1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "semi_space-inl.h"
18 
19 #include <climits>
20 #include <functional>
21 #include <numeric>
22 #include <sstream>
23 #include <vector>
24 
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/mutex-inl.h"
28 #include "base/timing_logger.h"
29 #include "gc/accounting/heap_bitmap-inl.h"
30 #include "gc/accounting/mod_union_table.h"
31 #include "gc/accounting/remembered_set.h"
32 #include "gc/accounting/space_bitmap-inl.h"
33 #include "gc/heap.h"
34 #include "gc/reference_processor.h"
35 #include "gc/space/bump_pointer_space.h"
36 #include "gc/space/bump_pointer_space-inl.h"
37 #include "gc/space/image_space.h"
38 #include "gc/space/large_object_space.h"
39 #include "gc/space/space-inl.h"
40 #include "indirect_reference_table.h"
41 #include "intern_table.h"
42 #include "jni_internal.h"
43 #include "mark_sweep-inl.h"
44 #include "monitor.h"
45 #include "mirror/reference-inl.h"
46 #include "mirror/object-inl.h"
47 #include "mirror/object-refvisitor-inl.h"
48 #include "runtime.h"
49 #include "thread-inl.h"
50 #include "thread_list.h"
51 
52 using ::art::mirror::Object;
53 
54 namespace art {
55 namespace gc {
56 namespace collector {
57 
58 static constexpr bool kProtectFromSpace = true;
59 static constexpr bool kStoreStackTraces = false;
60 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
61 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
62 
BindBitmaps()63 void SemiSpace::BindBitmaps() {
64   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
65   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
66   // Mark all of the spaces we never collect as immune.
67   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
68     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
69         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
70       immune_spaces_.AddSpace(space);
71     } else if (space->GetLiveBitmap() != nullptr) {
72       // TODO: We can probably also add this space to the immune region.
73       if (space == to_space_ || collect_from_space_only_) {
74         if (collect_from_space_only_) {
75           // Bind the bitmaps of the main free list space and the non-moving space we are doing a
76           // bump pointer space only collection.
77           CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
78                 space == GetHeap()->GetNonMovingSpace());
79         }
80         CHECK(space->IsContinuousMemMapAllocSpace());
81         space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
82       }
83     }
84   }
85   if (collect_from_space_only_) {
86     // We won't collect the large object space if a bump pointer space only collection.
87     is_large_object_space_immune_ = true;
88   }
89 }
90 
SemiSpace(Heap * heap,bool generational,const std::string & name_prefix)91 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
92     : GarbageCollector(heap,
93                        name_prefix + (name_prefix.empty() ? "" : " ") + "semispace"),
94       mark_stack_(nullptr),
95       is_large_object_space_immune_(false),
96       to_space_(nullptr),
97       to_space_live_bitmap_(nullptr),
98       from_space_(nullptr),
99       mark_bitmap_(nullptr),
100       self_(nullptr),
101       generational_(generational),
102       last_gc_to_space_end_(nullptr),
103       bytes_promoted_(0),
104       bytes_promoted_since_last_whole_heap_collection_(0),
105       large_object_bytes_allocated_at_last_whole_heap_collection_(0),
106       collect_from_space_only_(generational),
107       promo_dest_space_(nullptr),
108       fallback_space_(nullptr),
109       bytes_moved_(0U),
110       objects_moved_(0U),
111       saved_bytes_(0U),
112       collector_name_(name_),
113       swap_semi_spaces_(true) {
114 }
115 
RunPhases()116 void SemiSpace::RunPhases() {
117   Thread* self = Thread::Current();
118   InitializePhase();
119   // Semi-space collector is special since it is sometimes called with the mutators suspended
120   // during the zygote creation and collector transitions. If we already exclusively hold the
121   // mutator lock, then we can't lock it again since it will cause a deadlock.
