1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CFG.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/EHPersonalities.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/MemoryBuiltins.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include <algorithm>
67 #include <climits>
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "instcombine"
72 
73 STATISTIC(NumCombined , "Number of insts combined");
74 STATISTIC(NumConstProp, "Number of constant folds");
75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
76 STATISTIC(NumSunkInst , "Number of instructions sunk");
77 STATISTIC(NumExpand,    "Number of expansions");
78 STATISTIC(NumFactor   , "Number of factorizations");
79 STATISTIC(NumReassoc  , "Number of reassociations");
80 
81 static cl::opt<bool>
82 EnableExpensiveCombines("expensive-combines",
83                         cl::desc("Enable expensive instruction combines"));
84 
EmitGEPOffset(User * GEP)85 Value *InstCombiner::EmitGEPOffset(User *GEP) {
86   return llvm::EmitGEPOffset(Builder, DL, GEP);
87 }
88 
89 /// Return true if it is desirable to convert an integer computation from a
90 /// given bit width to a new bit width.
91 /// We don't want to convert from a legal to an illegal type for example or from
92 /// a smaller to a larger illegal type.
ShouldChangeType(unsigned FromWidth,unsigned ToWidth) const93 bool InstCombiner::ShouldChangeType(unsigned FromWidth,
94                                     unsigned ToWidth) const {
95   bool FromLegal = DL.isLegalInteger(FromWidth);
96   bool ToLegal = DL.isLegalInteger(ToWidth);
97 
98   // If this is a legal integer from type, and the result would be an illegal
99   // type, don't do the transformation.
100   if (FromLegal && !ToLegal)
101     return false;
102 
103   // Otherwise, if both are illegal, do not increase the size of the result. We
104   // do allow things like i160 -> i64, but not i64 -> i160.
105   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106     return false;
107 
108   return true;
109 }
110 
111 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
112 /// We don't want to convert from a legal to an illegal type for example or from
113 /// a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
115   assert(From->isIntegerTy() && To->isIntegerTy());
116 
117   unsigned FromWidth = From->getPrimitiveSizeInBits();
118   unsigned ToWidth = To->getPrimitiveSizeInBits();
119   return ShouldChangeType(FromWidth, ToWidth);
120 }
121 
122 // Return true, if No Signed Wrap should be maintained for I.
123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
124 // where both B and C should be ConstantInts, results in a constant that does
125 // not overflow. This function only handles the Add and Sub opcodes. For
126 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
128   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
129   if (!OBO || !OBO->hasNoSignedWrap())
130     return false;
131 
132   // We reason about Add and Sub Only.
133   Instruction::BinaryOps Opcode = I.getOpcode();
134   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
135     return false;
136 
137   const APInt *BVal, *CVal;
138   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
139     return false;
140 
141   bool Overflow = false;
142   if (Opcode == Instruction::Add)
143     BVal->sadd_ov(*CVal, Overflow);
144   else
145     BVal->ssub_ov(*CVal, Overflow);
146 
147   return !Overflow;
148 }
149 
150 /// Conservatively clears subclassOptionalData after a reassociation or
151 /// commutation. We preserve fast-math flags when applicable as they can be
152 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
154   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
155   if (!FPMO) {
156     I.clearSubclassOptionalData();
157     return;
158   }
159 
160   FastMathFlags FMF = I.getFastMathFlags();
161   I.clearSubclassOptionalData();
162   I.setFastMathFlags(FMF);
163 }
164 
165 /// This performs a few simplifications for operators that are associative or
166 /// commutative:
167 ///
168 ///  Commutative operators:
169 ///
170 ///  1. Order operands such that they are listed from right (least complex) to
171 ///     left (most complex).  This puts constants before unary operators before
172 ///     binary operators.
173 ///
174 ///  Associative operators:
175 ///
176 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178 ///
179 ///  Associative and commutative operators:
180 ///
181 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184 ///     if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)185 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
186   Instruction::BinaryOps Opcode = I.getOpcode();
187   bool Changed = false;
188 
189   do {
190     // Order operands such that they are listed from right (least complex) to
191     // left (most complex).  This puts constants before unary operators before
192     // binary operators.
193     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
194         getComplexity(I.getOperand(1)))
195       Changed = !I.swapOperands();
196 
197     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
198     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
199 
200     if (I.isAssociative()) {
201       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
202       if (Op0 && Op0->getOpcode() == Opcode) {
203         Value *A = Op0->getOperand(0);
204         Value *B = Op0->getOperand(1);
205         Value *C = I.getOperand(1);
206 
207         // Does "B op C" simplify?
208         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
209           // It simplifies to V.  Form "A op V".
210           I.setOperand(0, A);
211           I.setOperand(1, V);
212           // Conservatively clear the optional flags, since they may not be
213           // preserved by the reassociation.
214           if (MaintainNoSignedWrap(I, B, C) &&
215               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
216             // Note: this is only valid because SimplifyBinOp doesn't look at
217             // the operands to Op0.
218             I.clearSubclassOptionalData();
219             I.setHasNoSignedWrap(true);
220           } else {
221             ClearSubclassDataAfterReassociation(I);
222           }
223 
224           Changed = true;
225           ++NumReassoc;
226           continue;
227         }
228       }
229 
230       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
231       if (Op1 && Op1->getOpcode() == Opcode) {
232         Value *A = I.getOperand(0);
233         Value *B = Op1->getOperand(0);
234         Value *C = Op1->getOperand(1);
235 
236         // Does "A op B" simplify?
237         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
238           // It simplifies to V.  Form "V op C".
239           I.setOperand(0, V);
240           I.setOperand(1, C);
241           // Conservatively clear the optional flags, since they may not be
242           // preserved by the reassociation.
243           ClearSubclassDataAfterReassociation(I);
244           Changed = true;
245           ++NumReassoc;
246           continue;
247         }
248       }
249     }
250 
251     if (I.isAssociative() && I.isCommutative()) {
252       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
253       if (Op0 && Op0->getOpcode() == Opcode) {
254         Value *A = Op0->getOperand(0);
255         Value *B = Op0->getOperand(1);
256         Value *C = I.getOperand(1);
257 
258         // Does "C op A" simplify?
259         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
260           // It simplifies to V.  Form "V op B".
261           I.setOperand(0, V);
262           I.setOperand(1, B);
263           // Conservatively clear the optional flags, since they may not be
264           // preserved by the reassociation.
265           ClearSubclassDataAfterReassociation(I);
266           Changed = true;
267           ++NumReassoc;
268           continue;
269         }
270       }
271 
272       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
273       if (Op1 && Op1->getOpcode() == Opcode) {
274         Value *A = I.getOperand(0);
275         Value *B = Op1->getOperand(0);
276         Value *C = Op1->getOperand(1);
277 
278         // Does "C op A" simplify?
279         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
280           // It simplifies to V.  Form "B op V".
281           I.setOperand(0, B);
282           I.setOperand(1, V);
283           // Conservatively clear the optional flags, since they may not be
284           // preserved by the reassociation.
285           ClearSubclassDataAfterReassociation(I);
286           Changed = true;
287           ++NumReassoc;
288           continue;
289         }
290       }
291 
292       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
293       // if C1 and C2 are constants.
294       if (Op0 && Op1 &&
295           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
296           isa<Constant>(Op0->getOperand(1)) &&
297           isa<Constant>(Op1->getOperand(1)) &&
298           Op0->hasOneUse() && Op1->hasOneUse()) {
299         Value *A = Op0->getOperand(0);
300         Constant *C1 = cast<Constant>(Op0->getOperand(1));
301         Value *B = Op1->getOperand(0);
302         Constant *C2 = cast<Constant>(Op1->getOperand(1));
303 
304         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
305         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
306         if (isa<FPMathOperator>(New)) {
307           FastMathFlags Flags = I.getFastMathFlags();
308           Flags &= Op0->getFastMathFlags();
309           Flags &= Op1->getFastMathFlags();
310           New->setFastMathFlags(Flags);
311         }
312         InsertNewInstWith(New, I);
313         New->takeName(Op1);
314         I.setOperand(0, New);
315         I.setOperand(1, Folded);
316         // Conservatively clear the optional flags, since they may not be
317         // preserved by the reassociation.
318         ClearSubclassDataAfterReassociation(I);
319 
320         Changed = true;
321         continue;
322       }
323     }
324 
325     // No further simplifications.
326     return Changed;
327   } while (1);
328 }
329 
330 /// Return whether "X LOp (Y ROp Z)" is always equal to
331 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)332 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
333                                      Instruction::BinaryOps ROp) {
334   switch (LOp) {
335   default:
336     return false;
337 
338   case Instruction::And:
339     // And distributes over Or and Xor.
340     switch (ROp) {
341     default:
342       return false;
343     case Instruction::Or:
344     case Instruction::Xor:
345       return true;
346     }
347 
348   case Instruction::Mul:
349     // Multiplication distributes over addition and subtraction.
350     switch (ROp) {
351     default:
352       return false;
353     case Instruction::Add:
354     case Instruction::Sub:
355       return true;
356     }
357 
358   case Instruction::Or:
359     // Or distributes over And.
360     switch (ROp) {
361     default:
362       return false;
363     case Instruction::And:
364       return true;
365     }
366   }
367 }
368 
369 /// Return whether "(X LOp Y) ROp Z" is always equal to
370 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)371 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
372                                      Instruction::BinaryOps ROp) {
373   if (Instruction::isCommutative(ROp))
374     return LeftDistributesOverRight(ROp, LOp);
375 
376   switch (LOp) {
377   default:
378     return false;
379   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
380   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
381   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
382   case Instruction::And:
383   case Instruction::Or:
384   case Instruction::Xor:
385     switch (ROp) {
386     default:
387       return false;
388     case Instruction::Shl:
389     case Instruction::LShr:
390     case Instruction::AShr:
391       return true;
392     }
393   }
394   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
395   // but this requires knowing that the addition does not overflow and other
396   // such subtleties.
397   return false;
398 }
399 
400 /// This function returns identity value for given opcode, which can be used to
401 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps OpCode,Value * V)402 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
403   if (isa<Constant>(V))
404     return nullptr;
405 
406   if (OpCode == Instruction::Mul)
407     return ConstantInt::get(V->getType(), 1);
408 
409   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
410 
411   return nullptr;
412 }
413 
414 /// This function factors binary ops which can be combined using distributive
415 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
416 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
417 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
418 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
419 /// RHS to 4.
420 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)421 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
422                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
423   if (!Op)
424     return Instruction::BinaryOpsEnd;
425 
426   LHS = Op->getOperand(0);
427   RHS = Op->getOperand(1);
428 
429   switch (TopLevelOpcode) {
430   default:
431     return Op->getOpcode();
432 
433   case Instruction::Add:
434   case Instruction::Sub:
435     if (Op->getOpcode() == Instruction::Shl) {
436       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
437         // The multiplier is really 1 << CST.
438         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
439         return Instruction::Mul;
440       }
441     }
442     return Op->getOpcode();
443   }
444 
445   // TODO: We can add other conversions e.g. shr => div etc.
446 }
447 
448 /// This tries to simplify binary operations by factorizing out common terms
449 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(InstCombiner::BuilderTy * Builder,const DataLayout & DL,BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)450 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
451                                const DataLayout &DL, BinaryOperator &I,
452                                Instruction::BinaryOps InnerOpcode, Value *A,
453                                Value *B, Value *C, Value *D) {
454 
455   // If any of A, B, C, D are null, we can not factor I, return early.
456   // Checking A and C should be enough.
457   if (!A || !C || !B || !D)
458     return nullptr;
459 
460   Value *V = nullptr;
461   Value *SimplifiedInst = nullptr;
462   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
463   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
464 
465   // Does "X op' Y" always equal "Y op' X"?
466   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
467 
468   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
469   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
470     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
471     // commutative case, "(A op' B) op (C op' A)"?
472     if (A == C || (InnerCommutative && A == D)) {
473       if (A != C)
474         std::swap(C, D);
475       // Consider forming "A op' (B op D)".
476       // If "B op D" simplifies then it can be formed with no cost.
477       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
478       // If "B op D" doesn't simplify then only go on if both of the existing
479       // operations "A op' B" and "C op' D" will be zapped as no longer used.
480       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
481         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
482       if (V) {
483         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
484       }
485     }
486 
487   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
488   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
489     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
490     // commutative case, "(A op' B) op (B op' D)"?
491     if (B == D || (InnerCommutative && B == C)) {
492       if (B != D)
493         std::swap(C, D);
494       // Consider forming "(A op C) op' B".
495       // If "A op C" simplifies then it can be formed with no cost.
496       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
497 
498       // If "A op C" doesn't simplify then only go on if both of the existing
499       // operations "A op' B" and "C op' D" will be zapped as no longer used.
500       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
501         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
502       if (V) {
503         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
504       }
505     }
506 
507   if (SimplifiedInst) {
508     ++NumFactor;
509     SimplifiedInst->takeName(&I);
510 
511     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
512     // TODO: Check for NUW.
