1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11
to_vector(const Sk2s & x)12 static SkVector to_vector(const Sk2s& x) {
13 SkVector vector;
14 x.store(&vector);
15 return vector;
16 }
17
18 ////////////////////////////////////////////////////////////////////////
19
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)20 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
21 SkScalar ab = a - b;
22 SkScalar bc = b - c;
23 if (ab < 0) {
24 bc = -bc;
25 }
26 return ab == 0 || bc < 0;
27 }
28
29 ////////////////////////////////////////////////////////////////////////
30
is_unit_interval(SkScalar x)31 static bool is_unit_interval(SkScalar x) {
32 return x > 0 && x < SK_Scalar1;
33 }
34
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
36 SkASSERT(ratio);
37
38 if (numer < 0) {
39 numer = -numer;
40 denom = -denom;
41 }
42
43 if (denom == 0 || numer == 0 || numer >= denom) {
44 return 0;
45 }
46
47 SkScalar r = numer / denom;
48 if (SkScalarIsNaN(r)) {
49 return 0;
50 }
51 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
52 if (r == 0) { // catch underflow if numer <<<< denom
53 return 0;
54 }
55 *ratio = r;
56 return 1;
57 }
58
59 /** From Numerical Recipes in C.
60
61 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
62 x1 = Q / A
63 x2 = C / Q
64 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])65 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
66 SkASSERT(roots);
67
68 if (A == 0) {
69 return valid_unit_divide(-C, B, roots);
70 }
71
72 SkScalar* r = roots;
73
74 SkScalar R = B*B - 4*A*C;
75 if (R < 0 || !SkScalarIsFinite(R)) { // complex roots
76 // if R is infinite, it's possible that it may still produce
77 // useful results if the operation was repeated in doubles
78 // the flipside is determining if the more precise answer
79 // isn't useful because surrounding machinery (e.g., subtracting
80 // the axis offset from C) already discards the extra precision
81 // more investigation and unit tests required...
82 return 0;
83 }
84 R = SkScalarSqrt(R);
85
86 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
87 r += valid_unit_divide(Q, A, r);
88 r += valid_unit_divide(C, Q, r);
89 if (r - roots == 2) {
90 if (roots[0] > roots[1])
91 SkTSwap<SkScalar>(roots[0], roots[1]);
92 else if (roots[0] == roots[1]) // nearly-equal?
93 r -= 1; // skip the double root
94 }
95 return (int)(r - roots);
96 }
97
98 ///////////////////////////////////////////////////////////////////////////////
99 ///////////////////////////////////////////////////////////////////////////////
100
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)101 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
102 SkASSERT(src);
103 SkASSERT(t >= 0 && t <= SK_Scalar1);
104
105 if (pt) {
106 *pt = SkEvalQuadAt(src, t);
107 }
108 if (tangent) {
109 *tangent = SkEvalQuadTangentAt(src, t);
110 }
111 }
112
SkEvalQuadAt(const SkPoint src[3],SkScalar t)113 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
114 return to_point(SkQuadCoeff(src).eval(t));
115 }
116
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)117 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
118 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
119 // zero tangent vector when t is 0 or 1, and the control point is equal
120 // to the end point. In this case, use the quad end points to compute the tangent.
121 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
122 return src[2] - src[0];
123 }
124 SkASSERT(src);
125 SkASSERT(t >= 0 && t <= SK_Scalar1);
126
127 Sk2s P0 = from_point(src[0]);
128 Sk2s P1 = from_point(src[1]);
129 Sk2s P2 = from_point(src[2]);
130
131 Sk2s B = P1 - P0;
132 Sk2s A = P2 - P1 - B;
133 Sk2s T = A * Sk2s(t) + B;
134
135 return to_vector(T + T);
136 }
137
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)138 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
139 return v0 + (v1 - v0) * t;
140 }
141
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)142 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
143 SkASSERT(t > 0 && t < SK_Scalar1);
144
145 Sk2s p0 = from_point(src[0]);
146 Sk2s p1 = from_point(src[1]);
147 Sk2s p2 = from_point(src[2]);
148 Sk2s tt(t);
149
150 Sk2s p01 = interp(p0, p1, tt);
151 Sk2s p12 = interp(p1, p2, tt);
152
153 dst[0] = to_point(p0);
154 dst[1] = to_point(p01);
155 dst[2] = to_point(interp(p01, p12, tt));
156 dst[3] = to_point(p12);
157 dst[4] = to_point(p2);
158 }
159
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])160 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
161 SkChopQuadAt(src, dst, 0.5f);
162 }
163
164 /** Quad'(t) = At + B, where
165 A = 2(a - 2b + c)
166 B = 2(b - a)
167 Solve for t, only if it fits between 0 < t < 1
168 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])169 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
170 /* At + B == 0
171 t = -B / A
172 */
173 return valid_unit_divide(a - b, a - b - b + c, tValue);
174 }
175
flatten_double_quad_extrema(SkScalar coords[14])176 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
177 coords[2] = coords[6] = coords[4];
178 }
179
180 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
181 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
182 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])183 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
184 SkASSERT(src);
185 SkASSERT(dst);
186
187 SkScalar a = src[0].fY;
188 SkScalar b = src[1].fY;
189 SkScalar c = src[2].fY;
190
191 if (is_not_monotonic(a, b, c)) {
192 SkScalar tValue;
193 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
194 SkChopQuadAt(src, dst, tValue);
195 flatten_double_quad_extrema(&dst[0].fY);
196 return 1;
197 }
198 // if we get here, we need to force dst to be monotonic, even though
199 // we couldn't compute a unit_divide value (probably underflow).
