1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11 
to_vector(const Sk2s & x)12 static SkVector to_vector(const Sk2s& x) {
13     SkVector vector;
14     x.store(&vector);
15     return vector;
16 }
17 
18 ////////////////////////////////////////////////////////////////////////
19 
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)20 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
21     SkScalar ab = a - b;
22     SkScalar bc = b - c;
23     if (ab < 0) {
24         bc = -bc;
25     }
26     return ab == 0 || bc < 0;
27 }
28 
29 ////////////////////////////////////////////////////////////////////////
30 
is_unit_interval(SkScalar x)31 static bool is_unit_interval(SkScalar x) {
32     return x > 0 && x < SK_Scalar1;
33 }
34 
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
36     SkASSERT(ratio);
37 
38     if (numer < 0) {
39         numer = -numer;
40         denom = -denom;
41     }
42 
43     if (denom == 0 || numer == 0 || numer >= denom) {
44         return 0;
45     }
46 
47     SkScalar r = numer / denom;
48     if (SkScalarIsNaN(r)) {
49         return 0;
50     }
51     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
52     if (r == 0) { // catch underflow if numer <<<< denom
53         return 0;
54     }
55     *ratio = r;
56     return 1;
57 }
58 
59 /** From Numerical Recipes in C.
60 
61     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
62     x1 = Q / A
63     x2 = C / Q
64 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])65 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
66     SkASSERT(roots);
67 
68     if (A == 0) {
69         return valid_unit_divide(-C, B, roots);
70     }
71 
72     SkScalar* r = roots;
73 
74     SkScalar R = B*B - 4*A*C;
75     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
76         // if R is infinite, it's possible that it may still produce
77         // useful results if the operation was repeated in doubles
78         // the flipside is determining if the more precise answer
79         // isn't useful because surrounding machinery (e.g., subtracting
80         // the axis offset from C) already discards the extra precision
81         // more investigation and unit tests required...
82         return 0;
83     }
84     R = SkScalarSqrt(R);
85 
86     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
87     r += valid_unit_divide(Q, A, r);
88     r += valid_unit_divide(C, Q, r);
89     if (r - roots == 2) {
90         if (roots[0] > roots[1])
91             SkTSwap<SkScalar>(roots[0], roots[1]);
92         else if (roots[0] == roots[1])  // nearly-equal?
93             r -= 1; // skip the double root
94     }
95     return (int)(r - roots);
96 }
97 
98 ///////////////////////////////////////////////////////////////////////////////
99 ///////////////////////////////////////////////////////////////////////////////
100 
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)101 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
102     SkASSERT(src);
103     SkASSERT(t >= 0 && t <= SK_Scalar1);
104 
105     if (pt) {
106         *pt = SkEvalQuadAt(src, t);
107     }
108     if (tangent) {
109         *tangent = SkEvalQuadTangentAt(src, t);
110     }
111 }
112 
SkEvalQuadAt(const SkPoint src[3],SkScalar t)113 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
114     return to_point(SkQuadCoeff(src).eval(t));
115 }
116 
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)117 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
118     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
119     // zero tangent vector when t is 0 or 1, and the control point is equal
120     // to the end point. In this case, use the quad end points to compute the tangent.
121     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
122         return src[2] - src[0];
123     }
124     SkASSERT(src);
125     SkASSERT(t >= 0 && t <= SK_Scalar1);
126 
127     Sk2s P0 = from_point(src[0]);
128     Sk2s P1 = from_point(src[1]);
129     Sk2s P2 = from_point(src[2]);
130 
131     Sk2s B = P1 - P0;
132     Sk2s A = P2 - P1 - B;
133     Sk2s T = A * Sk2s(t) + B;
134 
135     return to_vector(T + T);
136 }
137 
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)138 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
139     return v0 + (v1 - v0) * t;
140 }
141 
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)142 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
143     SkASSERT(t > 0 && t < SK_Scalar1);
144 
145     Sk2s p0 = from_point(src[0]);
146     Sk2s p1 = from_point(src[1]);
147     Sk2s p2 = from_point(src[2]);
148     Sk2s tt(t);
149 
150     Sk2s p01 = interp(p0, p1, tt);
151     Sk2s p12 = interp(p1, p2, tt);
152 
153     dst[0] = to_point(p0);
154     dst[1] = to_point(p01);
155     dst[2] = to_point(interp(p01, p12, tt));
156     dst[3] = to_point(p12);
157     dst[4] = to_point(p2);
158 }
159 
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])160 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
161     SkChopQuadAt(src, dst, 0.5f);
162 }
163 
164 /** Quad'(t) = At + B, where
165     A = 2(a - 2b + c)
166     B = 2(b - a)
167     Solve for t, only if it fits between 0 < t < 1
168 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])169 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
170     /*  At + B == 0
171         t = -B / A
172     */
173     return valid_unit_divide(a - b, a - b - b + c, tValue);
174 }
175 
flatten_double_quad_extrema(SkScalar coords[14])176 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
177     coords[2] = coords[6] = coords[4];
178 }
179 
180 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
181  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
182  */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])183 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
184     SkASSERT(src);
185     SkASSERT(dst);
186 
187     SkScalar a = src[0].fY;
188     SkScalar b = src[1].fY;
189     SkScalar c = src[2].fY;
190 
191     if (is_not_monotonic(a, b, c)) {
192         SkScalar    tValue;
193         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
194             SkChopQuadAt(src, dst, tValue);
195             flatten_double_quad_extrema(&dst[0].fY);
196             return 1;
197         }
198         // if we get here, we need to force dst to be monotonic, even though
199         // we couldn't compute a unit_divide value (probably underflow).
