1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTarget.h"
15 #include "CodeGenSchedule.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/MC/MCInstrItineraries.h"
19 #include "llvm/MC/MCSchedule.h"
20 #include "llvm/MC/SubtargetFeature.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <cstdint>
30 #include <map>
31 #include <string>
32 #include <vector>
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "subtarget-emitter"
37
38 namespace {
39
40 class SubtargetEmitter {
41 // Each processor has a SchedClassDesc table with an entry for each SchedClass.
42 // The SchedClassDesc table indexes into a global write resource table, write
43 // latency table, and read advance table.
44 struct SchedClassTables {
45 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
46 std::vector<MCWriteProcResEntry> WriteProcResources;
47 std::vector<MCWriteLatencyEntry> WriteLatencies;
48 std::vector<std::string> WriterNames;
49 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
50
51 // Reserve an invalid entry at index 0
SchedClassTables__anonec51d5e80111::SubtargetEmitter::SchedClassTables52 SchedClassTables() {
53 ProcSchedClasses.resize(1);
54 WriteProcResources.resize(1);
55 WriteLatencies.resize(1);
56 WriterNames.push_back("InvalidWrite");
57 ReadAdvanceEntries.resize(1);
58 }
59 };
60
61 struct LessWriteProcResources {
operator ()__anonec51d5e80111::SubtargetEmitter::LessWriteProcResources62 bool operator()(const MCWriteProcResEntry &LHS,
63 const MCWriteProcResEntry &RHS) {
64 return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
65 }
66 };
67
68 RecordKeeper &Records;
69 CodeGenSchedModels &SchedModels;
70 std::string Target;
71
72 void Enumeration(raw_ostream &OS);
73 unsigned FeatureKeyValues(raw_ostream &OS);
74 unsigned CPUKeyValues(raw_ostream &OS);
75 void FormItineraryStageString(const std::string &Names,
76 Record *ItinData, std::string &ItinString,
77 unsigned &NStages);
78 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
79 unsigned &NOperandCycles);
80 void FormItineraryBypassString(const std::string &Names,
81 Record *ItinData,
82 std::string &ItinString, unsigned NOperandCycles);
83 void EmitStageAndOperandCycleData(raw_ostream &OS,
84 std::vector<std::vector<InstrItinerary> >
85 &ProcItinLists);
86 void EmitItineraries(raw_ostream &OS,
87 std::vector<std::vector<InstrItinerary> >
88 &ProcItinLists);
89 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
90 char Separator);
91 void EmitProcessorResources(const CodeGenProcModel &ProcModel,
92 raw_ostream &OS);
93 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
94 const CodeGenProcModel &ProcModel);
95 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
96 const CodeGenProcModel &ProcModel);
97 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
98 const CodeGenProcModel &ProcModel);
99 void GenSchedClassTables(const CodeGenProcModel &ProcModel,
100 SchedClassTables &SchedTables);
101 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
102 void EmitProcessorModels(raw_ostream &OS);
103 void EmitProcessorLookup(raw_ostream &OS);
104 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
105 void EmitSchedModel(raw_ostream &OS);
106 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
107 unsigned NumProcs);
108
109 public:
SubtargetEmitter(RecordKeeper & R,CodeGenTarget & TGT)110 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
111 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
112
113 void run(raw_ostream &o);
114 };
115
116 } // end anonymous namespace
117
118 //
119 // Enumeration - Emit the specified class as an enumeration.
120 //
Enumeration(raw_ostream & OS)121 void SubtargetEmitter::Enumeration(raw_ostream &OS) {
122 // Get all records of class and sort
123 std::vector<Record*> DefList =
124 Records.getAllDerivedDefinitions("SubtargetFeature");
125 std::sort(DefList.begin(), DefList.end(), LessRecord());
126
127 unsigned N = DefList.size();
128 if (N == 0)
129 return;
130 if (N > MAX_SUBTARGET_FEATURES)
131 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
132
133 OS << "namespace " << Target << " {\n";
134
135 // Open enumeration.
136 OS << "enum {\n";
137
138 // For each record
139 for (unsigned i = 0; i < N;) {
140 // Next record
141 Record *Def = DefList[i];
142
143 // Get and emit name
144 OS << " " << Def->getName() << " = " << i;
145 if (++i < N) OS << ",";
146
147 OS << "\n";
148 }
149
150 // Close enumeration and namespace
151 OS << "};\n";
152 OS << "} // end namespace " << Target << "\n";
153 }
154
155 //
156 // FeatureKeyValues - Emit data of all the subtarget features. Used by the
157 // command line.
158 //
FeatureKeyValues(raw_ostream & OS)159 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
160 // Gather and sort all the features
161 std::vector<Record*> FeatureList =
162 Records.getAllDerivedDefinitions("SubtargetFeature");
163
164 if (FeatureList.empty())
165 return 0;
166
167 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
168
169 // Begin feature table
170 OS << "// Sorted (by key) array of values for CPU features.\n"
171 << "extern const llvm::SubtargetFeatureKV " << Target
172 << "FeatureKV[] = {\n";
173
174 // For each feature
175 unsigned NumFeatures = 0;
176 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
177 // Next feature
178 Record *Feature = FeatureList[i];
179
180 const std::string &Name = Feature->getName();
181 const std::string &CommandLineName = Feature->getValueAsString("Name");
182 const std::string &Desc = Feature->getValueAsString("Desc");
183
184 if (CommandLineName.empty()) continue;
185
186 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
187 OS << " { "
188 << "\"" << CommandLineName << "\", "
189 << "\"" << Desc << "\", "
190 << "{ " << Target << "::" << Name << " }, ";
191
192 const std::vector<Record*> &ImpliesList =
193 Feature->getValueAsListOfDefs("Implies");
194
195 OS << "{";
196 for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
197 OS << " " << Target << "::" << ImpliesList[j]->getName();
198 if (++j < M) OS << ",";
199 }
200 OS << " }";
201
202 OS << " }";
203 ++NumFeatures;
204
205 // Depending on 'if more in the list' emit comma
206 if ((i + 1) < N) OS << ",";
207
208 OS << "\n";
209 }
210
211 // End feature table
212 OS << "};\n";
213
214 return NumFeatures;
215 }
216
217 //
218 // CPUKeyValues - Emit data of all the subtarget processors. Used by command
219 // line.