200 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
201 }
202 dst[0].set(src[0].fX, a);
203 dst[1].set(src[1].fX, b);
204 dst[2].set(src[2].fX, c);
205 return 0;
206 }
207
208 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
209 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
210 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])211 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
212 SkASSERT(src);
213 SkASSERT(dst);
214
215 SkScalar a = src[0].fX;
216 SkScalar b = src[1].fX;
217 SkScalar c = src[2].fX;
218
219 if (is_not_monotonic(a, b, c)) {
220 SkScalar tValue;
221 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
222 SkChopQuadAt(src, dst, tValue);
223 flatten_double_quad_extrema(&dst[0].fX);
224 return 1;
225 }
226 // if we get here, we need to force dst to be monotonic, even though
227 // we couldn't compute a unit_divide value (probably underflow).
228 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
229 }
230 dst[0].set(a, src[0].fY);
231 dst[1].set(b, src[1].fY);
232 dst[2].set(c, src[2].fY);
233 return 0;
234 }
235
236 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
237 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
238 // F''(t) = 2 (a - 2b + c)
239 //
240 // A = 2 (b - a)
241 // B = 2 (a - 2b + c)
242 //
243 // Maximum curvature for a quadratic means solving
244 // Fx' Fx'' + Fy' Fy'' = 0
245 //
246 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
247 //
SkFindQuadMaxCurvature(const SkPoint src[3])248 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
249 SkScalar Ax = src[1].fX - src[0].fX;
250 SkScalar Ay = src[1].fY - src[0].fY;
251 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
252 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
253 SkScalar t = 0; // 0 means don't chop
254
255 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
256 return t;
257 }
258
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])259 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
260 SkScalar t = SkFindQuadMaxCurvature(src);
261 if (t == 0) {
262 memcpy(dst, src, 3 * sizeof(SkPoint));
263 return 1;
264 } else {
265 SkChopQuadAt(src, dst, t);
266 return 2;
267 }
268 }
269
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])270 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
271 Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
272 Sk2s s0 = from_point(src[0]);
273 Sk2s s1 = from_point(src[1]);
274 Sk2s s2 = from_point(src[2]);
275
276 dst[0] = src[0];
277 dst[1] = to_point(s0 + (s1 - s0) * scale);
278 dst[2] = to_point(s2 + (s1 - s2) * scale);
279 dst[3] = src[2];
280 }
281
282 //////////////////////////////////////////////////////////////////////////////
283 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
284 //////////////////////////////////////////////////////////////////////////////
285
eval_cubic_derivative(const SkPoint src[4],SkScalar t)286 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
287 SkQuadCoeff coeff;
288 Sk2s P0 = from_point(src[0]);
289 Sk2s P1 = from_point(src[1]);
290 Sk2s P2 = from_point(src[2]);
291 Sk2s P3 = from_point(src[3]);
292
293 coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
294 coeff.fB = times_2(P2 - times_2(P1) + P0);
295 coeff.fC = P1 - P0;
296 return to_vector(coeff.eval(t));
297 }
298
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)299 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
300 Sk2s P0 = from_point(src[0]);
301 Sk2s P1 = from_point(src[1]);
302 Sk2s P2 = from_point(src[2]);
303 Sk2s P3 = from_point(src[3]);
304 Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
305 Sk2s B = P2 - times_2(P1) + P0;
306
307 return to_vector(A * Sk2s(t) + B);
308 }
309
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)310 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
311 SkVector* tangent, SkVector* curvature) {
312 SkASSERT(src);
313 SkASSERT(t >= 0 && t <= SK_Scalar1);
314
315 if (loc) {
316 *loc = to_point(SkCubicCoeff(src).eval(t));
317 }
318 if (tangent) {
319 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
320 // adjacent control point is equal to the end point. In this case, use the
321 // next control point or the end points to compute the tangent.