200         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
201     }
202     dst[0].set(src[0].fX, a);
203     dst[1].set(src[1].fX, b);
204     dst[2].set(src[2].fX, c);
205     return 0;
206 }
207 
208 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
209     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
210  */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])211 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
212     SkASSERT(src);
213     SkASSERT(dst);
214 
215     SkScalar a = src[0].fX;
216     SkScalar b = src[1].fX;
217     SkScalar c = src[2].fX;
218 
219     if (is_not_monotonic(a, b, c)) {
220         SkScalar tValue;
221         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
222             SkChopQuadAt(src, dst, tValue);
223             flatten_double_quad_extrema(&dst[0].fX);
224             return 1;
225         }
226         // if we get here, we need to force dst to be monotonic, even though
227         // we couldn't compute a unit_divide value (probably underflow).
228         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
229     }
230     dst[0].set(a, src[0].fY);
231     dst[1].set(b, src[1].fY);
232     dst[2].set(c, src[2].fY);
233     return 0;
234 }
235 
236 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
237 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
238 //  F''(t)  = 2 (a - 2b + c)
239 //
240 //  A = 2 (b - a)
241 //  B = 2 (a - 2b + c)
242 //
243 //  Maximum curvature for a quadratic means solving
244 //  Fx' Fx'' + Fy' Fy'' = 0
245 //
246 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
247 //
SkFindQuadMaxCurvature(const SkPoint src[3])248 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
249     SkScalar    Ax = src[1].fX - src[0].fX;
250     SkScalar    Ay = src[1].fY - src[0].fY;
251     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
252     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
253     SkScalar    t = 0;  // 0 means don't chop
254 
255     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
256     return t;
257 }
258 
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])259 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
260     SkScalar t = SkFindQuadMaxCurvature(src);
261     if (t == 0) {
262         memcpy(dst, src, 3 * sizeof(SkPoint));
263         return 1;
264     } else {
265         SkChopQuadAt(src, dst, t);
266         return 2;
267     }
268 }
269 
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])270 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
271     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
272     Sk2s s0 = from_point(src[0]);
273     Sk2s s1 = from_point(src[1]);
274     Sk2s s2 = from_point(src[2]);
275 
276     dst[0] = src[0];
277     dst[1] = to_point(s0 + (s1 - s0) * scale);
278     dst[2] = to_point(s2 + (s1 - s2) * scale);
279     dst[3] = src[2];
280 }
281 
282 //////////////////////////////////////////////////////////////////////////////
283 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
284 //////////////////////////////////////////////////////////////////////////////
285 
eval_cubic_derivative(const SkPoint src[4],SkScalar t)286 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
287     SkQuadCoeff coeff;
288     Sk2s P0 = from_point(src[0]);
289     Sk2s P1 = from_point(src[1]);
290     Sk2s P2 = from_point(src[2]);
291     Sk2s P3 = from_point(src[3]);
292 
293     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
294     coeff.fB = times_2(P2 - times_2(P1) + P0);
295     coeff.fC = P1 - P0;
296     return to_vector(coeff.eval(t));
297 }
298 
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)299 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
300     Sk2s P0 = from_point(src[0]);
301     Sk2s P1 = from_point(src[1]);
302     Sk2s P2 = from_point(src[2]);
303     Sk2s P3 = from_point(src[3]);
304     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
305     Sk2s B = P2 - times_2(P1) + P0;
306 
307     return to_vector(A * Sk2s(t) + B);
308 }
309 
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)310 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
311                    SkVector* tangent, SkVector* curvature) {
312     SkASSERT(src);
313     SkASSERT(t >= 0 && t <= SK_Scalar1);
314 
315     if (loc) {
316         *loc = to_point(SkCubicCoeff(src).eval(t));
317     }
318     if (tangent) {
319         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
320         // adjacent control point is equal to the end point. In this case, use the
321         // next control point or the end points to compute the tangent.
322         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
323             if (t == 0) {
324                 *tangent = src[2] - src[0];
325             } else {
326                 *tangent = src[3] - src[1];
327             }
328             if (!tangent->fX && !tangent->fY) {
329                 *tangent = src[3] - src[0];
330             }
331         } else {
332             *tangent = eval_cubic_derivative(src, t);
333         }
334     }
335     if (curvature) {
336         *curvature = eval_cubic_2ndDerivative(src, t);
337     }
338 }
339 
340 /** Cubic'(t) = At^2 + Bt + C, where
341     A = 3(-a + 3(b - c) + d)
342     B = 6(a - 2b + c)
343     C = 3(b - a)
344     Solve for t, keeping only those that fit betwee 0 < t < 1
345 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])346 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
347                        SkScalar tValues[2]) {
348     // we divide A,B,C by 3 to simplify
349     SkScalar A = d - a + 3*(b - c);
350     SkScalar B = 2*(a - b - b + c);
351     SkScalar C = b - a;
352 
353     return SkFindUnitQuadRoots(A, B, C, tValues);
354 }
355 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)356 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
357     SkASSERT(t > 0 && t < SK_Scalar1);
358 
359     Sk2s    p0 = from_point(src[0]);
360     Sk2s    p1 = from_point(src[1]);
361     Sk2s    p2 = from_point(src[2]);
362     Sk2s    p3 = from_point(src[3]);
363     Sk2s    tt(t);
364 
365     Sk2s    ab = interp(p0, p1, tt);
366     Sk2s    bc = interp(p1, p2, tt);
367     Sk2s    cd = interp(p2, p3, tt);
368     Sk2s    abc = interp(ab, bc, tt);
369     Sk2s    bcd = interp(bc, cd, tt);
370     Sk2s    abcd = interp(abc, bcd, tt);
371 
372     dst[0] = src[0];
373     dst[1] = to_point(ab);
374     dst[2] = to_point(abc);
375     dst[3] = to_point(abcd);
376     dst[4] = to_point(bcd);
377     dst[5] = to_point(cd);
378     dst[6] = src[3];
379 }
380 
381 /*  http://code.google.com/p/skia/issues/detail?id=32
382 
383     This test code would fail when we didn't check the return result of
384     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
385     that after the first chop, the parameters to valid_unit_divide are equal
386     (thanks to finite float precision and rounding in the subtracts). Thus
387     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
388     up with 1.0, hence the need to check and just return the last cubic as
389     a degenerate clump of 4 points in the sampe place.