122   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
123     GetHeap()->PreGcVerificationPaused(this);
124     GetHeap()->PrePauseRosAllocVerification(this);
125     MarkingPhase();
126     ReclaimPhase();
127     GetHeap()->PostGcVerificationPaused(this);
128   } else {
129     Locks::mutator_lock_->AssertNotHeld(self);
130     {
131       ScopedPause pause(this);
132       GetHeap()->PreGcVerificationPaused(this);
133       GetHeap()->PrePauseRosAllocVerification(this);
134       MarkingPhase();
135     }
136     {
137       ReaderMutexLock mu(self, *Locks::mutator_lock_);
138       ReclaimPhase();
139     }
140     GetHeap()->PostGcVerification(this);
141   }
142   FinishPhase();
143 }
144 
InitializePhase()145 void SemiSpace::InitializePhase() {
146   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
147   mark_stack_ = heap_->GetMarkStack();
148   DCHECK(mark_stack_ != nullptr);
149   immune_spaces_.Reset();
150   is_large_object_space_immune_ = false;
151   saved_bytes_ = 0;
152   bytes_moved_ = 0;
153   objects_moved_ = 0;
154   self_ = Thread::Current();
155   CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
156   // Set the initial bitmap.
157   to_space_live_bitmap_ = to_space_->GetLiveBitmap();
158   {
159     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
160     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
161     mark_bitmap_ = heap_->GetMarkBitmap();
162   }
163   if (generational_) {
164     promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
165   }
166   fallback_space_ = GetHeap()->GetNonMovingSpace();
167 }
168 
ProcessReferences(Thread * self)169 void SemiSpace::ProcessReferences(Thread* self) {
170   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
171   GetHeap()->GetReferenceProcessor()->ProcessReferences(
172       false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
173 }
174 
MarkingPhase()175 void SemiSpace::MarkingPhase() {
176   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
177   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
178   if (kStoreStackTraces) {
179     Locks::mutator_lock_->AssertExclusiveHeld(self_);
180     // Store the stack traces into the runtime fault string in case we Get a heap corruption
181     // related crash later.
182     ThreadState old_state = self_->SetStateUnsafe(kRunnable);
183     std::ostringstream oss;
184     Runtime* runtime = Runtime::Current();
185     runtime->GetThreadList()->DumpForSigQuit(oss);
186     runtime->GetThreadList()->DumpNativeStacks(oss);
187     runtime->SetFaultMessage(oss.str());
188     CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
189   }
190   // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
191   // to prevent fragmentation.
192   RevokeAllThreadLocalBuffers();
193   if (generational_) {
194     if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
195         GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
196         GetCurrentIteration()->GetClearSoftReferences()) {
197       // If an explicit, native allocation-triggered, or last attempt
198       // collection, collect the whole heap.
199       collect_from_space_only_ = false;
200     }
201     if (!collect_from_space_only_) {
202       VLOG(heap) << "Whole heap collection";
203       name_ = collector_name_ + " whole";
204     } else {
205       VLOG(heap) << "Bump pointer space only collection";
206       name_ = collector_name_ + " bps";
207     }
208   }
209 
210   if (!collect_from_space_only_) {
211     // If non-generational, always clear soft references.
212     // If generational, clear soft references if a whole heap collection.
213     GetCurrentIteration()->SetClearSoftReferences(true);
214   }
215   Locks::mutator_lock_->AssertExclusiveHeld(self_);
216   if (generational_) {
217     // If last_gc_to_space_end_ is out of the bounds of the from-space
218     // (the to-space from last GC), then point it to the beginning of
219     // the from-space. For example, the very first GC or the
220     // pre-zygote compaction.
221     if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
222       last_gc_to_space_end_ = from_space_->Begin();
223     }
224     // Reset this before the marking starts below.
225     bytes_promoted_ = 0;
226   }
227   // Assume the cleared space is already empty.
228   BindBitmaps();
229   // Process dirty cards and add dirty cards to mod-union tables.