322 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
323 if (t == 0) {
324 *tangent = src[2] - src[0];
325 } else {
326 *tangent = src[3] - src[1];
327 }
328 if (!tangent->fX && !tangent->fY) {
329 *tangent = src[3] - src[0];
330 }
331 } else {
332 *tangent = eval_cubic_derivative(src, t);
333 }
334 }
335 if (curvature) {
336 *curvature = eval_cubic_2ndDerivative(src, t);
337 }
338 }
339
340 /** Cubic'(t) = At^2 + Bt + C, where
341 A = 3(-a + 3(b - c) + d)
342 B = 6(a - 2b + c)
343 C = 3(b - a)
344 Solve for t, keeping only those that fit betwee 0 < t < 1
345 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])346 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
347 SkScalar tValues[2]) {
348 // we divide A,B,C by 3 to simplify
349 SkScalar A = d - a + 3*(b - c);
350 SkScalar B = 2*(a - b - b + c);
351 SkScalar C = b - a;
352
353 return SkFindUnitQuadRoots(A, B, C, tValues);
354 }
355
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)356 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
357 SkASSERT(t > 0 && t < SK_Scalar1);
358
359 Sk2s p0 = from_point(src[0]);
360 Sk2s p1 = from_point(src[1]);
361 Sk2s p2 = from_point(src[2]);
362 Sk2s p3 = from_point(src[3]);
363 Sk2s tt(t);
364
365 Sk2s ab = interp(p0, p1, tt);
366 Sk2s bc = interp(p1, p2, tt);
367 Sk2s cd = interp(p2, p3, tt);
368 Sk2s abc = interp(ab, bc, tt);
369 Sk2s bcd = interp(bc, cd, tt);
370 Sk2s abcd = interp(abc, bcd, tt);
371
372 dst[0] = src[0];
373 dst[1] = to_point(ab);
374 dst[2] = to_point(abc);
375 dst[3] = to_point(abcd);
376 dst[4] = to_point(bcd);
377 dst[5] = to_point(cd);
378 dst[6] = src[3];
379 }
380
381 /* http://code.google.com/p/skia/issues/detail?id=32
382
383 This test code would fail when we didn't check the return result of
384 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
385 that after the first chop, the parameters to valid_unit_divide are equal
386 (thanks to finite float precision and rounding in the subtracts). Thus
387 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
388 up with 1.0, hence the need to check and just return the last cubic as
389 a degenerate clump of 4 points in the sampe place.
390
391 static void test_cubic() {
392 SkPoint src[4] = {
393 { 556.25000, 523.03003 },
394 { 556.23999, 522.96002 },
395 { 556.21997, 522.89001 },
396 { 556.21997, 522.82001 }
397 };
398 SkPoint dst[10];
399 SkScalar tval[] = { 0.33333334f, 0.99999994f };
400 SkChopCubicAt(src, dst, tval, 2);
401 }
402 */
403
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)404 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
405 const SkScalar tValues[], int roots) {
406 #ifdef SK_DEBUG
407 {
408 for (int i = 0; i < roots - 1; i++)
409 {
410 SkASSERT(is_unit_interval(tValues[i]));
411 SkASSERT(is_unit_interval(tValues[i+1]));
412 SkASSERT(tValues[i] < tValues[i+1]);
413 }
414 }
415 #endif
416
417 if (dst) {
418 if (roots == 0) { // nothing to chop
419 memcpy(dst, src, 4*sizeof(SkPoint));
420 } else {
421 SkScalar t = tValues[0];
422 SkPoint tmp[4];
423
424 for (int i = 0; i < roots; i++) {
425 SkChopCubicAt(src, dst, t);
426 if (i == roots - 1) {
427 break;
428 }
429
430 dst += 3;
431 // have src point to the remaining cubic (after the chop)
432 memcpy(tmp, dst, 4 * sizeof(SkPoint));
433 src = tmp;
434
435 // watch out in case the renormalized t isn't in range
436 if (!valid_unit_divide(tValues[i+1] - tValues[i],
437 SK_Scalar1 - tValues[i], &t)) {
438 // if we can't, just create a degenerate cubic
439 dst[4] = dst[5] = dst[6] = src[3];
440 break;
441 }
442 }
443 }
444 }
445 }
446
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])447 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
448 SkChopCubicAt(src, dst, 0.5f);
449 }
450
flatten_double_cubic_extrema(SkScalar coords[14])451 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
452 coords[4] = coords[8] = coords[6];
453 }
454
455 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
456 the resulting beziers are monotonic in Y. This is called by the scan
457 converter. Depending on what is returned, dst[] is treated as follows:
