1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CFG.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/EHPersonalities.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/MemoryBuiltins.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <algorithm>
67 #include <climits>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70
71 #define DEBUG_TYPE "instcombine"
72
73 STATISTIC(NumCombined , "Number of insts combined");
74 STATISTIC(NumConstProp, "Number of constant folds");
75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 STATISTIC(NumExpand, "Number of expansions");
78 STATISTIC(NumFactor , "Number of factorizations");
79 STATISTIC(NumReassoc , "Number of reassociations");
80
81 static cl::opt<bool>
82 EnableExpensiveCombines("expensive-combines",
83 cl::desc("Enable expensive instruction combines"));
84
EmitGEPOffset(User * GEP)85 Value *InstCombiner::EmitGEPOffset(User *GEP) {
86 return llvm::EmitGEPOffset(Builder, DL, GEP);
87 }
88
89 /// Return true if it is desirable to convert an integer computation from a
90 /// given bit width to a new bit width.
91 /// We don't want to convert from a legal to an illegal type for example or from
92 /// a smaller to a larger illegal type.
ShouldChangeType(unsigned FromWidth,unsigned ToWidth) const93 bool InstCombiner::ShouldChangeType(unsigned FromWidth,
94 unsigned ToWidth) const {
95 bool FromLegal = DL.isLegalInteger(FromWidth);
96 bool ToLegal = DL.isLegalInteger(ToWidth);
97
98 // If this is a legal integer from type, and the result would be an illegal
99 // type, don't do the transformation.
100 if (FromLegal && !ToLegal)
101 return false;
102
103 // Otherwise, if both are illegal, do not increase the size of the result. We
104 // do allow things like i160 -> i64, but not i64 -> i160.
105 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106 return false;
107
108 return true;
109 }
110
111 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
112 /// We don't want to convert from a legal to an illegal type for example or from
113 /// a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
115 assert(From->isIntegerTy() && To->isIntegerTy());
116
117 unsigned FromWidth = From->getPrimitiveSizeInBits();
118 unsigned ToWidth = To->getPrimitiveSizeInBits();
119 return ShouldChangeType(FromWidth, ToWidth);
120 }
121
122 // Return true, if No Signed Wrap should be maintained for I.
123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
124 // where both B and C should be ConstantInts, results in a constant that does
125 // not overflow. This function only handles the Add and Sub opcodes. For
126 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
128 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
129 if (!OBO || !OBO->hasNoSignedWrap())
130 return false;
131
132 // We reason about Add and Sub Only.
133 Instruction::BinaryOps Opcode = I.getOpcode();
134 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
135 return false;
136
137 const APInt *BVal, *CVal;
138 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
139 return false;
140
141 bool Overflow = false;
142 if (Opcode == Instruction::Add)
143 BVal->sadd_ov(*CVal, Overflow);
144 else
145 BVal->ssub_ov(*CVal, Overflow);
146
147 return !Overflow;
148 }
149
150 /// Conservatively clears subclassOptionalData after a reassociation or
151 /// commutation. We preserve fast-math flags when applicable as they can be
152 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
154 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
155 if (!FPMO) {
156 I.clearSubclassOptionalData();
157 return;
158 }
159
160 FastMathFlags FMF = I.getFastMathFlags();
161 I.clearSubclassOptionalData();
162 I.setFastMathFlags(FMF);
163 }
164
165 /// This performs a few simplifications for operators that are associative or
166 /// commutative:
167 ///
168 /// Commutative operators:
169 ///
170 /// 1. Order operands such that they are listed from right (least complex) to
171 /// left (most complex). This puts constants before unary operators before
172 /// binary operators.
173 ///
174 /// Associative operators:
175 ///
176 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178 ///
179 /// Associative and commutative operators:
180 ///
181 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)185 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
186 Instruction::BinaryOps Opcode = I.getOpcode();
187 bool Changed = false;
188
189 do {
190 // Order operands such that they are listed from right (least complex) to
191 // left (most complex). This puts constants before unary operators before
192 // binary operators.
193 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
194 getComplexity(I.getOperand(1)))
195 Changed = !I.swapOperands();
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
199
200 if (I.isAssociative()) {
201 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
202 if (Op0 && Op0->getOpcode() == Opcode) {
203 Value *A = Op0->getOperand(0);
204 Value *B = Op0->getOperand(1);
205 Value *C = I.getOperand(1);
206
207 // Does "B op C" simplify?
208 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
209 // It simplifies to V. Form "A op V".
210 I.setOperand(0, A);
211 I.setOperand(1, V);
212 // Conservatively clear the optional flags, since they may not be
213 // preserved by the reassociation.
214 if (MaintainNoSignedWrap(I, B, C) &&
215 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
216 // Note: this is only valid because SimplifyBinOp doesn't look at
217 // the operands to Op0.
218 I.clearSubclassOptionalData();
219 I.setHasNoSignedWrap(true);
220 } else {
221 ClearSubclassDataAfterReassociation(I);
222 }
223
224 Changed = true;
225 ++NumReassoc;
226 continue;
227 }
228 }
229
230 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
231 if (Op1 && Op1->getOpcode() == Opcode) {
232 Value *A = I.getOperand(0);
233 Value *B = Op1->getOperand(0);
234 Value *C = Op1->getOperand(1);
235
236 // Does "A op B" simplify?
237 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
238 // It simplifies to V. Form "V op C".
239 I.setOperand(0, V);
240 I.setOperand(1, C);
241 // Conservatively clear the optional flags, since they may not be
242 // preserved by the reassociation.
243 ClearSubclassDataAfterReassociation(I);
244 Changed = true;
245 ++NumReassoc;
246 continue;
247 }
248 }
249 }
250
251 if (I.isAssociative() && I.isCommutative()) {
252 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
253 if (Op0 && Op0->getOpcode() == Opcode) {
254 Value *A = Op0->getOperand(0);
255 Value *B = Op0->getOperand(1);
256 Value *C = I.getOperand(1);
257
258 // Does "C op A" simplify?
259 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
260 // It simplifies to V. Form "V op B".
261 I.setOperand(0, V);
262 I.setOperand(1, B);
263 // Conservatively clear the optional flags, since they may not be
264 // preserved by the reassociation.
265 ClearSubclassDataAfterReassociation(I);
266 Changed = true;
267 ++NumReassoc;
268 continue;
269 }
270 }
271
272 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
273 if (Op1 && Op1->getOpcode() == Opcode) {
274 Value *A = I.getOperand(0);
275 Value *B = Op1->getOperand(0);
276 Value *C = Op1->getOperand(1);
277
278 // Does "C op A" simplify?
279 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
280 // It simplifies to V. Form "B op V".
281 I.setOperand(0, B);
282 I.setOperand(1, V);
283 // Conservatively clear the optional flags, since they may not be
284 // preserved by the reassociation.
285 ClearSubclassDataAfterReassociation(I);
286 Changed = true;
287 ++NumReassoc;
288 continue;
289 }
290 }
291
292 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
293 // if C1 and C2 are constants.
294 if (Op0 && Op1 &&
295 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
296 isa<Constant>(Op0->getOperand(1)) &&
297 isa<Constant>(Op1->getOperand(1)) &&
298 Op0->hasOneUse() && Op1->hasOneUse()) {
299 Value *A = Op0->getOperand(0);
300 Constant *C1 = cast<Constant>(Op0->getOperand(1));
301 Value *B = Op1->getOperand(0);
302 Constant *C2 = cast<Constant>(Op1->getOperand(1));
303
304 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
305 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
306 if (isa<FPMathOperator>(New)) {
307 FastMathFlags Flags = I.getFastMathFlags();
308 Flags &= Op0->getFastMathFlags();
309 Flags &= Op1->getFastMathFlags();
310 New->setFastMathFlags(Flags);
311 }
312 InsertNewInstWith(New, I);
313 New->takeName(Op1);
314 I.setOperand(0, New);
315 I.setOperand(1, Folded);
316 // Conservatively clear the optional flags, since they may not be
317 // preserved by the reassociation.
318 ClearSubclassDataAfterReassociation(I);
319
320 Changed = true;
321 continue;
322 }
323 }
324
325 // No further simplifications.
326 return Changed;
327 } while (1);
328 }
329
330 /// Return whether "X LOp (Y ROp Z)" is always equal to
331 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)332 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
333 Instruction::BinaryOps ROp) {
334 switch (LOp) {
335 default:
336 return false;
337
338 case Instruction::And:
339 // And distributes over Or and Xor.
340 switch (ROp) {
341 default:
342 return false;
343 case Instruction::Or:
344 case Instruction::Xor:
345 return true;
346 }
347
348 case Instruction::Mul:
349 // Multiplication distributes over addition and subtraction.
350 switch (ROp) {
351 default:
352 return false;
353 case Instruction::Add:
354 case Instruction::Sub:
355 return true;
356 }
357
358 case Instruction::Or:
359 // Or distributes over And.
360 switch (ROp) {
361 default:
362 return false;
363 case Instruction::And:
364 return true;
365 }
366 }
367 }
368
369 /// Return whether "(X LOp Y) ROp Z" is always equal to
370 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)371 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
372 Instruction::BinaryOps ROp) {
373 if (Instruction::isCommutative(ROp))
374 return LeftDistributesOverRight(ROp, LOp);
375
376 switch (LOp) {
377 default:
378 return false;
379 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
380 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
381 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
382 case Instruction::And:
383 case Instruction::Or:
384 case Instruction::Xor:
385 switch (ROp) {
386 default:
387 return false;
388 case Instruction::Shl:
389 case Instruction::LShr:
390 case Instruction::AShr:
391 return true;
392 }
393 }
394 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
395 // but this requires knowing that the addition does not overflow and other
396 // such subtleties.
397 return false;
398 }
399
400 /// This function returns identity value for given opcode, which can be used to
401 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps OpCode,Value * V)402 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
403 if (isa<Constant>(V))
404 return nullptr;
405
406 if (OpCode == Instruction::Mul)
407 return ConstantInt::get(V->getType(), 1);
408
409 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
410
411 return nullptr;
412 }
413
414 /// This function factors binary ops which can be combined using distributive
415 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
416 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
417 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
418 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
419 /// RHS to 4.
420 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)421 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
422 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
423 if (!Op)
424 return Instruction::BinaryOpsEnd;
425
426 LHS = Op->getOperand(0);
427 RHS = Op->getOperand(1);
428
429 switch (TopLevelOpcode) {
430 default:
431 return Op->getOpcode();
432
433 case Instruction::Add:
434 case Instruction::Sub:
435 if (Op->getOpcode() == Instruction::Shl) {
436 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
437 // The multiplier is really 1 << CST.
438 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
439 return Instruction::Mul;
440 }
441 }
442 return Op->getOpcode();
443 }
444
445 // TODO: We can add other conversions e.g. shr => div etc.
446 }
447
448 /// This tries to simplify binary operations by factorizing out common terms
449 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(InstCombiner::BuilderTy * Builder,const DataLayout & DL,BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)450 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
451 const DataLayout &DL, BinaryOperator &I,
452 Instruction::BinaryOps InnerOpcode, Value *A,
453 Value *B, Value *C, Value *D) {
454
455 // If any of A, B, C, D are null, we can not factor I, return early.
456 // Checking A and C should be enough.
457 if (!A || !C || !B || !D)
458 return nullptr;
459
460 Value *V = nullptr;
461 Value *SimplifiedInst = nullptr;
462 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
463 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
464
465 // Does "X op' Y" always equal "Y op' X"?
466 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
467
468 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
469 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
470 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
471 // commutative case, "(A op' B) op (C op' A)"?
472 if (A == C || (InnerCommutative && A == D)) {
473 if (A != C)
474 std::swap(C, D);
475 // Consider forming "A op' (B op D)".
476 // If "B op D" simplifies then it can be formed with no cost.
477 V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
478 // If "B op D" doesn't simplify then only go on if both of the existing
479 // operations "A op' B" and "C op' D" will be zapped as no longer used.
480 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
481 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
482 if (V) {
483 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
484 }
485 }
486
487 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
488 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
489 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
490 // commutative case, "(A op' B) op (B op' D)"?
491 if (B == D || (InnerCommutative && B == C)) {
492 if (B != D)
493 std::swap(C, D);
494 // Consider forming "(A op C) op' B".
495 // If "A op C" simplifies then it can be formed with no cost.
496 V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
497
498 // If "A op C" doesn't simplify then only go on if both of the existing
499 // operations "A op' B" and "C op' D" will be zapped as no longer used.