220 //
CPUKeyValues(raw_ostream & OS)221 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
222 // Gather and sort processor information
223 std::vector<Record*> ProcessorList =
224 Records.getAllDerivedDefinitions("Processor");
225 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
226
227 // Begin processor table
228 OS << "// Sorted (by key) array of values for CPU subtype.\n"
229 << "extern const llvm::SubtargetFeatureKV " << Target
230 << "SubTypeKV[] = {\n";
231
232 // For each processor
233 for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
234 // Next processor
235 Record *Processor = ProcessorList[i];
236
237 const std::string &Name = Processor->getValueAsString("Name");
238 const std::vector<Record*> &FeatureList =
239 Processor->getValueAsListOfDefs("Features");
240
241 // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
242 OS << " { "
243 << "\"" << Name << "\", "
244 << "\"Select the " << Name << " processor\", ";
245
246 OS << "{";
247 for (unsigned j = 0, M = FeatureList.size(); j < M;) {
248 OS << " " << Target << "::" << FeatureList[j]->getName();
249 if (++j < M) OS << ",";
250 }
251 OS << " }";
252
253 // The { } is for the "implies" section of this data structure.
254 OS << ", { } }";
255
256 // Depending on 'if more in the list' emit comma
257 if (++i < N) OS << ",";
258
259 OS << "\n";
260 }
261
262 // End processor table
263 OS << "};\n";
264
265 return ProcessorList.size();
266 }
267
268 //
269 // FormItineraryStageString - Compose a string containing the stage
270 // data initialization for the specified itinerary. N is the number
271 // of stages.
272 //
FormItineraryStageString(const std::string & Name,Record * ItinData,std::string & ItinString,unsigned & NStages)273 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
274 Record *ItinData,
275 std::string &ItinString,
276 unsigned &NStages) {
277 // Get states list
278 const std::vector<Record*> &StageList =
279 ItinData->getValueAsListOfDefs("Stages");
280
281 // For each stage
282 unsigned N = NStages = StageList.size();
283 for (unsigned i = 0; i < N;) {
284 // Next stage
285 const Record *Stage = StageList[i];
286
287 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
288 int Cycles = Stage->getValueAsInt("Cycles");
289 ItinString += " { " + itostr(Cycles) + ", ";
290
291 // Get unit list
292 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
293
294 // For each unit
295 for (unsigned j = 0, M = UnitList.size(); j < M;) {
296 // Add name and bitwise or
297 ItinString += Name + "FU::" + UnitList[j]->getName();
298 if (++j < M) ItinString += " | ";
299 }
300
301 int TimeInc = Stage->getValueAsInt("TimeInc");
302 ItinString += ", " + itostr(TimeInc);
303
304 int Kind = Stage->getValueAsInt("Kind");
305 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
306
307 // Close off stage
308 ItinString += " }";
309 if (++i < N) ItinString += ", ";
310 }
311 }
312
313 //
314 // FormItineraryOperandCycleString - Compose a string containing the
315 // operand cycle initialization for the specified itinerary. N is the
316 // number of operands that has cycles specified.
317 //
FormItineraryOperandCycleString(Record * ItinData,std::string & ItinString,unsigned & NOperandCycles)318 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
319 std::string &ItinString, unsigned &NOperandCycles) {
320 // Get operand cycle list
321 const std::vector<int64_t> &OperandCycleList =
322 ItinData->getValueAsListOfInts("OperandCycles");
323
324 // For each operand cycle
325 unsigned N = NOperandCycles = OperandCycleList.size();
326 for (unsigned i = 0; i < N;) {
327 // Next operand cycle
328 const int OCycle = OperandCycleList[i];
329
330 ItinString += " " + itostr(OCycle);
331 if (++i < N) ItinString += ", ";
332 }
333 }
334
FormItineraryBypassString(const std::string & Name,Record * ItinData,std::string & ItinString,unsigned NOperandCycles)335 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
336 Record *ItinData,
337 std::string &ItinString,
338 unsigned NOperandCycles) {
339 const std::vector<Record*> &BypassList =
340 ItinData->getValueAsListOfDefs("Bypasses");
341 unsigned N = BypassList.size();
342 unsigned i = 0;
343 for (; i < N;) {
344 ItinString += Name + "Bypass::" + BypassList[i]->getName();
345 if (++i < NOperandCycles) ItinString += ", ";
346 }
347 for (; i < NOperandCycles;) {
348 ItinString += " 0";
349 if (++i < NOperandCycles) ItinString += ", ";
350 }
351 }
352
353 //
354 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
355 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
356 // by CodeGenSchedClass::Index.
357 //
358 void SubtargetEmitter::
EmitStageAndOperandCycleData(raw_ostream & OS,std::vector<std::vector<InstrItinerary>> & ProcItinLists)359 EmitStageAndOperandCycleData(raw_ostream &OS,
360 std::vector<std::vector<InstrItinerary> >
361 &ProcItinLists) {
362
363 // Multiple processor models may share an itinerary record. Emit it once.
364 SmallPtrSet<Record*, 8> ItinsDefSet;
365
366 // Emit functional units for all the itineraries.
367 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
368
369 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
370 continue;
371
372 std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
373 if (FUs.empty())
374 continue;
375
376 const std::string &Name = ProcModel.ItinsDef->getName();
377 OS << "\n// Functional units for \"" << Name << "\"\n"
378 << "namespace " << Name << "FU {\n";
379
380 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
381 OS << " const unsigned " << FUs[j]->getName()
382 << " = 1 << " << j << ";\n";
383
384 OS << "} // end namespace " << Name << "FU\n";
385
386 std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
387 if (!BPs.empty()) {
388 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
389 << "\"\n" << "namespace " << Name << "Bypass {\n";
390
391 OS << " const unsigned NoBypass = 0;\n";
392 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
393 OS << " const unsigned " << BPs[j]->getName()
394 << " = 1 << " << j << ";\n";
395
396 OS << "} // end namespace " << Name << "Bypass\n";
397 }
398 }
399
400 // Begin stages table
401 std::string StageTable = "\nextern const llvm::InstrStage " + Target +
402 "Stages[] = {\n";
403 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
404
405 // Begin operand cycle table
406 std::string OperandCycleTable = "extern const unsigned " + Target +
407 "OperandCycles[] = {\n";
408 OperandCycleTable += " 0, // No itinerary\n";
409
410 // Begin pipeline bypass table
411 std::string BypassTable = "extern const unsigned " + Target +
412 "ForwardingPaths[] = {\n";
413 BypassTable += " 0, // No itinerary\n";
414
415 // For each Itinerary across all processors, add a unique entry to the stages,
416 // operand cycles, and pipepine bypess tables. Then add the new Itinerary
417 // object with computed offsets to the ProcItinLists result.