458 0 dst[0..3] is the original cubic
459 1 dst[0..3] and dst[3..6] are the two new cubics
460 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
461 If dst == null, it is ignored and only the count is returned.
462 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])463 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
464 SkScalar tValues[2];
465 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
466 src[3].fY, tValues);
467
468 SkChopCubicAt(src, dst, tValues, roots);
469 if (dst && roots > 0) {
470 // we do some cleanup to ensure our Y extrema are flat
471 flatten_double_cubic_extrema(&dst[0].fY);
472 if (roots == 2) {
473 flatten_double_cubic_extrema(&dst[3].fY);
474 }
475 }
476 return roots;
477 }
478
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])479 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
480 SkScalar tValues[2];
481 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
482 src[3].fX, tValues);
483
484 SkChopCubicAt(src, dst, tValues, roots);
485 if (dst && roots > 0) {
486 // we do some cleanup to ensure our Y extrema are flat
487 flatten_double_cubic_extrema(&dst[0].fX);
488 if (roots == 2) {
489 flatten_double_cubic_extrema(&dst[3].fX);
490 }
491 }
492 return roots;
493 }
494
495 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
496
497 Inflection means that curvature is zero.
498 Curvature is [F' x F''] / [F'^3]
499 So we solve F'x X F''y - F'y X F''y == 0
500 After some canceling of the cubic term, we get
501 A = b - a
502 B = c - 2b + a
503 C = d - 3c + 3b - a
504 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
505 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])506 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
507 SkScalar Ax = src[1].fX - src[0].fX;
508 SkScalar Ay = src[1].fY - src[0].fY;
509 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
510 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
511 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
512 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
513
514 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
515 Ax*Cy - Ay*Cx,
516 Ax*By - Ay*Bx,
517 tValues);
518 }
519
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])520 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
521 SkScalar tValues[2];
522 int count = SkFindCubicInflections(src, tValues);
523
524 if (dst) {
525 if (count == 0) {
526 memcpy(dst, src, 4 * sizeof(SkPoint));
527 } else {
528 SkChopCubicAt(src, dst, tValues, count);
529 }
530 }
531 return count + 1;
532 }
533
534 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
535 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
536 // Classification:
537 // discr(I) > 0 Serpentine
538 // discr(I) = 0 Cusp
539 // discr(I) < 0 Loop
540 // d0 = d1 = 0 Quadratic
541 // d0 = d1 = d2 = 0 Line
542 // p0 = p1 = p2 = p3 Point
classify_cubic(const SkPoint p[4],const SkScalar d[3])543 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
544 if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
545 return kPoint_SkCubicType;
546 }
547 const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
548 if (discr > SK_ScalarNearlyZero) {
549 return kSerpentine_SkCubicType;
550 } else if (discr < -SK_ScalarNearlyZero) {
551 return kLoop_SkCubicType;
552 } else {
553 if (SkScalarAbs(d[0]) < SK_ScalarNearlyZero && SkScalarAbs(d[1]) < SK_ScalarNearlyZero) {
554 return ((SkScalarAbs(d[2]) < SK_ScalarNearlyZero) ? kLine_SkCubicType
555 : kQuadratic_SkCubicType);
556 } else {
557 return kCusp_SkCubicType;
558 }
559 }
560 }
561
562 // Assumes the third component of points is 1.