500 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
501 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
502 if (V) {
503 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
504 }
505 }
506
507 if (SimplifiedInst) {
508 ++NumFactor;
509 SimplifiedInst->takeName(&I);
510
511 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
512 // TODO: Check for NUW.
513 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
514 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
515 bool HasNSW = false;
516 if (isa<OverflowingBinaryOperator>(&I))
517 HasNSW = I.hasNoSignedWrap();
518
519 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
520 if (isa<OverflowingBinaryOperator>(Op0))
521 HasNSW &= Op0->hasNoSignedWrap();
522
523 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
524 if (isa<OverflowingBinaryOperator>(Op1))
525 HasNSW &= Op1->hasNoSignedWrap();
526
527 // We can propagate 'nsw' if we know that
528 // %Y = mul nsw i16 %X, C
529 // %Z = add nsw i16 %Y, %X
530 // =>
531 // %Z = mul nsw i16 %X, C+1
532 //
533 // iff C+1 isn't INT_MIN
534 const APInt *CInt;
535 if (TopLevelOpcode == Instruction::Add &&
536 InnerOpcode == Instruction::Mul)
537 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
538 BO->setHasNoSignedWrap(HasNSW);
539 }
540 }
541 }
542 return SimplifiedInst;
543 }
544
545 /// This tries to simplify binary operations which some other binary operation
546 /// distributes over either by factorizing out common terms
547 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
548 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
549 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)550 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
551 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
552 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
553 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
554
555 // Factorization.
556 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
557 auto TopLevelOpcode = I.getOpcode();
558 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
559 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
560
561 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
562 // a common term.
563 if (LHSOpcode == RHSOpcode) {
564 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
565 return V;
566 }
567
568 // The instruction has the form "(A op' B) op (C)". Try to factorize common
569 // term.
570 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
571 getIdentityValue(LHSOpcode, RHS)))
572 return V;
573
574 // The instruction has the form "(B) op (C op' D)". Try to factorize common
575 // term.
576 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
577 getIdentityValue(RHSOpcode, LHS), C, D))
578 return V;
579
580 // Expansion.
581 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
582 // The instruction has the form "(A op' B) op C". See if expanding it out
583 // to "(A op C) op' (B op C)" results in simplifications.
584 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
585 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
586
587 // Do "A op C" and "B op C" both simplify?
588 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
589 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
590 // They do! Return "L op' R".
591 ++NumExpand;
592 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
593 if ((L == A && R == B) ||
594 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
595 return Op0;
596 // Otherwise return "L op' R" if it simplifies.
597 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
598 return V;
599 // Otherwise, create a new instruction.
600 C = Builder->CreateBinOp(InnerOpcode, L, R);
601 C->takeName(&I);
602 return C;
603 }
604 }
605
606 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
607 // The instruction has the form "A op (B op' C)". See if expanding it out
608 // to "(A op B) op' (A op C)" results in simplifications.
609 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
610 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
611
612 // Do "A op B" and "A op C" both simplify?
613 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
614 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
615 // They do! Return "L op' R".
616 ++NumExpand;
617 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
618 if ((L == B && R == C) ||
619 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
620 return Op1;
621 // Otherwise return "L op' R" if it simplifies.
622 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
623 return V;
624 // Otherwise, create a new instruction.
625 A = Builder->CreateBinOp(InnerOpcode, L, R);
626 A->takeName(&I);
627 return A;
628 }
629 }
630
631 // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
632 // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
633 if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
634 if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
635 if (SI0->getCondition() == SI1->getCondition()) {
636 Value *SI = nullptr;
637 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
638 SI1->getFalseValue(), DL, TLI, DT, AC))
639 SI = Builder->CreateSelect(SI0->getCondition(),
640 Builder->CreateBinOp(TopLevelOpcode,
641 SI0->getTrueValue(),
642 SI1->getTrueValue()),
643 V);
644 if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
645 SI1->getTrueValue(), DL, TLI, DT, AC))
646 SI = Builder->CreateSelect(
647 SI0->getCondition(), V,
648 Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
649 SI1->getFalseValue()));
650 if (SI) {
651 SI->takeName(&I);
652 return SI;
653 }
654 }
655 }
656 }
657
658 return nullptr;
659 }
660
661 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
662 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const663 Value *InstCombiner::dyn_castNegVal(Value *V) const {
664 if (BinaryOperator::isNeg(V))
665 return BinaryOperator::getNegArgument(V);
666
667 // Constants can be considered to be negated values if they can be folded.
668 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
669 return ConstantExpr::getNeg(C);
670
671 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
672 if (C->getType()->getElementType()->isIntegerTy())
673 return ConstantExpr::getNeg(C);
674
675 return nullptr;
676 }
677
678 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
679 /// a constant negative zero (which is the 'negate' form).
dyn_castFNegVal(Value * V,bool IgnoreZeroSign) const680 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
681 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
682 return BinaryOperator::getFNegArgument(V);
683
684 // Constants can be considered to be negated values if they can be folded.
685 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
686 return ConstantExpr::getFNeg(C);
687
688 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
689 if (C->getType()->getElementType()->isFloatingPointTy())
690 return ConstantExpr::getFNeg(C);
691
692 return nullptr;
693 }
694
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)695 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
696 InstCombiner *IC) {
697 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
698 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
699 }
700
701 // Figure out if the constant is the left or the right argument.
702 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
703 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
704
705 if (Constant *SOC = dyn_cast<Constant>(SO)) {
706 if (ConstIsRHS)
707 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
708 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
709 }
710
711 Value *Op0 = SO, *Op1 = ConstOperand;
712 if (!ConstIsRHS)
713 std::swap(Op0, Op1);
714
715 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
716 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
717 SO->getName()+".op");
718 Instruction *FPInst = dyn_cast<Instruction>(RI);
719 if (FPInst && isa<FPMathOperator>(FPInst))
720 FPInst->copyFastMathFlags(BO);
721 return RI;
722 }
723 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
724 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
725 SO->getName()+".cmp");
726 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
727 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
728 SO->getName()+".cmp");
729 llvm_unreachable("Unknown binary instruction type!");
730 }
731
732 /// Given an instruction with a select as one operand and a constant as the
733 /// other operand, try to fold the binary operator into the select arguments.
734 /// This also works for Cast instructions, which obviously do not have a second
735 /// operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)736 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
737 // Don't modify shared select instructions
738 if (!SI->hasOneUse()) return nullptr;
739 Value *TV = SI->getOperand(1);
740 Value *FV = SI->getOperand(2);
741
742 if (isa<Constant>(TV) || isa<Constant>(FV)) {
743 // Bool selects with constant operands can be folded to logical ops.
744 if (SI->getType()->isIntegerTy(1)) return nullptr;
745
746 // If it's a bitcast involving vectors, make sure it has the same number of
747 // elements on both sides.
748 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
749 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
750 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
751
752 // Verify that either both or neither are vectors.
753 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
754 // If vectors, verify that they have the same number of elements.
755 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
756 return nullptr;
757 }
758
759 // Test if a CmpInst instruction is used exclusively by a select as
760 // part of a minimum or maximum operation. If so, refrain from doing
761 // any other folding. This helps out other analyses which understand
762 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
763 // and CodeGen. And in this case, at least one of the comparison
764 // operands has at least one user besides the compare (the select),
765 // which would often largely negate the benefit of folding anyway.
766 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
767 if (CI->hasOneUse()) {
768 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
769 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
770 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
771 return nullptr;
772 }
773 }
774
775 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
776 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
777
778 return SelectInst::Create(SI->getCondition(),
779 SelectTrueVal, SelectFalseVal);
780 }
781 return nullptr;
782 }
783
784 /// Given a binary operator, cast instruction, or select which has a PHI node as
785 /// operand #0, see if we can fold the instruction into the PHI (which is only
786 /// possible if all operands to the PHI are constants).
FoldOpIntoPhi(Instruction & I)787 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
788 PHINode *PN = cast<PHINode>(I.getOperand(0));
789 unsigned NumPHIValues = PN->getNumIncomingValues();
790 if (NumPHIValues == 0)
791 return nullptr;
792
793 // We normally only transform phis with a single use. However, if a PHI has
794 // multiple uses and they are all the same operation, we can fold *all* of the
795 // uses into the PHI.
796 if (!PN->hasOneUse()) {
797 // Walk the use list for the instruction, comparing them to I.
798 for (User *U : PN->users()) {
799 Instruction *UI = cast<Instruction>(U);
800 if (UI != &I && !I.isIdenticalTo(UI))
801 return nullptr;
802 }
803 // Otherwise, we can replace *all* users with the new PHI we form.
804 }
805
806 // Check to see if all of the operands of the PHI are simple constants
807 // (constantint/constantfp/undef). If there is one non-constant value,
808 // remember the BB it is in. If there is more than one or if *it* is a PHI,
809 // bail out. We don't do arbitrary constant expressions here because moving
810 // their computation can be expensive without a cost model.
811 BasicBlock *NonConstBB = nullptr;
812 for (unsigned i = 0; i != NumPHIValues; ++i) {
813 Value *InVal = PN->getIncomingValue(i);
814 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
815 continue;
816
817 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
818 if (NonConstBB) return nullptr; // More than one non-const value.
819
820 NonConstBB = PN->getIncomingBlock(i);
821
822 // If the InVal is an invoke at the end of the pred block, then we can't
823 // insert a computation after it without breaking the edge.
824 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
825 if (II->getParent() == NonConstBB)
826 return nullptr;
827
828 // If the incoming non-constant value is in I's block, we will remove one
829 // instruction, but insert another equivalent one, leading to infinite
830 // instcombine.
831 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
832 return nullptr;
833 }
834
835 // If there is exactly one non-constant value, we can insert a copy of the
836 // operation in that block. However, if this is a critical edge, we would be
837 // inserting the computation on some other paths (e.g. inside a loop). Only
838 // do this if the pred block is unconditionally branching into the phi block.
839 if (NonConstBB != nullptr) {
840 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
841 if (!BI || !BI->isUnconditional()) return nullptr;
842 }
843
844 // Okay, we can do the transformation: create the new PHI node.
845 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
846 InsertNewInstBefore(NewPN, *PN);
847 NewPN->takeName(PN);
848
849 // If we are going to have to insert a new computation, do so right before the
850 // predecessor's terminator.
851 if (NonConstBB)
852 Builder->SetInsertPoint(NonConstBB->getTerminator());
853
854 // Next, add all of the operands to the PHI.
855 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
856 // We only currently try to fold the condition of a select when it is a phi,
857 // not the true/false values.
858 Value *TrueV = SI->getTrueValue();
859 Value *FalseV = SI->getFalseValue();
860 BasicBlock *PhiTransBB = PN->getParent();
861 for (unsigned i = 0; i != NumPHIValues; ++i) {
862 BasicBlock *ThisBB = PN->getIncomingBlock(i);
863 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
864 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
865 Value *InV = nullptr;
866 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
867 // even if currently isNullValue gives false.
868 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
869 if (InC && !isa<ConstantExpr>(InC))
870 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
871 else
872 InV = Builder->CreateSelect(PN->getIncomingValue(i),
873 TrueVInPred, FalseVInPred, "phitmp");
874 NewPN->addIncoming(InV, ThisBB);
875 }
876 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
877 Constant *C = cast<Constant>(I.getOperand(1));
878 for (unsigned i = 0; i != NumPHIValues; ++i) {
879 Value *InV = nullptr;
880 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
881 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
882 else if (isa<ICmpInst>(CI))
883 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
884 C, "phitmp");
885 else
886 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
887 C, "phitmp");
888 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
889 }
890 } else if (I.getNumOperands() == 2) {
891 Constant *C = cast<Constant>(I.getOperand(1));
892 for (unsigned i = 0; i != NumPHIValues; ++i) {
893 Value *InV = nullptr;
894 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
895 InV = ConstantExpr::get(I.getOpcode(), InC, C);
896 else
897 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
898 PN->getIncomingValue(i), C, "phitmp");
899 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
900 }
901 } else {
902 CastInst *CI = cast<CastInst>(&I);
903 Type *RetTy = CI->getType();
904 for (unsigned i = 0; i != NumPHIValues; ++i) {
905 Value *InV;
906 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
907 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
908 else
909 InV = Builder->CreateCast(CI->getOpcode(),
910 PN->getIncomingValue(i), I.getType(), "phitmp");
911 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
912 }
913 }
914
915 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
916 Instruction *User = cast<Instruction>(*UI++);
917 if (User == &I) continue;
918 replaceInstUsesWith(*User, NewPN);
919 eraseInstFromFunction(*User);
920 }
921 return replaceInstUsesWith(I, NewPN);
922 }
923
924 /// Given a pointer type and a constant offset, determine whether or not there
925 /// is a sequence of GEP indices into the pointed type that will land us at the
926 /// specified offset. If so, fill them into NewIndices and return the resultant
927 /// element type, otherwise return null.