513     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
514       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
515         bool HasNSW = false;
516         if (isa<OverflowingBinaryOperator>(&I))
517           HasNSW = I.hasNoSignedWrap();
518 
519         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
520           if (isa<OverflowingBinaryOperator>(Op0))
521             HasNSW &= Op0->hasNoSignedWrap();
522 
523         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
524           if (isa<OverflowingBinaryOperator>(Op1))
525             HasNSW &= Op1->hasNoSignedWrap();
526 
527         // We can propagate 'nsw' if we know that
528         //  %Y = mul nsw i16 %X, C
529         //  %Z = add nsw i16 %Y, %X
530         // =>
531         //  %Z = mul nsw i16 %X, C+1
532         //
533         // iff C+1 isn't INT_MIN
534         const APInt *CInt;
535         if (TopLevelOpcode == Instruction::Add &&
536             InnerOpcode == Instruction::Mul)
537           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
538             BO->setHasNoSignedWrap(HasNSW);
539       }
540     }
541   }
542   return SimplifiedInst;
543 }
544 
545 /// This tries to simplify binary operations which some other binary operation
546 /// distributes over either by factorizing out common terms
547 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
548 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
549 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)550 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
551   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
552   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
553   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
554 
555   // Factorization.
556   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
557   auto TopLevelOpcode = I.getOpcode();
558   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
559   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
560 
561   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
562   // a common term.
563   if (LHSOpcode == RHSOpcode) {
564     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
565       return V;
566   }
567 
568   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
569   // term.
570   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
571                                   getIdentityValue(LHSOpcode, RHS)))
572     return V;
573 
574   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
575   // term.
576   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
577                                   getIdentityValue(RHSOpcode, LHS), C, D))
578     return V;
579 
580   // Expansion.
581   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
582     // The instruction has the form "(A op' B) op C".  See if expanding it out
583     // to "(A op C) op' (B op C)" results in simplifications.
584     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
585     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
586 
587     // Do "A op C" and "B op C" both simplify?
588     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
589       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
590         // They do! Return "L op' R".
591         ++NumExpand;
592         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
593         if ((L == A && R == B) ||
594             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
595           return Op0;
596         // Otherwise return "L op' R" if it simplifies.
597         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
598           return V;
599         // Otherwise, create a new instruction.
600         C = Builder->CreateBinOp(InnerOpcode, L, R);
601         C->takeName(&I);
602         return C;
603       }
604   }
605 
606   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
607     // The instruction has the form "A op (B op' C)".  See if expanding it out
608     // to "(A op B) op' (A op C)" results in simplifications.
609     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
610     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
611 
612     // Do "A op B" and "A op C" both simplify?
613     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
614       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
615         // They do! Return "L op' R".
616         ++NumExpand;
617         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
618         if ((L == B && R == C) ||
619             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
620           return Op1;
621         // Otherwise return "L op' R" if it simplifies.
622         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
623           return V;
624         // Otherwise, create a new instruction.
625         A = Builder->CreateBinOp(InnerOpcode, L, R);
626         A->takeName(&I);
627         return A;
628       }
629   }
630 
631   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
632   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
633   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
634     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
635       if (SI0->getCondition() == SI1->getCondition()) {
636         Value *SI = nullptr;
637         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
638                                      SI1->getFalseValue(), DL, TLI, DT, AC))
639           SI = Builder->CreateSelect(SI0->getCondition(),
640                                      Builder->CreateBinOp(TopLevelOpcode,
641                                                           SI0->getTrueValue(),
642                                                           SI1->getTrueValue()),
643                                      V);
644         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
645                                      SI1->getTrueValue(), DL, TLI, DT, AC))
646           SI = Builder->CreateSelect(
647               SI0->getCondition(), V,
648               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
649                                    SI1->getFalseValue()));
650         if (SI) {
651           SI->takeName(&I);
652           return SI;
653         }
654       }
655     }
656   }
657 
658   return nullptr;
659 }
660 
661 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
662 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const663 Value *InstCombiner::dyn_castNegVal(Value *V) const {
664   if (BinaryOperator::isNeg(V))
665     return BinaryOperator::getNegArgument(V);
666 
667   // Constants can be considered to be negated values if they can be folded.
668   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
669     return ConstantExpr::getNeg(C);
670 
671   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
672     if (C->getType()->getElementType()->isIntegerTy())
673       return ConstantExpr::getNeg(C);
674 
675   return nullptr;
676 }
677 
678 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
679 /// a constant negative zero (which is the 'negate' form).
dyn_castFNegVal(Value * V,bool IgnoreZeroSign) const680 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
681   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
682     return BinaryOperator::getFNegArgument(V);
683 
684   // Constants can be considered to be negated values if they can be folded.
685   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
686     return ConstantExpr::getFNeg(C);
687 
688   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
689     if (C->getType()->getElementType()->isFloatingPointTy())
690       return ConstantExpr::getFNeg(C);
691 
692   return nullptr;
693 }
694 
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)695 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
696                                              InstCombiner *IC) {
697   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
698     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
699   }
700 
701   // Figure out if the constant is the left or the right argument.
702   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
703   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
704 
705   if (Constant *SOC = dyn_cast<Constant>(SO)) {
706     if (ConstIsRHS)
707       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
708     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
709   }
710 
711   Value *Op0 = SO, *Op1 = ConstOperand;
712   if (!ConstIsRHS)
713     std::swap(Op0, Op1);
714 
715   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
716     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
717                                     SO->getName()+".op");
718     Instruction *FPInst = dyn_cast<Instruction>(RI);
719     if (FPInst && isa<FPMathOperator>(FPInst))
720       FPInst->copyFastMathFlags(BO);
721     return RI;
722   }
723   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
724     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
725                                    SO->getName()+".cmp");
726   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
727     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
728                                    SO->getName()+".cmp");
729   llvm_unreachable("Unknown binary instruction type!");
730 }
731 
732 /// Given an instruction with a select as one operand and a constant as the
733 /// other operand, try to fold the binary operator into the select arguments.
734 /// This also works for Cast instructions, which obviously do not have a second
735 /// operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)736 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
737   // Don't modify shared select instructions
738   if (!SI->hasOneUse()) return nullptr;
739   Value *TV = SI->getOperand(1);
740   Value *FV = SI->getOperand(2);
741 
742   if (isa<Constant>(TV) || isa<Constant>(FV)) {
743     // Bool selects with constant operands can be folded to logical ops.
744     if (SI->getType()->isIntegerTy(1)) return nullptr;
745 
746     // If it's a bitcast involving vectors, make sure it has the same number of
747     // elements on both sides.
748     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
749       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
750       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
751 
752       // Verify that either both or neither are vectors.
753       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
754       // If vectors, verify that they have the same number of elements.
755       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
756         return nullptr;
757     }
758 
759     // Test if a CmpInst instruction is used exclusively by a select as
760     // part of a minimum or maximum operation. If so, refrain from doing
761     // any other folding. This helps out other analyses which understand
762     // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
763     // and CodeGen. And in this case, at least one of the comparison
764     // operands has at least one user besides the compare (the select),
765     // which would often largely negate the benefit of folding anyway.
766     if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
767       if (CI->hasOneUse()) {
768         Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
769         if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
770             (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
771           return nullptr;
772       }
773     }
774 
775     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
776     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
777 
778     return SelectInst::Create(SI->getCondition(),
779                               SelectTrueVal, SelectFalseVal);
780   }
781   return nullptr;
782 }
783 
784 /// Given a binary operator, cast instruction, or select which has a PHI node as
785 /// operand #0, see if we can fold the instruction into the PHI (which is only
786 /// possible if all operands to the PHI are constants).
FoldOpIntoPhi(Instruction & I)787 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
788   PHINode *PN = cast<PHINode>(I.getOperand(0));
789   unsigned NumPHIValues = PN->getNumIncomingValues();
790   if (NumPHIValues == 0)
791     return nullptr;
792 
793   // We normally only transform phis with a single use.  However, if a PHI has
794   // multiple uses and they are all the same operation, we can fold *all* of the
795   // uses into the PHI.
796   if (!PN->hasOneUse()) {
797     // Walk the use list for the instruction, comparing them to I.
798     for (User *U : PN->users()) {
799       Instruction *UI = cast<Instruction>(U);
800       if (UI != &I && !I.isIdenticalTo(UI))
801         return nullptr;
802     }
803     // Otherwise, we can replace *all* users with the new PHI we form.
804   }
805 
806   // Check to see if all of the operands of the PHI are simple constants
807   // (constantint/constantfp/undef).  If there is one non-constant value,
808   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
809   // bail out.  We don't do arbitrary constant expressions here because moving
810   // their computation can be expensive without a cost model.
811   BasicBlock *NonConstBB = nullptr;
812   for (unsigned i = 0; i != NumPHIValues; ++i) {
813     Value *InVal = PN->getIncomingValue(i);
814     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
815       continue;
816 
817     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
818     if (NonConstBB) return nullptr;  // More than one non-const value.
819 
820     NonConstBB = PN->getIncomingBlock(i);
821 
822     // If the InVal is an invoke at the end of the pred block, then we can't
823     // insert a computation after it without breaking the edge.
824     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
825       if (II->getParent() == NonConstBB)
826         return nullptr;
827 
828     // If the incoming non-constant value is in I's block, we will remove one
829     // instruction, but insert another equivalent one, leading to infinite
830     // instcombine.
831     if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
832       return nullptr;
833   }
834 
835   // If there is exactly one non-constant value, we can insert a copy of the
836   // operation in that block.  However, if this is a critical edge, we would be
837   // inserting the computation on some other paths (e.g. inside a loop).  Only
838   // do this if the pred block is unconditionally branching into the phi block.
839   if (NonConstBB != nullptr) {
840     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
841     if (!BI || !BI->isUnconditional()) return nullptr;
842   }
843 
844   // Okay, we can do the transformation: create the new PHI node.
845   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
846   InsertNewInstBefore(NewPN, *PN);
847   NewPN->takeName(PN);
848 
849   // If we are going to have to insert a new computation, do so right before the
850   // predecessor's terminator.
851   if (NonConstBB)
852     Builder->SetInsertPoint(NonConstBB->getTerminator());
853 
854   // Next, add all of the operands to the PHI.
855   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
856     // We only currently try to fold the condition of a select when it is a phi,
857     // not the true/false values.
858     Value *TrueV = SI->getTrueValue();
859     Value *FalseV = SI->getFalseValue();
860     BasicBlock *PhiTransBB = PN->getParent();
861     for (unsigned i = 0; i != NumPHIValues; ++i) {
862       BasicBlock *ThisBB = PN->getIncomingBlock(i);
863       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
864       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
865       Value *InV = nullptr;
866       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
867       // even if currently isNullValue gives false.
868       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
869       if (InC && !isa<ConstantExpr>(InC))
870         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
871       else
872         InV = Builder->CreateSelect(PN->getIncomingValue(i),
873                                     TrueVInPred, FalseVInPred, "phitmp");
874       NewPN->addIncoming(InV, ThisBB);
875     }
876   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
877     Constant *C = cast<Constant>(I.getOperand(1));
878     for (unsigned i = 0; i != NumPHIValues; ++i) {
879       Value *InV = nullptr;
880       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
881         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
882       else if (isa<ICmpInst>(CI))
883         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
884                                   C, "phitmp");
885       else
886         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
887                                   C, "phitmp");
888       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
889     }
890   } else if (I.getNumOperands() == 2) {
891     Constant *C = cast<Constant>(I.getOperand(1));
892     for (unsigned i = 0; i != NumPHIValues; ++i) {
893       Value *InV = nullptr;
894       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
895         InV = ConstantExpr::get(I.getOpcode(), InC, C);
896       else
897         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
898                                    PN->getIncomingValue(i), C, "phitmp");
899       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
900     }
901   } else {
902     CastInst *CI = cast<CastInst>(&I);
903     Type *RetTy = CI->getType();
904     for (unsigned i = 0; i != NumPHIValues; ++i) {
905       Value *InV;
906       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
907         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
908       else
909         InV = Builder->CreateCast(CI->getOpcode(),
910                                 PN->getIncomingValue(i), I.getType(), "phitmp");
911       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
912     }
913   }
914 
915   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
916     Instruction *User = cast<Instruction>(*UI++);
917     if (User == &I) continue;
918     replaceInstUsesWith(*User, NewPN);
919     eraseInstFromFunction(*User);
920   }
921   return replaceInstUsesWith(I, NewPN);
922 }
923 
924 /// Given a pointer type and a constant offset, determine whether or not there
925 /// is a sequence of GEP indices into the pointed type that will land us at the
926 /// specified offset. If so, fill them into NewIndices and return the resultant
927 /// element type, otherwise return null.