390 
391     static void test_cubic() {
392         SkPoint src[4] = {
393             { 556.25000, 523.03003 },
394             { 556.23999, 522.96002 },
395             { 556.21997, 522.89001 },
396             { 556.21997, 522.82001 }
397         };
398         SkPoint dst[10];
399         SkScalar tval[] = { 0.33333334f, 0.99999994f };
400         SkChopCubicAt(src, dst, tval, 2);
401     }
402  */
403 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)404 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
405                    const SkScalar tValues[], int roots) {
406 #ifdef SK_DEBUG
407     {
408         for (int i = 0; i < roots - 1; i++)
409         {
410             SkASSERT(is_unit_interval(tValues[i]));
411             SkASSERT(is_unit_interval(tValues[i+1]));
412             SkASSERT(tValues[i] < tValues[i+1]);
413         }
414     }
415 #endif
416 
417     if (dst) {
418         if (roots == 0) { // nothing to chop
419             memcpy(dst, src, 4*sizeof(SkPoint));
420         } else {
421             SkScalar    t = tValues[0];
422             SkPoint     tmp[4];
423 
424             for (int i = 0; i < roots; i++) {
425                 SkChopCubicAt(src, dst, t);
426                 if (i == roots - 1) {
427                     break;
428                 }
429 
430                 dst += 3;
431                 // have src point to the remaining cubic (after the chop)
432                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
433                 src = tmp;
434 
435                 // watch out in case the renormalized t isn't in range
436                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
437                                        SK_Scalar1 - tValues[i], &t)) {
438                     // if we can't, just create a degenerate cubic
439                     dst[4] = dst[5] = dst[6] = src[3];
440                     break;
441                 }
442             }
443         }
444     }
445 }
446 
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])447 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
448     SkChopCubicAt(src, dst, 0.5f);
449 }
450 
flatten_double_cubic_extrema(SkScalar coords[14])451 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
452     coords[4] = coords[8] = coords[6];
453 }
454 
455 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
456     the resulting beziers are monotonic in Y. This is called by the scan
457     converter.  Depending on what is returned, dst[] is treated as follows:
458     0   dst[0..3] is the original cubic
459     1   dst[0..3] and dst[3..6] are the two new cubics
460     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
461     If dst == null, it is ignored and only the count is returned.
462 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])463 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
464     SkScalar    tValues[2];
465     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
466                                            src[3].fY, tValues);
467 
468     SkChopCubicAt(src, dst, tValues, roots);
469     if (dst && roots > 0) {
470         // we do some cleanup to ensure our Y extrema are flat
471         flatten_double_cubic_extrema(&dst[0].fY);
472         if (roots == 2) {
473             flatten_double_cubic_extrema(&dst[3].fY);
474         }
475     }
476     return roots;
477 }
478 
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])479 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
480     SkScalar    tValues[2];
481     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
482                                            src[3].fX, tValues);
483 
484     SkChopCubicAt(src, dst, tValues, roots);
485     if (dst && roots > 0) {
486         // we do some cleanup to ensure our Y extrema are flat
487         flatten_double_cubic_extrema(&dst[0].fX);
488         if (roots == 2) {
489             flatten_double_cubic_extrema(&dst[3].fX);
490         }
491     }
492     return roots;
493 }
494 
495 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
496 
497     Inflection means that curvature is zero.
498     Curvature is [F' x F''] / [F'^3]
499     So we solve F'x X F''y - F'y X F''y == 0
500     After some canceling of the cubic term, we get
501     A = b - a
502     B = c - 2b + a
503     C = d - 3c + 3b - a
504     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
505 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])506 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
507     SkScalar    Ax = src[1].fX - src[0].fX;
508     SkScalar    Ay = src[1].fY - src[0].fY;
509     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
510     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
511     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
512     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
513 
514     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
515                                Ax*Cy - Ay*Cx,
516                                Ax*By - Ay*Bx,
517                                tValues);
518 }
519 
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])520 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
521     SkScalar    tValues[2];
522     int         count = SkFindCubicInflections(src, tValues);
523 
524     if (dst) {
525         if (count == 0) {
526             memcpy(dst, src, 4 * sizeof(SkPoint));
527         } else {
528             SkChopCubicAt(src, dst, tValues, count);
529         }
530     }
531     return count + 1;
532 }
533 
534 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
535 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
536 // Classification:
537 // discr(I) > 0        Serpentine
538 // discr(I) = 0        Cusp
539 // discr(I) < 0        Loop
540 // d0 = d1 = 0         Quadratic
541 // d0 = d1 = d2 = 0    Line
542 // p0 = p1 = p2 = p3   Point
classify_cubic(const SkPoint p[4],const SkScalar d[3])543 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
544     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
545         return kPoint_SkCubicType;
546     }
547     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
548     if (discr > SK_ScalarNearlyZero) {
549         return kSerpentine_SkCubicType;
550     } else if (discr < -SK_ScalarNearlyZero) {
551         return kLoop_SkCubicType;
552     } else {
553         if (SkScalarAbs(d[0]) < SK_ScalarNearlyZero && SkScalarAbs(d[1]) < SK_ScalarNearlyZero) {
554             return ((SkScalarAbs(d[2]) < SK_ScalarNearlyZero) ? kLine_SkCubicType
555                                                               : kQuadratic_SkCubicType);
556         } else {
557             return kCusp_SkCubicType;
558         }
559     }
560 }
561 
562 // Assumes the third component of points is 1.