230   heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_, false, true);
231   // Clear the whole card table since we cannot get any additional dirty cards during the
232   // paused GC. This saves memory but only works for pause the world collectors.
233   t.NewTiming("ClearCardTable");
234   heap_->GetCardTable()->ClearCardTable();
235   // Need to do this before the checkpoint since we don't want any threads to add references to
236   // the live stack during the recursive mark.
237   if (kUseThreadLocalAllocationStack) {
238     TimingLogger::ScopedTiming t2("RevokeAllThreadLocalAllocationStacks", GetTimings());
239     heap_->RevokeAllThreadLocalAllocationStacks(self_);
240   }
241   heap_->SwapStacks();
242   {
243     WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
244     MarkRoots();
245     // Recursively mark remaining objects.
246     MarkReachableObjects();
247   }
248   ProcessReferences(self_);
249   {
250     ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
251     SweepSystemWeaks();
252   }
253   Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
254   // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
255   // before they are properly counted.
256   RevokeAllThreadLocalBuffers();
257   GetHeap()->RecordFreeRevoke();  // this is for the non-moving rosalloc space used by GSS.
258   // Record freed memory.
259   const int64_t from_bytes = from_space_->GetBytesAllocated();
260   const int64_t to_bytes = bytes_moved_;
261   const uint64_t from_objects = from_space_->GetObjectsAllocated();
262   const uint64_t to_objects = objects_moved_;
263   CHECK_LE(to_objects, from_objects);
264   // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
265   // space.
266   RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
267   // Clear and protect the from space.
268   from_space_->Clear();
269   // b/31172841. Temporarily disable the from-space protection with host debug build
270   // due to some protection issue in the build server.
271   if (kProtectFromSpace && !(kIsDebugBuild && !kIsTargetBuild)) {
272     if (!from_space_->IsRosAllocSpace()) {
273       // Protect with PROT_NONE.
274       VLOG(heap) << "Protecting from_space_ : " << *from_space_;
275       from_space_->GetMemMap()->Protect(PROT_NONE);
276     } else {
277       // If RosAllocSpace, we'll leave it as PROT_READ here so the
278       // rosaloc verification can read the metadata magic number and
279       // protect it with PROT_NONE later in FinishPhase().
280       VLOG(heap) << "Protecting from_space_ with PROT_READ : " << *from_space_;
281       from_space_->GetMemMap()->Protect(PROT_READ);
282     }
283   }
284   heap_->PreSweepingGcVerification(this);
285   if (swap_semi_spaces_) {
286     heap_->SwapSemiSpaces();
287   }
288 }
289 
290 // Used to verify that there's no references to the from-space.
291 class SemiSpace::VerifyNoFromSpaceReferencesVisitor {
292  public:
VerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace * from_space)293   explicit VerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space)
294       : from_space_(from_space) {}
295 
operator ()(Object * obj,MemberOffset offset,bool) const296   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
297       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
298     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
299     if (from_space_->HasAddress(ref)) {
300       LOG(FATAL) << ref << " found in from space";
301     }
302   }
303 
304   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const305   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
306       NO_THREAD_SAFETY_ANALYSIS {
307     if (!root->IsNull()) {
308       VisitRoot(root);
309     }
310   }
311 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const312   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
313       NO_THREAD_SAFETY_ANALYSIS {
314     if (kIsDebugBuild) {
315       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
316       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
317     }
318     CHECK(!from_space_->HasAddress(root->AsMirrorPtr()));
319   }
320 
321  private:
322   space::ContinuousMemMapAllocSpace* const from_space_;
323 };
324 
VerifyNoFromSpaceReferences(Object * obj)325 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
326   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
327   VerifyNoFromSpaceReferencesVisitor visitor(from_space_);
328   obj->VisitReferences(visitor, VoidFunctor());
329 }
330 
MarkReachableObjects()331 void SemiSpace::MarkReachableObjects() {
332   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
333   {
334     TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
335     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
336     heap_->MarkAllocStackAsLive(live_stack);
337     live_stack->Reset();
338   }
339   for (auto& space : heap_->GetContinuousSpaces()) {
340     // If the space is immune then we need to mark the references to other spaces.