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)928 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
929 SmallVectorImpl<Value *> &NewIndices) {
930 Type *Ty = PtrTy->getElementType();
931 if (!Ty->isSized())
932 return nullptr;
933
934 // Start with the index over the outer type. Note that the type size
935 // might be zero (even if the offset isn't zero) if the indexed type
936 // is something like [0 x {int, int}]
937 Type *IntPtrTy = DL.getIntPtrType(PtrTy);
938 int64_t FirstIdx = 0;
939 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
940 FirstIdx = Offset/TySize;
941 Offset -= FirstIdx*TySize;
942
943 // Handle hosts where % returns negative instead of values [0..TySize).
944 if (Offset < 0) {
945 --FirstIdx;
946 Offset += TySize;
947 assert(Offset >= 0);
948 }
949 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
950 }
951
952 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
953
954 // Index into the types. If we fail, set OrigBase to null.
955 while (Offset) {
956 // Indexing into tail padding between struct/array elements.
957 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
958 return nullptr;
959
960 if (StructType *STy = dyn_cast<StructType>(Ty)) {
961 const StructLayout *SL = DL.getStructLayout(STy);
962 assert(Offset < (int64_t)SL->getSizeInBytes() &&
963 "Offset must stay within the indexed type");
964
965 unsigned Elt = SL->getElementContainingOffset(Offset);
966 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
967 Elt));
968
969 Offset -= SL->getElementOffset(Elt);
970 Ty = STy->getElementType(Elt);
971 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
972 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
973 assert(EltSize && "Cannot index into a zero-sized array");
974 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
975 Offset %= EltSize;
976 Ty = AT->getElementType();
977 } else {
978 // Otherwise, we can't index into the middle of this atomic type, bail.
979 return nullptr;
980 }
981 }
982
983 return Ty;
984 }
985
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)986 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
987 // If this GEP has only 0 indices, it is the same pointer as
988 // Src. If Src is not a trivial GEP too, don't combine
989 // the indices.
990 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
991 !Src.hasOneUse())
992 return false;
993 return true;
994 }
995
996 /// Return a value X such that Val = X * Scale, or null if none.
997 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)998 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
999 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1000 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1001 Scale.getBitWidth() && "Scale not compatible with value!");
1002
1003 // If Val is zero or Scale is one then Val = Val * Scale.
1004 if (match(Val, m_Zero()) || Scale == 1) {
1005 NoSignedWrap = true;
1006 return Val;
1007 }
1008
1009 // If Scale is zero then it does not divide Val.
1010 if (Scale.isMinValue())
1011 return nullptr;
1012
1013 // Look through chains of multiplications, searching for a constant that is
1014 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1015 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1016 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1017 // down from Val:
1018 //
1019 // Val = M1 * X || Analysis starts here and works down
1020 // M1 = M2 * Y || Doesn't descend into terms with more
1021 // M2 = Z * 4 \/ than one use
1022 //
1023 // Then to modify a term at the bottom:
1024 //
1025 // Val = M1 * X
1026 // M1 = Z * Y || Replaced M2 with Z
1027 //
1028 // Then to work back up correcting nsw flags.
1029
1030 // Op - the term we are currently analyzing. Starts at Val then drills down.
1031 // Replaced with its descaled value before exiting from the drill down loop.
1032 Value *Op = Val;
1033
1034 // Parent - initially null, but after drilling down notes where Op came from.
1035 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1036 // 0'th operand of Val.
1037 std::pair<Instruction*, unsigned> Parent;
1038
1039 // Set if the transform requires a descaling at deeper levels that doesn't
1040 // overflow.
1041 bool RequireNoSignedWrap = false;
1042
1043 // Log base 2 of the scale. Negative if not a power of 2.
1044 int32_t logScale = Scale.exactLogBase2();
1045
1046 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1047
1048 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1049 // If Op is a constant divisible by Scale then descale to the quotient.
1050 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1051 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1052 if (!Remainder.isMinValue())
1053 // Not divisible by Scale.
1054 return nullptr;
1055 // Replace with the quotient in the parent.
1056 Op = ConstantInt::get(CI->getType(), Quotient);
1057 NoSignedWrap = true;
1058 break;
1059 }
1060
1061 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1062
1063 if (BO->getOpcode() == Instruction::Mul) {
1064 // Multiplication.
1065 NoSignedWrap = BO->hasNoSignedWrap();
1066 if (RequireNoSignedWrap && !NoSignedWrap)
1067 return nullptr;
1068
1069 // There are three cases for multiplication: multiplication by exactly
1070 // the scale, multiplication by a constant different to the scale, and
1071 // multiplication by something else.
1072 Value *LHS = BO->getOperand(0);
1073 Value *RHS = BO->getOperand(1);
1074
1075 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1076 // Multiplication by a constant.
1077 if (CI->getValue() == Scale) {
1078 // Multiplication by exactly the scale, replace the multiplication
1079 // by its left-hand side in the parent.
1080 Op = LHS;
1081 break;
1082 }
1083
1084 // Otherwise drill down into the constant.
1085 if (!Op->hasOneUse())
1086 return nullptr;
1087
1088 Parent = std::make_pair(BO, 1);
1089 continue;
1090 }
1091
1092 // Multiplication by something else. Drill down into the left-hand side
1093 // since that's where the reassociate pass puts the good stuff.
1094 if (!Op->hasOneUse())
1095 return nullptr;
1096
1097 Parent = std::make_pair(BO, 0);
1098 continue;
1099 }
1100
1101 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1102 isa<ConstantInt>(BO->getOperand(1))) {
1103 // Multiplication by a power of 2.
1104 NoSignedWrap = BO->hasNoSignedWrap();
1105 if (RequireNoSignedWrap && !NoSignedWrap)
1106 return nullptr;
1107
1108 Value *LHS = BO->getOperand(0);
1109 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1110 getLimitedValue(Scale.getBitWidth());
1111 // Op = LHS << Amt.
1112
1113 if (Amt == logScale) {
1114 // Multiplication by exactly the scale, replace the multiplication
1115 // by its left-hand side in the parent.
1116 Op = LHS;
1117 break;
1118 }
1119 if (Amt < logScale || !Op->hasOneUse())
1120 return nullptr;
1121
1122 // Multiplication by more than the scale. Reduce the multiplying amount
1123 // by the scale in the parent.
1124 Parent = std::make_pair(BO, 1);
1125 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1126 break;
1127 }
1128 }
1129
1130 if (!Op->hasOneUse())
1131 return nullptr;
1132
1133 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1134 if (Cast->getOpcode() == Instruction::SExt) {
1135 // Op is sign-extended from a smaller type, descale in the smaller type.
1136 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1137 APInt SmallScale = Scale.trunc(SmallSize);
1138 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1139 // descale Op as (sext Y) * Scale. In order to have
1140 // sext (Y * SmallScale) = (sext Y) * Scale
1141 // some conditions need to hold however: SmallScale must sign-extend to
1142 // Scale and the multiplication Y * SmallScale should not overflow.
1143 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1144 // SmallScale does not sign-extend to Scale.
1145 return nullptr;
1146 assert(SmallScale.exactLogBase2() == logScale);
1147 // Require that Y * SmallScale must not overflow.
1148 RequireNoSignedWrap = true;
1149
1150 // Drill down through the cast.
1151 Parent = std::make_pair(Cast, 0);
1152 Scale = SmallScale;
1153 continue;
1154 }
1155
1156 if (Cast->getOpcode() == Instruction::Trunc) {
1157 // Op is truncated from a larger type, descale in the larger type.
1158 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1159 // trunc (Y * sext Scale) = (trunc Y) * Scale
1160 // always holds. However (trunc Y) * Scale may overflow even if
1161 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1162 // from this point up in the expression (see later).
1163 if (RequireNoSignedWrap)
1164 return nullptr;
1165
1166 // Drill down through the cast.
1167 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1168 Parent = std::make_pair(Cast, 0);
1169 Scale = Scale.sext(LargeSize);
1170 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1171 logScale = -1;
1172 assert(Scale.exactLogBase2() == logScale);
1173 continue;
1174 }
1175 }
1176
1177 // Unsupported expression, bail out.
1178 return nullptr;
1179 }
1180
1181 // If Op is zero then Val = Op * Scale.
1182 if (match(Op, m_Zero())) {
1183 NoSignedWrap = true;
1184 return Op;
1185 }
1186
1187 // We know that we can successfully descale, so from here on we can safely
1188 // modify the IR. Op holds the descaled version of the deepest term in the
1189 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1190 // not to overflow.
1191
1192 if (!Parent.first)
1193 // The expression only had one term.
1194 return Op;
1195
1196 // Rewrite the parent using the descaled version of its operand.
1197 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1198 assert(Op != Parent.first->getOperand(Parent.second) &&
1199 "Descaling was a no-op?");
1200 Parent.first->setOperand(Parent.second, Op);
1201 Worklist.Add(Parent.first);
1202
1203 // Now work back up the expression correcting nsw flags. The logic is based
1204 // on the following observation: if X * Y is known not to overflow as a signed
1205 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1206 // then X * Z will not overflow as a signed multiplication either. As we work
1207 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1208 // current level has strictly smaller absolute value than the original.
1209 Instruction *Ancestor = Parent.first;
1210 do {
1211 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1212 // If the multiplication wasn't nsw then we can't say anything about the
1213 // value of the descaled multiplication, and we have to clear nsw flags
1214 // from this point on up.
1215 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1216 NoSignedWrap &= OpNoSignedWrap;
1217 if (NoSignedWrap != OpNoSignedWrap) {
1218 BO->setHasNoSignedWrap(NoSignedWrap);
1219 Worklist.Add(Ancestor);
1220 }
1221 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1222 // The fact that the descaled input to the trunc has smaller absolute
1223 // value than the original input doesn't tell us anything useful about
1224 // the absolute values of the truncations.
1225 NoSignedWrap = false;
1226 }
1227 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1228 "Failed to keep proper track of nsw flags while drilling down?");
1229
1230 if (Ancestor == Val)
1231 // Got to the top, all done!
1232 return Val;
1233
1234 // Move up one level in the expression.
1235 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1236 Ancestor = Ancestor->user_back();
1237 } while (1);
1238 }
1239
1240 /// \brief Creates node of binary operation with the same attributes as the
1241 /// specified one but with other operands.
CreateBinOpAsGiven(BinaryOperator & Inst,Value * LHS,Value * RHS,InstCombiner::BuilderTy * B)1242 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1243 InstCombiner::BuilderTy *B) {
1244 Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1245 // If LHS and RHS are constant, BO won't be a binary operator.
1246 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1247 NewBO->copyIRFlags(&Inst);
1248 return BO;
1249 }
1250
1251 /// \brief Makes transformation of binary operation specific for vector types.
1252 /// \param Inst Binary operator to transform.
1253 /// \return Pointer to node that must replace the original binary operator, or
1254 /// null pointer if no transformation was made.
SimplifyVectorOp(BinaryOperator & Inst)1255 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1256 if (!Inst.getType()->isVectorTy()) return nullptr;
1257
1258 // It may not be safe to reorder shuffles and things like div, urem, etc.
1259 // because we may trap when executing those ops on unknown vector elements.
1260 // See PR20059.
1261 if (!isSafeToSpeculativelyExecute(&Inst))
1262 return nullptr;
1263
1264 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1265 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1266 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1267 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1268
1269 // If both arguments of binary operation are shuffles, which use the same
1270 // mask and shuffle within a single vector, it is worthwhile to move the
1271 // shuffle after binary operation:
1272 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1273 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1274 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1275 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1276 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1277 isa<UndefValue>(RShuf->getOperand(1)) &&
1278 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1279 LShuf->getMask() == RShuf->getMask()) {
1280 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1281 RShuf->getOperand(0), Builder);
1282 return Builder->CreateShuffleVector(NewBO,
1283 UndefValue::get(NewBO->getType()), LShuf->getMask());
1284 }
1285 }
1286
1287 // If one argument is a shuffle within one vector, the other is a constant,
1288 // try moving the shuffle after the binary operation.