563 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)564 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
565     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
566     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
567     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
568     return (xComp + yComp + wComp);
569 }
570 
571 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
572 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
573 // d0 = a1 - 2*a2+3*a3
574 // d1 = -a2 + 3*a3
575 // d2 = 3*a3
576 // a1 = p0 . (p3 x p2)
577 // a2 = p1 . (p0 x p3)
578 // a3 = p2 . (p1 x p0)
579 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],SkScalar d[3])580 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
581     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
582     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
583     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
584 
585     // need to scale a's or values in later calculations will grow to high
586     SkScalar max = SkScalarAbs(a1);
587     max = SkMaxScalar(max, SkScalarAbs(a2));
588     max = SkMaxScalar(max, SkScalarAbs(a3));
589     max = 1.f/max;
590     a1 = a1 * max;
591     a2 = a2 * max;
592     a3 = a3 * max;
593 
594     d[2] = 3.f * a3;
595     d[1] = d[2] - a2;
596     d[0] = d[1] - a2 + a1;
597 }
598 
SkClassifyCubic(const SkPoint src[4],SkScalar d[3])599 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
600     calc_cubic_inflection_func(src, d);
601     return classify_cubic(src, d);
602 }
603 
bubble_sort(T array[],int count)604 template <typename T> void bubble_sort(T array[], int count) {
605     for (int i = count - 1; i > 0; --i)
606         for (int j = i; j > 0; --j)
607             if (array[j] < array[j-1])
608             {
609                 T   tmp(array[j]);
610                 array[j] = array[j-1];
611                 array[j-1] = tmp;
612             }
613 }
614 
615 /**
616  *  Given an array and count, remove all pair-wise duplicates from the array,
617  *  keeping the existing sorting, and return the new count
618  */
collaps_duplicates(SkScalar array[],int count)619 static int collaps_duplicates(SkScalar array[], int count) {
620     for (int n = count; n > 1; --n) {
621         if (array[0] == array[1]) {
622             for (int i = 1; i < n; ++i) {
623                 array[i - 1] = array[i];
624             }
625             count -= 1;
626         } else {
627             array += 1;
628         }
629     }
630     return count;
631 }
632 
633 #ifdef SK_DEBUG
634 
635 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
636 
test_collaps_duplicates()637 static void test_collaps_duplicates() {
638     static bool gOnce;
639     if (gOnce) { return; }
640     gOnce = true;
641     const SkScalar src0[] = { 0 };
642     const SkScalar src1[] = { 0, 0 };
643     const SkScalar src2[] = { 0, 1 };
644     const SkScalar src3[] = { 0, 0, 0 };
645     const SkScalar src4[] = { 0, 0, 1 };
646     const SkScalar src5[] = { 0, 1, 1 };
647     const SkScalar src6[] = { 0, 1, 2 };
648     const struct {
649         const SkScalar* fData;
650         int fCount;
651         int fCollapsedCount;
652     } data[] = {
653         { TEST_COLLAPS_ENTRY(src0), 1 },
654         { TEST_COLLAPS_ENTRY(src1), 1 },
655         { TEST_COLLAPS_ENTRY(src2), 2 },
656         { TEST_COLLAPS_ENTRY(src3), 1 },
657         { TEST_COLLAPS_ENTRY(src4), 2 },
658         { TEST_COLLAPS_ENTRY(src5), 2 },
659         { TEST_COLLAPS_ENTRY(src6), 3 },
660     };
661     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
662         SkScalar dst[3];
663         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
664         int count = collaps_duplicates(dst, data[i].fCount);
665         SkASSERT(data[i].fCollapsedCount == count);
666         for (int j = 1; j < count; ++j) {
667             SkASSERT(dst[j-1] < dst[j]);
668         }
669     }
670 }
671 #endif
672 
SkScalarCubeRoot(SkScalar x)673 static SkScalar SkScalarCubeRoot(SkScalar x) {
674     return SkScalarPow(x, 0.3333333f);
675 }
676 
677 /*  Solve coeff(t) == 0, returning the number of roots that
678     lie withing 0 < t < 1.
679     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
680 
681     Eliminates repeated roots (so that all tValues are distinct, and are always
682     in increasing order.