341     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
342     if (table != nullptr) {
343       // TODO: Improve naming.
344       TimingLogger::ScopedTiming t2(
345           space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
346                                    "UpdateAndMarkImageModUnionTable",
347                                    GetTimings());
348       table->UpdateAndMarkReferences(this);
349       DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
350     } else if ((space->IsImageSpace() || collect_from_space_only_) &&
351                space->GetLiveBitmap() != nullptr) {
352       // If the space has no mod union table (the non-moving space, app image spaces, main spaces
353       // when the bump pointer space only collection is enabled,) then we need to scan its live
354       // bitmap or dirty cards as roots (including the objects on the live stack which have just
355       // marked in the live bitmap above in MarkAllocStackAsLive().)
356       accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
357       if (!space->IsImageSpace()) {
358         DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
359             << "Space " << space->GetName() << " "
360             << "generational_=" << generational_ << " "
361             << "collect_from_space_only_=" << collect_from_space_only_;
362         // App images currently do not have remembered sets.
363         DCHECK_EQ(kUseRememberedSet, rem_set != nullptr);
364       } else {
365         DCHECK(rem_set == nullptr);
366       }
367       if (rem_set != nullptr) {
368         TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
369         rem_set->UpdateAndMarkReferences(from_space_, this);
370       } else {
371         TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
372         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
373         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
374                                       reinterpret_cast<uintptr_t>(space->End()),
375                                       [this](mirror::Object* obj)
376            REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
377           ScanObject(obj);
378         });
379       }
380       if (kIsDebugBuild) {
381         // Verify that there are no from-space references that
382         // remain in the space, that is, the remembered set (and the
383         // card table) didn't miss any from-space references in the
384         // space.
385         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
386         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
387                                       reinterpret_cast<uintptr_t>(space->End()),
388                                       [this](Object* obj)
389             REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
390           DCHECK(obj != nullptr);
391           VerifyNoFromSpaceReferences(obj);
392         });
393       }
394     }
395   }
396 
397   CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
398   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
399   if (is_large_object_space_immune_ && los != nullptr) {
400     TimingLogger::ScopedTiming t2("VisitLargeObjects", GetTimings());
401     DCHECK(collect_from_space_only_);
402     // Delay copying the live set to the marked set until here from
403     // BindBitmaps() as the large objects on the allocation stack may
404     // be newly added to the live set above in MarkAllocStackAsLive().
405     los->CopyLiveToMarked();
406 
407     // When the large object space is immune, we need to scan the
408     // large object space as roots as they contain references to their
409     // classes (primitive array classes) that could move though they
410     // don't contain any other references.
411     accounting::LargeObjectBitmap* large_live_bitmap = los->GetLiveBitmap();
412     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
413     large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
414                                         reinterpret_cast<uintptr_t>(range.second),
415                                         [this](mirror::Object* obj)
416         REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
417       ScanObject(obj);
418     });
419   }
420   // Recursively process the mark stack.
421   ProcessMarkStack();
422 }
423 
ReclaimPhase()424 void SemiSpace::ReclaimPhase() {
425   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
426   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
427   // Reclaim unmarked objects.
428   Sweep(false);
429   // Swap the live and mark bitmaps for each space which we modified space. This is an
430   // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
431   // bitmaps.
432   SwapBitmaps();
433   // Unbind the live and mark bitmaps.
434   GetHeap()->UnBindBitmaps();
435   if (saved_bytes_ > 0) {
436     VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
437   }
438   if (generational_) {
439     // Record the end (top) of the to space so we can distinguish
440     // between objects that were allocated since the last GC and the
441     // older objects.