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)928 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
929                                         SmallVectorImpl<Value *> &NewIndices) {
930   Type *Ty = PtrTy->getElementType();
931   if (!Ty->isSized())
932     return nullptr;
933 
934   // Start with the index over the outer type.  Note that the type size
935   // might be zero (even if the offset isn't zero) if the indexed type
936   // is something like [0 x {int, int}]
937   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
938   int64_t FirstIdx = 0;
939   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
940     FirstIdx = Offset/TySize;
941     Offset -= FirstIdx*TySize;
942 
943     // Handle hosts where % returns negative instead of values [0..TySize).
944     if (Offset < 0) {
945       --FirstIdx;
946       Offset += TySize;
947       assert(Offset >= 0);
948     }
949     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
950   }
951 
952   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
953 
954   // Index into the types.  If we fail, set OrigBase to null.
955   while (Offset) {
956     // Indexing into tail padding between struct/array elements.
957     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
958       return nullptr;
959 
960     if (StructType *STy = dyn_cast<StructType>(Ty)) {
961       const StructLayout *SL = DL.getStructLayout(STy);
962       assert(Offset < (int64_t)SL->getSizeInBytes() &&
963              "Offset must stay within the indexed type");
964 
965       unsigned Elt = SL->getElementContainingOffset(Offset);
966       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
967                                             Elt));
968 
969       Offset -= SL->getElementOffset(Elt);
970       Ty = STy->getElementType(Elt);
971     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
972       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
973       assert(EltSize && "Cannot index into a zero-sized array");
974       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
975       Offset %= EltSize;
976       Ty = AT->getElementType();
977     } else {
978       // Otherwise, we can't index into the middle of this atomic type, bail.
979       return nullptr;
980     }
981   }
982 
983   return Ty;
984 }
985 
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)986 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
987   // If this GEP has only 0 indices, it is the same pointer as
988   // Src. If Src is not a trivial GEP too, don't combine
989   // the indices.
990   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
991       !Src.hasOneUse())
992     return false;
993   return true;
994 }
995 
996 /// Return a value X such that Val = X * Scale, or null if none.
997 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)998 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
999   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1000   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1001          Scale.getBitWidth() && "Scale not compatible with value!");
1002 
1003   // If Val is zero or Scale is one then Val = Val * Scale.
1004   if (match(Val, m_Zero()) || Scale == 1) {
1005     NoSignedWrap = true;
1006     return Val;
1007   }
1008 
1009   // If Scale is zero then it does not divide Val.
1010   if (Scale.isMinValue())
1011     return nullptr;
1012 
1013   // Look through chains of multiplications, searching for a constant that is
1014   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1015   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1016   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1017   // down from Val:
1018   //
1019   //     Val = M1 * X          ||   Analysis starts here and works down
1020   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1021   //      M2 =  Z * 4          \/   than one use
1022   //
1023   // Then to modify a term at the bottom:
1024   //
1025   //     Val = M1 * X
1026   //      M1 =  Z * Y          ||   Replaced M2 with Z
1027   //
1028   // Then to work back up correcting nsw flags.
1029 
1030   // Op - the term we are currently analyzing.  Starts at Val then drills down.
1031   // Replaced with its descaled value before exiting from the drill down loop.
1032   Value *Op = Val;
1033 
1034   // Parent - initially null, but after drilling down notes where Op came from.
1035   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1036   // 0'th operand of Val.
1037   std::pair<Instruction*, unsigned> Parent;
1038 
1039   // Set if the transform requires a descaling at deeper levels that doesn't
1040   // overflow.
1041   bool RequireNoSignedWrap = false;
1042 
1043   // Log base 2 of the scale. Negative if not a power of 2.
1044   int32_t logScale = Scale.exactLogBase2();
1045 
1046   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1047 
1048     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1049       // If Op is a constant divisible by Scale then descale to the quotient.
1050       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1051       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1052       if (!Remainder.isMinValue())
1053         // Not divisible by Scale.
1054         return nullptr;
1055       // Replace with the quotient in the parent.
1056       Op = ConstantInt::get(CI->getType(), Quotient);
1057       NoSignedWrap = true;
1058       break;
1059     }
1060 
1061     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1062 
1063       if (BO->getOpcode() == Instruction::Mul) {
1064         // Multiplication.
1065         NoSignedWrap = BO->hasNoSignedWrap();
1066         if (RequireNoSignedWrap && !NoSignedWrap)
1067           return nullptr;
1068 
1069         // There are three cases for multiplication: multiplication by exactly
1070         // the scale, multiplication by a constant different to the scale, and
1071         // multiplication by something else.
1072         Value *LHS = BO->getOperand(0);
1073         Value *RHS = BO->getOperand(1);
1074 
1075         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1076           // Multiplication by a constant.
1077           if (CI->getValue() == Scale) {
1078             // Multiplication by exactly the scale, replace the multiplication
1079             // by its left-hand side in the parent.
1080             Op = LHS;
1081             break;
1082           }
1083 
1084           // Otherwise drill down into the constant.
1085           if (!Op->hasOneUse())
1086             return nullptr;
1087 
1088           Parent = std::make_pair(BO, 1);
1089           continue;
1090         }
1091 
1092         // Multiplication by something else. Drill down into the left-hand side
1093         // since that's where the reassociate pass puts the good stuff.
1094         if (!Op->hasOneUse())
1095           return nullptr;
1096 
1097         Parent = std::make_pair(BO, 0);
1098         continue;
1099       }
1100 
1101       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1102           isa<ConstantInt>(BO->getOperand(1))) {
1103         // Multiplication by a power of 2.
1104         NoSignedWrap = BO->hasNoSignedWrap();
1105         if (RequireNoSignedWrap && !NoSignedWrap)
1106           return nullptr;
1107 
1108         Value *LHS = BO->getOperand(0);
1109         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1110           getLimitedValue(Scale.getBitWidth());
1111         // Op = LHS << Amt.
1112 
1113         if (Amt == logScale) {
1114           // Multiplication by exactly the scale, replace the multiplication
1115           // by its left-hand side in the parent.
1116           Op = LHS;
1117           break;
1118         }
1119         if (Amt < logScale || !Op->hasOneUse())
1120           return nullptr;
1121 
1122         // Multiplication by more than the scale.  Reduce the multiplying amount
1123         // by the scale in the parent.
1124         Parent = std::make_pair(BO, 1);
1125         Op = ConstantInt::get(BO->getType(), Amt - logScale);
1126         break;
1127       }
1128     }
1129 
1130     if (!Op->hasOneUse())
1131       return nullptr;
1132 
1133     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1134       if (Cast->getOpcode() == Instruction::SExt) {
1135         // Op is sign-extended from a smaller type, descale in the smaller type.
1136         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1137         APInt SmallScale = Scale.trunc(SmallSize);
1138         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1139         // descale Op as (sext Y) * Scale.  In order to have
1140         //   sext (Y * SmallScale) = (sext Y) * Scale
1141         // some conditions need to hold however: SmallScale must sign-extend to
1142         // Scale and the multiplication Y * SmallScale should not overflow.
1143         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1144           // SmallScale does not sign-extend to Scale.
1145           return nullptr;
1146         assert(SmallScale.exactLogBase2() == logScale);
1147         // Require that Y * SmallScale must not overflow.
1148         RequireNoSignedWrap = true;
1149 
1150         // Drill down through the cast.
1151         Parent = std::make_pair(Cast, 0);
1152         Scale = SmallScale;
1153         continue;
1154       }
1155 
1156       if (Cast->getOpcode() == Instruction::Trunc) {
1157         // Op is truncated from a larger type, descale in the larger type.
1158         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1159         //   trunc (Y * sext Scale) = (trunc Y) * Scale
1160         // always holds.  However (trunc Y) * Scale may overflow even if
1161         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1162         // from this point up in the expression (see later).
1163         if (RequireNoSignedWrap)
1164           return nullptr;
1165 
1166         // Drill down through the cast.
1167         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1168         Parent = std::make_pair(Cast, 0);
1169         Scale = Scale.sext(LargeSize);
1170         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1171           logScale = -1;
1172         assert(Scale.exactLogBase2() == logScale);
1173         continue;
1174       }
1175     }
1176 
1177     // Unsupported expression, bail out.
1178     return nullptr;
1179   }
1180 
1181   // If Op is zero then Val = Op * Scale.
1182   if (match(Op, m_Zero())) {
1183     NoSignedWrap = true;
1184     return Op;
1185   }
1186 
1187   // We know that we can successfully descale, so from here on we can safely
1188   // modify the IR.  Op holds the descaled version of the deepest term in the
1189   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1190   // not to overflow.
1191 
1192   if (!Parent.first)
1193     // The expression only had one term.
1194     return Op;
1195 
1196   // Rewrite the parent using the descaled version of its operand.
1197   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1198   assert(Op != Parent.first->getOperand(Parent.second) &&
1199          "Descaling was a no-op?");
1200   Parent.first->setOperand(Parent.second, Op);
1201   Worklist.Add(Parent.first);
1202 
1203   // Now work back up the expression correcting nsw flags.  The logic is based
1204   // on the following observation: if X * Y is known not to overflow as a signed
1205   // multiplication, and Y is replaced by a value Z with smaller absolute value,
1206   // then X * Z will not overflow as a signed multiplication either.  As we work
1207   // our way up, having NoSignedWrap 'true' means that the descaled value at the
1208   // current level has strictly smaller absolute value than the original.
1209   Instruction *Ancestor = Parent.first;
1210   do {
1211     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1212       // If the multiplication wasn't nsw then we can't say anything about the
1213       // value of the descaled multiplication, and we have to clear nsw flags
1214       // from this point on up.
1215       bool OpNoSignedWrap = BO->hasNoSignedWrap();
1216       NoSignedWrap &= OpNoSignedWrap;
1217       if (NoSignedWrap != OpNoSignedWrap) {
1218         BO->setHasNoSignedWrap(NoSignedWrap);
1219         Worklist.Add(Ancestor);
1220       }
1221     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1222       // The fact that the descaled input to the trunc has smaller absolute
1223       // value than the original input doesn't tell us anything useful about
1224       // the absolute values of the truncations.
1225       NoSignedWrap = false;
1226     }
1227     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1228            "Failed to keep proper track of nsw flags while drilling down?");
1229 
1230     if (Ancestor == Val)
1231       // Got to the top, all done!
1232       return Val;
1233 
1234     // Move up one level in the expression.
1235     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1236     Ancestor = Ancestor->user_back();
1237   } while (1);
1238 }
1239 
1240 /// \brief Creates node of binary operation with the same attributes as the
1241 /// specified one but with other operands.
CreateBinOpAsGiven(BinaryOperator & Inst,Value * LHS,Value * RHS,InstCombiner::BuilderTy * B)1242 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1243                                  InstCombiner::BuilderTy *B) {
1244   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1245   // If LHS and RHS are constant, BO won't be a binary operator.
1246   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
1247     NewBO->copyIRFlags(&Inst);
1248   return BO;
1249 }
1250 
1251 /// \brief Makes transformation of binary operation specific for vector types.
1252 /// \param Inst Binary operator to transform.
1253 /// \return Pointer to node that must replace the original binary operator, or
1254 ///         null pointer if no transformation was made.
SimplifyVectorOp(BinaryOperator & Inst)1255 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1256   if (!Inst.getType()->isVectorTy()) return nullptr;
1257 
1258   // It may not be safe to reorder shuffles and things like div, urem, etc.
1259   // because we may trap when executing those ops on unknown vector elements.
1260   // See PR20059.
1261   if (!isSafeToSpeculativelyExecute(&Inst))
1262     return nullptr;
1263 
1264   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1265   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1266   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1267   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1268 
1269   // If both arguments of binary operation are shuffles, which use the same
1270   // mask and shuffle within a single vector, it is worthwhile to move the
1271   // shuffle after binary operation:
1272   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1273   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1274     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1275     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1276     if (isa<UndefValue>(LShuf->getOperand(1)) &&
1277         isa<UndefValue>(RShuf->getOperand(1)) &&
1278         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1279         LShuf->getMask() == RShuf->getMask()) {
1280       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1281           RShuf->getOperand(0), Builder);
1282       return Builder->CreateShuffleVector(NewBO,
1283           UndefValue::get(NewBO->getType()), LShuf->getMask());
1284     }
1285   }
1286 
1287   // If one argument is a shuffle within one vector, the other is a constant,
1288   // try moving the shuffle after the binary operation.
1289   ShuffleVectorInst *Shuffle = nullptr;
1290   Constant *C1 = nullptr;
1291   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1292   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1293   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1294   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1295   if (Shuffle && C1 &&
1296       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1297       isa<UndefValue>(Shuffle->getOperand(1)) &&
1298       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1299     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1300     // Find constant C2 that has property:
1301     //   shuffle(C2, ShMask) = C1
1302     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1303     // reorder is not possible.