683 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])684 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
685     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
686         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
687     }
688 
689     SkScalar a, b, c, Q, R;
690 
691     {
692         SkASSERT(coeff[0] != 0);
693 
694         SkScalar inva = SkScalarInvert(coeff[0]);
695         a = coeff[1] * inva;
696         b = coeff[2] * inva;
697         c = coeff[3] * inva;
698     }
699     Q = (a*a - b*3) / 9;
700     R = (2*a*a*a - 9*a*b + 27*c) / 54;
701 
702     SkScalar Q3 = Q * Q * Q;
703     SkScalar R2MinusQ3 = R * R - Q3;
704     SkScalar adiv3 = a / 3;
705 
706     SkScalar*   roots = tValues;
707     SkScalar    r;
708 
709     if (R2MinusQ3 < 0) { // we have 3 real roots
710         // the divide/root can, due to finite precisions, be slightly outside of -1...1
711         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
712         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
713 
714         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
715         if (is_unit_interval(r)) {
716             *roots++ = r;
717         }
718         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
719         if (is_unit_interval(r)) {
720             *roots++ = r;
721         }
722         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
723         if (is_unit_interval(r)) {
724             *roots++ = r;
725         }
726         SkDEBUGCODE(test_collaps_duplicates();)
727 
728         // now sort the roots
729         int count = (int)(roots - tValues);
730         SkASSERT((unsigned)count <= 3);
731         bubble_sort(tValues, count);
732         count = collaps_duplicates(tValues, count);
733         roots = tValues + count;    // so we compute the proper count below
734     } else {              // we have 1 real root
735         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
736         A = SkScalarCubeRoot(A);
737         if (R > 0) {
738             A = -A;
739         }
740         if (A != 0) {
741             A += Q / A;
742         }
743         r = A - adiv3;
744         if (is_unit_interval(r)) {
745             *roots++ = r;
746         }
747     }
748 
749     return (int)(roots - tValues);
750 }
751 
752 /*  Looking for F' dot F'' == 0
753 
754     A = b - a
755     B = c - 2b + a
756     C = d - 3c + 3b - a
757 
758     F' = 3Ct^2 + 6Bt + 3A
759     F'' = 6Ct + 6B
760 
761     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
762 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])763 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
764     SkScalar    a = src[2] - src[0];
765     SkScalar    b = src[4] - 2 * src[2] + src[0];
766     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
767 
768     coeff[0] = c * c;
769     coeff[1] = 3 * b * c;
770     coeff[2] = 2 * b * b + c * a;
771     coeff[3] = a * b;
772 }
773 
774 /*  Looking for F' dot F'' == 0
775 
776     A = b - a
777     B = c - 2b + a
778     C = d - 3c + 3b - a
779 
780     F' = 3Ct^2 + 6Bt + 3A
781     F'' = 6Ct + 6B
782 
783     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
784 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])785 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
786     SkScalar coeffX[4], coeffY[4];
787     int      i;
788 
789     formulate_F1DotF2(&src[0].fX, coeffX);
790     formulate_F1DotF2(&src[0].fY, coeffY);
791 
792     for (i = 0; i < 4; i++) {
793         coeffX[i] += coeffY[i];
794     }
795 
796     SkScalar    t[3];
797     int         count = solve_cubic_poly(coeffX, t);
798     int         maxCount = 0;
799 
800     // now remove extrema where the curvature is zero (mins)
801     // !!!! need a test for this !!!!
802     for (i = 0; i < count; i++) {
803         // if (not_min_curvature())
804         if (t[i] > 0 && t[i] < SK_Scalar1) {
805             tValues[maxCount++] = t[i];
806         }
807     }
808     return maxCount;
809 }
810 
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])811 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
812                               SkScalar tValues[3]) {
813     SkScalar    t_storage[3];
814 
815     if (tValues == nullptr) {
816         tValues = t_storage;
817     }
818 
819     int count = SkFindCubicMaxCurvature(src, tValues);
820 
821     if (dst) {
822         if (count == 0) {
823             memcpy(dst, src, 4 * sizeof(SkPoint));
824         } else {
825             SkChopCubicAt(src, dst, tValues, count);
826         }
827     }
828     return count + 1;
829 }
830 
831 #include "../pathops/SkPathOpsCubic.h"
832 
833 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
834 
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)835 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
836                                      InterceptProc method) {
837     SkDCubic cubic;
838     double roots[3];
839     int count = (cubic.set(src).*method)(intercept, roots);
840     if (count > 0) {
841         SkDCubicPair pair = cubic.chopAt(roots[0]);
842         for (int i = 0; i < 7; ++i) {
843             dst[i] = pair.pts[i].asSkPoint();
844         }
845         return true;
846     }
847     return false;
848 }
849 
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])850 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
851     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
852 }
853 
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])854 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
855     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
856 }
857 
858 ///////////////////////////////////////////////////////////////////////////////
859 //