442     last_gc_to_space_end_ = to_space_->End();
443   }
444 }
445 
ResizeMarkStack(size_t new_size)446 void SemiSpace::ResizeMarkStack(size_t new_size) {
447   std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
448   CHECK_LE(mark_stack_->Size(), new_size);
449   mark_stack_->Resize(new_size);
450   for (auto& obj : temp) {
451     mark_stack_->PushBack(obj.AsMirrorPtr());
452   }
453 }
454 
MarkStackPush(Object * obj)455 inline void SemiSpace::MarkStackPush(Object* obj) {
456   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
457     ResizeMarkStack(mark_stack_->Capacity() * 2);
458   }
459   // The object must be pushed on to the mark stack.
460   mark_stack_->PushBack(obj);
461 }
462 
CopyAvoidingDirtyingPages(void * dest,const void * src,size_t size)463 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
464   if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
465     // We will dirty the current page and somewhere in the middle of the next page. This means
466     // that the next object copied will also dirty that page.
467     // TODO: Worth considering the last object copied? We may end up dirtying one page which is
468     // not necessary per GC.
469     memcpy(dest, src, size);
470     return 0;
471   }
472   size_t saved_bytes = 0;
473   uint8_t* byte_dest = reinterpret_cast<uint8_t*>(dest);
474   if (kIsDebugBuild) {
475     for (size_t i = 0; i < size; ++i) {
476       CHECK_EQ(byte_dest[i], 0U);
477     }
478   }
479   // Process the start of the page. The page must already be dirty, don't bother with checking.
480   const uint8_t* byte_src = reinterpret_cast<const uint8_t*>(src);
481   const uint8_t* limit = byte_src + size;
482   size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
483   // Copy the bytes until the start of the next page.
484   memcpy(dest, src, page_remain);
485   byte_src += page_remain;
486   byte_dest += page_remain;
487   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
488   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
489   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
490   while (byte_src + kPageSize < limit) {
491     bool all_zero = true;
492     uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
493     const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
494     for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
495       // Assumes the destination of the copy is all zeros.
496       if (word_src[i] != 0) {
497         all_zero = false;
498         word_dest[i] = word_src[i];
499       }
500     }
501     if (all_zero) {
502       // Avoided copying into the page since it was all zeros.
503       saved_bytes += kPageSize;
504     }
505     byte_src += kPageSize;
506     byte_dest += kPageSize;
507   }
508   // Handle the part of the page at the end.
509   memcpy(byte_dest, byte_src, limit - byte_src);
510   return saved_bytes;
511 }
512 
MarkNonForwardedObject(mirror::Object * obj)513 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
514   const size_t object_size = obj->SizeOf();
515   size_t bytes_allocated, dummy;
516   mirror::Object* forward_address = nullptr;
517   if (generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_) {
518     // If it's allocated before the last GC (older), move
519     // (pseudo-promote) it to the main free list space (as sort
520     // of an old generation.)
521     forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
522                                                            nullptr, &dummy);
523     if (UNLIKELY(forward_address == nullptr)) {
524       // If out of space, fall back to the to-space.
525       forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
526                                                      &dummy);
527       // No logic for marking the bitmap, so it must be null.
528       DCHECK(to_space_live_bitmap_ == nullptr);
529     } else {
530       bytes_promoted_ += bytes_allocated;
531       // Dirty the card at the destionation as it may contain
532       // references (including the class pointer) to the bump pointer
533       // space.
534       GetHeap()->WriteBarrierEveryFieldOf(forward_address);
535       // Handle the bitmaps marking.