1304     SmallVector<Constant*, 16> C2M(VWidth,
1305                                UndefValue::get(C1->getType()->getScalarType()));
1306     bool MayChange = true;
1307     for (unsigned I = 0; I < VWidth; ++I) {
1308       if (ShMask[I] >= 0) {
1309         assert(ShMask[I] < (int)VWidth);
1310         if (!isa<UndefValue>(C2M[ShMask[I]])) {
1311           MayChange = false;
1312           break;
1313         }
1314         C2M[ShMask[I]] = C1->getAggregateElement(I);
1315       }
1316     }
1317     if (MayChange) {
1318       Constant *C2 = ConstantVector::get(C2M);
1319       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
1320       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
1321       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1322       return Builder->CreateShuffleVector(NewBO,
1323           UndefValue::get(Inst.getType()), Shuffle->getMask());
1324     }
1325   }
1326 
1327   return nullptr;
1328 }
1329 
visitGetElementPtrInst(GetElementPtrInst & GEP)1330 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1331   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1332 
1333   if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC))
1334     return replaceInstUsesWith(GEP, V);
1335 
1336   Value *PtrOp = GEP.getOperand(0);
1337 
1338   // Eliminate unneeded casts for indices, and replace indices which displace
1339   // by multiples of a zero size type with zero.
1340   bool MadeChange = false;
1341   Type *IntPtrTy =
1342     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
1343 
1344   gep_type_iterator GTI = gep_type_begin(GEP);
1345   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1346        ++I, ++GTI) {
1347     // Skip indices into struct types.
1348     if (isa<StructType>(*GTI))
1349       continue;
1350 
1351     // Index type should have the same width as IntPtr
1352     Type *IndexTy = (*I)->getType();
1353     Type *NewIndexType = IndexTy->isVectorTy() ?
1354       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
1355 
1356     // If the element type has zero size then any index over it is equivalent
1357     // to an index of zero, so replace it with zero if it is not zero already.
1358     Type *EltTy = GTI.getIndexedType();
1359     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1360       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1361         *I = Constant::getNullValue(NewIndexType);
1362         MadeChange = true;
1363       }
1364 
1365     if (IndexTy != NewIndexType) {
1366       // If we are using a wider index than needed for this platform, shrink
1367       // it to what we need.  If narrower, sign-extend it to what we need.
1368       // This explicit cast can make subsequent optimizations more obvious.
1369       *I = Builder->CreateIntCast(*I, NewIndexType, true);
1370       MadeChange = true;
1371     }
1372   }
1373   if (MadeChange)
1374     return &GEP;
1375 
1376   // Check to see if the inputs to the PHI node are getelementptr instructions.
1377   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1378     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1379     if (!Op1)
1380       return nullptr;
1381 
1382     // Don't fold a GEP into itself through a PHI node. This can only happen
1383     // through the back-edge of a loop. Folding a GEP into itself means that
1384     // the value of the previous iteration needs to be stored in the meantime,
1385     // thus requiring an additional register variable to be live, but not
1386     // actually achieving anything (the GEP still needs to be executed once per
1387     // loop iteration).
1388     if (Op1 == &GEP)
1389       return nullptr;
1390 
1391     int DI = -1;
1392 
1393     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1394       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1395       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1396         return nullptr;
1397 
1398       // As for Op1 above, don't try to fold a GEP into itself.
1399       if (Op2 == &GEP)
1400         return nullptr;
1401 
1402       // Keep track of the type as we walk the GEP.
1403       Type *CurTy = nullptr;
1404 
1405       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1406         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1407           return nullptr;
1408 
1409         if (Op1->getOperand(J) != Op2->getOperand(J)) {
1410           if (DI == -1) {
1411             // We have not seen any differences yet in the GEPs feeding the
1412             // PHI yet, so we record this one if it is allowed to be a
1413             // variable.
1414 
1415             // The first two arguments can vary for any GEP, the rest have to be
1416             // static for struct slots
1417             if (J > 1 && CurTy->isStructTy())
1418               return nullptr;
1419 
1420             DI = J;
1421           } else {
1422             // The GEP is different by more than one input. While this could be
1423             // extended to support GEPs that vary by more than one variable it
1424             // doesn't make sense since it greatly increases the complexity and
1425             // would result in an R+R+R addressing mode which no backend
1426             // directly supports and would need to be broken into several
1427             // simpler instructions anyway.
1428             return nullptr;
1429           }
1430         }
1431 
1432         // Sink down a layer of the type for the next iteration.
1433         if (J > 0) {
1434           if (J == 1) {
1435             CurTy = Op1->getSourceElementType();
1436           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1437             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1438           } else {
1439             CurTy = nullptr;
1440           }
1441         }
1442       }
1443     }
1444 
1445     // If not all GEPs are identical we'll have to create a new PHI node.
1446     // Check that the old PHI node has only one use so that it will get
1447     // removed.
1448     if (DI != -1 && !PN->hasOneUse())
1449       return nullptr;
1450 
1451     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1452     if (DI == -1) {
1453       // All the GEPs feeding the PHI are identical. Clone one down into our
1454       // BB so that it can be merged with the current GEP.
1455       GEP.getParent()->getInstList().insert(
1456           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1457     } else {
1458       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1459       // into the current block so it can be merged, and create a new PHI to
1460       // set that index.
1461       PHINode *NewPN;
1462       {
1463         IRBuilderBase::InsertPointGuard Guard(*Builder);
1464         Builder->SetInsertPoint(PN);
1465         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1466                                    PN->getNumOperands());
1467       }
1468 
1469       for (auto &I : PN->operands())
1470         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1471                            PN->getIncomingBlock(I));
1472 
1473       NewGEP->setOperand(DI, NewPN);
1474       GEP.getParent()->getInstList().insert(
1475           GEP.getParent()->getFirstInsertionPt(), NewGEP);
1476       NewGEP->setOperand(DI, NewPN);
1477     }
1478 
1479     GEP.setOperand(0, NewGEP);
1480     PtrOp = NewGEP;
1481   }
1482 
1483   // Combine Indices - If the source pointer to this getelementptr instruction
1484   // is a getelementptr instruction, combine the indices of the two
1485   // getelementptr instructions into a single instruction.
1486   //
1487   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1488     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1489       return nullptr;
1490 
1491     // Note that if our source is a gep chain itself then we wait for that
1492     // chain to be resolved before we perform this transformation.  This
1493     // avoids us creating a TON of code in some cases.
1494     if (GEPOperator *SrcGEP =
1495           dyn_cast<GEPOperator>(Src->getOperand(0)))
1496       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1497         return nullptr;   // Wait until our source is folded to completion.
1498 
1499     SmallVector<Value*, 8> Indices;
1500 
1501     // Find out whether the last index in the source GEP is a sequential idx.
1502     bool EndsWithSequential = false;
1503     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1504          I != E; ++I)
1505       EndsWithSequential = !(*I)->isStructTy();
1506 
1507     // Can we combine the two pointer arithmetics offsets?
1508     if (EndsWithSequential) {
1509       // Replace: gep (gep %P, long B), long A, ...
1510       // With:    T = long A+B; gep %P, T, ...
1511       //
1512       Value *Sum;
1513       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1514       Value *GO1 = GEP.getOperand(1);
1515       if (SO1 == Constant::getNullValue(SO1->getType())) {
1516         Sum = GO1;
1517       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1518         Sum = SO1;
1519       } else {
1520         // If they aren't the same type, then the input hasn't been processed
1521         // by the loop above yet (which canonicalizes sequential index types to
1522         // intptr_t).  Just avoid transforming this until the input has been
1523         // normalized.
1524         if (SO1->getType() != GO1->getType())
1525           return nullptr;
1526         // Only do the combine when GO1 and SO1 are both constants. Only in
1527         // this case, we are sure the cost after the merge is never more than
1528         // that before the merge.
1529         if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
1530           return nullptr;
1531         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1532       }
1533 
1534       // Update the GEP in place if possible.
1535       if (Src->getNumOperands() == 2) {
1536         GEP.setOperand(0, Src->getOperand(0));
1537         GEP.setOperand(1, Sum);
1538         return &GEP;
1539       }
1540       Indices.append(Src->op_begin()+1, Src->op_end()-1);
1541       Indices.push_back(Sum);
1542       Indices.append(GEP.op_begin()+2, GEP.op_end());
1543     } else if (isa<Constant>(*GEP.idx_begin()) &&
1544                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1545                Src->getNumOperands() != 1) {
1546       // Otherwise we can do the fold if the first index of the GEP is a zero
1547       Indices.append(Src->op_begin()+1, Src->op_end());
1548       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1549     }
1550 
1551     if (!Indices.empty())
1552       return GEP.isInBounds() && Src->isInBounds()
1553                  ? GetElementPtrInst::CreateInBounds(
1554                        Src->getSourceElementType(), Src->getOperand(0), Indices,
1555                        GEP.getName())
1556                  : GetElementPtrInst::Create(Src->getSourceElementType(),
1557                                              Src->getOperand(0), Indices,
1558                                              GEP.getName());
1559   }
1560 
1561   if (GEP.getNumIndices() == 1) {
1562     unsigned AS = GEP.getPointerAddressSpace();
1563     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1564         DL.getPointerSizeInBits(AS)) {
1565       Type *Ty = GEP.getSourceElementType();
1566       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1567 
1568       bool Matched = false;
1569       uint64_t C;
1570       Value *V = nullptr;
1571       if (TyAllocSize == 1) {
1572         V = GEP.getOperand(1);
1573         Matched = true;
1574       } else if (match(GEP.getOperand(1),
1575                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
1576         if (TyAllocSize == 1ULL << C)
1577           Matched = true;
1578       } else if (match(GEP.getOperand(1),
1579                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1580         if (TyAllocSize == C)
1581           Matched = true;
1582       }
1583 
1584       if (Matched) {
1585         // Canonicalize (gep i8* X, -(ptrtoint Y))
1586         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1587         // The GEP pattern is emitted by the SCEV expander for certain kinds of
1588         // pointer arithmetic.
1589         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1590           Operator *Index = cast<Operator>(V);
1591           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1592           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1593           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1594         }
1595         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1596         // to (bitcast Y)
1597         Value *Y;
1598         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1599                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1600           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1601                                                                GEP.getType());
1602         }
1603       }
1604     }
1605   }
1606 
1607   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1608   Value *StrippedPtr = PtrOp->stripPointerCasts();
1609   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1610 
1611   // We do not handle pointer-vector geps here.
1612   if (!StrippedPtrTy)
1613     return nullptr;
1614 
1615   if (StrippedPtr != PtrOp) {
1616     bool HasZeroPointerIndex = false;
1617     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1618       HasZeroPointerIndex = C->isZero();
1619 
1620     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1621     // into     : GEP [10 x i8]* X, i32 0, ...
1622     //
1623     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1624     //           into     : GEP i8* X, ...
1625     //
1626     // This occurs when the program declares an array extern like "int X[];"
1627     if (HasZeroPointerIndex) {
1628       if (ArrayType *CATy =
1629           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
1630         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1631         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1632           // -> GEP i8* X, ...
1633           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1634           GetElementPtrInst *Res = GetElementPtrInst::Create(
1635               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1636           Res->setIsInBounds(GEP.isInBounds());
1637           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1638             return Res;
1639           // Insert Res, and create an addrspacecast.
1640           // e.g.,
1641           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1642           // ->
1643           // %0 = GEP i8 addrspace(1)* X, ...
1644           // addrspacecast i8 addrspace(1)* %0 to i8*
1645           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1646         }
1647 
1648         if (ArrayType *XATy =
1649               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1650           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1651           if (CATy->getElementType() == XATy->getElementType()) {
1652             // -> GEP [10 x i8]* X, i32 0, ...
1653             // At this point, we know that the cast source type is a pointer
1654             // to an array of the same type as the destination pointer
1655             // array.  Because the array type is never stepped over (there
1656             // is a leading zero) we can fold the cast into this GEP.
1657             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1658               GEP.setOperand(0, StrippedPtr);
1659               GEP.setSourceElementType(XATy);
1660               return &GEP;
1661             }
1662             // Cannot replace the base pointer directly because StrippedPtr's
1663             // address space is different. Instead, create a new GEP followed by
1664             // an addrspacecast.
1665             // e.g.,
1666             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1667             //   i32 0, ...
1668             // ->
1669             // %0 = GEP [10 x i8] addrspace(1)* X, ...
1670             // addrspacecast i8 addrspace(1)* %0 to i8*
1671             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1672             Value *NewGEP = GEP.isInBounds()
1673                                 ? Builder->CreateInBoundsGEP(
1674                                       nullptr, StrippedPtr, Idx, GEP.getName())
1675                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1676                                                      GEP.getName());
1677             return new AddrSpaceCastInst(NewGEP, GEP.getType());
1678           }
1679         }
1680       }
1681     } else if (GEP.getNumOperands() == 2) {
1682       // Transform things like:
1683       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1684       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1685       Type *SrcElTy = StrippedPtrTy->getElementType();
1686       Type *ResElTy = GEP.getSourceElementType();
1687       if (SrcElTy->isArrayTy() &&
1688           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1689               DL.getTypeAllocSize(ResElTy)) {
1690         Type *IdxType = DL.getIntPtrType(GEP.getType());
1691         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1692         Value *NewGEP =
1693             GEP.isInBounds()
1694                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1695                                              GEP.getName())
1696                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1697 
1698         // V and GEP are both pointer types --> BitCast
1699         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1700                                                              GEP.getType());
1701       }
1702 
1703       // Transform things like:
1704       // %V = mul i64 %N, 4
1705       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1706       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1707       if (ResElTy->isSized() && SrcElTy->isSized()) {
1708         // Check that changing the type amounts to dividing the index by a scale
1709         // factor.