860 // NURB representation for conics.  Helpful explanations at:
861 //
862 // http://citeseerx.ist.psu.edu/viewdoc/
863 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
864 // and
865 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
866 //
867 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
868 //     ------------------------------------------
869 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
870 //
871 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
872 //     ------------------------------------------------
873 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
874 //
875 
876 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
877 //
878 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
879 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
880 //  t^0 : -2 P0 w + 2 P1 w
881 //
882 //  We disregard magnitude, so we can freely ignore the denominator of F', and
883 //  divide the numerator by 2
884 //
885 //    coeff[0] for t^2
886 //    coeff[1] for t^1
887 //    coeff[2] for t^0
888 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])889 static void conic_deriv_coeff(const SkScalar src[],
890                               SkScalar w,
891                               SkScalar coeff[3]) {
892     const SkScalar P20 = src[4] - src[0];
893     const SkScalar P10 = src[2] - src[0];
894     const SkScalar wP10 = w * P10;
895     coeff[0] = w * P20 - P20;
896     coeff[1] = P20 - 2 * wP10;
897     coeff[2] = wP10;
898 }
899 
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)900 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
901     SkScalar coeff[3];
902     conic_deriv_coeff(src, w, coeff);
903 
904     SkScalar tValues[2];
905     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
906     SkASSERT(0 == roots || 1 == roots);
907 
908     if (1 == roots) {
909         *t = tValues[0];
910         return true;
911     }
912     return false;
913 }
914 
915 struct SkP3D {
916     SkScalar fX, fY, fZ;
917 
setSkP3D918     void set(SkScalar x, SkScalar y, SkScalar z) {
919         fX = x; fY = y; fZ = z;
920     }
921 
projectDownSkP3D922     void projectDown(SkPoint* dst) const {
923         dst->set(fX / fZ, fY / fZ);
924     }
925 };
926 
927 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)928 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
929     SkScalar ab = SkScalarInterp(src[0], src[3], t);
930     SkScalar bc = SkScalarInterp(src[3], src[6], t);
931     dst[0] = ab;
932     dst[3] = SkScalarInterp(ab, bc, t);
933     dst[6] = bc;
934 }
935 
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkP3D dst[])936 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
937     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
938     dst[1].set(src[1].fX * w, src[1].fY * w, w);
939     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
940 }
941 
942 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const943 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
944     SkP3D tmp[3], tmp2[3];
945 
946     ratquad_mapTo3D(fPts, fW, tmp);
947 
948     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
949     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
950     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
951 
952     dst[0].fPts[0] = fPts[0];
953     tmp2[0].projectDown(&dst[0].fPts[1]);
954     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
955     tmp2[2].projectDown(&dst[1].fPts[1]);
956     dst[1].fPts[2] = fPts[2];
957 
958     // to put in "standard form", where w0 and w2 are both 1, we compute the
959     // new w1 as sqrt(w1*w1/w0*w2)
960     // or
961     // w1 /= sqrt(w0*w2)
962     //
963     // However, in our case, we know that for dst[0]:
964     //     w0 == 1, and for dst[1], w2 == 1
965     //
966     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
967     dst[0].fW = tmp2[0].fZ / root;
968     dst[1].fW = tmp2[2].fZ / root;
969     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
970     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
971     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
972 }
973 
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const974 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
975     if (0 == t1 || 1 == t2) {
976         if (0 == t1 && 1 == t2) {
977             *dst = *this;
978             return;
979         } else {
980             SkConic pair[2];
981             if (this->chopAt(t1 ? t1 : t2, pair)) {
982                 *dst = pair[SkToBool(t1)];
983                 return;
984             }
985         }
986     }
987     SkConicCoeff coeff(*this);
988     Sk2s tt1(t1);
989     Sk2s aXY = coeff.fNumer.eval(tt1);
990     Sk2s aZZ = coeff.fDenom.eval(tt1);
991     Sk2s midTT((t1 + t2) / 2);
992     Sk2s dXY = coeff.fNumer.eval(midTT);
993     Sk2s dZZ = coeff.fDenom.eval(midTT);
994     Sk2s tt2(t2);
995     Sk2s cXY = coeff.fNumer.eval(tt2);
996     Sk2s cZZ = coeff.fDenom.eval(tt2);
997     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
998     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
999     dst->fPts[0] = to_point(aXY / aZZ);
1000     dst->fPts[1] = to_point(bXY / bZZ);
1001     dst->fPts[2] = to_point(cXY / cZZ);
1002     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1003     dst->fW = ww[0];
1004 }
1005 
evalAt(SkScalar t) const1006 SkPoint SkConic::evalAt(SkScalar t) const {
1007     return to_point(SkConicCoeff(*this).eval(t));
1008 }
1009 
evalTangentAt(SkScalar t) const1010 SkVector SkConic::evalTangentAt(SkScalar t) const {
1011     // The derivative equation returns a zero tangent vector when t is 0 or 1,
1012     // and the control point is equal to the end point.
1013     // In this case, use the conic endpoints to compute the tangent.