563 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)564 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
565 const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
566 const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
567 const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
568 return (xComp + yComp + wComp);
569 }
570
571 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
572 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
573 // d0 = a1 - 2*a2+3*a3
574 // d1 = -a2 + 3*a3
575 // d2 = 3*a3
576 // a1 = p0 . (p3 x p2)
577 // a2 = p1 . (p0 x p3)
578 // a3 = p2 . (p1 x p0)
579 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],SkScalar d[3])580 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
581 SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
582 SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
583 SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
584
585 // need to scale a's or values in later calculations will grow to high
586 SkScalar max = SkScalarAbs(a1);
587 max = SkMaxScalar(max, SkScalarAbs(a2));
588 max = SkMaxScalar(max, SkScalarAbs(a3));
589 max = 1.f/max;
590 a1 = a1 * max;
591 a2 = a2 * max;
592 a3 = a3 * max;
593
594 d[2] = 3.f * a3;
595 d[1] = d[2] - a2;
596 d[0] = d[1] - a2 + a1;
597 }
598
SkClassifyCubic(const SkPoint src[4],SkScalar d[3])599 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
600 calc_cubic_inflection_func(src, d);
601 return classify_cubic(src, d);
602 }
603
bubble_sort(T array[],int count)604 template <typename T> void bubble_sort(T array[], int count) {
605 for (int i = count - 1; i > 0; --i)
606 for (int j = i; j > 0; --j)
607 if (array[j] < array[j-1])
608 {
609 T tmp(array[j]);
610 array[j] = array[j-1];
611 array[j-1] = tmp;
612 }
613 }
614
615 /**
616 * Given an array and count, remove all pair-wise duplicates from the array,
617 * keeping the existing sorting, and return the new count
618 */
collaps_duplicates(SkScalar array[],int count)619 static int collaps_duplicates(SkScalar array[], int count) {
620 for (int n = count; n > 1; --n) {
621 if (array[0] == array[1]) {
622 for (int i = 1; i < n; ++i) {
623 array[i - 1] = array[i];
624 }
625 count -= 1;
626 } else {
627 array += 1;
628 }
629 }
630 return count;
631 }
632
633 #ifdef SK_DEBUG
634
635 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
636
test_collaps_duplicates()637 static void test_collaps_duplicates() {
638 static bool gOnce;
639 if (gOnce) { return; }
640 gOnce = true;
641 const SkScalar src0[] = { 0 };
642 const SkScalar src1[] = { 0, 0 };
643 const SkScalar src2[] = { 0, 1 };
644 const SkScalar src3[] = { 0, 0, 0 };
645 const SkScalar src4[] = { 0, 0, 1 };
646 const SkScalar src5[] = { 0, 1, 1 };
647 const SkScalar src6[] = { 0, 1, 2 };
648 const struct {
649 const SkScalar* fData;
650 int fCount;
651 int fCollapsedCount;
652 } data[] = {
653 { TEST_COLLAPS_ENTRY(src0), 1 },
654 { TEST_COLLAPS_ENTRY(src1), 1 },
655 { TEST_COLLAPS_ENTRY(src2), 2 },
656 { TEST_COLLAPS_ENTRY(src3), 1 },
657 { TEST_COLLAPS_ENTRY(src4), 2 },
658 { TEST_COLLAPS_ENTRY(src5), 2 },
659 { TEST_COLLAPS_ENTRY(src6), 3 },
660 };
661 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
662 SkScalar dst[3];
663 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
664 int count = collaps_duplicates(dst, data[i].fCount);
665 SkASSERT(data[i].fCollapsedCount == count);
666 for (int j = 1; j < count; ++j) {
667 SkASSERT(dst[j-1] < dst[j]);
668 }
669 }
670 }
671 #endif
672
SkScalarCubeRoot(SkScalar x)673 static SkScalar SkScalarCubeRoot(SkScalar x) {
674 return SkScalarPow(x, 0.3333333f);
675 }
676
677 /* Solve coeff(t) == 0, returning the number of roots that
678 lie withing 0 < t < 1.
679 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
680
681 Eliminates repeated roots (so that all tValues are distinct, and are always
682 in increasing order.
683 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])684 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
685 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
686 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
687 }
688
689 SkScalar a, b, c, Q, R;
690
691 {
692 SkASSERT(coeff[0] != 0);
693
694 SkScalar inva = SkScalarInvert(coeff[0]);
695 a = coeff[1] * inva;
696 b = coeff[2] * inva;
697 c = coeff[3] * inva;
698 }
699 Q = (a*a - b*3) / 9;
700 R = (2*a*a*a - 9*a*b + 27*c) / 54;
701
702 SkScalar Q3 = Q * Q * Q;
703 SkScalar R2MinusQ3 = R * R - Q3;
704 SkScalar adiv3 = a / 3;
705
706 SkScalar* roots = tValues;
707 SkScalar r;
708
709 if (R2MinusQ3 < 0) { // we have 3 real roots
710 // the divide/root can, due to finite precisions, be slightly outside of -1...1