418 unsigned StageCount = 1, OperandCycleCount = 1;
419 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
420 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
421 // Add process itinerary to the list.
422 ProcItinLists.resize(ProcItinLists.size()+1);
423
424 // If this processor defines no itineraries, then leave the itinerary list
425 // empty.
426 std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
427 if (!ProcModel.hasItineraries())
428 continue;
429
430 const std::string &Name = ProcModel.ItinsDef->getName();
431
432 ItinList.resize(SchedModels.numInstrSchedClasses());
433 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
434
435 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
436 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
437
438 // Next itinerary data
439 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
440
441 // Get string and stage count
442 std::string ItinStageString;
443 unsigned NStages = 0;
444 if (ItinData)
445 FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
446
447 // Get string and operand cycle count
448 std::string ItinOperandCycleString;
449 unsigned NOperandCycles = 0;
450 std::string ItinBypassString;
451 if (ItinData) {
452 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
453 NOperandCycles);
454
455 FormItineraryBypassString(Name, ItinData, ItinBypassString,
456 NOperandCycles);
457 }
458
459 // Check to see if stage already exists and create if it doesn't
460 unsigned FindStage = 0;
461 if (NStages > 0) {
462 FindStage = ItinStageMap[ItinStageString];
463 if (FindStage == 0) {
464 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
465 StageTable += ItinStageString + ", // " + itostr(StageCount);
466 if (NStages > 1)
467 StageTable += "-" + itostr(StageCount + NStages - 1);
468 StageTable += "\n";
469 // Record Itin class number.
470 ItinStageMap[ItinStageString] = FindStage = StageCount;
471 StageCount += NStages;
472 }
473 }
474
475 // Check to see if operand cycle already exists and create if it doesn't
476 unsigned FindOperandCycle = 0;
477 if (NOperandCycles > 0) {
478 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
479 FindOperandCycle = ItinOperandMap[ItinOperandString];
480 if (FindOperandCycle == 0) {
481 // Emit as cycle, // index
482 OperandCycleTable += ItinOperandCycleString + ", // ";
483 std::string OperandIdxComment = itostr(OperandCycleCount);
484 if (NOperandCycles > 1)
485 OperandIdxComment += "-"
486 + itostr(OperandCycleCount + NOperandCycles - 1);
487 OperandCycleTable += OperandIdxComment + "\n";
488 // Record Itin class number.
489 ItinOperandMap[ItinOperandCycleString] =
490 FindOperandCycle = OperandCycleCount;
491 // Emit as bypass, // index
492 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
493 OperandCycleCount += NOperandCycles;
494 }
495 }
496
497 // Set up itinerary as location and location + stage count
498 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
499 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
500 FindOperandCycle,
501 FindOperandCycle + NOperandCycles};
502
503 // Inject - empty slots will be 0, 0
504 ItinList[SchedClassIdx] = Intinerary;
505 }
506 }
507
508 // Closing stage
509 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
510 StageTable += "};\n";
511
512 // Closing operand cycles
513 OperandCycleTable += " 0 // End operand cycles\n";
514 OperandCycleTable += "};\n";
515
516 BypassTable += " 0 // End bypass tables\n";
517 BypassTable += "};\n";
518
519 // Emit tables.
520 OS << StageTable;
521 OS << OperandCycleTable;
522 OS << BypassTable;
523 }
524
525 //
526 // EmitProcessorData - Generate data for processor itineraries that were
527 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
528 // Itineraries for each processor. The Itinerary lists are indexed on
529 // CodeGenSchedClass::Index.
530 //
531 void SubtargetEmitter::
EmitItineraries(raw_ostream & OS,std::vector<std::vector<InstrItinerary>> & ProcItinLists)532 EmitItineraries(raw_ostream &OS,
533 std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
534
535 // Multiple processor models may share an itinerary record. Emit it once.
536 SmallPtrSet<Record*, 8> ItinsDefSet;
537
538 // For each processor's machine model
539 std::vector<std::vector<InstrItinerary> >::iterator
540 ProcItinListsIter = ProcItinLists.begin();
541 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
542 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
543
544 Record *ItinsDef = PI->ItinsDef;
545 if (!ItinsDefSet.insert(ItinsDef).second)
546 continue;
547
548 // Get processor itinerary name
549 const std::string &Name = ItinsDef->getName();
550
551 // Get the itinerary list for the processor.
552 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
553 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
554
555 // Empty itineraries aren't referenced anywhere in the tablegen output
556 // so don't emit them.
557 if (ItinList.empty())
558 continue;
559
560 OS << "\n";
561 OS << "static const llvm::InstrItinerary ";
562
563 // Begin processor itinerary table
564 OS << Name << "[] = {\n";
565
566 // For each itinerary class in CodeGenSchedClass::Index order.
567 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
568 InstrItinerary &Intinerary = ItinList[j];
569
570 // Emit Itinerary in the form of
571 // { firstStage, lastStage, firstCycle, lastCycle } // index
572 OS << " { " <<
573 Intinerary.NumMicroOps << ", " <<
574 Intinerary.FirstStage << ", " <<
575 Intinerary.LastStage << ", " <<
576 Intinerary.FirstOperandCycle << ", " <<
577 Intinerary.LastOperandCycle << " }" <<
578 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
579 }
580 // End processor itinerary table
581 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
582 OS << "};\n";
583 }
584 }
585
586 // Emit either the value defined in the TableGen Record, or the default
587 // value defined in the C++ header. The Record is null if the processor does not
588 // define a model.