1014     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1015         return fPts[2] - fPts[0];
1016     }
1017     Sk2s p0 = from_point(fPts[0]);
1018     Sk2s p1 = from_point(fPts[1]);
1019     Sk2s p2 = from_point(fPts[2]);
1020     Sk2s ww(fW);
1021 
1022     Sk2s p20 = p2 - p0;
1023     Sk2s p10 = p1 - p0;
1024 
1025     Sk2s C = ww * p10;
1026     Sk2s A = ww * p20 - p20;
1027     Sk2s B = p20 - C - C;
1028 
1029     return to_vector(SkQuadCoeff(A, B, C).eval(t));
1030 }
1031 
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1032 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1033     SkASSERT(t >= 0 && t <= SK_Scalar1);
1034 
1035     if (pt) {
1036         *pt = this->evalAt(t);
1037     }
1038     if (tangent) {
1039         *tangent = this->evalTangentAt(t);
1040     }
1041 }
1042 
subdivide_w_value(SkScalar w)1043 static SkScalar subdivide_w_value(SkScalar w) {
1044     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1045 }
1046 
chop(SkConic * SK_RESTRICT dst) const1047 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1048     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1049     SkScalar newW = subdivide_w_value(fW);
1050 
1051     Sk2s p0 = from_point(fPts[0]);
1052     Sk2s p1 = from_point(fPts[1]);
1053     Sk2s p2 = from_point(fPts[2]);
1054     Sk2s ww(fW);
1055 
1056     Sk2s wp1 = ww * p1;
1057     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1058 
1059     dst[0].fPts[0] = fPts[0];
1060     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1061     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1062     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1063     dst[1].fPts[2] = fPts[2];
1064 
1065     dst[0].fW = dst[1].fW = newW;
1066 }
1067 
1068 /*
1069  *  "High order approximation of conic sections by quadratic splines"
1070  *      by Michael Floater, 1993
1071  */
1072 #define AS_QUAD_ERROR_SETUP                                         \
1073     SkScalar a = fW - 1;                                            \
1074     SkScalar k = a / (4 * (2 + a));                                 \
1075     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1076     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1077 
computeAsQuadError(SkVector * err) const1078 void SkConic::computeAsQuadError(SkVector* err) const {
1079     AS_QUAD_ERROR_SETUP
1080     err->set(x, y);
1081 }
1082 
asQuadTol(SkScalar tol) const1083 bool SkConic::asQuadTol(SkScalar tol) const {
1084     AS_QUAD_ERROR_SETUP
1085     return (x * x + y * y) <= tol * tol;
1086 }
1087 
1088 // Limit the number of suggested quads to approximate a conic
1089 #define kMaxConicToQuadPOW2     5
1090 
computeQuadPOW2(SkScalar tol) const1091 int SkConic::computeQuadPOW2(SkScalar tol) const {
1092     if (tol < 0 || !SkScalarIsFinite(tol)) {
1093         return 0;
1094     }
1095 
1096     AS_QUAD_ERROR_SETUP
1097 
1098     SkScalar error = SkScalarSqrt(x * x + y * y);
1099     int pow2;
1100     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1101         if (error <= tol) {
1102             break;
1103         }
1104         error *= 0.25f;
1105     }
1106     // float version -- using ceil gives the same results as the above.
1107     if (false) {
1108         SkScalar err = SkScalarSqrt(x * x + y * y);
1109         if (err <= tol) {
1110             return 0;
1111         }
1112         SkScalar tol2 = tol * tol;
1113         if (tol2 == 0) {
1114             return kMaxConicToQuadPOW2;
1115         }
1116         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1117         int altPow2 = SkScalarCeilToInt(fpow2);
1118         if (altPow2 != pow2) {
1119             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1120         }
1121         pow2 = altPow2;
1122     }
1123     return pow2;
1124 }
1125 
1126 // This was originally developed and tested for pathops: see SkOpTypes.h
1127 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1128 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1129     return (a - b) * (c - b) <= 0;
1130 }
1131 
subdivide(const SkConic & src,SkPoint pts[],int level)1132 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1133     SkASSERT(level >= 0);
1134 
1135     if (0 == level) {
1136         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1137         return pts + 2;
1138     } else {
1139         SkConic dst[2];
1140         src.chop(dst);
1141         const SkScalar startY = src.fPts[0].fY;
1142         const SkScalar endY = src.fPts[2].fY;
1143         if (between(startY, src.fPts[1].fY, endY)) {
1144             // If the input is monotonic and the output is not, the scan converter hangs.
1145             // Ensure that the chopped conics maintain their y-order.
1146             SkScalar midY = dst[0].fPts[2].fY;
1147             if (!between(startY, midY, endY)) {
1148                 // If the computed midpoint is outside the ends, move it to the closer one.
1149                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1150                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1151             }
1152             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1153                 // If the 1st control is not between the start and end, put it at the start.
1154                 // This also reduces the quad to a line.
1155                 dst[0].fPts[1].fY = startY;
1156             }
1157             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1158                 // If the 2nd control is not between the start and end, put it at the end.
1159                 // This also reduces the quad to a line.
1160                 dst[1].fPts[1].fY = endY;
1161             }
1162             // Verify that all five points are in order.
1163             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1164             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1165             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1166         }
1167         --level;
1168         pts = subdivide(dst[0], pts, level);
1169         return subdivide(dst[1], pts, level);
1170     }
1171 }
1172 
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1173 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1174     SkASSERT(pow2 >= 0);
1175     *pts = fPts[0];
1176     SkDEBUGCODE(SkPoint* endPts);
1177     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
1178         SkConic dst[2];
1179         this->chop(dst);
1180         // check to see if the first chop generates a pair of lines
1181         if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
1182                 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
1183             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
1184             pts[4] = dst[1].fPts[2];
1185             pow2 = 1;
1186             SkDEBUGCODE(endPts = &pts[5]);
1187             goto commonFinitePtCheck;
1188         }
1189     }
1190     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1191 commonFinitePtCheck:
1192     const int quadCount = 1 << pow2;
1193     const int ptCount = 2 * quadCount + 1;
1194     SkASSERT(endPts - pts == ptCount);
1195     if (!SkPointsAreFinite(pts, ptCount)) {
1196         // if we generated a non-finite, pin ourselves to the middle of the hull,
1197         // as our first and last are already on the first/last pts of the hull.