711 SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
712 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
713
714 r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
715 if (is_unit_interval(r)) {
716 *roots++ = r;
717 }
718 r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
719 if (is_unit_interval(r)) {
720 *roots++ = r;
721 }
722 r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
723 if (is_unit_interval(r)) {
724 *roots++ = r;
725 }
726 SkDEBUGCODE(test_collaps_duplicates();)
727
728 // now sort the roots
729 int count = (int)(roots - tValues);
730 SkASSERT((unsigned)count <= 3);
731 bubble_sort(tValues, count);
732 count = collaps_duplicates(tValues, count);
733 roots = tValues + count; // so we compute the proper count below
734 } else { // we have 1 real root
735 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
736 A = SkScalarCubeRoot(A);
737 if (R > 0) {
738 A = -A;
739 }
740 if (A != 0) {
741 A += Q / A;
742 }
743 r = A - adiv3;
744 if (is_unit_interval(r)) {
745 *roots++ = r;
746 }
747 }
748
749 return (int)(roots - tValues);
750 }
751
752 /* Looking for F' dot F'' == 0
753
754 A = b - a
755 B = c - 2b + a
756 C = d - 3c + 3b - a
757
758 F' = 3Ct^2 + 6Bt + 3A
759 F'' = 6Ct + 6B
760
761 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
762 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])763 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
764 SkScalar a = src[2] - src[0];
765 SkScalar b = src[4] - 2 * src[2] + src[0];
766 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
767
768 coeff[0] = c * c;
769 coeff[1] = 3 * b * c;
770 coeff[2] = 2 * b * b + c * a;
771 coeff[3] = a * b;
772 }
773
774 /* Looking for F' dot F'' == 0
775
776 A = b - a
777 B = c - 2b + a
778 C = d - 3c + 3b - a
779
780 F' = 3Ct^2 + 6Bt + 3A
781 F'' = 6Ct + 6B
782
783 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
784 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])785 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
786 SkScalar coeffX[4], coeffY[4];
787 int i;
788
789 formulate_F1DotF2(&src[0].fX, coeffX);
790 formulate_F1DotF2(&src[0].fY, coeffY);
791
792 for (i = 0; i < 4; i++) {
793 coeffX[i] += coeffY[i];
794 }
795
796 SkScalar t[3];
797 int count = solve_cubic_poly(coeffX, t);
798 int maxCount = 0;
799
800 // now remove extrema where the curvature is zero (mins)
801 // !!!! need a test for this !!!!
802 for (i = 0; i < count; i++) {
803 // if (not_min_curvature())
804 if (t[i] > 0 && t[i] < SK_Scalar1) {
805 tValues[maxCount++] = t[i];
806 }
807 }
808 return maxCount;
809 }
810
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])811 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
812 SkScalar tValues[3]) {
813 SkScalar t_storage[3];
814
815 if (tValues == nullptr) {
816 tValues = t_storage;
817 }
818
819 int count = SkFindCubicMaxCurvature(src, tValues);
820
821 if (dst) {
822 if (count == 0) {
823 memcpy(dst, src, 4 * sizeof(SkPoint));
824 } else {
825 SkChopCubicAt(src, dst, tValues, count);
826 }
827 }
828 return count + 1;
829 }
830
831 #include "../pathops/SkPathOpsCubic.h"
832
833 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
834
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)835 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
836 InterceptProc method) {
837 SkDCubic cubic;
838 double roots[3];
839 int count = (cubic.set(src).*method)(intercept, roots);
840 if (count > 0) {
841 SkDCubicPair pair = cubic.chopAt(roots[0]);
842 for (int i = 0; i < 7; ++i) {
843 dst[i] = pair.pts[i].asSkPoint();
844 }
845 return true;
846 }
847 return false;
848 }
849
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])850 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
851 return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
852 }
853
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])854 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
855 return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
856 }
857
858 ///////////////////////////////////////////////////////////////////////////////
859 //
860 // NURB representation for conics. Helpful explanations at:
861 //
862 // http://citeseerx.ist.psu.edu/viewdoc/
863 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
864 // and
865 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
866 //
867 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
868 // ------------------------------------------
869 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
870 //
871 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
872 // ------------------------------------------------