EmitProcessorProp(raw_ostream & OS,const Record * R,const char * Name,char Separator)589 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
590 const char *Name, char Separator) {
591 OS << " ";
592 int V = R ? R->getValueAsInt(Name) : -1;
593 if (V >= 0)
594 OS << V << Separator << " // " << Name;
595 else
596 OS << "MCSchedModel::Default" << Name << Separator;
597 OS << '\n';
598 }
599
EmitProcessorResources(const CodeGenProcModel & ProcModel,raw_ostream & OS)600 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
601 raw_ostream &OS) {
602 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
603
604 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
605 OS << "static const llvm::MCProcResourceDesc "
606 << ProcModel.ModelName << "ProcResources" << "[] = {\n"
607 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n";
608
609 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
610 Record *PRDef = ProcModel.ProcResourceDefs[i];
611
612 Record *SuperDef = nullptr;
613 unsigned SuperIdx = 0;
614 unsigned NumUnits = 0;
615 int BufferSize = PRDef->getValueAsInt("BufferSize");
616 if (PRDef->isSubClassOf("ProcResGroup")) {
617 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
618 for (Record *RU : ResUnits) {
619 NumUnits += RU->getValueAsInt("NumUnits");
620 }
621 }
622 else {
623 // Find the SuperIdx
624 if (PRDef->getValueInit("Super")->isComplete()) {
625 SuperDef = SchedModels.findProcResUnits(
626 PRDef->getValueAsDef("Super"), ProcModel);
627 SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
628 }
629 NumUnits = PRDef->getValueAsInt("NumUnits");
630 }
631 // Emit the ProcResourceDesc
632 if (i+1 == e)
633 Sep = ' ';
634 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") ";
635 if (PRDef->getName().size() < 15)
636 OS.indent(15 - PRDef->getName().size());
637 OS << NumUnits << ", " << SuperIdx << ", "
638 << BufferSize << "}" << Sep << " // #" << i+1;
639 if (SuperDef)
640 OS << ", Super=" << SuperDef->getName();
641 OS << "\n";
642 }
643 OS << "};\n";
644 }
645
646 // Find the WriteRes Record that defines processor resources for this
647 // SchedWrite.
FindWriteResources(const CodeGenSchedRW & SchedWrite,const CodeGenProcModel & ProcModel)648 Record *SubtargetEmitter::FindWriteResources(
649 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
650
651 // Check if the SchedWrite is already subtarget-specific and directly
652 // specifies a set of processor resources.
653 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
654 return SchedWrite.TheDef;
655
656 Record *AliasDef = nullptr;
657 for (Record *A : SchedWrite.Aliases) {
658 const CodeGenSchedRW &AliasRW =
659 SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
660 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
661 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
662 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
663 continue;
664 }
665 if (AliasDef)
666 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
667 "defined for processor " + ProcModel.ModelName +
668 " Ensure only one SchedAlias exists per RW.");
669 AliasDef = AliasRW.TheDef;
670 }
671 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
672 return AliasDef;
673
674 // Check this processor's list of write resources.
675 Record *ResDef = nullptr;
676 for (Record *WR : ProcModel.WriteResDefs) {
677 if (!WR->isSubClassOf("WriteRes"))
678 continue;
679 if (AliasDef == WR->getValueAsDef("WriteType")
680 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
681 if (ResDef) {
682 PrintFatalError(WR->getLoc(), "Resources are defined for both "
683 "SchedWrite and its alias on processor " +
684 ProcModel.ModelName);
685 }
686 ResDef = WR;
687 }
688 }
689 // TODO: If ProcModel has a base model (previous generation processor),
690 // then call FindWriteResources recursively with that model here.
691 if (!ResDef) {
692 PrintFatalError(ProcModel.ModelDef->getLoc(),
693 std::string("Processor does not define resources for ")
694 + SchedWrite.TheDef->getName());
695 }
696 return ResDef;
697 }
698
699 /// Find the ReadAdvance record for the given SchedRead on this processor or
700 /// return NULL.
FindReadAdvance(const CodeGenSchedRW & SchedRead,const CodeGenProcModel & ProcModel)701 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
702 const CodeGenProcModel &ProcModel) {
703 // Check for SchedReads that directly specify a ReadAdvance.
704 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
705 return SchedRead.TheDef;
706
707 // Check this processor's list of aliases for SchedRead.
708 Record *AliasDef = nullptr;
709 for (Record *A : SchedRead.Aliases) {
710 const CodeGenSchedRW &AliasRW =
711 SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
712 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
713 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
714 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
715 continue;
716 }
717 if (AliasDef)
718 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
719 "defined for processor " + ProcModel.ModelName +
720 " Ensure only one SchedAlias exists per RW.");
721 AliasDef = AliasRW.TheDef;
722 }
723 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
724 return AliasDef;
725
726 // Check this processor's ReadAdvanceList.
727 Record *ResDef = nullptr;
728 for (Record *RA : ProcModel.ReadAdvanceDefs) {
729 if (!RA->isSubClassOf("ReadAdvance"))
730 continue;
731 if (AliasDef == RA->getValueAsDef("ReadType")
732 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
733 if (ResDef) {
734 PrintFatalError(RA->getLoc(), "Resources are defined for both "
735 "SchedRead and its alias on processor " +
736 ProcModel.ModelName);
737 }
738 ResDef = RA;
739 }
740 }
741 // TODO: If ProcModel has a base model (previous generation processor),
742 // then call FindReadAdvance recursively with that model here.
743 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
744 PrintFatalError(ProcModel.ModelDef->getLoc(),
745 std::string("Processor does not define resources for ")
746 + SchedRead.TheDef->getName());
747 }
748 return ResDef;
749 }
750
751 // Expand an explicit list of processor resources into a full list of implied
752 // resource groups and super resources that cover them.
ExpandProcResources(RecVec & PRVec,std::vector<int64_t> & Cycles,const CodeGenProcModel & PM)753 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
754 std::vector<int64_t> &Cycles,
755 const CodeGenProcModel &PM) {
756 // Default to 1 resource cycle.
757 Cycles.resize(PRVec.size(), 1);
758 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
759 Record *PRDef = PRVec[i];
760 RecVec SubResources;
761 if (PRDef->isSubClassOf("ProcResGroup"))
762 SubResources = PRDef->getValueAsListOfDefs("Resources");
763 else {
764 SubResources.push_back(PRDef);
765 PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
766 for (Record *SubDef = PRDef;
767 SubDef->getValueInit("Super")->isComplete();) {
768 if (SubDef->isSubClassOf("ProcResGroup")) {
769 // Disallow this for simplicitly.
770 PrintFatalError(SubDef->getLoc(), "Processor resource group "
771 " cannot be a super resources.");
772 }
773 Record *SuperDef =
774 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
775 PRVec.push_back(SuperDef);
776 Cycles.push_back(Cycles[i]);
777 SubDef = SuperDef;
778 }
779 }
780 for (Record *PR : PM.ProcResourceDefs) {
781 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
782 continue;
783 RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
784 RecIter SubI = SubResources.begin(), SubE = SubResources.end();
785 for( ; SubI != SubE; ++SubI) {
786 if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
787 == SuperResources.end()) {
788 break;
789 }
790 }
791 if (SubI == SubE) {
792 PRVec.push_back(PR);
793 Cycles.push_back(Cycles[i]);
794 }
795 }
796 }
797 }
798
799 // Generate the SchedClass table for this processor and update global
800 // tables. Must be called for each processor in order.