1198         for (int i = 1; i < ptCount - 1; ++i) {
1199             pts[i] = fPts[1];
1200         }
1201     }
1202     return 1 << pow2;
1203 }
1204 
findXExtrema(SkScalar * t) const1205 bool SkConic::findXExtrema(SkScalar* t) const {
1206     return conic_find_extrema(&fPts[0].fX, fW, t);
1207 }
1208 
findYExtrema(SkScalar * t) const1209 bool SkConic::findYExtrema(SkScalar* t) const {
1210     return conic_find_extrema(&fPts[0].fY, fW, t);
1211 }
1212 
chopAtXExtrema(SkConic dst[2]) const1213 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1214     SkScalar t;
1215     if (this->findXExtrema(&t)) {
1216         if (!this->chopAt(t, dst)) {
1217             // if chop can't return finite values, don't chop
1218             return false;
1219         }
1220         // now clean-up the middle, since we know t was meant to be at
1221         // an X-extrema
1222         SkScalar value = dst[0].fPts[2].fX;
1223         dst[0].fPts[1].fX = value;
1224         dst[1].fPts[0].fX = value;
1225         dst[1].fPts[1].fX = value;
1226         return true;
1227     }
1228     return false;
1229 }
1230 
chopAtYExtrema(SkConic dst[2]) const1231 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1232     SkScalar t;
1233     if (this->findYExtrema(&t)) {
1234         if (!this->chopAt(t, dst)) {
1235             // if chop can't return finite values, don't chop
1236             return false;
1237         }
1238         // now clean-up the middle, since we know t was meant to be at
1239         // an Y-extrema
1240         SkScalar value = dst[0].fPts[2].fY;
1241         dst[0].fPts[1].fY = value;
1242         dst[1].fPts[0].fY = value;
1243         dst[1].fPts[1].fY = value;
1244         return true;
1245     }
1246     return false;
1247 }
1248 
computeTightBounds(SkRect * bounds) const1249 void SkConic::computeTightBounds(SkRect* bounds) const {
1250     SkPoint pts[4];
1251     pts[0] = fPts[0];
1252     pts[1] = fPts[2];
1253     int count = 2;
1254 
1255     SkScalar t;
1256     if (this->findXExtrema(&t)) {
1257         this->evalAt(t, &pts[count++]);
1258     }
1259     if (this->findYExtrema(&t)) {
1260         this->evalAt(t, &pts[count++]);
1261     }
1262     bounds->set(pts, count);
1263 }
1264 
computeFastBounds(SkRect * bounds) const1265 void SkConic::computeFastBounds(SkRect* bounds) const {
1266     bounds->set(fPts, 3);
1267 }
1268 
1269 #if 0  // unimplemented
1270 bool SkConic::findMaxCurvature(SkScalar* t) const {
1271     // TODO: Implement me
1272     return false;
1273 }
1274 #endif
1275 
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1276 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1277                              const SkMatrix& matrix) {
1278     if (!matrix.hasPerspective()) {
1279         return w;
1280     }
1281 
1282     SkP3D src[3], dst[3];
1283 
1284     ratquad_mapTo3D(pts, w, src);
1285 
1286     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1287 
1288     // w' = sqrt(w1*w1/w0*w2)
1289     SkScalar w0 = dst[0].fZ;
1290     SkScalar w1 = dst[1].fZ;
1291     SkScalar w2 = dst[2].fZ;
1292     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1293     return w;
1294 }
1295 
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1296 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1297                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1298     // rotate by x,y so that uStart is (1.0)
1299     SkScalar x = SkPoint::DotProduct(uStart, uStop);
1300     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1301 
1302     SkScalar absY = SkScalarAbs(y);
1303 
1304     // check for (effectively) coincident vectors
1305     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1306     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1307     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1308                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
1309         return 0;
1310     }
1311 
1312     if (dir == kCCW_SkRotationDirection) {
1313         y = -y;
1314     }
1315 
1316     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1317     //      0 == [0  .. 90)
1318     //      1 == [90 ..180)
1319     //      2 == [180..270)
1320     //      3 == [270..360)
1321     //
1322     int quadrant = 0;
1323     if (0 == y) {
1324         quadrant = 2;        // 180
1325         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1326     } else if (0 == x) {
1327         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1328         quadrant = y > 0 ? 1 : 3; // 90 : 270
1329     } else {
1330         if (y < 0) {
1331             quadrant += 2;
1332         }
1333         if ((x < 0) != (y < 0)) {
1334             quadrant += 1;
1335         }
1336     }
1337 
1338     const SkPoint quadrantPts[] = {
1339         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1340     };
1341     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1342 
1343     int conicCount = quadrant;
1344     for (int i = 0; i < conicCount; ++i) {
1345         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1346     }
1347 
1348     // Now compute any remaing (sub-90-degree) arc for the last conic
1349     const SkPoint finalP = { x, y };
1350     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1351     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1352     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1353 
1354     if (dot < 1) {
1355         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1356         // compute the bisector vector, and then rescale to be the off-curve point.
1357         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1358         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1359         // This is nice, since our computed weight is cos(theta/2) as well!
1360         //
1361         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1362         offCurve.setLength(SkScalarInvert(cosThetaOver2));
1363         if (!lastQ.equalsWithinTolerance(offCurve)) {
1364             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1365             conicCount += 1;
1366         }
1367     }
1368 
1369     // now handle counter-clockwise and the initial unitStart rotation
1370     SkMatrix    matrix;
1371     matrix.setSinCos(uStart.fY, uStart.fX);
1372     if (dir == kCCW_SkRotationDirection) {
1373         matrix.preScale(SK_Scalar1, -SK_Scalar1);
1374     }
1375     if (userMatrix) {
1376         matrix.postConcat(*userMatrix);
1377     }
1378     for (int i = 0; i < conicCount; ++i) {
1379         matrix.mapPoints(dst[i].fPts, 3);
1380     }
1381     return conicCount;
1382 }
1383