536       accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
537       DCHECK(live_bitmap != nullptr);
538       accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
539       DCHECK(mark_bitmap != nullptr);
540       DCHECK(!live_bitmap->Test(forward_address));
541       if (collect_from_space_only_) {
542         // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
543         DCHECK_EQ(live_bitmap, mark_bitmap);
544 
545         // If a bump pointer space only collection, delay the live
546         // bitmap marking of the promoted object until it's popped off
547         // the mark stack (ProcessMarkStack()). The rationale: we may
548         // be in the middle of scanning the objects in the promo
549         // destination space for
550         // non-moving-space-to-bump-pointer-space references by
551         // iterating over the marked bits of the live bitmap
552         // (MarkReachableObjects()). If we don't delay it (and instead
553         // mark the promoted object here), the above promo destination
554         // space scan could encounter the just-promoted object and
555         // forward the references in the promoted object's fields even
556         // through it is pushed onto the mark stack. If this happens,
557         // the promoted object would be in an inconsistent state, that
558         // is, it's on the mark stack (gray) but its fields are
559         // already forwarded (black), which would cause a
560         // DCHECK(!to_space_->HasAddress(obj)) failure below.
561       } else {
562         // Mark forward_address on the live bit map.
563         live_bitmap->Set(forward_address);
564         // Mark forward_address on the mark bit map.
565         DCHECK(!mark_bitmap->Test(forward_address));
566         mark_bitmap->Set(forward_address);
567       }
568     }
569   } else {
570     // If it's allocated after the last GC (younger), copy it to the to-space.
571     forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
572                                                    &dummy);
573     if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
574       to_space_live_bitmap_->Set(forward_address);
575     }
576   }
577   // If it's still null, attempt to use the fallback space.
578   if (UNLIKELY(forward_address == nullptr)) {
579     forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
580                                                          nullptr, &dummy);
581     CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
582     accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
583     if (bitmap != nullptr) {
584       bitmap->Set(forward_address);
585     }
586   }
587   ++objects_moved_;
588   bytes_moved_ += bytes_allocated;
589   // Copy over the object and add it to the mark stack since we still need to update its
590   // references.
591   saved_bytes_ +=
592       CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
593   if (kUseBakerReadBarrier) {
594     obj->AssertReadBarrierState();
595     forward_address->AssertReadBarrierState();
596   }
597   DCHECK(to_space_->HasAddress(forward_address) ||
598          fallback_space_->HasAddress(forward_address) ||
599          (generational_ && promo_dest_space_->HasAddress(forward_address)))
600       << forward_address << "\n" << GetHeap()->DumpSpaces();
601   return forward_address;
602 }
603 
MarkObject(mirror::Object * root)604 mirror::Object* SemiSpace::MarkObject(mirror::Object* root) {
605   auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
606   MarkObjectIfNotInToSpace(&ref);
607   return ref.AsMirrorPtr();
608 }
609 
MarkHeapReference(mirror::HeapReference<mirror::Object> * obj_ptr,bool do_atomic_update ATTRIBUTE_UNUSED)610 void SemiSpace::MarkHeapReference(mirror::HeapReference<mirror::Object>* obj_ptr,
611                                   bool do_atomic_update ATTRIBUTE_UNUSED) {
612   MarkObject(obj_ptr);
613 }
614 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)615 void SemiSpace::VisitRoots(mirror::Object*** roots, size_t count,
616                            const RootInfo& info ATTRIBUTE_UNUSED) {
617   for (size_t i = 0; i < count; ++i) {
618     auto* root = roots[i];
619     auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
620     // The root can be in the to-space since we may visit the declaring class of an ArtMethod
621     // multiple times if it is on the call stack.
622     MarkObjectIfNotInToSpace(&ref);
623     if (*root != ref.AsMirrorPtr()) {
624       *root = ref.AsMirrorPtr();
625     }
626   }
627 }
628 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)629 void SemiSpace::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
630                            const RootInfo& info ATTRIBUTE_UNUSED) {
631   for (size_t i = 0; i < count; ++i) {
632     MarkObjectIfNotInToSpace(roots[i]);
633   }
634 }
635 
636 // Marks all objects in the root set.