1289 ShuffleVectorInst *Shuffle = nullptr;
1290 Constant *C1 = nullptr;
1291 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1292 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1293 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1294 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1295 if (Shuffle && C1 &&
1296 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1297 isa<UndefValue>(Shuffle->getOperand(1)) &&
1298 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1299 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1300 // Find constant C2 that has property:
1301 // shuffle(C2, ShMask) = C1
1302 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1303 // reorder is not possible.
1304 SmallVector<Constant*, 16> C2M(VWidth,
1305 UndefValue::get(C1->getType()->getScalarType()));
1306 bool MayChange = true;
1307 for (unsigned I = 0; I < VWidth; ++I) {
1308 if (ShMask[I] >= 0) {
1309 assert(ShMask[I] < (int)VWidth);
1310 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1311 MayChange = false;
1312 break;
1313 }
1314 C2M[ShMask[I]] = C1->getAggregateElement(I);
1315 }
1316 }
1317 if (MayChange) {
1318 Constant *C2 = ConstantVector::get(C2M);
1319 Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1320 Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1321 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1322 return Builder->CreateShuffleVector(NewBO,
1323 UndefValue::get(Inst.getType()), Shuffle->getMask());
1324 }
1325 }
1326
1327 return nullptr;
1328 }
1329
visitGetElementPtrInst(GetElementPtrInst & GEP)1330 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1331 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1332
1333 if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC))
1334 return replaceInstUsesWith(GEP, V);
1335
1336 Value *PtrOp = GEP.getOperand(0);
1337
1338 // Eliminate unneeded casts for indices, and replace indices which displace
1339 // by multiples of a zero size type with zero.
1340 bool MadeChange = false;
1341 Type *IntPtrTy =
1342 DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1343
1344 gep_type_iterator GTI = gep_type_begin(GEP);
1345 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1346 ++I, ++GTI) {
1347 // Skip indices into struct types.
1348 if (isa<StructType>(*GTI))
1349 continue;
1350
1351 // Index type should have the same width as IntPtr
1352 Type *IndexTy = (*I)->getType();
1353 Type *NewIndexType = IndexTy->isVectorTy() ?
1354 VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1355
1356 // If the element type has zero size then any index over it is equivalent
1357 // to an index of zero, so replace it with zero if it is not zero already.
1358 Type *EltTy = GTI.getIndexedType();
1359 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1360 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1361 *I = Constant::getNullValue(NewIndexType);
1362 MadeChange = true;
1363 }
1364
1365 if (IndexTy != NewIndexType) {
1366 // If we are using a wider index than needed for this platform, shrink
1367 // it to what we need. If narrower, sign-extend it to what we need.
1368 // This explicit cast can make subsequent optimizations more obvious.
1369 *I = Builder->CreateIntCast(*I, NewIndexType, true);
1370 MadeChange = true;
1371 }
1372 }
1373 if (MadeChange)
1374 return &GEP;
1375
1376 // Check to see if the inputs to the PHI node are getelementptr instructions.
1377 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1378 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1379 if (!Op1)
1380 return nullptr;
1381
1382 // Don't fold a GEP into itself through a PHI node. This can only happen
1383 // through the back-edge of a loop. Folding a GEP into itself means that
1384 // the value of the previous iteration needs to be stored in the meantime,
1385 // thus requiring an additional register variable to be live, but not
1386 // actually achieving anything (the GEP still needs to be executed once per
1387 // loop iteration).
1388 if (Op1 == &GEP)
1389 return nullptr;
1390
1391 int DI = -1;
1392
1393 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1394 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1395 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1396 return nullptr;
1397
1398 // As for Op1 above, don't try to fold a GEP into itself.
1399 if (Op2 == &GEP)
1400 return nullptr;
1401
1402 // Keep track of the type as we walk the GEP.
1403 Type *CurTy = nullptr;
1404
1405 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1406 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1407 return nullptr;
1408
1409 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1410 if (DI == -1) {
1411 // We have not seen any differences yet in the GEPs feeding the
1412 // PHI yet, so we record this one if it is allowed to be a
1413 // variable.
1414
1415 // The first two arguments can vary for any GEP, the rest have to be
1416 // static for struct slots
1417 if (J > 1 && CurTy->isStructTy())
1418 return nullptr;
1419
1420 DI = J;
1421 } else {
1422 // The GEP is different by more than one input. While this could be
1423 // extended to support GEPs that vary by more than one variable it
1424 // doesn't make sense since it greatly increases the complexity and
1425 // would result in an R+R+R addressing mode which no backend
1426 // directly supports and would need to be broken into several
1427 // simpler instructions anyway.
1428 return nullptr;
1429 }
1430 }
1431
1432 // Sink down a layer of the type for the next iteration.
1433 if (J > 0) {
1434 if (J == 1) {
1435 CurTy = Op1->getSourceElementType();
1436 } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1437 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1438 } else {
1439 CurTy = nullptr;
1440 }
1441 }
1442 }
1443 }
1444
1445 // If not all GEPs are identical we'll have to create a new PHI node.
1446 // Check that the old PHI node has only one use so that it will get
1447 // removed.
1448 if (DI != -1 && !PN->hasOneUse())
1449 return nullptr;
1450
1451 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1452 if (DI == -1) {
1453 // All the GEPs feeding the PHI are identical. Clone one down into our
1454 // BB so that it can be merged with the current GEP.
1455 GEP.getParent()->getInstList().insert(
1456 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1457 } else {
1458 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1459 // into the current block so it can be merged, and create a new PHI to
1460 // set that index.
1461 PHINode *NewPN;
1462 {
1463 IRBuilderBase::InsertPointGuard Guard(*Builder);
1464 Builder->SetInsertPoint(PN);
1465 NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1466 PN->getNumOperands());
1467 }
1468
1469 for (auto &I : PN->operands())
1470 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1471 PN->getIncomingBlock(I));
1472
1473 NewGEP->setOperand(DI, NewPN);
1474 GEP.getParent()->getInstList().insert(
1475 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1476 NewGEP->setOperand(DI, NewPN);
1477 }
1478
1479 GEP.setOperand(0, NewGEP);
1480 PtrOp = NewGEP;
1481 }
1482
1483 // Combine Indices - If the source pointer to this getelementptr instruction
1484 // is a getelementptr instruction, combine the indices of the two
1485 // getelementptr instructions into a single instruction.
1486 //
1487 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1488 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1489 return nullptr;
1490
1491 // Note that if our source is a gep chain itself then we wait for that
1492 // chain to be resolved before we perform this transformation. This
1493 // avoids us creating a TON of code in some cases.
1494 if (GEPOperator *SrcGEP =
1495 dyn_cast<GEPOperator>(Src->getOperand(0)))
1496 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1497 return nullptr; // Wait until our source is folded to completion.
1498
1499 SmallVector<Value*, 8> Indices;
1500
1501 // Find out whether the last index in the source GEP is a sequential idx.
1502 bool EndsWithSequential = false;
1503 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1504 I != E; ++I)
1505 EndsWithSequential = !(*I)->isStructTy();
1506
1507 // Can we combine the two pointer arithmetics offsets?
1508 if (EndsWithSequential) {
1509 // Replace: gep (gep %P, long B), long A, ...
1510 // With: T = long A+B; gep %P, T, ...
1511 //
1512 Value *Sum;
1513 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1514 Value *GO1 = GEP.getOperand(1);
1515 if (SO1 == Constant::getNullValue(SO1->getType())) {
1516 Sum = GO1;
1517 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1518 Sum = SO1;
1519 } else {
1520 // If they aren't the same type, then the input hasn't been processed
1521 // by the loop above yet (which canonicalizes sequential index types to
1522 // intptr_t). Just avoid transforming this until the input has been
1523 // normalized.
1524 if (SO1->getType() != GO1->getType())
1525 return nullptr;
1526 // Only do the combine when GO1 and SO1 are both constants. Only in
1527 // this case, we are sure the cost after the merge is never more than
1528 // that before the merge.
1529 if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
1530 return nullptr;
1531 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1532 }
1533
1534 // Update the GEP in place if possible.
1535 if (Src->getNumOperands() == 2) {
1536 GEP.setOperand(0, Src->getOperand(0));
1537 GEP.setOperand(1, Sum);
1538 return &GEP;
1539 }
1540 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1541 Indices.push_back(Sum);
1542 Indices.append(GEP.op_begin()+2, GEP.op_end());
1543 } else if (isa<Constant>(*GEP.idx_begin()) &&
1544 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1545 Src->getNumOperands() != 1) {
1546 // Otherwise we can do the fold if the first index of the GEP is a zero
1547 Indices.append(Src->op_begin()+1, Src->op_end());
1548 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1549 }
1550
1551 if (!Indices.empty())
1552 return GEP.isInBounds() && Src->isInBounds()
1553 ? GetElementPtrInst::CreateInBounds(
1554 Src->getSourceElementType(), Src->getOperand(0), Indices,
1555 GEP.getName())
1556 : GetElementPtrInst::Create(Src->getSourceElementType(),
1557 Src->getOperand(0), Indices,
1558 GEP.getName());
1559 }
1560
1561 if (GEP.getNumIndices() == 1) {
1562 unsigned AS = GEP.getPointerAddressSpace();
1563 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1564 DL.getPointerSizeInBits(AS)) {
1565 Type *Ty = GEP.getSourceElementType();
1566 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1567
1568 bool Matched = false;
1569 uint64_t C;
1570 Value *V = nullptr;
1571 if (TyAllocSize == 1) {
1572 V = GEP.getOperand(1);
1573 Matched = true;
1574 } else if (match(GEP.getOperand(1),
1575 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1576 if (TyAllocSize == 1ULL << C)
1577 Matched = true;
1578 } else if (match(GEP.getOperand(1),
1579 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1580 if (TyAllocSize == C)
1581 Matched = true;
1582 }
1583
1584 if (Matched) {
1585 // Canonicalize (gep i8* X, -(ptrtoint Y))
1586 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1587 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1588 // pointer arithmetic.
1589 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1590 Operator *Index = cast<Operator>(V);
1591 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1592 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1593 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1594 }
1595 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1596 // to (bitcast Y)
1597 Value *Y;
1598 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1599 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1600 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1601 GEP.getType());
1602 }
1603 }
1604 }
1605 }
1606
1607 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1608 Value *StrippedPtr = PtrOp->stripPointerCasts();
1609 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1610
1611 // We do not handle pointer-vector geps here.
1612 if (!StrippedPtrTy)
1613 return nullptr;
1614
1615 if (StrippedPtr != PtrOp) {
1616 bool HasZeroPointerIndex = false;
1617 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1618 HasZeroPointerIndex = C->isZero();
1619
1620 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1621 // into : GEP [10 x i8]* X, i32 0, ...
1622 //
1623 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1624 // into : GEP i8* X, ...
1625 //
1626 // This occurs when the program declares an array extern like "int X[];"
1627 if (HasZeroPointerIndex) {
1628 if (ArrayType *CATy =
1629 dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1630 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1631 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1632 // -> GEP i8* X, ...
1633 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1634 GetElementPtrInst *Res = GetElementPtrInst::Create(
1635 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1636 Res->setIsInBounds(GEP.isInBounds());
1637 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1638 return Res;
1639 // Insert Res, and create an addrspacecast.
1640 // e.g.,
1641 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1642 // ->
1643 // %0 = GEP i8 addrspace(1)* X, ...
1644 // addrspacecast i8 addrspace(1)* %0 to i8*
1645 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1646 }
1647
1648 if (ArrayType *XATy =
1649 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1650 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1651 if (CATy->getElementType() == XATy->getElementType()) {
1652 // -> GEP [10 x i8]* X, i32 0, ...
1653 // At this point, we know that the cast source type is a pointer
1654 // to an array of the same type as the destination pointer
1655 // array. Because the array type is never stepped over (there
1656 // is a leading zero) we can fold the cast into this GEP.
1657 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1658 GEP.setOperand(0, StrippedPtr);
1659 GEP.setSourceElementType(XATy);
1660 return &GEP;
1661 }
1662 // Cannot replace the base pointer directly because StrippedPtr's
1663 // address space is different. Instead, create a new GEP followed by
1664 // an addrspacecast.
1665 // e.g.,
1666 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1667 // i32 0, ...