GenSchedClassTables(const CodeGenProcModel & ProcModel,SchedClassTables & SchedTables)801 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
802 SchedClassTables &SchedTables) {
803 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
804 if (!ProcModel.hasInstrSchedModel())
805 return;
806
807 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
808 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
809 DEBUG(SC.dump(&SchedModels));
810
811 SCTab.resize(SCTab.size() + 1);
812 MCSchedClassDesc &SCDesc = SCTab.back();
813 // SCDesc.Name is guarded by NDEBUG
814 SCDesc.NumMicroOps = 0;
815 SCDesc.BeginGroup = false;
816 SCDesc.EndGroup = false;
817 SCDesc.WriteProcResIdx = 0;
818 SCDesc.WriteLatencyIdx = 0;
819 SCDesc.ReadAdvanceIdx = 0;
820
821 // A Variant SchedClass has no resources of its own.
822 bool HasVariants = false;
823 for (std::vector<CodeGenSchedTransition>::const_iterator
824 TI = SC.Transitions.begin(), TE = SC.Transitions.end();
825 TI != TE; ++TI) {
826 if (TI->ProcIndices[0] == 0) {
827 HasVariants = true;
828 break;
829 }
830 IdxIter PIPos = std::find(TI->ProcIndices.begin(),
831 TI->ProcIndices.end(), ProcModel.Index);
832 if (PIPos != TI->ProcIndices.end()) {
833 HasVariants = true;
834 break;
835 }
836 }
837 if (HasVariants) {
838 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
839 continue;
840 }
841
842 // Determine if the SchedClass is actually reachable on this processor. If
843 // not don't try to locate the processor resources, it will fail.
844 // If ProcIndices contains 0, this class applies to all processors.
845 assert(!SC.ProcIndices.empty() && "expect at least one procidx");
846 if (SC.ProcIndices[0] != 0) {
847 IdxIter PIPos = std::find(SC.ProcIndices.begin(),
848 SC.ProcIndices.end(), ProcModel.Index);
849 if (PIPos == SC.ProcIndices.end())
850 continue;
851 }
852 IdxVec Writes = SC.Writes;
853 IdxVec Reads = SC.Reads;
854 if (!SC.InstRWs.empty()) {
855 // This class has a default ReadWrite list which can be overriden by
856 // InstRW definitions.
857 Record *RWDef = nullptr;
858 for (Record *RW : SC.InstRWs) {
859 Record *RWModelDef = RW->getValueAsDef("SchedModel");
860 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
861 RWDef = RW;
862 break;
863 }
864 }
865 if (RWDef) {
866 Writes.clear();
867 Reads.clear();
868 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
869 Writes, Reads);
870 }
871 }
872 if (Writes.empty()) {
873 // Check this processor's itinerary class resources.
874 for (Record *I : ProcModel.ItinRWDefs) {
875 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
876 if (std::find(Matched.begin(), Matched.end(), SC.ItinClassDef)
877 != Matched.end()) {
878 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
879 Writes, Reads);
880 break;
881 }
882 }
883 if (Writes.empty()) {
884 DEBUG(dbgs() << ProcModel.ModelName
885 << " does not have resources for class " << SC.Name << '\n');
886 }
887 }
888 // Sum resources across all operand writes.
889 std::vector<MCWriteProcResEntry> WriteProcResources;
890 std::vector<MCWriteLatencyEntry> WriteLatencies;
891 std::vector<std::string> WriterNames;
892 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
893 for (unsigned W : Writes) {
894 IdxVec WriteSeq;
895 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
896 ProcModel);
897
898 // For each operand, create a latency entry.
899 MCWriteLatencyEntry WLEntry;
900 WLEntry.Cycles = 0;
901 unsigned WriteID = WriteSeq.back();
902 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
903 // If this Write is not referenced by a ReadAdvance, don't distinguish it
904 // from other WriteLatency entries.
905 if (!SchedModels.hasReadOfWrite(
906 SchedModels.getSchedWrite(WriteID).TheDef)) {
907 WriteID = 0;
908 }
909 WLEntry.WriteResourceID = WriteID;
910
911 for (unsigned WS : WriteSeq) {
912
913 Record *WriteRes =
914 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
915
916 // Mark the parent class as invalid for unsupported write types.
917 if (WriteRes->getValueAsBit("Unsupported")) {
918 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
919 break;
920 }
921 WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
922 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
923 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
924 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
925
926 // Create an entry for each ProcResource listed in WriteRes.
927 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
928 std::vector<int64_t> Cycles =
929 WriteRes->getValueAsListOfInts("ResourceCycles");
930
931 ExpandProcResources(PRVec, Cycles, ProcModel);
932
933 for (unsigned PRIdx = 0, PREnd = PRVec.size();
934 PRIdx != PREnd; ++PRIdx) {
935 MCWriteProcResEntry WPREntry;
936 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
937 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
938 WPREntry.Cycles = Cycles[PRIdx];
939 // If this resource is already used in this sequence, add the current
940 // entry's cycles so that the same resource appears to be used
941 // serially, rather than multiple parallel uses. This is important for
942 // in-order machine where the resource consumption is a hazard.
943 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
944 for( ; WPRIdx != WPREnd; ++WPRIdx) {
945 if (WriteProcResources[WPRIdx].ProcResourceIdx
946 == WPREntry.ProcResourceIdx) {
947 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
948 break;
949 }
950 }
951 if (WPRIdx == WPREnd)
952 WriteProcResources.push_back(WPREntry);
953 }
954 }
955 WriteLatencies.push_back(WLEntry);
956 }
957 // Create an entry for each operand Read in this SchedClass.
958 // Entries must be sorted first by UseIdx then by WriteResourceID.
959 for (unsigned UseIdx = 0, EndIdx = Reads.size();
960 UseIdx != EndIdx; ++UseIdx) {
961 Record *ReadAdvance =
962 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
963 if (!ReadAdvance)
964 continue;
965
966 // Mark the parent class as invalid for unsupported write types.