MarkRoots()637 void SemiSpace::MarkRoots() {
638   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
639   Runtime::Current()->VisitRoots(this);
640 }
641 
SweepSystemWeaks()642 void SemiSpace::SweepSystemWeaks() {
643   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
644   Runtime::Current()->SweepSystemWeaks(this);
645 }
646 
ShouldSweepSpace(space::ContinuousSpace * space) const647 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
648   return space != from_space_ && space != to_space_;
649 }
650 
Sweep(bool swap_bitmaps)651 void SemiSpace::Sweep(bool swap_bitmaps) {
652   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
653   DCHECK(mark_stack_->IsEmpty());
654   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
655     if (space->IsContinuousMemMapAllocSpace()) {
656       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
657       if (!ShouldSweepSpace(alloc_space)) {
658         continue;
659       }
660       TimingLogger::ScopedTiming split(
661           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
662       RecordFree(alloc_space->Sweep(swap_bitmaps));
663     }
664   }
665   if (!is_large_object_space_immune_) {
666     SweepLargeObjects(swap_bitmaps);
667   }
668 }
669 
SweepLargeObjects(bool swap_bitmaps)670 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
671   DCHECK(!is_large_object_space_immune_);
672   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
673   if (los != nullptr) {
674     TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
675     RecordFreeLOS(los->Sweep(swap_bitmaps));
676   }
677 }
678 
679 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
680 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)681 void SemiSpace::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
682                                        ObjPtr<mirror::Reference> reference) {
683   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
684 }
685 
686 class SemiSpace::MarkObjectVisitor {
687  public:
MarkObjectVisitor(SemiSpace * collector)688   explicit MarkObjectVisitor(SemiSpace* collector) : collector_(collector) {}
689 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool) const690   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
691       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
692     // Object was already verified when we scanned it.
693     collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
694   }
695 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const696   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
697       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
698     collector_->DelayReferenceReferent(klass, ref);
699   }
700 
701   // TODO: Remove NO_THREAD_SAFETY_ANALYSIS when clang better understands visitors.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const702   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
703       NO_THREAD_SAFETY_ANALYSIS {
704     if (!root->IsNull()) {
705       VisitRoot(root);
706     }
707   }
708 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const709   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
710       NO_THREAD_SAFETY_ANALYSIS {
711     if (kIsDebugBuild) {
712       Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
713       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
714     }
715     // We may visit the same root multiple times, so avoid marking things in the to-space since
716     // this is not handled by the GC.
717     collector_->MarkObjectIfNotInToSpace(root);
718   }
719 
720  private:
721   SemiSpace* const collector_;
722 };
723 
724 // Visit all of the references of an object and update.
ScanObject(Object * obj)725 void SemiSpace::ScanObject(Object* obj) {
726   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
727   MarkObjectVisitor visitor(this);
728   // Turn off read barrier. ZygoteCompactingCollector doesn't use it (even in the CC build.)
729   obj->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
730       visitor, visitor);
731 }
732 
733 // Scan anything that's on the mark stack.
ProcessMarkStack()734 void SemiSpace::ProcessMarkStack() {
735   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
736   accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
737   if (collect_from_space_only_) {
738     // If a bump pointer space only collection (and the promotion is
739     // enabled,) we delay the live-bitmap marking of promoted objects
740     // from MarkObject() until this function.
741     live_bitmap = promo_dest_space_->GetLiveBitmap();
742     DCHECK(live_bitmap != nullptr);
743     accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
744     DCHECK(mark_bitmap != nullptr);
745     DCHECK_EQ(live_bitmap, mark_bitmap);
746   }
747   while (!mark_stack_->IsEmpty()) {
748     Object* obj = mark_stack_->PopBack();
749     if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
750       // obj has just been promoted. Mark the live bitmap for it,
751       // which is delayed from MarkObject().
752       DCHECK(!live_bitmap->Test(obj));
753       live_bitmap->Set(obj);
754     }
755     ScanObject(obj);
756   }
757 }
758 
IsMarked(mirror::Object * obj)759 mirror::Object* SemiSpace::IsMarked(mirror::Object* obj) {
760   // All immune objects are assumed marked.