1710         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1711         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1712         if (ResSize && SrcSize % ResSize == 0) {
1713           Value *Idx = GEP.getOperand(1);
1714           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1715           uint64_t Scale = SrcSize / ResSize;
1716 
1717           // Earlier transforms ensure that the index has type IntPtrType, which
1718           // considerably simplifies the logic by eliminating implicit casts.
1719           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1720                  "Index not cast to pointer width?");
1721 
1722           bool NSW;
1723           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1724             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1725             // If the multiplication NewIdx * Scale may overflow then the new
1726             // GEP may not be "inbounds".
1727             Value *NewGEP =
1728                 GEP.isInBounds() && NSW
1729                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1730                                                  GEP.getName())
1731                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1732                                          GEP.getName());
1733 
1734             // The NewGEP must be pointer typed, so must the old one -> BitCast
1735             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1736                                                                  GEP.getType());
1737           }
1738         }
1739       }
1740 
1741       // Similarly, transform things like:
1742       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1743       //   (where tmp = 8*tmp2) into:
1744       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1745       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1746         // Check that changing to the array element type amounts to dividing the
1747         // index by a scale factor.
1748         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1749         uint64_t ArrayEltSize =
1750             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1751         if (ResSize && ArrayEltSize % ResSize == 0) {
1752           Value *Idx = GEP.getOperand(1);
1753           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1754           uint64_t Scale = ArrayEltSize / ResSize;
1755 
1756           // Earlier transforms ensure that the index has type IntPtrType, which
1757           // considerably simplifies the logic by eliminating implicit casts.
1758           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1759                  "Index not cast to pointer width?");
1760 
1761           bool NSW;
1762           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1763             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1764             // If the multiplication NewIdx * Scale may overflow then the new
1765             // GEP may not be "inbounds".
1766             Value *Off[2] = {
1767                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1768                 NewIdx};
1769 
1770             Value *NewGEP = GEP.isInBounds() && NSW
1771                                 ? Builder->CreateInBoundsGEP(
1772                                       SrcElTy, StrippedPtr, Off, GEP.getName())
1773                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1774                                                      GEP.getName());
1775             // The NewGEP must be pointer typed, so must the old one -> BitCast
1776             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1777                                                                  GEP.getType());
1778           }
1779         }
1780       }
1781     }
1782   }
1783 
1784   // addrspacecast between types is canonicalized as a bitcast, then an
1785   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1786   // through the addrspacecast.
1787   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1788     //   X = bitcast A addrspace(1)* to B addrspace(1)*
1789     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1790     //   Z = gep Y, <...constant indices...>
1791     // Into an addrspacecasted GEP of the struct.
1792     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1793       PtrOp = BC;
1794   }
1795 
1796   /// See if we can simplify:
1797   ///   X = bitcast A* to B*
1798   ///   Y = gep X, <...constant indices...>
1799   /// into a gep of the original struct.  This is important for SROA and alias
1800   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1801   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1802     Value *Operand = BCI->getOperand(0);
1803     PointerType *OpType = cast<PointerType>(Operand->getType());
1804     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1805     APInt Offset(OffsetBits, 0);
1806     if (!isa<BitCastInst>(Operand) &&
1807         GEP.accumulateConstantOffset(DL, Offset)) {
1808 
1809       // If this GEP instruction doesn't move the pointer, just replace the GEP
1810       // with a bitcast of the real input to the dest type.
1811       if (!Offset) {
1812         // If the bitcast is of an allocation, and the allocation will be
1813         // converted to match the type of the cast, don't touch this.
1814         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1815           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1816           if (Instruction *I = visitBitCast(*BCI)) {
1817             if (I != BCI) {
1818               I->takeName(BCI);
1819               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
1820               replaceInstUsesWith(*BCI, I);
1821             }
1822             return &GEP;
1823           }
1824         }
1825 
1826         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1827           return new AddrSpaceCastInst(Operand, GEP.getType());
1828         return new BitCastInst(Operand, GEP.getType());
1829       }
1830 
1831       // Otherwise, if the offset is non-zero, we need to find out if there is a
1832       // field at Offset in 'A's type.  If so, we can pull the cast through the
1833       // GEP.
1834       SmallVector<Value*, 8> NewIndices;
1835       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1836         Value *NGEP =
1837             GEP.isInBounds()
1838                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1839                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1840 
1841         if (NGEP->getType() == GEP.getType())
1842           return replaceInstUsesWith(GEP, NGEP);
1843         NGEP->takeName(&GEP);
1844 
1845         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1846           return new AddrSpaceCastInst(NGEP, GEP.getType());
1847         return new BitCastInst(NGEP, GEP.getType());
1848       }
1849     }
1850   }
1851 
1852   return nullptr;
1853 }
1854 
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)1855 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
1856                                          Instruction *AI) {
1857   if (isa<ConstantPointerNull>(V))
1858     return true;
1859   if (auto *LI = dyn_cast<LoadInst>(V))
1860     return isa<GlobalVariable>(LI->getPointerOperand());
1861   // Two distinct allocations will never be equal.
1862   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
1863   // through bitcasts of V can cause
1864   // the result statement below to be true, even when AI and V (ex:
1865   // i8* ->i32* ->i8* of AI) are the same allocations.
1866   return isAllocLikeFn(V, TLI) && V != AI;
1867 }
1868 
1869 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1870 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1871                      const TargetLibraryInfo *TLI) {
1872   SmallVector<Instruction*, 4> Worklist;
1873   Worklist.push_back(AI);
1874 
1875   do {
1876     Instruction *PI = Worklist.pop_back_val();
1877     for (User *U : PI->users()) {
1878       Instruction *I = cast<Instruction>(U);
1879       switch (I->getOpcode()) {
1880       default:
1881         // Give up the moment we see something we can't handle.
1882         return false;
1883 
1884       case Instruction::BitCast:
1885       case Instruction::GetElementPtr:
1886         Users.emplace_back(I);
1887         Worklist.push_back(I);
1888         continue;
1889 
1890       case Instruction::ICmp: {
1891         ICmpInst *ICI = cast<ICmpInst>(I);
1892         // We can fold eq/ne comparisons with null to false/true, respectively.
1893         // We also fold comparisons in some conditions provided the alloc has
1894         // not escaped (see isNeverEqualToUnescapedAlloc).
1895         if (!ICI->isEquality())
1896           return false;
1897         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
1898         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
1899           return false;
1900         Users.emplace_back(I);
1901         continue;
1902       }
1903 
1904       case Instruction::Call:
1905         // Ignore no-op and store intrinsics.
1906         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1907           switch (II->getIntrinsicID()) {
1908           default:
1909             return false;
1910 
1911           case Intrinsic::memmove:
1912           case Intrinsic::memcpy:
1913           case Intrinsic::memset: {
1914             MemIntrinsic *MI = cast<MemIntrinsic>(II);
1915             if (MI->isVolatile() || MI->getRawDest() != PI)
1916               return false;
1917           }
1918           // fall through
1919           case Intrinsic::dbg_declare:
1920           case Intrinsic::dbg_value:
1921           case Intrinsic::invariant_start:
1922           case Intrinsic::invariant_end:
1923           case Intrinsic::lifetime_start:
1924           case Intrinsic::lifetime_end:
1925           case Intrinsic::objectsize:
1926             Users.emplace_back(I);
1927             continue;
1928           }
1929         }
1930 
1931         if (isFreeCall(I, TLI)) {
1932           Users.emplace_back(I);
1933           continue;
1934         }
1935         return false;
1936 
1937       case Instruction::Store: {
1938         StoreInst *SI = cast<StoreInst>(I);
1939         if (SI->isVolatile() || SI->getPointerOperand() != PI)
1940           return false;
1941         Users.emplace_back(I);
1942         continue;
1943       }
1944       }
1945       llvm_unreachable("missing a return?");
1946     }
1947   } while (!Worklist.empty());
1948   return true;
1949 }
1950 
visitAllocSite(Instruction & MI)1951 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1952   // If we have a malloc call which is only used in any amount of comparisons
1953   // to null and free calls, delete the calls and replace the comparisons with
1954   // true or false as appropriate.
1955   SmallVector<WeakVH, 64> Users;
1956   if (isAllocSiteRemovable(&MI, Users, TLI)) {
1957     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1958       // Lowering all @llvm.objectsize calls first because they may
1959       // use a bitcast/GEP of the alloca we are removing.
1960       if (!Users[i])
1961        continue;
1962 
1963       Instruction *I = cast<Instruction>(&*Users[i]);
1964 
1965       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1966         if (II->getIntrinsicID() == Intrinsic::objectsize) {
1967           uint64_t Size;
1968           if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
1969             ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1970             Size = CI->isZero() ? -1ULL : 0;
1971           }
1972           replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
1973           eraseInstFromFunction(*I);
1974           Users[i] = nullptr; // Skip examining in the next loop.
1975         }
1976       }
1977     }
1978     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1979       if (!Users[i])
1980         continue;
1981 
1982       Instruction *I = cast<Instruction>(&*Users[i]);
1983 
1984       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1985         replaceInstUsesWith(*C,
1986                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
1987                                              C->isFalseWhenEqual()));
1988       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1989         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
1990       }
1991       eraseInstFromFunction(*I);
1992     }
1993 
1994     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1995       // Replace invoke with a NOP intrinsic to maintain the original CFG
1996       Module *M = II->getModule();
1997       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1998       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1999                          None, "", II->getParent());
2000     }
2001     return eraseInstFromFunction(MI);
2002   }
2003   return nullptr;
2004 }
2005 
2006 /// \brief Move the call to free before a NULL test.
2007 ///
2008 /// Check if this free is accessed after its argument has been test
2009 /// against NULL (property 0).
2010 /// If yes, it is legal to move this call in its predecessor block.
2011 ///
2012 /// The move is performed only if the block containing the call to free
2013 /// will be removed, i.e.:
2014 /// 1. it has only one predecessor P, and P has two successors
2015 /// 2. it contains the call and an unconditional branch
2016 /// 3. its successor is the same as its predecessor's successor
2017 ///
2018 /// The profitability is out-of concern here and this function should
2019 /// be called only if the caller knows this transformation would be
2020 /// profitable (e.g., for code size).
2021 static Instruction *
tryToMoveFreeBeforeNullTest(CallInst & FI)2022 tryToMoveFreeBeforeNullTest(CallInst &FI) {
2023   Value *Op = FI.getArgOperand(0);
2024   BasicBlock *FreeInstrBB = FI.getParent();
2025   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2026 
2027   // Validate part of constraint #1: Only one predecessor
2028   // FIXME: We can extend the number of predecessor, but in that case, we
2029   //        would duplicate the call to free in each predecessor and it may
2030   //        not be profitable even for code size.
2031   if (!PredBB)
2032     return nullptr;
2033 
2034   // Validate constraint #2: Does this block contains only the call to
2035   //                         free and an unconditional branch?
2036   // FIXME: We could check if we can speculate everything in the
2037   //        predecessor block
2038   if (FreeInstrBB->size() != 2)
2039     return nullptr;
2040   BasicBlock *SuccBB;
2041   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
2042     return nullptr;
2043 
2044   // Validate the rest of constraint #1 by matching on the pred branch.
2045   TerminatorInst *TI = PredBB->getTerminator();
2046   BasicBlock *TrueBB, *FalseBB;
2047   ICmpInst::Predicate Pred;
2048   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
2049     return nullptr;
2050   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2051     return nullptr;
2052 
2053   // Validate constraint #3: Ensure the null case just falls through.
2054   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2055     return nullptr;
2056   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2057          "Broken CFG: missing edge from predecessor to successor");
2058 
2059   FI.moveBefore(TI);
2060   return &FI;
2061 }
2062 
2063 
visitFree(CallInst & FI)2064 Instruction *InstCombiner::visitFree(CallInst &FI) {
2065   Value *Op = FI.getArgOperand(0);
2066 
2067   // free undef -> unreachable.
2068   if (isa<UndefValue>(Op)) {
2069     // Insert a new store to null because we cannot modify the CFG here.
2070     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
2071                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2072     return eraseInstFromFunction(FI);
2073   }
2074 
2075   // If we have 'free null' delete the instruction.  This can happen in stl code
2076   // when lots of inlining happens.