873 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
874 //
875
876 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
877 //
878 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
879 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
880 // t^0 : -2 P0 w + 2 P1 w
881 //
882 // We disregard magnitude, so we can freely ignore the denominator of F', and
883 // divide the numerator by 2
884 //
885 // coeff[0] for t^2
886 // coeff[1] for t^1
887 // coeff[2] for t^0
888 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])889 static void conic_deriv_coeff(const SkScalar src[],
890 SkScalar w,
891 SkScalar coeff[3]) {
892 const SkScalar P20 = src[4] - src[0];
893 const SkScalar P10 = src[2] - src[0];
894 const SkScalar wP10 = w * P10;
895 coeff[0] = w * P20 - P20;
896 coeff[1] = P20 - 2 * wP10;
897 coeff[2] = wP10;
898 }
899
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)900 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
901 SkScalar coeff[3];
902 conic_deriv_coeff(src, w, coeff);
903
904 SkScalar tValues[2];
905 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
906 SkASSERT(0 == roots || 1 == roots);
907
908 if (1 == roots) {
909 *t = tValues[0];
910 return true;
911 }
912 return false;
913 }
914
915 struct SkP3D {
916 SkScalar fX, fY, fZ;
917
setSkP3D918 void set(SkScalar x, SkScalar y, SkScalar z) {
919 fX = x; fY = y; fZ = z;
920 }
921
projectDownSkP3D922 void projectDown(SkPoint* dst) const {
923 dst->set(fX / fZ, fY / fZ);
924 }
925 };
926
927 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)928 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
929 SkScalar ab = SkScalarInterp(src[0], src[3], t);
930 SkScalar bc = SkScalarInterp(src[3], src[6], t);
931 dst[0] = ab;
932 dst[3] = SkScalarInterp(ab, bc, t);
933 dst[6] = bc;
934 }
935
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkP3D dst[])936 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
937 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
938 dst[1].set(src[1].fX * w, src[1].fY * w, w);
939 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
940 }
941
942 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const943 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
944 SkP3D tmp[3], tmp2[3];
945
946 ratquad_mapTo3D(fPts, fW, tmp);
947
948 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
949 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
950 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
951
952 dst[0].fPts[0] = fPts[0];
953 tmp2[0].projectDown(&dst[0].fPts[1]);
954 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
955 tmp2[2].projectDown(&dst[1].fPts[1]);
956 dst[1].fPts[2] = fPts[2];
957
958 // to put in "standard form", where w0 and w2 are both 1, we compute the
959 // new w1 as sqrt(w1*w1/w0*w2)
960 // or
961 // w1 /= sqrt(w0*w2)
962 //
963 // However, in our case, we know that for dst[0]:
964 // w0 == 1, and for dst[1], w2 == 1
965 //
966 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
967 dst[0].fW = tmp2[0].fZ / root;
968 dst[1].fW = tmp2[2].fZ / root;
969 SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
970 SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
971 return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
972 }
973
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const974 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
975 if (0 == t1 || 1 == t2) {
976 if (0 == t1 && 1 == t2) {
977 *dst = *this;
978 return;
979 } else {
980 SkConic pair[2];
981 if (this->chopAt(t1 ? t1 : t2, pair)) {
982 *dst = pair[SkToBool(t1)];
983 return;
984 }
985 }
986 }
987 SkConicCoeff coeff(*this);
988 Sk2s tt1(t1);
989 Sk2s aXY = coeff.fNumer.eval(tt1);
990 Sk2s aZZ = coeff.fDenom.eval(tt1);
991 Sk2s midTT((t1 + t2) / 2);
992 Sk2s dXY = coeff.fNumer.eval(midTT);
993 Sk2s dZZ = coeff.fDenom.eval(midTT);
994 Sk2s tt2(t2);
995 Sk2s cXY = coeff.fNumer.eval(tt2);
996 Sk2s cZZ = coeff.fDenom.eval(tt2);
997 Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
998 Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
999 dst->fPts[0] = to_point(aXY / aZZ);
1000 dst->fPts[1] = to_point(bXY / bZZ);
1001 dst->fPts[2] = to_point(cXY / cZZ);
1002 Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1003 dst->fW = ww[0];
1004 }
1005
evalAt(SkScalar t) const1006 SkPoint SkConic::evalAt(SkScalar t) const {
1007 return to_point(SkConicCoeff(*this).eval(t));
1008 }
1009
evalTangentAt(SkScalar t) const1010 SkVector SkConic::evalTangentAt(SkScalar t) const {
1011 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1012 // and the control point is equal to the end point.
1013 // In this case, use the conic endpoints to compute the tangent.