967 if (ReadAdvance->getValueAsBit("Unsupported")) {
968 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
969 break;
970 }
971 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
972 IdxVec WriteIDs;
973 if (ValidWrites.empty())
974 WriteIDs.push_back(0);
975 else {
976 for (Record *VW : ValidWrites) {
977 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
978 }
979 }
980 std::sort(WriteIDs.begin(), WriteIDs.end());
981 for(unsigned W : WriteIDs) {
982 MCReadAdvanceEntry RAEntry;
983 RAEntry.UseIdx = UseIdx;
984 RAEntry.WriteResourceID = W;
985 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
986 ReadAdvanceEntries.push_back(RAEntry);
987 }
988 }
989 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
990 WriteProcResources.clear();
991 WriteLatencies.clear();
992 ReadAdvanceEntries.clear();
993 }
994 // Add the information for this SchedClass to the global tables using basic
995 // compression.
996 //
997 // WritePrecRes entries are sorted by ProcResIdx.
998 std::sort(WriteProcResources.begin(), WriteProcResources.end(),
999 LessWriteProcResources());
1000
1001 SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1002 std::vector<MCWriteProcResEntry>::iterator WPRPos =
1003 std::search(SchedTables.WriteProcResources.begin(),
1004 SchedTables.WriteProcResources.end(),
1005 WriteProcResources.begin(), WriteProcResources.end());
1006 if (WPRPos != SchedTables.WriteProcResources.end())
1007 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1008 else {
1009 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1010 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1011 WriteProcResources.end());
1012 }
1013 // Latency entries must remain in operand order.
1014 SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1015 std::vector<MCWriteLatencyEntry>::iterator WLPos =
1016 std::search(SchedTables.WriteLatencies.begin(),
1017 SchedTables.WriteLatencies.end(),
1018 WriteLatencies.begin(), WriteLatencies.end());
1019 if (WLPos != SchedTables.WriteLatencies.end()) {
1020 unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1021 SCDesc.WriteLatencyIdx = idx;
1022 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1023 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1024 std::string::npos) {
1025 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1026 }
1027 }
1028 else {
1029 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1030 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1031 WriteLatencies.begin(),
1032 WriteLatencies.end());
1033 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1034 WriterNames.begin(), WriterNames.end());
1035 }
1036 // ReadAdvanceEntries must remain in operand order.
1037 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1038 std::vector<MCReadAdvanceEntry>::iterator RAPos =
1039 std::search(SchedTables.ReadAdvanceEntries.begin(),
1040 SchedTables.ReadAdvanceEntries.end(),
1041 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1042 if (RAPos != SchedTables.ReadAdvanceEntries.end())
1043 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1044 else {
1045 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1046 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1047 ReadAdvanceEntries.end());
1048 }
1049 }
1050 }
1051
1052 // Emit SchedClass tables for all processors and associated global tables.
EmitSchedClassTables(SchedClassTables & SchedTables,raw_ostream & OS)1053 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1054 raw_ostream &OS) {
1055 // Emit global WriteProcResTable.
1056 OS << "\n// {ProcResourceIdx, Cycles}\n"
1057 << "extern const llvm::MCWriteProcResEntry "
1058 << Target << "WriteProcResTable[] = {\n"
1059 << " { 0, 0}, // Invalid\n";
1060 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1061 WPRIdx != WPREnd; ++WPRIdx) {
1062 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1063 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1064 << format("%2d", WPREntry.Cycles) << "}";
1065 if (WPRIdx + 1 < WPREnd)
1066 OS << ',';
1067 OS << " // #" << WPRIdx << '\n';
1068 }
1069 OS << "}; // " << Target << "WriteProcResTable\n";
1070
1071 // Emit global WriteLatencyTable.
1072 OS << "\n// {Cycles, WriteResourceID}\n"
1073 << "extern const llvm::MCWriteLatencyEntry "
1074 << Target << "WriteLatencyTable[] = {\n"
1075 << " { 0, 0}, // Invalid\n";
1076 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1077 WLIdx != WLEnd; ++WLIdx) {
1078 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1079 OS << " {" << format("%2d", WLEntry.Cycles) << ", "
1080 << format("%2d", WLEntry.WriteResourceID) << "}";
1081 if (WLIdx + 1 < WLEnd)
1082 OS << ',';
1083 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1084 }
1085 OS << "}; // " << Target << "WriteLatencyTable\n";
1086
1087 // Emit global ReadAdvanceTable.
1088 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1089 << "extern const llvm::MCReadAdvanceEntry "
1090 << Target << "ReadAdvanceTable[] = {\n"
1091 << " {0, 0, 0}, // Invalid\n";
1092 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1093 RAIdx != RAEnd; ++RAIdx) {
1094 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1095 OS << " {" << RAEntry.UseIdx << ", "
1096 << format("%2d", RAEntry.WriteResourceID) << ", "
1097 << format("%2d", RAEntry.Cycles) << "}";
1098 if (RAIdx + 1 < RAEnd)
1099 OS << ',';
1100 OS << " // #" << RAIdx << '\n';
1101 }
1102 OS << "}; // " << Target << "ReadAdvanceTable\n";
1103
1104 // Emit a SchedClass table for each processor.
1105 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1106 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1107 if (!PI->hasInstrSchedModel())
1108 continue;
1109
1110 std::vector<MCSchedClassDesc> &SCTab =
1111 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1112
1113 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1114 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1115 OS << "static const llvm::MCSchedClassDesc "
1116 << PI->ModelName << "SchedClasses[] = {\n";
1117
1118 // The first class is always invalid. We no way to distinguish it except by
1119 // name and position.
1120 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1121 && "invalid class not first");
1122 OS << " {DBGFIELD(\"InvalidSchedClass\") "
1123 << MCSchedClassDesc::InvalidNumMicroOps
1124 << ", false, false, 0, 0, 0, 0, 0, 0},\n";
1125
1126 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1127 MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1128 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1129 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
1130 if (SchedClass.Name.size() < 18)
1131 OS.indent(18 - SchedClass.Name.size());
1132 OS << MCDesc.NumMicroOps
1133 << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1134 << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1135 << ", " << format("%2d", MCDesc.WriteProcResIdx)
1136 << ", " << MCDesc.NumWriteProcResEntries
1137 << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1138 << ", " << MCDesc.NumWriteLatencyEntries
1139 << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1140 << ", " << MCDesc.NumReadAdvanceEntries << "}";
1141 if (SCIdx + 1 < SCEnd)
1142 OS << ',';
1143 OS << " // #" << SCIdx << '\n';
1144 }
1145 OS << "}; // " << PI->ModelName << "SchedClasses\n";
1146 }
1147 }
1148
EmitProcessorModels(raw_ostream & OS)1149 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1150 // For each processor model.