1668 // ->
1669 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1670 // addrspacecast i8 addrspace(1)* %0 to i8*
1671 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1672 Value *NewGEP = GEP.isInBounds()
1673 ? Builder->CreateInBoundsGEP(
1674 nullptr, StrippedPtr, Idx, GEP.getName())
1675 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1676 GEP.getName());
1677 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1678 }
1679 }
1680 }
1681 } else if (GEP.getNumOperands() == 2) {
1682 // Transform things like:
1683 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1684 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1685 Type *SrcElTy = StrippedPtrTy->getElementType();
1686 Type *ResElTy = GEP.getSourceElementType();
1687 if (SrcElTy->isArrayTy() &&
1688 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1689 DL.getTypeAllocSize(ResElTy)) {
1690 Type *IdxType = DL.getIntPtrType(GEP.getType());
1691 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1692 Value *NewGEP =
1693 GEP.isInBounds()
1694 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1695 GEP.getName())
1696 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1697
1698 // V and GEP are both pointer types --> BitCast
1699 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1700 GEP.getType());
1701 }
1702
1703 // Transform things like:
1704 // %V = mul i64 %N, 4
1705 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1706 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1707 if (ResElTy->isSized() && SrcElTy->isSized()) {
1708 // Check that changing the type amounts to dividing the index by a scale
1709 // factor.
1710 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1711 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1712 if (ResSize && SrcSize % ResSize == 0) {
1713 Value *Idx = GEP.getOperand(1);
1714 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1715 uint64_t Scale = SrcSize / ResSize;
1716
1717 // Earlier transforms ensure that the index has type IntPtrType, which
1718 // considerably simplifies the logic by eliminating implicit casts.
1719 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1720 "Index not cast to pointer width?");
1721
1722 bool NSW;
1723 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1724 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1725 // If the multiplication NewIdx * Scale may overflow then the new
1726 // GEP may not be "inbounds".
1727 Value *NewGEP =
1728 GEP.isInBounds() && NSW
1729 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1730 GEP.getName())
1731 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1732 GEP.getName());
1733
1734 // The NewGEP must be pointer typed, so must the old one -> BitCast
1735 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1736 GEP.getType());
1737 }
1738 }
1739 }
1740
1741 // Similarly, transform things like:
1742 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1743 // (where tmp = 8*tmp2) into:
1744 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1745 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1746 // Check that changing to the array element type amounts to dividing the
1747 // index by a scale factor.
1748 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1749 uint64_t ArrayEltSize =
1750 DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1751 if (ResSize && ArrayEltSize % ResSize == 0) {
1752 Value *Idx = GEP.getOperand(1);
1753 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1754 uint64_t Scale = ArrayEltSize / ResSize;
1755
1756 // Earlier transforms ensure that the index has type IntPtrType, which
1757 // considerably simplifies the logic by eliminating implicit casts.
1758 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1759 "Index not cast to pointer width?");
1760
1761 bool NSW;
1762 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1763 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1764 // If the multiplication NewIdx * Scale may overflow then the new
1765 // GEP may not be "inbounds".
1766 Value *Off[2] = {
1767 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1768 NewIdx};
1769
1770 Value *NewGEP = GEP.isInBounds() && NSW
1771 ? Builder->CreateInBoundsGEP(
1772 SrcElTy, StrippedPtr, Off, GEP.getName())
1773 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1774 GEP.getName());
1775 // The NewGEP must be pointer typed, so must the old one -> BitCast
1776 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1777 GEP.getType());
1778 }
1779 }
1780 }
1781 }
1782 }
1783
1784 // addrspacecast between types is canonicalized as a bitcast, then an
1785 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1786 // through the addrspacecast.
1787 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1788 // X = bitcast A addrspace(1)* to B addrspace(1)*
1789 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1790 // Z = gep Y, <...constant indices...>
1791 // Into an addrspacecasted GEP of the struct.
1792 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1793 PtrOp = BC;
1794 }
1795
1796 /// See if we can simplify:
1797 /// X = bitcast A* to B*
1798 /// Y = gep X, <...constant indices...>
1799 /// into a gep of the original struct. This is important for SROA and alias
1800 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1801 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1802 Value *Operand = BCI->getOperand(0);
1803 PointerType *OpType = cast<PointerType>(Operand->getType());
1804 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1805 APInt Offset(OffsetBits, 0);
1806 if (!isa<BitCastInst>(Operand) &&
1807 GEP.accumulateConstantOffset(DL, Offset)) {
1808
1809 // If this GEP instruction doesn't move the pointer, just replace the GEP
1810 // with a bitcast of the real input to the dest type.
1811 if (!Offset) {
1812 // If the bitcast is of an allocation, and the allocation will be
1813 // converted to match the type of the cast, don't touch this.
1814 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1815 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1816 if (Instruction *I = visitBitCast(*BCI)) {
1817 if (I != BCI) {
1818 I->takeName(BCI);
1819 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1820 replaceInstUsesWith(*BCI, I);
1821 }
1822 return &GEP;
1823 }
1824 }
1825
1826 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1827 return new AddrSpaceCastInst(Operand, GEP.getType());
1828 return new BitCastInst(Operand, GEP.getType());
1829 }
1830
1831 // Otherwise, if the offset is non-zero, we need to find out if there is a
1832 // field at Offset in 'A's type. If so, we can pull the cast through the
1833 // GEP.
1834 SmallVector<Value*, 8> NewIndices;
1835 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1836 Value *NGEP =
1837 GEP.isInBounds()
1838 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1839 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1840
1841 if (NGEP->getType() == GEP.getType())
1842 return replaceInstUsesWith(GEP, NGEP);
1843 NGEP->takeName(&GEP);
1844
1845 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1846 return new AddrSpaceCastInst(NGEP, GEP.getType());
1847 return new BitCastInst(NGEP, GEP.getType());
1848 }
1849 }
1850 }
1851
1852 return nullptr;
1853 }
1854
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)1855 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1856 Instruction *AI) {
1857 if (isa<ConstantPointerNull>(V))
1858 return true;
1859 if (auto *LI = dyn_cast<LoadInst>(V))
1860 return isa<GlobalVariable>(LI->getPointerOperand());
1861 // Two distinct allocations will never be equal.
1862 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1863 // through bitcasts of V can cause
1864 // the result statement below to be true, even when AI and V (ex:
1865 // i8* ->i32* ->i8* of AI) are the same allocations.
1866 return isAllocLikeFn(V, TLI) && V != AI;
1867 }
1868
1869 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1870 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1871 const TargetLibraryInfo *TLI) {
1872 SmallVector<Instruction*, 4> Worklist;
1873 Worklist.push_back(AI);
1874
1875 do {
1876 Instruction *PI = Worklist.pop_back_val();
1877 for (User *U : PI->users()) {
1878 Instruction *I = cast<Instruction>(U);
1879 switch (I->getOpcode()) {
1880 default:
1881 // Give up the moment we see something we can't handle.
1882 return false;
1883
1884 case Instruction::BitCast:
1885 case Instruction::GetElementPtr:
1886 Users.emplace_back(I);
1887 Worklist.push_back(I);
1888 continue;
1889
1890 case Instruction::ICmp: {
1891 ICmpInst *ICI = cast<ICmpInst>(I);
1892 // We can fold eq/ne comparisons with null to false/true, respectively.
1893 // We also fold comparisons in some conditions provided the alloc has
1894 // not escaped (see isNeverEqualToUnescapedAlloc).
1895 if (!ICI->isEquality())
1896 return false;
1897 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1898 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1899 return false;
1900 Users.emplace_back(I);
1901 continue;
1902 }
1903
1904 case Instruction::Call:
1905 // Ignore no-op and store intrinsics.
1906 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1907 switch (II->getIntrinsicID()) {
1908 default:
1909 return false;
1910
1911 case Intrinsic::memmove:
1912 case Intrinsic::memcpy:
1913 case Intrinsic::memset: {
1914 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1915 if (MI->isVolatile() || MI->getRawDest() != PI)
1916 return false;
1917 }
1918 // fall through
1919 case Intrinsic::dbg_declare:
1920 case Intrinsic::dbg_value:
1921 case Intrinsic::invariant_start:
1922 case Intrinsic::invariant_end:
1923 case Intrinsic::lifetime_start:
1924 case Intrinsic::lifetime_end:
1925 case Intrinsic::objectsize:
1926 Users.emplace_back(I);
1927 continue;
1928 }
1929 }
1930
1931 if (isFreeCall(I, TLI)) {
1932 Users.emplace_back(I);
1933 continue;
1934 }
1935 return false;
1936
1937 case Instruction::Store: {
1938 StoreInst *SI = cast<StoreInst>(I);
1939 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1940 return false;
1941 Users.emplace_back(I);
1942 continue;
1943 }
1944 }
1945 llvm_unreachable("missing a return?");
1946 }
1947 } while (!Worklist.empty());
1948 return true;
1949 }
1950
visitAllocSite(Instruction & MI)1951 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1952 // If we have a malloc call which is only used in any amount of comparisons
1953 // to null and free calls, delete the calls and replace the comparisons with
1954 // true or false as appropriate.
1955 SmallVector<WeakVH, 64> Users;
1956 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1957 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1958 // Lowering all @llvm.objectsize calls first because they may
1959 // use a bitcast/GEP of the alloca we are removing.
1960 if (!Users[i])
1961 continue;
1962
1963 Instruction *I = cast<Instruction>(&*Users[i]);
1964
1965 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1966 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1967 uint64_t Size;
1968 if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1969 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1970 Size = CI->isZero() ? -1ULL : 0;
1971 }
1972 replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
1973 eraseInstFromFunction(*I);
1974 Users[i] = nullptr; // Skip examining in the next loop.
1975 }
1976 }
1977 }
1978 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1979 if (!Users[i])
1980 continue;
1981
1982 Instruction *I = cast<Instruction>(&*Users[i]);
1983
1984 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1985 replaceInstUsesWith(*C,
1986 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1987 C->isFalseWhenEqual()));
1988 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1989 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
1990 }
1991 eraseInstFromFunction(*I);
1992 }
1993
1994 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1995 // Replace invoke with a NOP intrinsic to maintain the original CFG
1996 Module *M = II->getModule();
1997 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1998 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1999 None, "", II->getParent());
2000 }
2001 return eraseInstFromFunction(MI);
2002 }
2003 return nullptr;
2004 }
2005
2006 /// \brief Move the call to free before a NULL test.
2007 ///
2008 /// Check if this free is accessed after its argument has been test
2009 /// against NULL (property 0).
2010 /// If yes, it is legal to move this call in its predecessor block.
2011 ///
2012 /// The move is performed only if the block containing the call to free
2013 /// will be removed, i.e.:
2014 /// 1. it has only one predecessor P, and P has two successors
2015 /// 2. it contains the call and an unconditional branch
2016 /// 3. its successor is the same as its predecessor's successor
2017 ///
2018 /// The profitability is out-of concern here and this function should
2019 /// be called only if the caller knows this transformation would be
2020 /// profitable (e.g., for code size).
2021 static Instruction *
tryToMoveFreeBeforeNullTest(CallInst & FI)2022 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2023 Value *Op = FI.getArgOperand(0);
2024 BasicBlock *FreeInstrBB = FI.getParent();
2025 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2026
2027 // Validate part of constraint #1: Only one predecessor
2028 // FIXME: We can extend the number of predecessor, but in that case, we
2029 // would duplicate the call to free in each predecessor and it may
2030 // not be profitable even for code size.
2031 if (!PredBB)
2032 return nullptr;
2033
2034 // Validate constraint #2: Does this block contains only the call to
2035 // free and an unconditional branch?
2036 // FIXME: We could check if we can speculate everything in the
2037 // predecessor block
2038 if (FreeInstrBB->size() != 2)
2039 return nullptr;
2040 BasicBlock *SuccBB;
2041 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2042 return nullptr;
2043
2044 // Validate the rest of constraint #1 by matching on the pred branch.
2045 TerminatorInst *TI = PredBB->getTerminator();
2046 BasicBlock *TrueBB, *FalseBB;
2047 ICmpInst::Predicate Pred;
2048 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2049 return nullptr;
2050 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2051 return nullptr;
2052
2053 // Validate constraint #3: Ensure the null case just falls through.
2054 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2055 return nullptr;
2056 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2057 "Broken CFG: missing edge from predecessor to successor");
2058
2059 FI.moveBefore(TI);
2060 return &FI;
2061 }
2062
2063
visitFree(CallInst & FI)2064 Instruction *InstCombiner::visitFree(CallInst &FI) {
2065 Value *Op = FI.getArgOperand(0);
2066
2067 // free undef -> unreachable.
2068 if (isa<UndefValue>(Op)) {
2069 // Insert a new store to null because we cannot modify the CFG here.
2070 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2071 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2072 return eraseInstFromFunction(FI);
2073 }
2074
2075 // If we have 'free null' delete the instruction. This can happen in stl code
2076 // when lots of inlining happens.