2077   if (isa<ConstantPointerNull>(Op))
2078     return eraseInstFromFunction(FI);
2079 
2080   // If we optimize for code size, try to move the call to free before the null
2081   // test so that simplify cfg can remove the empty block and dead code
2082   // elimination the branch. I.e., helps to turn something like:
2083   // if (foo) free(foo);
2084   // into
2085   // free(foo);
2086   if (MinimizeSize)
2087     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
2088       return I;
2089 
2090   return nullptr;
2091 }
2092 
visitReturnInst(ReturnInst & RI)2093 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2094   if (RI.getNumOperands() == 0) // ret void
2095     return nullptr;
2096 
2097   Value *ResultOp = RI.getOperand(0);
2098   Type *VTy = ResultOp->getType();
2099   if (!VTy->isIntegerTy())
2100     return nullptr;
2101 
2102   // There might be assume intrinsics dominating this return that completely
2103   // determine the value. If so, constant fold it.
2104   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2105   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2106   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2107   if ((KnownZero|KnownOne).isAllOnesValue())
2108     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2109 
2110   return nullptr;
2111 }
2112 
visitBranchInst(BranchInst & BI)2113 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2114   // Change br (not X), label True, label False to: br X, label False, True
2115   Value *X = nullptr;
2116   BasicBlock *TrueDest;
2117   BasicBlock *FalseDest;
2118   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2119       !isa<Constant>(X)) {
2120     // Swap Destinations and condition...
2121     BI.setCondition(X);
2122     BI.swapSuccessors();
2123     return &BI;
2124   }
2125 
2126   // If the condition is irrelevant, remove the use so that other
2127   // transforms on the condition become more effective.
2128   if (BI.isConditional() &&
2129       BI.getSuccessor(0) == BI.getSuccessor(1) &&
2130       !isa<UndefValue>(BI.getCondition())) {
2131     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2132     return &BI;
2133   }
2134 
2135   // Canonicalize fcmp_one -> fcmp_oeq
2136   FCmpInst::Predicate FPred; Value *Y;
2137   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2138                              TrueDest, FalseDest)) &&
2139       BI.getCondition()->hasOneUse())
2140     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2141         FPred == FCmpInst::FCMP_OGE) {
2142       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2143       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2144 
2145       // Swap Destinations and condition.
2146       BI.swapSuccessors();
2147       Worklist.Add(Cond);
2148       return &BI;
2149     }
2150 
2151   // Canonicalize icmp_ne -> icmp_eq
2152   ICmpInst::Predicate IPred;
2153   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2154                       TrueDest, FalseDest)) &&
2155       BI.getCondition()->hasOneUse())
2156     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
2157         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2158         IPred == ICmpInst::ICMP_SGE) {
2159       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2160       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2161       // Swap Destinations and condition.
2162       BI.swapSuccessors();
2163       Worklist.Add(Cond);
2164       return &BI;
2165     }
2166 
2167   return nullptr;
2168 }
2169 
visitSwitchInst(SwitchInst & SI)2170 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2171   Value *Cond = SI.getCondition();
2172   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2173   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2174   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2175   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2176   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2177 
2178   // Compute the number of leading bits we can ignore.
2179   // TODO: A better way to determine this would use ComputeNumSignBits().
2180   for (auto &C : SI.cases()) {
2181     LeadingKnownZeros = std::min(
2182         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2183     LeadingKnownOnes = std::min(
2184         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2185   }
2186 
2187   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2188 
2189   // Shrink the condition operand if the new type is smaller than the old type.
2190   // This may produce a non-standard type for the switch, but that's ok because
2191   // the backend should extend back to a legal type for the target.
2192   bool TruncCond = false;
2193   if (NewWidth > 0 && NewWidth < BitWidth) {
2194     TruncCond = true;
2195     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2196     Builder->SetInsertPoint(&SI);
2197     Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
2198     SI.setCondition(NewCond);
2199 
2200     for (auto &C : SI.cases())
2201       static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2202           SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2203   }
2204 
2205   ConstantInt *AddRHS = nullptr;
2206   if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) {
2207     Instruction *I = cast<Instruction>(Cond);
2208     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2209     for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
2210          ++i) {
2211       ConstantInt *CaseVal = i.getCaseValue();
2212       Constant *LHS = CaseVal;
2213       if (TruncCond) {
2214         LHS = LeadingKnownZeros
2215                   ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2216                   : ConstantExpr::getSExt(CaseVal, Cond->getType());
2217       }
2218       Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2219       assert(isa<ConstantInt>(NewCaseVal) &&
2220              "Result of expression should be constant");
2221       i.setValue(cast<ConstantInt>(NewCaseVal));
2222     }
2223     SI.setCondition(I->getOperand(0));
2224     Worklist.Add(I);
2225     return &SI;
2226   }
2227 
2228   return TruncCond ? &SI : nullptr;
2229 }
2230 
visitExtractValueInst(ExtractValueInst & EV)2231 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2232   Value *Agg = EV.getAggregateOperand();
2233 
2234   if (!EV.hasIndices())
2235     return replaceInstUsesWith(EV, Agg);
2236 
2237   if (Value *V =
2238           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
2239     return replaceInstUsesWith(EV, V);
2240 
2241   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2242     // We're extracting from an insertvalue instruction, compare the indices
2243     const unsigned *exti, *exte, *insi, *inse;
2244     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2245          exte = EV.idx_end(), inse = IV->idx_end();
2246          exti != exte && insi != inse;
2247          ++exti, ++insi) {
2248       if (*insi != *exti)
2249         // The insert and extract both reference distinctly different elements.
2250         // This means the extract is not influenced by the insert, and we can
2251         // replace the aggregate operand of the extract with the aggregate
2252         // operand of the insert. i.e., replace
2253         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2254         // %E = extractvalue { i32, { i32 } } %I, 0
2255         // with
2256         // %E = extractvalue { i32, { i32 } } %A, 0
2257         return ExtractValueInst::Create(IV->getAggregateOperand(),
2258                                         EV.getIndices());
2259     }
2260     if (exti == exte && insi == inse)
2261       // Both iterators are at the end: Index lists are identical. Replace
2262       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2263       // %C = extractvalue { i32, { i32 } } %B, 1, 0
2264       // with "i32 42"
2265       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2266     if (exti == exte) {
2267       // The extract list is a prefix of the insert list. i.e. replace
2268       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2269       // %E = extractvalue { i32, { i32 } } %I, 1
2270       // with
2271       // %X = extractvalue { i32, { i32 } } %A, 1
2272       // %E = insertvalue { i32 } %X, i32 42, 0
2273       // by switching the order of the insert and extract (though the
2274       // insertvalue should be left in, since it may have other uses).
2275       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2276                                                  EV.getIndices());
2277       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2278                                      makeArrayRef(insi, inse));
2279     }
2280     if (insi == inse)
2281       // The insert list is a prefix of the extract list
2282       // We can simply remove the common indices from the extract and make it
2283       // operate on the inserted value instead of the insertvalue result.
2284       // i.e., replace
2285       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2286       // %E = extractvalue { i32, { i32 } } %I, 1, 0
2287       // with
2288       // %E extractvalue { i32 } { i32 42 }, 0
2289       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2290                                       makeArrayRef(exti, exte));
2291   }
2292   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2293     // We're extracting from an intrinsic, see if we're the only user, which
2294     // allows us to simplify multiple result intrinsics to simpler things that
2295     // just get one value.
2296     if (II->hasOneUse()) {
2297       // Check if we're grabbing the overflow bit or the result of a 'with
2298       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
2299       // and replace it with a traditional binary instruction.
2300       switch (II->getIntrinsicID()) {
2301       case Intrinsic::uadd_with_overflow:
2302       case Intrinsic::sadd_with_overflow:
2303         if (*EV.idx_begin() == 0) {  // Normal result.
2304           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2305           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2306           eraseInstFromFunction(*II);
2307           return BinaryOperator::CreateAdd(LHS, RHS);
2308         }
2309 
2310         // If the normal result of the add is dead, and the RHS is a constant,
2311         // we can transform this into a range comparison.
2312         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2313         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2314           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2315             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2316                                 ConstantExpr::getNot(CI));
2317         break;
2318       case Intrinsic::usub_with_overflow:
2319       case Intrinsic::ssub_with_overflow:
2320         if (*EV.idx_begin() == 0) {  // Normal result.
2321           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2322           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2323           eraseInstFromFunction(*II);
2324           return BinaryOperator::CreateSub(LHS, RHS);
2325         }
2326         break;
2327       case Intrinsic::umul_with_overflow:
2328       case Intrinsic::smul_with_overflow:
2329         if (*EV.idx_begin() == 0) {  // Normal result.
2330           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2331           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2332           eraseInstFromFunction(*II);
2333           return BinaryOperator::CreateMul(LHS, RHS);
2334         }
2335         break;
2336       default:
2337         break;
2338       }
2339     }
2340   }
2341   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2342     // If the (non-volatile) load only has one use, we can rewrite this to a
2343     // load from a GEP. This reduces the size of the load. If a load is used
2344     // only by extractvalue instructions then this either must have been
2345     // optimized before, or it is a struct with padding, in which case we
2346     // don't want to do the transformation as it loses padding knowledge.
2347     if (L->isSimple() && L->hasOneUse()) {
2348       // extractvalue has integer indices, getelementptr has Value*s. Convert.
2349       SmallVector<Value*, 4> Indices;
2350       // Prefix an i32 0 since we need the first element.
2351       Indices.push_back(Builder->getInt32(0));
2352       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2353             I != E; ++I)
2354         Indices.push_back(Builder->getInt32(*I));
2355 
2356       // We need to insert these at the location of the old load, not at that of
2357       // the extractvalue.
2358       Builder->SetInsertPoint(L);
2359       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2360                                               L->getPointerOperand(), Indices);
2361       // Returning the load directly will cause the main loop to insert it in
2362       // the wrong spot, so use replaceInstUsesWith().
2363       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2364     }
2365   // We could simplify extracts from other values. Note that nested extracts may
2366   // already be simplified implicitly by the above: extract (extract (insert) )
2367   // will be translated into extract ( insert ( extract ) ) first and then just
2368   // the value inserted, if appropriate. Similarly for extracts from single-use
2369   // loads: extract (extract (load)) will be translated to extract (load (gep))
2370   // and if again single-use then via load (gep (gep)) to load (gep).
2371   // However, double extracts from e.g. function arguments or return values
2372   // aren't handled yet.
2373   return nullptr;
2374 }
2375 
2376 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)2377 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2378   switch (Personality) {
2379   case EHPersonality::GNU_C:
2380   case EHPersonality::GNU_C_SjLj:
2381   case EHPersonality::Rust:
2382     // The GCC C EH and Rust personality only exists to support cleanups, so
2383     // it's not clear what the semantics of catch clauses are.
2384     return false;
2385   case EHPersonality::Unknown:
2386     return false;
2387   case EHPersonality::GNU_Ada:
2388     // While __gnat_all_others_value will match any Ada exception, it doesn't
2389     // match foreign exceptions (or didn't, before gcc-4.7).
2390     return false;
2391   case EHPersonality::GNU_CXX:
2392   case EHPersonality::GNU_CXX_SjLj:
2393   case EHPersonality::GNU_ObjC:
2394   case EHPersonality::MSVC_X86SEH:
2395   case EHPersonality::MSVC_Win64SEH:
2396   case EHPersonality::MSVC_CXX:
2397   case EHPersonality::CoreCLR:
2398     return TypeInfo->isNullValue();
2399   }
2400   llvm_unreachable("invalid enum");
2401 }
2402 
shorter_filter(const Value * LHS,const Value * RHS)2403 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2404   return
2405     cast<ArrayType>(LHS->getType())->getNumElements()
2406   <
2407     cast<ArrayType>(RHS->getType())->getNumElements();
2408 }
2409 
visitLandingPadInst(LandingPadInst & LI)2410 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2411   // The logic here should be correct for any real-world personality function.
2412   // However if that turns out not to be true, the offending logic can always
2413   // be conditioned on the personality function, like the catch-all logic is.
2414   EHPersonality Personality =
2415       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2416 
2417   // Simplify the list of clauses, eg by removing repeated catch clauses
2418   // (these are often created by inlining).
2419   bool MakeNewInstruction = false; // If true, recreate using the following:
2420   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2421   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
2422 
2423   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2424   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2425     bool isLastClause = i + 1 == e;
2426     if (LI.isCatch(i)) {
2427       // A catch clause.
2428       Constant *CatchClause = LI.getClause(i);
2429       Constant *TypeInfo = CatchClause->stripPointerCasts();
2430 
2431       // If we already saw this clause, there is no point in having a second
2432       // copy of it.
2433       if (AlreadyCaught.insert(TypeInfo).second) {
2434         // This catch clause was not already seen.
2435         NewClauses.push_back(CatchClause);
2436       } else {
2437         // Repeated catch clause - drop the redundant copy.