761   if (from_space_->HasAddress(obj)) {
762     // Returns either the forwarding address or null.
763     return GetForwardingAddressInFromSpace(obj);
764   } else if (collect_from_space_only_ ||
765              immune_spaces_.IsInImmuneRegion(obj) ||
766              to_space_->HasAddress(obj)) {
767     return obj;  // Already forwarded, must be marked.
768   }
769   return mark_bitmap_->Test(obj) ? obj : nullptr;
770 }
771 
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * object,bool do_atomic_update ATTRIBUTE_UNUSED)772 bool SemiSpace::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* object,
773                                             // SemiSpace does the GC in a pause. No CAS needed.
774                                             bool do_atomic_update ATTRIBUTE_UNUSED) {
775   mirror::Object* obj = object->AsMirrorPtr();
776   if (obj == nullptr) {
777     return true;
778   }
779   mirror::Object* new_obj = IsMarked(obj);
780   if (new_obj == nullptr) {
781     return false;
782   }
783   if (new_obj != obj) {
784     // Write barrier is not necessary since it still points to the same object, just at a different
785     // address.
786     object->Assign(new_obj);
787   }
788   return true;
789 }
790 
SetToSpace(space::ContinuousMemMapAllocSpace * to_space)791 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
792   DCHECK(to_space != nullptr);
793   to_space_ = to_space;
794 }
795 
SetFromSpace(space::ContinuousMemMapAllocSpace * from_space)796 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
797   DCHECK(from_space != nullptr);
798   from_space_ = from_space;
799 }
800 
FinishPhase()801 void SemiSpace::FinishPhase() {
802   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
803   // b/31172841. Temporarily disable the from-space protection with host debug build
804   // due to some protection issue in the build server.
805   if (kProtectFromSpace && !(kIsDebugBuild && !kIsTargetBuild)) {
806     if (from_space_->IsRosAllocSpace()) {
807       VLOG(heap) << "Protecting from_space_ with PROT_NONE : " << *from_space_;
808       from_space_->GetMemMap()->Protect(PROT_NONE);
809     }
810   }
811   // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
812   // further action is done by the heap.
813   to_space_ = nullptr;
814   from_space_ = nullptr;
815   CHECK(mark_stack_->IsEmpty());
816   mark_stack_->Reset();
817   space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
818   if (generational_) {
819     // Decide whether to do a whole heap collection or a bump pointer
820     // only space collection at the next collection by updating
821     // collect_from_space_only_.
822     if (collect_from_space_only_) {
823       // Disable collect_from_space_only_ if the bytes promoted since the
824       // last whole heap collection or the large object bytes
825       // allocated exceeds a threshold.
826       bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
827       bool bytes_promoted_threshold_exceeded =
828           bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
829       uint64_t current_los_bytes_allocated = los != nullptr ? los->GetBytesAllocated() : 0U;
830       uint64_t last_los_bytes_allocated =
831           large_object_bytes_allocated_at_last_whole_heap_collection_;
832       bool large_object_bytes_threshold_exceeded =
833           current_los_bytes_allocated >=
834           last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
835       if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
836         collect_from_space_only_ = false;
837       }
838     } else {
839       // Reset the counters.
840       bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
841       large_object_bytes_allocated_at_last_whole_heap_collection_ =
842           los != nullptr ? los->GetBytesAllocated() : 0U;
843       collect_from_space_only_ = true;
844     }
845   }
846   // Clear all of the spaces' mark bitmaps.
847   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
848   heap_->ClearMarkedObjects();
849 }
850 
RevokeAllThreadLocalBuffers()851 void SemiSpace::RevokeAllThreadLocalBuffers() {
852   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
853   GetHeap()->RevokeAllThreadLocalBuffers();
854 }
855 
856 }  // namespace collector
857 }  // namespace gc
858 }  // namespace art
859