2077 if (isa<ConstantPointerNull>(Op))
2078 return eraseInstFromFunction(FI);
2079
2080 // If we optimize for code size, try to move the call to free before the null
2081 // test so that simplify cfg can remove the empty block and dead code
2082 // elimination the branch. I.e., helps to turn something like:
2083 // if (foo) free(foo);
2084 // into
2085 // free(foo);
2086 if (MinimizeSize)
2087 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2088 return I;
2089
2090 return nullptr;
2091 }
2092
visitReturnInst(ReturnInst & RI)2093 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2094 if (RI.getNumOperands() == 0) // ret void
2095 return nullptr;
2096
2097 Value *ResultOp = RI.getOperand(0);
2098 Type *VTy = ResultOp->getType();
2099 if (!VTy->isIntegerTy())
2100 return nullptr;
2101
2102 // There might be assume intrinsics dominating this return that completely
2103 // determine the value. If so, constant fold it.
2104 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2105 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2106 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2107 if ((KnownZero|KnownOne).isAllOnesValue())
2108 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2109
2110 return nullptr;
2111 }
2112
visitBranchInst(BranchInst & BI)2113 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2114 // Change br (not X), label True, label False to: br X, label False, True
2115 Value *X = nullptr;
2116 BasicBlock *TrueDest;
2117 BasicBlock *FalseDest;
2118 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2119 !isa<Constant>(X)) {
2120 // Swap Destinations and condition...
2121 BI.setCondition(X);
2122 BI.swapSuccessors();
2123 return &BI;
2124 }
2125
2126 // If the condition is irrelevant, remove the use so that other
2127 // transforms on the condition become more effective.
2128 if (BI.isConditional() &&
2129 BI.getSuccessor(0) == BI.getSuccessor(1) &&
2130 !isa<UndefValue>(BI.getCondition())) {
2131 BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2132 return &BI;
2133 }
2134
2135 // Canonicalize fcmp_one -> fcmp_oeq
2136 FCmpInst::Predicate FPred; Value *Y;
2137 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2138 TrueDest, FalseDest)) &&
2139 BI.getCondition()->hasOneUse())
2140 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2141 FPred == FCmpInst::FCMP_OGE) {
2142 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2143 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2144
2145 // Swap Destinations and condition.
2146 BI.swapSuccessors();
2147 Worklist.Add(Cond);
2148 return &BI;
2149 }
2150
2151 // Canonicalize icmp_ne -> icmp_eq
2152 ICmpInst::Predicate IPred;
2153 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2154 TrueDest, FalseDest)) &&
2155 BI.getCondition()->hasOneUse())
2156 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2157 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2158 IPred == ICmpInst::ICMP_SGE) {
2159 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2160 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2161 // Swap Destinations and condition.
2162 BI.swapSuccessors();
2163 Worklist.Add(Cond);
2164 return &BI;
2165 }
2166
2167 return nullptr;
2168 }
2169
visitSwitchInst(SwitchInst & SI)2170 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2171 Value *Cond = SI.getCondition();
2172 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2173 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2174 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2175 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2176 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2177
2178 // Compute the number of leading bits we can ignore.
2179 // TODO: A better way to determine this would use ComputeNumSignBits().
2180 for (auto &C : SI.cases()) {
2181 LeadingKnownZeros = std::min(
2182 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2183 LeadingKnownOnes = std::min(
2184 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2185 }
2186
2187 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2188
2189 // Shrink the condition operand if the new type is smaller than the old type.
2190 // This may produce a non-standard type for the switch, but that's ok because
2191 // the backend should extend back to a legal type for the target.
2192 bool TruncCond = false;
2193 if (NewWidth > 0 && NewWidth < BitWidth) {
2194 TruncCond = true;
2195 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2196 Builder->SetInsertPoint(&SI);
2197 Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
2198 SI.setCondition(NewCond);
2199
2200 for (auto &C : SI.cases())
2201 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2202 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2203 }
2204
2205 ConstantInt *AddRHS = nullptr;
2206 if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) {
2207 Instruction *I = cast<Instruction>(Cond);
2208 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2209 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
2210 ++i) {
2211 ConstantInt *CaseVal = i.getCaseValue();
2212 Constant *LHS = CaseVal;
2213 if (TruncCond) {
2214 LHS = LeadingKnownZeros
2215 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2216 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2217 }
2218 Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2219 assert(isa<ConstantInt>(NewCaseVal) &&
2220 "Result of expression should be constant");
2221 i.setValue(cast<ConstantInt>(NewCaseVal));
2222 }
2223 SI.setCondition(I->getOperand(0));
2224 Worklist.Add(I);
2225 return &SI;
2226 }
2227
2228 return TruncCond ? &SI : nullptr;
2229 }
2230
visitExtractValueInst(ExtractValueInst & EV)2231 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2232 Value *Agg = EV.getAggregateOperand();
2233
2234 if (!EV.hasIndices())
2235 return replaceInstUsesWith(EV, Agg);
2236
2237 if (Value *V =
2238 SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
2239 return replaceInstUsesWith(EV, V);
2240
2241 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2242 // We're extracting from an insertvalue instruction, compare the indices
2243 const unsigned *exti, *exte, *insi, *inse;
2244 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2245 exte = EV.idx_end(), inse = IV->idx_end();
2246 exti != exte && insi != inse;
2247 ++exti, ++insi) {
2248 if (*insi != *exti)
2249 // The insert and extract both reference distinctly different elements.
2250 // This means the extract is not influenced by the insert, and we can
2251 // replace the aggregate operand of the extract with the aggregate
2252 // operand of the insert. i.e., replace
2253 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2254 // %E = extractvalue { i32, { i32 } } %I, 0
2255 // with
2256 // %E = extractvalue { i32, { i32 } } %A, 0
2257 return ExtractValueInst::Create(IV->getAggregateOperand(),
2258 EV.getIndices());
2259 }
2260 if (exti == exte && insi == inse)
2261 // Both iterators are at the end: Index lists are identical. Replace
2262 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2263 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2264 // with "i32 42"
2265 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2266 if (exti == exte) {
2267 // The extract list is a prefix of the insert list. i.e. replace
2268 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2269 // %E = extractvalue { i32, { i32 } } %I, 1
2270 // with
2271 // %X = extractvalue { i32, { i32 } } %A, 1
2272 // %E = insertvalue { i32 } %X, i32 42, 0
2273 // by switching the order of the insert and extract (though the
2274 // insertvalue should be left in, since it may have other uses).
2275 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2276 EV.getIndices());
2277 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2278 makeArrayRef(insi, inse));
2279 }
2280 if (insi == inse)
2281 // The insert list is a prefix of the extract list
2282 // We can simply remove the common indices from the extract and make it
2283 // operate on the inserted value instead of the insertvalue result.
2284 // i.e., replace
2285 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2286 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2287 // with
2288 // %E extractvalue { i32 } { i32 42 }, 0
2289 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2290 makeArrayRef(exti, exte));
2291 }
2292 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2293 // We're extracting from an intrinsic, see if we're the only user, which
2294 // allows us to simplify multiple result intrinsics to simpler things that
2295 // just get one value.
2296 if (II->hasOneUse()) {
2297 // Check if we're grabbing the overflow bit or the result of a 'with
2298 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2299 // and replace it with a traditional binary instruction.
2300 switch (II->getIntrinsicID()) {
2301 case Intrinsic::uadd_with_overflow:
2302 case Intrinsic::sadd_with_overflow:
2303 if (*EV.idx_begin() == 0) { // Normal result.
2304 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2305 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2306 eraseInstFromFunction(*II);
2307 return BinaryOperator::CreateAdd(LHS, RHS);
2308 }
2309
2310 // If the normal result of the add is dead, and the RHS is a constant,
2311 // we can transform this into a range comparison.
2312 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2313 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2314 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2315 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2316 ConstantExpr::getNot(CI));
2317 break;
2318 case Intrinsic::usub_with_overflow:
2319 case Intrinsic::ssub_with_overflow:
2320 if (*EV.idx_begin() == 0) { // Normal result.
2321 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2322 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2323 eraseInstFromFunction(*II);
2324 return BinaryOperator::CreateSub(LHS, RHS);
2325 }
2326 break;
2327 case Intrinsic::umul_with_overflow:
2328 case Intrinsic::smul_with_overflow:
2329 if (*EV.idx_begin() == 0) { // Normal result.
2330 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2331 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2332 eraseInstFromFunction(*II);
2333 return BinaryOperator::CreateMul(LHS, RHS);
2334 }
2335 break;
2336 default:
2337 break;
2338 }
2339 }
2340 }
2341 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2342 // If the (non-volatile) load only has one use, we can rewrite this to a
2343 // load from a GEP. This reduces the size of the load. If a load is used
2344 // only by extractvalue instructions then this either must have been
2345 // optimized before, or it is a struct with padding, in which case we
2346 // don't want to do the transformation as it loses padding knowledge.
2347 if (L->isSimple() && L->hasOneUse()) {
2348 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2349 SmallVector<Value*, 4> Indices;
2350 // Prefix an i32 0 since we need the first element.
2351 Indices.push_back(Builder->getInt32(0));
2352 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2353 I != E; ++I)
2354 Indices.push_back(Builder->getInt32(*I));
2355
2356 // We need to insert these at the location of the old load, not at that of
2357 // the extractvalue.
2358 Builder->SetInsertPoint(L);
2359 Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2360 L->getPointerOperand(), Indices);
2361 // Returning the load directly will cause the main loop to insert it in
2362 // the wrong spot, so use replaceInstUsesWith().
2363 return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2364 }
2365 // We could simplify extracts from other values. Note that nested extracts may
2366 // already be simplified implicitly by the above: extract (extract (insert) )
2367 // will be translated into extract ( insert ( extract ) ) first and then just
2368 // the value inserted, if appropriate. Similarly for extracts from single-use
2369 // loads: extract (extract (load)) will be translated to extract (load (gep))
2370 // and if again single-use then via load (gep (gep)) to load (gep).
2371 // However, double extracts from e.g. function arguments or return values
2372 // aren't handled yet.
2373 return nullptr;
2374 }
2375
2376 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)2377 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2378 switch (Personality) {
2379 case EHPersonality::GNU_C:
2380 case EHPersonality::GNU_C_SjLj:
2381 case EHPersonality::Rust:
2382 // The GCC C EH and Rust personality only exists to support cleanups, so
2383 // it's not clear what the semantics of catch clauses are.
2384 return false;
2385 case EHPersonality::Unknown:
2386 return false;
2387 case EHPersonality::GNU_Ada:
2388 // While __gnat_all_others_value will match any Ada exception, it doesn't
2389 // match foreign exceptions (or didn't, before gcc-4.7).
2390 return false;
2391 case EHPersonality::GNU_CXX:
2392 case EHPersonality::GNU_CXX_SjLj:
2393 case EHPersonality::GNU_ObjC:
2394 case EHPersonality::MSVC_X86SEH:
2395 case EHPersonality::MSVC_Win64SEH:
2396 case EHPersonality::MSVC_CXX:
2397 case EHPersonality::CoreCLR:
2398 return TypeInfo->isNullValue();
2399 }
2400 llvm_unreachable("invalid enum");
2401 }
2402
shorter_filter(const Value * LHS,const Value * RHS)2403 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2404 return
2405 cast<ArrayType>(LHS->getType())->getNumElements()
2406 <
2407 cast<ArrayType>(RHS->getType())->getNumElements();
2408 }
2409
visitLandingPadInst(LandingPadInst & LI)2410 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2411 // The logic here should be correct for any real-world personality function.
2412 // However if that turns out not to be true, the offending logic can always
2413 // be conditioned on the personality function, like the catch-all logic is.
2414 EHPersonality Personality =
2415 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2416
2417 // Simplify the list of clauses, eg by removing repeated catch clauses
2418 // (these are often created by inlining).
2419 bool MakeNewInstruction = false; // If true, recreate using the following:
2420 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2421 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2422
2423 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2424 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2425 bool isLastClause = i + 1 == e;
2426 if (LI.isCatch(i)) {
2427 // A catch clause.
2428 Constant *CatchClause = LI.getClause(i);
2429 Constant *TypeInfo = CatchClause->stripPointerCasts();
2430
2431 // If we already saw this clause, there is no point in having a second
2432 // copy of it.
2433 if (AlreadyCaught.insert(TypeInfo).second) {
2434 // This catch clause was not already seen.
2435 NewClauses.push_back(CatchClause);
2436 } else {
2437 // Repeated catch clause - drop the redundant copy.
