token == Token::STATIC) {
1476 return Token::ESCAPED_STRICT_RESERVED_WORD;
1477 } else {
1478 return Token::ESCAPED_KEYWORD;
1479 }
1480 }
1481 return Token::IDENTIFIER;
1482 }
1483
ScanRegExpPattern()1484 bool Scanner::ScanRegExpPattern() {
1485 DCHECK(next_next_.token == Token::UNINITIALIZED);
1486 DCHECK(next_.token == Token::DIV || next_.token == Token::ASSIGN_DIV);
1487
1488 // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags
1489 bool in_character_class = false;
1490 bool seen_equal = (next_.token == Token::ASSIGN_DIV);
1491
1492 // Previous token is either '/' or '/=', in the second case, the
1493 // pattern starts at =.
1494 next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1);
1495 next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0);
1496
1497 // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5,
1498 // the scanner should pass uninterpreted bodies to the RegExp
1499 // constructor.
1500 LiteralScope literal(this);
1501 if (seen_equal) {
1502 AddLiteralChar('=');
1503 }
1504
1505 while (c0_ != '/' || in_character_class) {
1506 if (c0_ == kEndOfInput || unicode_cache_->IsLineTerminator(c0_))
1507 return false;
1508 if (c0_ == '\\') { // Escape sequence.
1509 AddLiteralCharAdvance();
1510 if (c0_ == kEndOfInput || unicode_cache_->IsLineTerminator(c0_))
1511 return false;
1512 AddLiteralCharAdvance();
1513 // If the escape allows more characters, i.e., \x??, \u????, or \c?,
1514 // only "safe" characters are allowed (letters, digits, underscore),
1515 // otherwise the escape isn't valid and the invalid character has
1516 // its normal meaning. I.e., we can just continue scanning without
1517 // worrying whether the following characters are part of the escape
1518 // or not, since any '/', '\\' or '[' is guaranteed to not be part
1519 // of the escape sequence.
1520
1521 // TODO(896): At some point, parse RegExps more throughly to capture
1522 // octal esacpes in strict mode.
1523 } else { // Unescaped character.
1524 if (c0_ == '[') in_character_class = true;
1525 if (c0_ == ']') in_character_class = false;
1526 AddLiteralCharAdvance();
1527 }
1528 }
1529 Advance(); // consume '/'
1530
1531 literal.Complete();
1532 next_.token = Token::REGEXP_LITERAL;
1533 return true;
1534 }
1535
1536
ScanRegExpFlags()1537 Maybe<RegExp::Flags> Scanner::ScanRegExpFlags() {
1538 DCHECK(next_.token == Token::REGEXP_LITERAL);
1539
1540 // Scan regular expression flags.
1541 int flags = 0;
1542 while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) {
1543 RegExp::Flags flag = RegExp::kNone;
1544 switch (c0_) {
1545 case 'g':
1546 flag = RegExp::kGlobal;
1547 break;
1548 case 'i':
1549 flag = RegExp::kIgnoreCase;
1550 break;
1551 case 'm':
1552 flag = RegExp::kMultiline;
1553 break;
1554 case 'u':
1555 flag = RegExp::kUnicode;
1556 break;
1557 case 'y':
1558 flag = RegExp::kSticky;
1559 break;
1560 default:
1561 return Nothing<RegExp::Flags>();
1562 }
1563 if (flags & flag) {
1564 return Nothing<RegExp::Flags>();
1565 }
1566 Advance();
1567 flags |= flag;
1568 }
1569
1570 next_.location.end_pos = source_pos();
1571 return Just(RegExp::Flags(flags));
1572 }
1573
1574
CurrentSymbol(AstValueFactory * ast_value_factory)1575 const AstRawString* Scanner::CurrentSymbol(AstValueFactory* ast_value_factory) {
1576 if (is_literal_one_byte()) {
1577 return ast_value_factory->GetOneByteString(literal_one_byte_string());
1578 }
1579 return ast_value_factory->GetTwoByteString(literal_two_byte_string());
1580 }
1581
1582
NextSymbol(AstValueFactory * ast_value_factory)1583 const AstRawString* Scanner::NextSymbol(AstValueFactory* ast_value_factory) {
1584 if (is_next_literal_one_byte()) {
1585 return ast_value_factory->GetOneByteString(next_literal_one_byte_string());
1586 }
1587 return ast_value_factory->GetTwoByteString(next_literal_two_byte_string());
1588 }
1589
1590
CurrentRawSymbol(AstValueFactory * ast_value_factory)1591 const AstRawString* Scanner::CurrentRawSymbol(
1592 AstValueFactory* ast_value_factory) {
1593 if (is_raw_literal_one_byte()) {
1594 return ast_value_factory->GetOneByteString(raw_literal_one_byte_string());
1595 }
1596 return ast_value_factory->GetTwoByteString(raw_literal_two_byte_string());
1597 }
1598
1599
DoubleValue()1600 double Scanner::DoubleValue() {
1601 DCHECK(is_literal_one_byte());
1602 return StringToDouble(
1603 unicode_cache_,
1604 literal_one_byte_string(),
1605 ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY);
1606 }
1607
1608
ContainsDot()1609 bool Scanner::ContainsDot() {
1610 DCHECK(is_literal_one_byte());
1611 Vector<const uint8_t> str = literal_one_byte_string();
1612 return std::find(str.begin(), str.end(), '.') != str.end();
1613 }
1614
1615
FindSymbol(DuplicateFinder * finder,int value)1616 int Scanner::FindSymbol(DuplicateFinder* finder, int value) {
1617 // TODO(vogelheim): Move this logic into the calling class; this can be fully
1618 // implemented using the public interface.
1619 if (is_literal_one_byte()) {
1620 return finder->AddOneByteSymbol(literal_one_byte_string(), value);
1621 }
1622 return finder->AddTwoByteSymbol(literal_two_byte_string(), value);
1623 }
1624
SeekNext(size_t position)1625 void Scanner::SeekNext(size_t position) {
1626 // Use with care: This cleanly resets most, but not all scanner state.
1627 // TODO(vogelheim): Fix this, or at least DCHECK the relevant conditions.
1628
1629 // To re-scan from a given character position, we need to:
1630 // 1, Reset the current_, next_ and next_next_ tokens
1631 // (next_ + next_next_ will be overwrittem by Next(),
1632 // current_ will remain unchanged, so overwrite it fully.)
1633 current_ = {{0, 0}, nullptr, nullptr, 0, Token::UNINITIALIZED};
1634 next_.token = Token::UNINITIALIZED;
1635 next_next_.token = Token::UNINITIALIZED;
1636 // 2, reset the source to the desired position,
1637 source_->Seek(position);
1638 // 3, re-scan, by scanning the look-ahead char + 1 token (next_).
1639 c0_ = source_->Advance();
1640 Next();
1641 DCHECK_EQ(next_.location.beg_pos, static_cast<int>(position));
1642 }
1643
1644 } // namespace internal
1645 } // namespace v8
1646