2438         MakeNewInstruction = true;
2439       }
2440 
2441       // If this is a catch-all then there is no point in keeping any following
2442       // clauses or marking the landingpad as having a cleanup.
2443       if (isCatchAll(Personality, TypeInfo)) {
2444         if (!isLastClause)
2445           MakeNewInstruction = true;
2446         CleanupFlag = false;
2447         break;
2448       }
2449     } else {
2450       // A filter clause.  If any of the filter elements were already caught
2451       // then they can be dropped from the filter.  It is tempting to try to
2452       // exploit the filter further by saying that any typeinfo that does not
2453       // occur in the filter can't be caught later (and thus can be dropped).
2454       // However this would be wrong, since typeinfos can match without being
2455       // equal (for example if one represents a C++ class, and the other some
2456       // class derived from it).
2457       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2458       Constant *FilterClause = LI.getClause(i);
2459       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2460       unsigned NumTypeInfos = FilterType->getNumElements();
2461 
2462       // An empty filter catches everything, so there is no point in keeping any
2463       // following clauses or marking the landingpad as having a cleanup.  By
2464       // dealing with this case here the following code is made a bit simpler.
2465       if (!NumTypeInfos) {
2466         NewClauses.push_back(FilterClause);
2467         if (!isLastClause)
2468           MakeNewInstruction = true;
2469         CleanupFlag = false;
2470         break;
2471       }
2472 
2473       bool MakeNewFilter = false; // If true, make a new filter.
2474       SmallVector<Constant *, 16> NewFilterElts; // New elements.
2475       if (isa<ConstantAggregateZero>(FilterClause)) {
2476         // Not an empty filter - it contains at least one null typeinfo.
2477         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2478         Constant *TypeInfo =
2479           Constant::getNullValue(FilterType->getElementType());
2480         // If this typeinfo is a catch-all then the filter can never match.
2481         if (isCatchAll(Personality, TypeInfo)) {
2482           // Throw the filter away.
2483           MakeNewInstruction = true;
2484           continue;
2485         }
2486 
2487         // There is no point in having multiple copies of this typeinfo, so
2488         // discard all but the first copy if there is more than one.
2489         NewFilterElts.push_back(TypeInfo);
2490         if (NumTypeInfos > 1)
2491           MakeNewFilter = true;
2492       } else {
2493         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2494         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2495         NewFilterElts.reserve(NumTypeInfos);
2496 
2497         // Remove any filter elements that were already caught or that already
2498         // occurred in the filter.  While there, see if any of the elements are
2499         // catch-alls.  If so, the filter can be discarded.
2500         bool SawCatchAll = false;
2501         for (unsigned j = 0; j != NumTypeInfos; ++j) {
2502           Constant *Elt = Filter->getOperand(j);
2503           Constant *TypeInfo = Elt->stripPointerCasts();
2504           if (isCatchAll(Personality, TypeInfo)) {
2505             // This element is a catch-all.  Bail out, noting this fact.
2506             SawCatchAll = true;
2507             break;
2508           }
2509 
2510           // Even if we've seen a type in a catch clause, we don't want to
2511           // remove it from the filter.  An unexpected type handler may be
2512           // set up for a call site which throws an exception of the same
2513           // type caught.  In order for the exception thrown by the unexpected
2514           // handler to propogate correctly, the filter must be correctly
2515           // described for the call site.
2516           //
2517           // Example:
2518           //
2519           // void unexpected() { throw 1;}
2520           // void foo() throw (int) {
2521           //   std::set_unexpected(unexpected);
2522           //   try {
2523           //     throw 2.0;
2524           //   } catch (int i) {}
2525           // }
2526 
2527           // There is no point in having multiple copies of the same typeinfo in
2528           // a filter, so only add it if we didn't already.
2529           if (SeenInFilter.insert(TypeInfo).second)
2530             NewFilterElts.push_back(cast<Constant>(Elt));
2531         }
2532         // A filter containing a catch-all cannot match anything by definition.
2533         if (SawCatchAll) {
2534           // Throw the filter away.
2535           MakeNewInstruction = true;
2536           continue;
2537         }
2538 
2539         // If we dropped something from the filter, make a new one.
2540         if (NewFilterElts.size() < NumTypeInfos)
2541           MakeNewFilter = true;
2542       }
2543       if (MakeNewFilter) {
2544         FilterType = ArrayType::get(FilterType->getElementType(),
2545                                     NewFilterElts.size());
2546         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2547         MakeNewInstruction = true;
2548       }
2549 
2550       NewClauses.push_back(FilterClause);
2551 
2552       // If the new filter is empty then it will catch everything so there is
2553       // no point in keeping any following clauses or marking the landingpad
2554       // as having a cleanup.  The case of the original filter being empty was
2555       // already handled above.
2556       if (MakeNewFilter && !NewFilterElts.size()) {
2557         assert(MakeNewInstruction && "New filter but not a new instruction!");
2558         CleanupFlag = false;
2559         break;
2560       }
2561     }
2562   }
2563 
2564   // If several filters occur in a row then reorder them so that the shortest
2565   // filters come first (those with the smallest number of elements).  This is
2566   // advantageous because shorter filters are more likely to match, speeding up
2567   // unwinding, but mostly because it increases the effectiveness of the other
2568   // filter optimizations below.
2569   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2570     unsigned j;
2571     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2572     for (j = i; j != e; ++j)
2573       if (!isa<ArrayType>(NewClauses[j]->getType()))
2574         break;
2575 
2576     // Check whether the filters are already sorted by length.  We need to know
2577     // if sorting them is actually going to do anything so that we only make a
2578     // new landingpad instruction if it does.
2579     for (unsigned k = i; k + 1 < j; ++k)
2580       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2581         // Not sorted, so sort the filters now.  Doing an unstable sort would be
2582         // correct too but reordering filters pointlessly might confuse users.
2583         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2584                          shorter_filter);
2585         MakeNewInstruction = true;
2586         break;
2587       }
2588 
2589     // Look for the next batch of filters.
2590     i = j + 1;
2591   }
2592 
2593   // If typeinfos matched if and only if equal, then the elements of a filter L
2594   // that occurs later than a filter F could be replaced by the intersection of
2595   // the elements of F and L.  In reality two typeinfos can match without being
2596   // equal (for example if one represents a C++ class, and the other some class
2597   // derived from it) so it would be wrong to perform this transform in general.
2598   // However the transform is correct and useful if F is a subset of L.  In that
2599   // case L can be replaced by F, and thus removed altogether since repeating a
2600   // filter is pointless.  So here we look at all pairs of filters F and L where
2601   // L follows F in the list of clauses, and remove L if every element of F is
2602   // an element of L.  This can occur when inlining C++ functions with exception
2603   // specifications.
2604   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2605     // Examine each filter in turn.
2606     Value *Filter = NewClauses[i];
2607     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2608     if (!FTy)
2609       // Not a filter - skip it.
2610       continue;
2611     unsigned FElts = FTy->getNumElements();
2612     // Examine each filter following this one.  Doing this backwards means that
2613     // we don't have to worry about filters disappearing under us when removed.
2614     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2615       Value *LFilter = NewClauses[j];
2616       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2617       if (!LTy)
2618         // Not a filter - skip it.
2619         continue;
2620       // If Filter is a subset of LFilter, i.e. every element of Filter is also
2621       // an element of LFilter, then discard LFilter.
2622       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2623       // If Filter is empty then it is a subset of LFilter.
2624       if (!FElts) {
2625         // Discard LFilter.
2626         NewClauses.erase(J);
2627         MakeNewInstruction = true;
2628         // Move on to the next filter.
2629         continue;
2630       }
2631       unsigned LElts = LTy->getNumElements();
2632       // If Filter is longer than LFilter then it cannot be a subset of it.
2633       if (FElts > LElts)
2634         // Move on to the next filter.
2635         continue;
2636       // At this point we know that LFilter has at least one element.
2637       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2638         // Filter is a subset of LFilter iff Filter contains only zeros (as we
2639         // already know that Filter is not longer than LFilter).
2640         if (isa<ConstantAggregateZero>(Filter)) {
2641           assert(FElts <= LElts && "Should have handled this case earlier!");
2642           // Discard LFilter.
2643           NewClauses.erase(J);
2644           MakeNewInstruction = true;
2645         }
2646         // Move on to the next filter.
2647         continue;
2648       }
2649       ConstantArray *LArray = cast<ConstantArray>(LFilter);
2650       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2651         // Since Filter is non-empty and contains only zeros, it is a subset of
2652         // LFilter iff LFilter contains a zero.
2653         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2654         for (unsigned l = 0; l != LElts; ++l)
2655           if (LArray->getOperand(l)->isNullValue()) {
2656             // LFilter contains a zero - discard it.
2657             NewClauses.erase(J);
2658             MakeNewInstruction = true;
2659             break;
2660           }
2661         // Move on to the next filter.
2662         continue;
2663       }
2664       // At this point we know that both filters are ConstantArrays.  Loop over
2665       // operands to see whether every element of Filter is also an element of
2666       // LFilter.  Since filters tend to be short this is probably faster than
2667       // using a method that scales nicely.
2668       ConstantArray *FArray = cast<ConstantArray>(Filter);
2669       bool AllFound = true;
2670       for (unsigned f = 0; f != FElts; ++f) {
2671         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2672         AllFound = false;
2673         for (unsigned l = 0; l != LElts; ++l) {
2674           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2675           if (LTypeInfo == FTypeInfo) {
2676             AllFound = true;
2677             break;
2678           }
2679         }
2680         if (!AllFound)
2681           break;
2682       }
2683       if (AllFound) {
2684         // Discard LFilter.
2685         NewClauses.erase(J);
2686         MakeNewInstruction = true;
2687       }
2688       // Move on to the next filter.
2689     }
2690   }
2691 
2692   // If we changed any of the clauses, replace the old landingpad instruction
2693   // with a new one.
2694   if (MakeNewInstruction) {
2695     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2696                                                  NewClauses.size());
2697     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2698       NLI->addClause(NewClauses[i]);
2699     // A landing pad with no clauses must have the cleanup flag set.  It is
2700     // theoretically possible, though highly unlikely, that we eliminated all
2701     // clauses.  If so, force the cleanup flag to true.
2702     if (NewClauses.empty())
2703       CleanupFlag = true;
2704     NLI->setCleanup(CleanupFlag);
2705     return NLI;
2706   }
2707 
2708   // Even if none of the clauses changed, we may nonetheless have understood
2709   // that the cleanup flag is pointless.  Clear it if so.
2710   if (LI.isCleanup() != CleanupFlag) {
2711     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2712     LI.setCleanup(CleanupFlag);
2713     return &LI;
2714   }
2715 
2716   return nullptr;
2717 }
2718 
2719 /// Try to move the specified instruction from its current block into the
2720 /// beginning of DestBlock, which can only happen if it's safe to move the
2721 /// instruction past all of the instructions between it and the end of its
2722 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)2723 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2724   assert(I->hasOneUse() && "Invariants didn't hold!");
2725 
2726   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2727   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
2728       isa<TerminatorInst>(I))
2729     return false;
2730 
2731   // Do not sink alloca instructions out of the entry block.
2732   if (isa<AllocaInst>(I) && I->getParent() ==
2733         &DestBlock->getParent()->getEntryBlock())
2734     return false;
2735 
2736   // Do not sink into catchswitch blocks.
2737   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
2738     return false;
2739 
2740   // Do not sink convergent call instructions.
2741   if (auto *CI = dyn_cast<CallInst>(I)) {
2742     if (CI->isConvergent())
2743       return false;
2744   }
2745   // We can only sink load instructions if there is nothing between the load and
2746   // the end of block that could change the value.
2747   if (I->mayReadFromMemory()) {
2748     for (BasicBlock::iterator Scan = I->getIterator(),
2749                               E = I->getParent()->end();
2750          Scan != E; ++Scan)
2751       if (Scan->mayWriteToMemory())
2752         return false;
2753   }
2754 
2755   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2756   I->moveBefore(&*InsertPos);
2757   ++NumSunkInst;
2758   return true;
2759 }
2760 
run()2761 bool InstCombiner::run() {
2762   while (!Worklist.isEmpty()) {
2763     Instruction *I = Worklist.RemoveOne();
2764     if (I == nullptr) continue;  // skip null values.
2765 
2766     // Check to see if we can DCE the instruction.
2767     if (isInstructionTriviallyDead(I, TLI)) {
2768       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2769       eraseInstFromFunction(*I);
2770       ++NumDeadInst;
2771       MadeIRChange = true;
2772       continue;
2773     }
2774 
2775     // Instruction isn't dead, see if we can constant propagate it.
2776     if (!I->use_empty() &&
2777         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
2778       if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2779         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2780 
2781         // Add operands to the worklist.
2782         replaceInstUsesWith(*I, C);
2783         ++NumConstProp;
2784         eraseInstFromFunction(*I);
2785         MadeIRChange = true;
2786         continue;
2787       }
2788     }
2789 
2790     // In general, it is possible for computeKnownBits to determine all bits in
2791     // a value even when the operands are not all constants.