2438 MakeNewInstruction = true;
2439 }
2440
2441 // If this is a catch-all then there is no point in keeping any following
2442 // clauses or marking the landingpad as having a cleanup.
2443 if (isCatchAll(Personality, TypeInfo)) {
2444 if (!isLastClause)
2445 MakeNewInstruction = true;
2446 CleanupFlag = false;
2447 break;
2448 }
2449 } else {
2450 // A filter clause. If any of the filter elements were already caught
2451 // then they can be dropped from the filter. It is tempting to try to
2452 // exploit the filter further by saying that any typeinfo that does not
2453 // occur in the filter can't be caught later (and thus can be dropped).
2454 // However this would be wrong, since typeinfos can match without being
2455 // equal (for example if one represents a C++ class, and the other some
2456 // class derived from it).
2457 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2458 Constant *FilterClause = LI.getClause(i);
2459 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2460 unsigned NumTypeInfos = FilterType->getNumElements();
2461
2462 // An empty filter catches everything, so there is no point in keeping any
2463 // following clauses or marking the landingpad as having a cleanup. By
2464 // dealing with this case here the following code is made a bit simpler.
2465 if (!NumTypeInfos) {
2466 NewClauses.push_back(FilterClause);
2467 if (!isLastClause)
2468 MakeNewInstruction = true;
2469 CleanupFlag = false;
2470 break;
2471 }
2472
2473 bool MakeNewFilter = false; // If true, make a new filter.
2474 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2475 if (isa<ConstantAggregateZero>(FilterClause)) {
2476 // Not an empty filter - it contains at least one null typeinfo.
2477 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2478 Constant *TypeInfo =
2479 Constant::getNullValue(FilterType->getElementType());
2480 // If this typeinfo is a catch-all then the filter can never match.
2481 if (isCatchAll(Personality, TypeInfo)) {
2482 // Throw the filter away.
2483 MakeNewInstruction = true;
2484 continue;
2485 }
2486
2487 // There is no point in having multiple copies of this typeinfo, so
2488 // discard all but the first copy if there is more than one.
2489 NewFilterElts.push_back(TypeInfo);
2490 if (NumTypeInfos > 1)
2491 MakeNewFilter = true;
2492 } else {
2493 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2494 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2495 NewFilterElts.reserve(NumTypeInfos);
2496
2497 // Remove any filter elements that were already caught or that already
2498 // occurred in the filter. While there, see if any of the elements are
2499 // catch-alls. If so, the filter can be discarded.
2500 bool SawCatchAll = false;
2501 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2502 Constant *Elt = Filter->getOperand(j);
2503 Constant *TypeInfo = Elt->stripPointerCasts();
2504 if (isCatchAll(Personality, TypeInfo)) {
2505 // This element is a catch-all. Bail out, noting this fact.
2506 SawCatchAll = true;
2507 break;
2508 }
2509
2510 // Even if we've seen a type in a catch clause, we don't want to
2511 // remove it from the filter. An unexpected type handler may be
2512 // set up for a call site which throws an exception of the same
2513 // type caught. In order for the exception thrown by the unexpected
2514 // handler to propogate correctly, the filter must be correctly
2515 // described for the call site.
2516 //
2517 // Example:
2518 //
2519 // void unexpected() { throw 1;}
2520 // void foo() throw (int) {
2521 // std::set_unexpected(unexpected);
2522 // try {
2523 // throw 2.0;
2524 // } catch (int i) {}
2525 // }
2526
2527 // There is no point in having multiple copies of the same typeinfo in
2528 // a filter, so only add it if we didn't already.
2529 if (SeenInFilter.insert(TypeInfo).second)
2530 NewFilterElts.push_back(cast<Constant>(Elt));
2531 }
2532 // A filter containing a catch-all cannot match anything by definition.
2533 if (SawCatchAll) {
2534 // Throw the filter away.
2535 MakeNewInstruction = true;
2536 continue;
2537 }
2538
2539 // If we dropped something from the filter, make a new one.
2540 if (NewFilterElts.size() < NumTypeInfos)
2541 MakeNewFilter = true;
2542 }
2543 if (MakeNewFilter) {
2544 FilterType = ArrayType::get(FilterType->getElementType(),
2545 NewFilterElts.size());
2546 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2547 MakeNewInstruction = true;
2548 }
2549
2550 NewClauses.push_back(FilterClause);
2551
2552 // If the new filter is empty then it will catch everything so there is
2553 // no point in keeping any following clauses or marking the landingpad
2554 // as having a cleanup. The case of the original filter being empty was
2555 // already handled above.
2556 if (MakeNewFilter && !NewFilterElts.size()) {
2557 assert(MakeNewInstruction && "New filter but not a new instruction!");
2558 CleanupFlag = false;
2559 break;
2560 }
2561 }
2562 }
2563
2564 // If several filters occur in a row then reorder them so that the shortest
2565 // filters come first (those with the smallest number of elements). This is
2566 // advantageous because shorter filters are more likely to match, speeding up
2567 // unwinding, but mostly because it increases the effectiveness of the other
2568 // filter optimizations below.
2569 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2570 unsigned j;
2571 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2572 for (j = i; j != e; ++j)
2573 if (!isa<ArrayType>(NewClauses[j]->getType()))
2574 break;
2575
2576 // Check whether the filters are already sorted by length. We need to know
2577 // if sorting them is actually going to do anything so that we only make a
2578 // new landingpad instruction if it does.
2579 for (unsigned k = i; k + 1 < j; ++k)
2580 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2581 // Not sorted, so sort the filters now. Doing an unstable sort would be
2582 // correct too but reordering filters pointlessly might confuse users.
2583 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2584 shorter_filter);
2585 MakeNewInstruction = true;
2586 break;
2587 }
2588
2589 // Look for the next batch of filters.
2590 i = j + 1;
2591 }
2592
2593 // If typeinfos matched if and only if equal, then the elements of a filter L
2594 // that occurs later than a filter F could be replaced by the intersection of
2595 // the elements of F and L. In reality two typeinfos can match without being
2596 // equal (for example if one represents a C++ class, and the other some class
2597 // derived from it) so it would be wrong to perform this transform in general.
2598 // However the transform is correct and useful if F is a subset of L. In that
2599 // case L can be replaced by F, and thus removed altogether since repeating a
2600 // filter is pointless. So here we look at all pairs of filters F and L where
2601 // L follows F in the list of clauses, and remove L if every element of F is
2602 // an element of L. This can occur when inlining C++ functions with exception
2603 // specifications.
2604 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2605 // Examine each filter in turn.
2606 Value *Filter = NewClauses[i];
2607 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2608 if (!FTy)
2609 // Not a filter - skip it.
2610 continue;
2611 unsigned FElts = FTy->getNumElements();
2612 // Examine each filter following this one. Doing this backwards means that
2613 // we don't have to worry about filters disappearing under us when removed.
2614 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2615 Value *LFilter = NewClauses[j];
2616 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2617 if (!LTy)
2618 // Not a filter - skip it.
2619 continue;
2620 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2621 // an element of LFilter, then discard LFilter.
2622 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2623 // If Filter is empty then it is a subset of LFilter.
2624 if (!FElts) {
2625 // Discard LFilter.
2626 NewClauses.erase(J);
2627 MakeNewInstruction = true;
2628 // Move on to the next filter.
2629 continue;
2630 }
2631 unsigned LElts = LTy->getNumElements();
2632 // If Filter is longer than LFilter then it cannot be a subset of it.
2633 if (FElts > LElts)
2634 // Move on to the next filter.
2635 continue;
2636 // At this point we know that LFilter has at least one element.
2637 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2638 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2639 // already know that Filter is not longer than LFilter).
2640 if (isa<ConstantAggregateZero>(Filter)) {
2641 assert(FElts <= LElts && "Should have handled this case earlier!");
2642 // Discard LFilter.
2643 NewClauses.erase(J);
2644 MakeNewInstruction = true;
2645 }
2646 // Move on to the next filter.
2647 continue;
2648 }
2649 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2650 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2651 // Since Filter is non-empty and contains only zeros, it is a subset of
2652 // LFilter iff LFilter contains a zero.
2653 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2654 for (unsigned l = 0; l != LElts; ++l)
2655 if (LArray->getOperand(l)->isNullValue()) {
2656 // LFilter contains a zero - discard it.
2657 NewClauses.erase(J);
2658 MakeNewInstruction = true;
2659 break;
2660 }
2661 // Move on to the next filter.
2662 continue;
2663 }
2664 // At this point we know that both filters are ConstantArrays. Loop over
2665 // operands to see whether every element of Filter is also an element of
2666 // LFilter. Since filters tend to be short this is probably faster than
2667 // using a method that scales nicely.
2668 ConstantArray *FArray = cast<ConstantArray>(Filter);
2669 bool AllFound = true;
2670 for (unsigned f = 0; f != FElts; ++f) {
2671 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2672 AllFound = false;
2673 for (unsigned l = 0; l != LElts; ++l) {
2674 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2675 if (LTypeInfo == FTypeInfo) {
2676 AllFound = true;
2677 break;
2678 }
2679 }
2680 if (!AllFound)
2681 break;
2682 }
2683 if (AllFound) {
2684 // Discard LFilter.
2685 NewClauses.erase(J);
2686 MakeNewInstruction = true;
2687 }
2688 // Move on to the next filter.
2689 }
2690 }
2691
2692 // If we changed any of the clauses, replace the old landingpad instruction
2693 // with a new one.
2694 if (MakeNewInstruction) {
2695 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2696 NewClauses.size());
2697 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2698 NLI->addClause(NewClauses[i]);
2699 // A landing pad with no clauses must have the cleanup flag set. It is
2700 // theoretically possible, though highly unlikely, that we eliminated all
2701 // clauses. If so, force the cleanup flag to true.
2702 if (NewClauses.empty())
2703 CleanupFlag = true;
2704 NLI->setCleanup(CleanupFlag);
2705 return NLI;
2706 }
2707
2708 // Even if none of the clauses changed, we may nonetheless have understood
2709 // that the cleanup flag is pointless. Clear it if so.
2710 if (LI.isCleanup() != CleanupFlag) {
2711 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2712 LI.setCleanup(CleanupFlag);
2713 return &LI;
2714 }
2715
2716 return nullptr;
2717 }
2718
2719 /// Try to move the specified instruction from its current block into the
2720 /// beginning of DestBlock, which can only happen if it's safe to move the
2721 /// instruction past all of the instructions between it and the end of its
2722 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)2723 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2724 assert(I->hasOneUse() && "Invariants didn't hold!");
2725
2726 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2727 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2728 isa<TerminatorInst>(I))
2729 return false;
2730
2731 // Do not sink alloca instructions out of the entry block.
2732 if (isa<AllocaInst>(I) && I->getParent() ==
2733 &DestBlock->getParent()->getEntryBlock())
2734 return false;
2735
2736 // Do not sink into catchswitch blocks.
2737 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2738 return false;
2739
2740 // Do not sink convergent call instructions.
2741 if (auto *CI = dyn_cast<CallInst>(I)) {
2742 if (CI->isConvergent())
2743 return false;
2744 }
2745 // We can only sink load instructions if there is nothing between the load and
2746 // the end of block that could change the value.
2747 if (I->mayReadFromMemory()) {
2748 for (BasicBlock::iterator Scan = I->getIterator(),
2749 E = I->getParent()->end();
2750 Scan != E; ++Scan)
2751 if (Scan->mayWriteToMemory())
2752 return false;
2753 }
2754
2755 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2756 I->moveBefore(&*InsertPos);
2757 ++NumSunkInst;
2758 return true;
2759 }
2760
run()2761 bool InstCombiner::run() {
2762 while (!Worklist.isEmpty()) {
2763 Instruction *I = Worklist.RemoveOne();
2764 if (I == nullptr) continue; // skip null values.
2765
2766 // Check to see if we can DCE the instruction.
2767 if (isInstructionTriviallyDead(I, TLI)) {
2768 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2769 eraseInstFromFunction(*I);
2770 ++NumDeadInst;
2771 MadeIRChange = true;
2772 continue;
2773 }
2774
2775 // Instruction isn't dead, see if we can constant propagate it.
2776 if (!I->use_empty() &&
2777 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2778 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2779 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2780
2781 // Add operands to the worklist.
2782 replaceInstUsesWith(*I, C);
2783 ++NumConstProp;
2784 eraseInstFromFunction(*I);
2785 MadeIRChange = true;
2786 continue;
2787 }
2788 }
2789
2790 // In general, it is possible for computeKnownBits to determine all bits in
2791 // a value even when the operands are not all constants.