1151 for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1152 // Emit processor resource table.
1153 if (PM.hasInstrSchedModel())
1154 EmitProcessorResources(PM, OS);
1155 else if(!PM.ProcResourceDefs.empty())
1156 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1157 "ProcResources without defining WriteRes SchedWriteRes");
1158
1159 // Begin processor itinerary properties
1160 OS << "\n";
1161 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1162 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1163 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1164 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1165 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1166 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1167 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1168
1169 bool PostRAScheduler =
1170 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1171
1172 OS << " " << (PostRAScheduler ? "true" : "false") << ", // "
1173 << "PostRAScheduler\n";
1174
1175 bool CompleteModel =
1176 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1177
1178 OS << " " << (CompleteModel ? "true" : "false") << ", // "
1179 << "CompleteModel\n";
1180
1181 OS << " " << PM.Index << ", // Processor ID\n";
1182 if (PM.hasInstrSchedModel())
1183 OS << " " << PM.ModelName << "ProcResources" << ",\n"
1184 << " " << PM.ModelName << "SchedClasses" << ",\n"
1185 << " " << PM.ProcResourceDefs.size()+1 << ",\n"
1186 << " " << (SchedModels.schedClassEnd()
1187 - SchedModels.schedClassBegin()) << ",\n";
1188 else
1189 OS << " nullptr, nullptr, 0, 0,"
1190 << " // No instruction-level machine model.\n";
1191 if (PM.hasItineraries())
1192 OS << " " << PM.ItinsDef->getName() << "};\n";
1193 else
1194 OS << " nullptr}; // No Itinerary\n";
1195 }
1196 }
1197
1198 //
1199 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1200 //
EmitProcessorLookup(raw_ostream & OS)1201 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1202 // Gather and sort processor information
1203 std::vector<Record*> ProcessorList =
1204 Records.getAllDerivedDefinitions("Processor");
1205 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1206
1207 // Begin processor table
1208 OS << "\n";
1209 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1210 << "extern const llvm::SubtargetInfoKV "
1211 << Target << "ProcSchedKV[] = {\n";
1212
1213 // For each processor
1214 for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1215 // Next processor
1216 Record *Processor = ProcessorList[i];
1217
1218 const std::string &Name = Processor->getValueAsString("Name");
1219 const std::string &ProcModelName =
1220 SchedModels.getModelForProc(Processor).ModelName;
1221
1222 // Emit as { "cpu", procinit },
1223 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1224
1225 // Depending on ''if more in the list'' emit comma
1226 if (++i < N) OS << ",";
1227
1228 OS << "\n";
1229 }
1230
1231 // End processor table
1232 OS << "};\n";
1233 }
1234
1235 //
1236 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1237 //
EmitSchedModel(raw_ostream & OS)1238 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1239 OS << "#ifdef DBGFIELD\n"
1240 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1241 << "#endif\n"
1242 << "#ifndef NDEBUG\n"
1243 << "#define DBGFIELD(x) x,\n"
1244 << "#else\n"
1245 << "#define DBGFIELD(x)\n"
1246 << "#endif\n";
1247
1248 if (SchedModels.hasItineraries()) {
1249 std::vector<std::vector<InstrItinerary> > ProcItinLists;
1250 // Emit the stage data
1251 EmitStageAndOperandCycleData(OS, ProcItinLists);
1252 EmitItineraries(OS, ProcItinLists);
1253 }
1254 OS << "\n// ===============================================================\n"
1255 << "// Data tables for the new per-operand machine model.\n";
1256
1257 SchedClassTables SchedTables;
1258 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1259 GenSchedClassTables(ProcModel, SchedTables);
1260 }
1261 EmitSchedClassTables(SchedTables, OS);
1262
1263 // Emit the processor machine model
1264 EmitProcessorModels(OS);
1265 // Emit the processor lookup data
1266 EmitProcessorLookup(OS);
1267
1268 OS << "#undef DBGFIELD";
1269 }
1270
EmitSchedModelHelpers(const std::string & ClassName,raw_ostream & OS)1271 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1272 raw_ostream &OS) {
1273 OS << "unsigned " << ClassName
1274 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1275 << " const TargetSchedModel *SchedModel) const {\n";
1276
1277 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1278 std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1279 for (Record *P : Prologs) {
1280 OS << P->getValueAsString("Code") << '\n';
1281 }
1282 IdxVec VariantClasses;
1283 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1284 if (SC.Transitions.empty())
1285 continue;
1286 VariantClasses.push_back(SC.Index);
1287 }
1288 if (!VariantClasses.empty()) {
1289 OS << " switch (SchedClass) {\n";
1290 for (unsigned VC : VariantClasses) {
1291 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1292 OS << " case " << VC << ": // " << SC.Name << '\n';
1293 IdxVec ProcIndices;
1294 for (const CodeGenSchedTransition &T : SC.Transitions) {
1295 IdxVec PI;
1296 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
1297 ProcIndices.begin(), ProcIndices.end(),
1298 std::back_inserter(PI));
1299 ProcIndices.swap(PI);
1300 }
1301 for (unsigned PI : ProcIndices) {
1302 OS << " ";
1303 if (PI != 0)
1304 OS << "if (SchedModel->getProcessorID() == " << PI << ") ";
1305 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName
1306 << '\n';
1307 for (const CodeGenSchedTransition &T : SC.Transitions) {
1308 if (PI != 0 && !std::count(T.ProcIndices.begin(),
1309 T.ProcIndices.end(), PI)) {
1310 continue;
1311 }
1312 OS << " if (";
1313 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end();
1314 RI != RE; ++RI) {
1315 if (RI != T.PredTerm.begin())
1316 OS << "\n && ";
1317 OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1318 }
1319 OS << ")\n"
1320 << " return " << T.ToClassIdx << "; // "
1321 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n';
1322 }
1323 OS << " }\n";
1324 if (PI == 0)
1325 break;
1326 }
1327 if (SC.isInferred())
1328 OS << " return " << SC.Index << ";\n";
1329 OS << " break;\n";
1330 }
1331 OS << " };\n";
1332 }
1333 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"
1334 << "} // " << ClassName << "::resolveSchedClass\n";
1335 }
1336
1337 //
1338 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1339 // the subtarget features string.