2792     if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) {
2793       unsigned BitWidth = I->getType()->getScalarSizeInBits();
2794       APInt KnownZero(BitWidth, 0);
2795       APInt KnownOne(BitWidth, 0);
2796       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
2797       if ((KnownZero | KnownOne).isAllOnesValue()) {
2798         Constant *C = ConstantInt::get(I->getContext(), KnownOne);
2799         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
2800                         " from: " << *I << '\n');
2801 
2802         // Add operands to the worklist.
2803         replaceInstUsesWith(*I, C);
2804         ++NumConstProp;
2805         eraseInstFromFunction(*I);
2806         MadeIRChange = true;
2807         continue;
2808       }
2809     }
2810 
2811     // See if we can trivially sink this instruction to a successor basic block.
2812     if (I->hasOneUse()) {
2813       BasicBlock *BB = I->getParent();
2814       Instruction *UserInst = cast<Instruction>(*I->user_begin());
2815       BasicBlock *UserParent;
2816 
2817       // Get the block the use occurs in.
2818       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2819         UserParent = PN->getIncomingBlock(*I->use_begin());
2820       else
2821         UserParent = UserInst->getParent();
2822 
2823       if (UserParent != BB) {
2824         bool UserIsSuccessor = false;
2825         // See if the user is one of our successors.
2826         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2827           if (*SI == UserParent) {
2828             UserIsSuccessor = true;
2829             break;
2830           }
2831 
2832         // If the user is one of our immediate successors, and if that successor
2833         // only has us as a predecessors (we'd have to split the critical edge
2834         // otherwise), we can keep going.
2835         if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2836           // Okay, the CFG is simple enough, try to sink this instruction.
2837           if (TryToSinkInstruction(I, UserParent)) {
2838             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
2839             MadeIRChange = true;
2840             // We'll add uses of the sunk instruction below, but since sinking
2841             // can expose opportunities for it's *operands* add them to the
2842             // worklist
2843             for (Use &U : I->operands())
2844               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2845                 Worklist.Add(OpI);
2846           }
2847         }
2848       }
2849     }
2850 
2851     // Now that we have an instruction, try combining it to simplify it.
2852     Builder->SetInsertPoint(I);
2853     Builder->SetCurrentDebugLocation(I->getDebugLoc());
2854 
2855 #ifndef NDEBUG
2856     std::string OrigI;
2857 #endif
2858     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2859     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2860 
2861     if (Instruction *Result = visit(*I)) {
2862       ++NumCombined;
2863       // Should we replace the old instruction with a new one?
2864       if (Result != I) {
2865         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2866                      << "    New = " << *Result << '\n');
2867 
2868         if (I->getDebugLoc())
2869           Result->setDebugLoc(I->getDebugLoc());
2870         // Everything uses the new instruction now.
2871         I->replaceAllUsesWith(Result);
2872 
2873         // Move the name to the new instruction first.
2874         Result->takeName(I);
2875 
2876         // Push the new instruction and any users onto the worklist.
2877         Worklist.Add(Result);
2878         Worklist.AddUsersToWorkList(*Result);
2879 
2880         // Insert the new instruction into the basic block...
2881         BasicBlock *InstParent = I->getParent();
2882         BasicBlock::iterator InsertPos = I->getIterator();
2883 
2884         // If we replace a PHI with something that isn't a PHI, fix up the
2885         // insertion point.
2886         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2887           InsertPos = InstParent->getFirstInsertionPt();
2888 
2889         InstParent->getInstList().insert(InsertPos, Result);
2890 
2891         eraseInstFromFunction(*I);
2892       } else {
2893 #ifndef NDEBUG
2894         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2895                      << "    New = " << *I << '\n');
2896 #endif
2897 
2898         // If the instruction was modified, it's possible that it is now dead.
2899         // if so, remove it.
2900         if (isInstructionTriviallyDead(I, TLI)) {
2901           eraseInstFromFunction(*I);
2902         } else {
2903           Worklist.Add(I);
2904           Worklist.AddUsersToWorkList(*I);
2905         }
2906       }
2907       MadeIRChange = true;
2908     }
2909   }
2910 
2911   Worklist.Zap();
2912   return MadeIRChange;
2913 }
2914 
2915 /// Walk the function in depth-first order, adding all reachable code to the
2916 /// worklist.
2917 ///
2918 /// This has a couple of tricks to make the code faster and more powerful.  In
2919 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2920 /// them to the worklist (this significantly speeds up instcombine on code where
2921 /// many instructions are dead or constant).  Additionally, if we find a branch
2922 /// whose condition is a known constant, we only visit the reachable successors.
2923 ///
AddReachableCodeToWorklist(BasicBlock * BB,const DataLayout & DL,SmallPtrSetImpl<BasicBlock * > & Visited,InstCombineWorklist & ICWorklist,const TargetLibraryInfo * TLI)2924 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2925                                        SmallPtrSetImpl<BasicBlock *> &Visited,
2926                                        InstCombineWorklist &ICWorklist,
2927                                        const TargetLibraryInfo *TLI) {
2928   bool MadeIRChange = false;
2929   SmallVector<BasicBlock*, 256> Worklist;
2930   Worklist.push_back(BB);
2931 
2932   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2933   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2934 
2935   do {
2936     BB = Worklist.pop_back_val();
2937 
2938     // We have now visited this block!  If we've already been here, ignore it.
2939     if (!Visited.insert(BB).second)
2940       continue;
2941 
2942     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2943       Instruction *Inst = &*BBI++;
2944 
2945       // DCE instruction if trivially dead.
2946       if (isInstructionTriviallyDead(Inst, TLI)) {
2947         ++NumDeadInst;
2948         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2949         Inst->eraseFromParent();
2950         continue;
2951       }
2952 
2953       // ConstantProp instruction if trivially constant.
2954       if (!Inst->use_empty() &&
2955           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
2956         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2957           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2958                        << *Inst << '\n');
2959           Inst->replaceAllUsesWith(C);
2960           ++NumConstProp;
2961           Inst->eraseFromParent();
2962           continue;
2963         }
2964 
2965       // See if we can constant fold its operands.
2966       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2967            ++i) {
2968         ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2969         if (CE == nullptr)
2970           continue;
2971 
2972         Constant *&FoldRes = FoldedConstants[CE];
2973         if (!FoldRes)
2974           FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2975         if (!FoldRes)
2976           FoldRes = CE;
2977 
2978         if (FoldRes != CE) {
2979           *i = FoldRes;
2980           MadeIRChange = true;
2981         }
2982       }
2983 
2984       InstrsForInstCombineWorklist.push_back(Inst);
2985     }
2986 
2987     // Recursively visit successors.  If this is a branch or switch on a
2988     // constant, only visit the reachable successor.
2989     TerminatorInst *TI = BB->getTerminator();
2990     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2991       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2992         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2993         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2994         Worklist.push_back(ReachableBB);
2995         continue;
2996       }
2997     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2998       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2999         // See if this is an explicit destination.
3000         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3001              i != e; ++i)
3002           if (i.getCaseValue() == Cond) {
3003             BasicBlock *ReachableBB = i.getCaseSuccessor();
3004             Worklist.push_back(ReachableBB);
3005             continue;
3006           }
3007 
3008         // Otherwise it is the default destination.
3009         Worklist.push_back(SI->getDefaultDest());
3010         continue;
3011       }
3012     }
3013 
3014     for (BasicBlock *SuccBB : TI->successors())
3015       Worklist.push_back(SuccBB);
3016   } while (!Worklist.empty());
3017 
3018   // Once we've found all of the instructions to add to instcombine's worklist,
3019   // add them in reverse order.  This way instcombine will visit from the top
3020   // of the function down.  This jives well with the way that it adds all uses
3021   // of instructions to the worklist after doing a transformation, thus avoiding
3022   // some N^2 behavior in pathological cases.
3023   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3024 
3025   return MadeIRChange;
3026 }
3027 
3028 /// \brief Populate the IC worklist from a function, and prune any dead basic
3029 /// blocks discovered in the process.
3030 ///
3031 /// This also does basic constant propagation and other forward fixing to make
3032 /// the combiner itself run much faster.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3033 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3034                                           TargetLibraryInfo *TLI,
3035                                           InstCombineWorklist &ICWorklist) {
3036   bool MadeIRChange = false;
3037 
3038   // Do a depth-first traversal of the function, populate the worklist with
3039   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
3040   // track of which blocks we visit.
3041   SmallPtrSet<BasicBlock *, 32> Visited;
3042   MadeIRChange |=
3043       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3044 
3045   // Do a quick scan over the function.  If we find any blocks that are
3046   // unreachable, remove any instructions inside of them.  This prevents
3047   // the instcombine code from having to deal with some bad special cases.
3048   for (BasicBlock &BB : F) {
3049     if (Visited.count(&BB))
3050       continue;
3051 
3052     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3053     MadeIRChange |= NumDeadInstInBB > 0;
3054     NumDeadInst += NumDeadInstInBB;
3055   }
3056 
3057   return MadeIRChange;
3058 }
3059 
3060 static bool
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,bool ExpensiveCombines=true,LoopInfo * LI=nullptr)3061 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
3062                                 AliasAnalysis *AA, AssumptionCache &AC,
3063                                 TargetLibraryInfo &TLI, DominatorTree &DT,
3064                                 bool ExpensiveCombines = true,
3065                                 LoopInfo *LI = nullptr) {
3066   auto &DL = F.getParent()->getDataLayout();
3067   ExpensiveCombines |= EnableExpensiveCombines;
3068 
3069   /// Builder - This is an IRBuilder that automatically inserts new
3070   /// instructions into the worklist when they are created.
3071   IRBuilder<TargetFolder, InstCombineIRInserter> Builder(
3072       F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
3073 
3074   // Lower dbg.declare intrinsics otherwise their value may be clobbered
3075   // by instcombiner.
3076   bool DbgDeclaresChanged = LowerDbgDeclare(F);
3077 
3078   // Iterate while there is work to do.
3079   int Iteration = 0;
3080   for (;;) {
3081     ++Iteration;
3082     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3083                  << F.getName() << "\n");
3084 
3085     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3086 
3087     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
3088                     AA, &AC, &TLI, &DT, DL, LI);
3089     Changed |= IC.run();
3090 
3091     if (!Changed)
3092       break;
3093   }
3094 
3095   return DbgDeclaresChanged || Iteration > 1;
3096 }
3097 
run(Function & F,AnalysisManager<Function> & AM)3098 PreservedAnalyses InstCombinePass::run(Function &F,
3099                                        AnalysisManager<Function> &AM) {
3100   auto &AC = AM.getResult<AssumptionAnalysis>(F);
3101   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3102   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3103 
3104   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3105 
3106   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
3107   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
3108                                        ExpensiveCombines, LI))
3109     // No changes, all analyses are preserved.
3110     return PreservedAnalyses::all();
3111 
3112   // Mark all the analyses that instcombine updates as preserved.
3113   // FIXME: This should also 'preserve the CFG'.
3114   PreservedAnalyses PA;
3115   PA.preserve<DominatorTreeAnalysis>();
3116   return PA;
3117 }
3118 
getAnalysisUsage(AnalysisUsage & AU) const3119 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3120   AU.setPreservesCFG();
3121   AU.addRequired<AAResultsWrapperPass>();
3122   AU.addRequired<AssumptionCacheTracker>();
3123   AU.addRequired<TargetLibraryInfoWrapperPass>();
3124   AU.addRequired<DominatorTreeWrapperPass>();
3125   AU.addPreserved<DominatorTreeWrapperPass>();
3126   AU.addPreserved<AAResultsWrapperPass>();
3127   AU.addPreserved<BasicAAWrapperPass>();
3128   AU.addPreserved<GlobalsAAWrapperPass>();
3129 }
3130 
runOnFunction(Function & F)3131 bool InstructionCombiningPass::runOnFunction(Function &F) {
3132   if (skipFunction(F))
3133     return false;
3134 
3135   // Required analyses.
3136   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3137   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3138   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3139   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3140 
3141   // Optional analyses.
3142   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3143   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3144 
3145   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
3146                                          ExpensiveCombines, LI);
3147 }
3148 
3149 char InstructionCombiningPass::ID = 0;
3150 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3151                       "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3152 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3153 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3156 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3157 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3158                     "Combine redundant instructions", false, false)
3159 
3160 // Initialization Routines
3161 void llvm::initializeInstCombine(PassRegistry &Registry) {
3162   initializeInstructionCombiningPassPass(Registry);
3163 }
3164 
LLVMInitializeInstCombine(LLVMPassRegistryRef R)3165 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3166   initializeInstructionCombiningPassPass(*unwrap(R));
3167 }
3168 
createInstructionCombiningPass(bool ExpensiveCombines)3169 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3170   return new InstructionCombiningPass(ExpensiveCombines);
3171 }
3172