2792 if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) {
2793 unsigned BitWidth = I->getType()->getScalarSizeInBits();
2794 APInt KnownZero(BitWidth, 0);
2795 APInt KnownOne(BitWidth, 0);
2796 computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2797 if ((KnownZero | KnownOne).isAllOnesValue()) {
2798 Constant *C = ConstantInt::get(I->getContext(), KnownOne);
2799 DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2800 " from: " << *I << '\n');
2801
2802 // Add operands to the worklist.
2803 replaceInstUsesWith(*I, C);
2804 ++NumConstProp;
2805 eraseInstFromFunction(*I);
2806 MadeIRChange = true;
2807 continue;
2808 }
2809 }
2810
2811 // See if we can trivially sink this instruction to a successor basic block.
2812 if (I->hasOneUse()) {
2813 BasicBlock *BB = I->getParent();
2814 Instruction *UserInst = cast<Instruction>(*I->user_begin());
2815 BasicBlock *UserParent;
2816
2817 // Get the block the use occurs in.
2818 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2819 UserParent = PN->getIncomingBlock(*I->use_begin());
2820 else
2821 UserParent = UserInst->getParent();
2822
2823 if (UserParent != BB) {
2824 bool UserIsSuccessor = false;
2825 // See if the user is one of our successors.
2826 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2827 if (*SI == UserParent) {
2828 UserIsSuccessor = true;
2829 break;
2830 }
2831
2832 // If the user is one of our immediate successors, and if that successor
2833 // only has us as a predecessors (we'd have to split the critical edge
2834 // otherwise), we can keep going.
2835 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2836 // Okay, the CFG is simple enough, try to sink this instruction.
2837 if (TryToSinkInstruction(I, UserParent)) {
2838 DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2839 MadeIRChange = true;
2840 // We'll add uses of the sunk instruction below, but since sinking
2841 // can expose opportunities for it's *operands* add them to the
2842 // worklist
2843 for (Use &U : I->operands())
2844 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2845 Worklist.Add(OpI);
2846 }
2847 }
2848 }
2849 }
2850
2851 // Now that we have an instruction, try combining it to simplify it.
2852 Builder->SetInsertPoint(I);
2853 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2854
2855 #ifndef NDEBUG
2856 std::string OrigI;
2857 #endif
2858 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2859 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2860
2861 if (Instruction *Result = visit(*I)) {
2862 ++NumCombined;
2863 // Should we replace the old instruction with a new one?
2864 if (Result != I) {
2865 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2866 << " New = " << *Result << '\n');
2867
2868 if (I->getDebugLoc())
2869 Result->setDebugLoc(I->getDebugLoc());
2870 // Everything uses the new instruction now.
2871 I->replaceAllUsesWith(Result);
2872
2873 // Move the name to the new instruction first.
2874 Result->takeName(I);
2875
2876 // Push the new instruction and any users onto the worklist.
2877 Worklist.Add(Result);
2878 Worklist.AddUsersToWorkList(*Result);
2879
2880 // Insert the new instruction into the basic block...
2881 BasicBlock *InstParent = I->getParent();
2882 BasicBlock::iterator InsertPos = I->getIterator();
2883
2884 // If we replace a PHI with something that isn't a PHI, fix up the
2885 // insertion point.
2886 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2887 InsertPos = InstParent->getFirstInsertionPt();
2888
2889 InstParent->getInstList().insert(InsertPos, Result);
2890
2891 eraseInstFromFunction(*I);
2892 } else {
2893 #ifndef NDEBUG
2894 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2895 << " New = " << *I << '\n');
2896 #endif
2897
2898 // If the instruction was modified, it's possible that it is now dead.
2899 // if so, remove it.
2900 if (isInstructionTriviallyDead(I, TLI)) {
2901 eraseInstFromFunction(*I);
2902 } else {
2903 Worklist.Add(I);
2904 Worklist.AddUsersToWorkList(*I);
2905 }
2906 }
2907 MadeIRChange = true;
2908 }
2909 }
2910
2911 Worklist.Zap();
2912 return MadeIRChange;
2913 }
2914
2915 /// Walk the function in depth-first order, adding all reachable code to the
2916 /// worklist.
2917 ///
2918 /// This has a couple of tricks to make the code faster and more powerful. In
2919 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2920 /// them to the worklist (this significantly speeds up instcombine on code where
2921 /// many instructions are dead or constant). Additionally, if we find a branch
2922 /// whose condition is a known constant, we only visit the reachable successors.
2923 ///
AddReachableCodeToWorklist(BasicBlock * BB,const DataLayout & DL,SmallPtrSetImpl<BasicBlock * > & Visited,InstCombineWorklist & ICWorklist,const TargetLibraryInfo * TLI)2924 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2925 SmallPtrSetImpl<BasicBlock *> &Visited,
2926 InstCombineWorklist &ICWorklist,
2927 const TargetLibraryInfo *TLI) {
2928 bool MadeIRChange = false;
2929 SmallVector<BasicBlock*, 256> Worklist;
2930 Worklist.push_back(BB);
2931
2932 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2933 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2934
2935 do {
2936 BB = Worklist.pop_back_val();
2937
2938 // We have now visited this block! If we've already been here, ignore it.
2939 if (!Visited.insert(BB).second)
2940 continue;
2941
2942 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2943 Instruction *Inst = &*BBI++;
2944
2945 // DCE instruction if trivially dead.
2946 if (isInstructionTriviallyDead(Inst, TLI)) {
2947 ++NumDeadInst;
2948 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2949 Inst->eraseFromParent();
2950 continue;
2951 }
2952
2953 // ConstantProp instruction if trivially constant.
2954 if (!Inst->use_empty() &&
2955 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
2956 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2957 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2958 << *Inst << '\n');
2959 Inst->replaceAllUsesWith(C);
2960 ++NumConstProp;
2961 Inst->eraseFromParent();
2962 continue;
2963 }
2964
2965 // See if we can constant fold its operands.
2966 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2967 ++i) {
2968 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2969 if (CE == nullptr)
2970 continue;
2971
2972 Constant *&FoldRes = FoldedConstants[CE];
2973 if (!FoldRes)
2974 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2975 if (!FoldRes)
2976 FoldRes = CE;
2977
2978 if (FoldRes != CE) {
2979 *i = FoldRes;
2980 MadeIRChange = true;
2981 }
2982 }
2983
2984 InstrsForInstCombineWorklist.push_back(Inst);
2985 }
2986
2987 // Recursively visit successors. If this is a branch or switch on a
2988 // constant, only visit the reachable successor.
2989 TerminatorInst *TI = BB->getTerminator();
2990 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2991 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2992 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2993 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2994 Worklist.push_back(ReachableBB);
2995 continue;
2996 }
2997 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2998 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2999 // See if this is an explicit destination.
3000 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3001 i != e; ++i)
3002 if (i.getCaseValue() == Cond) {
3003 BasicBlock *ReachableBB = i.getCaseSuccessor();
3004 Worklist.push_back(ReachableBB);
3005 continue;
3006 }
3007
3008 // Otherwise it is the default destination.
3009 Worklist.push_back(SI->getDefaultDest());
3010 continue;
3011 }
3012 }
3013
3014 for (BasicBlock *SuccBB : TI->successors())
3015 Worklist.push_back(SuccBB);
3016 } while (!Worklist.empty());
3017
3018 // Once we've found all of the instructions to add to instcombine's worklist,
3019 // add them in reverse order. This way instcombine will visit from the top
3020 // of the function down. This jives well with the way that it adds all uses
3021 // of instructions to the worklist after doing a transformation, thus avoiding
3022 // some N^2 behavior in pathological cases.
3023 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3024
3025 return MadeIRChange;
3026 }
3027
3028 /// \brief Populate the IC worklist from a function, and prune any dead basic
3029 /// blocks discovered in the process.
3030 ///
3031 /// This also does basic constant propagation and other forward fixing to make
3032 /// the combiner itself run much faster.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3033 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3034 TargetLibraryInfo *TLI,
3035 InstCombineWorklist &ICWorklist) {
3036 bool MadeIRChange = false;
3037
3038 // Do a depth-first traversal of the function, populate the worklist with
3039 // the reachable instructions. Ignore blocks that are not reachable. Keep
3040 // track of which blocks we visit.
3041 SmallPtrSet<BasicBlock *, 32> Visited;
3042 MadeIRChange |=
3043 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3044
3045 // Do a quick scan over the function. If we find any blocks that are
3046 // unreachable, remove any instructions inside of them. This prevents
3047 // the instcombine code from having to deal with some bad special cases.
3048 for (BasicBlock &BB : F) {
3049 if (Visited.count(&BB))
3050 continue;
3051
3052 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3053 MadeIRChange |= NumDeadInstInBB > 0;
3054 NumDeadInst += NumDeadInstInBB;
3055 }
3056
3057 return MadeIRChange;
3058 }
3059
3060 static bool
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,bool ExpensiveCombines=true,LoopInfo * LI=nullptr)3061 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3062 AliasAnalysis *AA, AssumptionCache &AC,
3063 TargetLibraryInfo &TLI, DominatorTree &DT,
3064 bool ExpensiveCombines = true,
3065 LoopInfo *LI = nullptr) {
3066 auto &DL = F.getParent()->getDataLayout();
3067 ExpensiveCombines |= EnableExpensiveCombines;
3068
3069 /// Builder - This is an IRBuilder that automatically inserts new
3070 /// instructions into the worklist when they are created.
3071 IRBuilder<TargetFolder, InstCombineIRInserter> Builder(
3072 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
3073
3074 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3075 // by instcombiner.
3076 bool DbgDeclaresChanged = LowerDbgDeclare(F);
3077
3078 // Iterate while there is work to do.
3079 int Iteration = 0;
3080 for (;;) {
3081 ++Iteration;
3082 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3083 << F.getName() << "\n");
3084
3085 bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3086
3087 InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3088 AA, &AC, &TLI, &DT, DL, LI);
3089 Changed |= IC.run();
3090
3091 if (!Changed)
3092 break;
3093 }
3094
3095 return DbgDeclaresChanged || Iteration > 1;
3096 }
3097
run(Function & F,AnalysisManager<Function> & AM)3098 PreservedAnalyses InstCombinePass::run(Function &F,
3099 AnalysisManager<Function> &AM) {
3100 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3101 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3102 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3103
3104 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3105
3106 // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3107 if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3108 ExpensiveCombines, LI))
3109 // No changes, all analyses are preserved.
3110 return PreservedAnalyses::all();
3111
3112 // Mark all the analyses that instcombine updates as preserved.
3113 // FIXME: This should also 'preserve the CFG'.
3114 PreservedAnalyses PA;
3115 PA.preserve<DominatorTreeAnalysis>();
3116 return PA;
3117 }
3118
getAnalysisUsage(AnalysisUsage & AU) const3119 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3120 AU.setPreservesCFG();
3121 AU.addRequired<AAResultsWrapperPass>();
3122 AU.addRequired<AssumptionCacheTracker>();
3123 AU.addRequired<TargetLibraryInfoWrapperPass>();
3124 AU.addRequired<DominatorTreeWrapperPass>();
3125 AU.addPreserved<DominatorTreeWrapperPass>();
3126 AU.addPreserved<AAResultsWrapperPass>();
3127 AU.addPreserved<BasicAAWrapperPass>();
3128 AU.addPreserved<GlobalsAAWrapperPass>();
3129 }
3130
runOnFunction(Function & F)3131 bool InstructionCombiningPass::runOnFunction(Function &F) {
3132 if (skipFunction(F))
3133 return false;
3134
3135 // Required analyses.
3136 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3137 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3138 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3139 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3140
3141 // Optional analyses.
3142 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3143 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3144
3145 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3146 ExpensiveCombines, LI);
3147 }
3148
3149 char InstructionCombiningPass::ID = 0;
3150 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3151 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3152 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3153 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3156 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3157 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3158 "Combine redundant instructions", false, false)
3159
3160 // Initialization Routines
3161 void llvm::initializeInstCombine(PassRegistry &Registry) {
3162 initializeInstructionCombiningPassPass(Registry);
3163 }
3164
LLVMInitializeInstCombine(LLVMPassRegistryRef R)3165 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3166 initializeInstructionCombiningPassPass(*unwrap(R));
3167 }
3168
createInstructionCombiningPass(bool ExpensiveCombines)3169 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3170 return new InstructionCombiningPass(ExpensiveCombines);
3171 }
3172