1340 //
ParseFeaturesFunction(raw_ostream & OS,unsigned NumFeatures,unsigned NumProcs)1341 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1342 unsigned NumFeatures,
1343 unsigned NumProcs) {
1344 std::vector<Record*> Features =
1345 Records.getAllDerivedDefinitions("SubtargetFeature");
1346 std::sort(Features.begin(), Features.end(), LessRecord());
1347
1348 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1349 << "// subtarget options.\n"
1350 << "void llvm::";
1351 OS << Target;
1352 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1353 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1354 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1355
1356 if (Features.empty()) {
1357 OS << "}\n";
1358 return;
1359 }
1360
1361 OS << " InitMCProcessorInfo(CPU, FS);\n"
1362 << " const FeatureBitset& Bits = getFeatureBits();\n";
1363
1364 for (Record *R : Features) {
1365 // Next record
1366 const std::string &Instance = R->getName();
1367 const std::string &Value = R->getValueAsString("Value");
1368 const std::string &Attribute = R->getValueAsString("Attribute");
1369
1370 if (Value=="true" || Value=="false")
1371 OS << " if (Bits[" << Target << "::"
1372 << Instance << "]) "
1373 << Attribute << " = " << Value << ";\n";
1374 else
1375 OS << " if (Bits[" << Target << "::"
1376 << Instance << "] && "
1377 << Attribute << " < " << Value << ") "
1378 << Attribute << " = " << Value << ";\n";
1379 }
1380
1381 OS << "}\n";
1382 }
1383
1384 //
1385 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1386 //
run(raw_ostream & OS)1387 void SubtargetEmitter::run(raw_ostream &OS) {
1388 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1389
1390 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1391 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1392
1393 OS << "namespace llvm {\n";
1394 Enumeration(OS);
1395 OS << "} // end namespace llvm\n\n";
1396 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1397
1398 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1399 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1400
1401 OS << "namespace llvm {\n";
1402 #if 0
1403 OS << "namespace {\n";
1404 #endif
1405 unsigned NumFeatures = FeatureKeyValues(OS);
1406 OS << "\n";
1407 unsigned NumProcs = CPUKeyValues(OS);
1408 OS << "\n";
1409 EmitSchedModel(OS);
1410 OS << "\n";
1411 #if 0
1412 OS << "} // end anonymous namespace\n\n";
1413 #endif
1414
1415 // MCInstrInfo initialization routine.
1416 OS << "static inline MCSubtargetInfo *create" << Target
1417 << "MCSubtargetInfoImpl("
1418 << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1419 OS << " return new MCSubtargetInfo(TT, CPU, FS, ";
1420 if (NumFeatures)
1421 OS << Target << "FeatureKV, ";
1422 else
1423 OS << "None, ";
1424 if (NumProcs)
1425 OS << Target << "SubTypeKV, ";
1426 else
1427 OS << "None, ";
1428 OS << '\n'; OS.indent(22);
1429 OS << Target << "ProcSchedKV, "
1430 << Target << "WriteProcResTable, "
1431 << Target << "WriteLatencyTable, "
1432 << Target << "ReadAdvanceTable, ";
1433 if (SchedModels.hasItineraries()) {
1434 OS << '\n'; OS.indent(22);
1435 OS << Target << "Stages, "
1436 << Target << "OperandCycles, "
1437 << Target << "ForwardingPaths";
1438 } else
1439 OS << "0, 0, 0";
1440 OS << ");\n}\n\n";
1441
1442 OS << "} // end namespace llvm\n\n";
1443
1444 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1445
1446 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1447 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1448
1449 OS << "#include \"llvm/Support/Debug.h\"\n";
1450 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1451 ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1452
1453 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1454
1455 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1456 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1457 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1458
1459 std::string ClassName = Target + "GenSubtargetInfo";
1460 OS << "namespace llvm {\n";
1461 OS << "class DFAPacketizer;\n";
1462 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1463 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1464 << "StringRef FS);\n"
1465 << "public:\n"
1466 << " unsigned resolveSchedClass(unsigned SchedClass, "
1467 << " const MachineInstr *DefMI,"
1468 << " const TargetSchedModel *SchedModel) const override;\n"
1469 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1470 << " const;\n"
1471 << "};\n";
1472 OS << "} // end namespace llvm\n\n";
1473
1474 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1475
1476 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1477 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1478
1479 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1480 OS << "namespace llvm {\n";
1481 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1482 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1483 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1484 OS << "extern const llvm::MCWriteProcResEntry "
1485 << Target << "WriteProcResTable[];\n";
1486 OS << "extern const llvm::MCWriteLatencyEntry "
1487 << Target << "WriteLatencyTable[];\n";
1488 OS << "extern const llvm::MCReadAdvanceEntry "
1489 << Target << "ReadAdvanceTable[];\n";
1490
1491 if (SchedModels.hasItineraries()) {
1492 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1493 OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1494 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1495 }
1496
1497 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1498 << "StringRef FS)\n"
1499 << " : TargetSubtargetInfo(TT, CPU, FS, ";
1500 if (NumFeatures)
1501 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1502 else
1503 OS << "None, ";
1504 if (NumProcs)
1505 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1506 else
1507 OS << "None, ";
1508 OS << '\n'; OS.indent(24);
1509 OS << Target << "ProcSchedKV, "
1510 << Target << "WriteProcResTable, "
1511 << Target << "WriteLatencyTable, "
1512 << Target << "ReadAdvanceTable, ";
1513 OS << '\n'; OS.indent(24);
1514 if (SchedModels.hasItineraries()) {
1515 OS << Target << "Stages, "
1516 << Target << "OperandCycles, "
1517 << Target << "ForwardingPaths";
1518 } else
1519 OS << "0, 0, 0";
1520 OS << ") {}\n\n";
1521
1522 EmitSchedModelHelpers(ClassName, OS);
1523
1524 OS << "} // end namespace llvm\n\n";
1525
1526 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1527 }
1528
1529 namespace llvm {
1530
EmitSubtarget(RecordKeeper & RK,raw_ostream & OS)1531 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1532 CodeGenTarget CGTarget(RK);
1533 SubtargetEmitter(RK, CGTarget).run(OS);
1534 }
1535
1536 } // end namespace llvm
1537