1014 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1015 return fPts[2] - fPts[0];
1016 }
1017 Sk2s p0 = from_point(fPts[0]);
1018 Sk2s p1 = from_point(fPts[1]);
1019 Sk2s p2 = from_point(fPts[2]);
1020 Sk2s ww(fW);
1021
1022 Sk2s p20 = p2 - p0;
1023 Sk2s p10 = p1 - p0;
1024
1025 Sk2s C = ww * p10;
1026 Sk2s A = ww * p20 - p20;
1027 Sk2s B = p20 - C - C;
1028
1029 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1030 }
1031
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1032 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1033 SkASSERT(t >= 0 && t <= SK_Scalar1);
1034
1035 if (pt) {
1036 *pt = this->evalAt(t);
1037 }
1038 if (tangent) {
1039 *tangent = this->evalTangentAt(t);
1040 }
1041 }
1042
subdivide_w_value(SkScalar w)1043 static SkScalar subdivide_w_value(SkScalar w) {
1044 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1045 }
1046
chop(SkConic * SK_RESTRICT dst) const1047 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1048 Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1049 SkScalar newW = subdivide_w_value(fW);
1050
1051 Sk2s p0 = from_point(fPts[0]);
1052 Sk2s p1 = from_point(fPts[1]);
1053 Sk2s p2 = from_point(fPts[2]);
1054 Sk2s ww(fW);
1055
1056 Sk2s wp1 = ww * p1;
1057 Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1058
1059 dst[0].fPts[0] = fPts[0];
1060 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1061 dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1062 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1063 dst[1].fPts[2] = fPts[2];
1064
1065 dst[0].fW = dst[1].fW = newW;
1066 }
1067
1068 /*
1069 * "High order approximation of conic sections by quadratic splines"
1070 * by Michael Floater, 1993
1071 */
1072 #define AS_QUAD_ERROR_SETUP \
1073 SkScalar a = fW - 1; \
1074 SkScalar k = a / (4 * (2 + a)); \
1075 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1076 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1077
computeAsQuadError(SkVector * err) const1078 void SkConic::computeAsQuadError(SkVector* err) const {
1079 AS_QUAD_ERROR_SETUP
1080 err->set(x, y);
1081 }
1082
asQuadTol(SkScalar tol) const1083 bool SkConic::asQuadTol(SkScalar tol) const {
1084 AS_QUAD_ERROR_SETUP
1085 return (x * x + y * y) <= tol * tol;
1086 }
1087
1088 // Limit the number of suggested quads to approximate a conic
1089 #define kMaxConicToQuadPOW2 5
1090
computeQuadPOW2(SkScalar tol) const1091 int SkConic::computeQuadPOW2(SkScalar tol) const {
1092 if (tol < 0 || !SkScalarIsFinite(tol)) {
1093 return 0;
1094 }
1095
1096 AS_QUAD_ERROR_SETUP
1097
1098 SkScalar error = SkScalarSqrt(x * x + y * y);
1099 int pow2;
1100 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1101 if (error <= tol) {
1102 break;
1103 }
1104 error *= 0.25f;
1105 }
1106 // float version -- using ceil gives the same results as the above.
1107 if (false) {
1108 SkScalar err = SkScalarSqrt(x * x + y * y);
1109 if (err <= tol) {
1110 return 0;
1111 }
1112 SkScalar tol2 = tol * tol;
1113 if (tol2 == 0) {
1114 return kMaxConicToQuadPOW2;
1115 }
1116 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1117 int altPow2 = SkScalarCeilToInt(fpow2);
1118 if (altPow2 != pow2) {
1119 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1120 }
1121 pow2 = altPow2;
1122 }
1123 return pow2;
1124 }
1125
1126 // This was originally developed and tested for pathops: see SkOpTypes.h
1127 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1128 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1129 return (a - b) * (c - b) <= 0;
1130 }
1131
subdivide(const SkConic & src,SkPoint pts[],int level)1132 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1133 SkASSERT(level >= 0);
1134
1135 if (0 == level) {
1136 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1137 return pts + 2;
1138 } else {
1139 SkConic dst[2];
1140 src.chop(dst);
1141 const SkScalar startY = src.fPts[0].fY;
1142 const SkScalar endY = src.fPts[2].fY;
1143 if (between(startY, src.fPts[1].fY, endY)) {
1144 // If the input is monotonic and the output is not, the scan converter hangs.
1145 // Ensure that the chopped conics maintain their y-order.
1146 SkScalar midY = dst[0].fPts[2].fY;
1147 if (!between(startY, midY, endY)) {
1148 // If the computed midpoint is outside the ends, move it to the closer one.
1149 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1150 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1151 }
1152 if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1153 // If the 1st control is not between the start and end, put it at the start.
1154 // This also reduces the quad to a line.
1155 dst[0].fPts[1].fY = startY;
1156 }
1157 if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1158 // If the 2nd control is not between the start and end, put it at the end.
1159 // This also reduces the quad to a line.
1160 dst[1].fPts[1].fY = endY;
1161 }
1162 // Verify that all five points are in order.
1163 SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1164 SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1165 SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1166 }
1167 --level;
1168 pts = subdivide(dst[0], pts, level);
1169 return subdivide(dst[1], pts, level);
1170 }
1171 }
1172
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1173 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1174 SkASSERT(pow2 >= 0);
1175 *pts = fPts[0];
1176 SkDEBUGCODE(SkPoint* endPts);
1177 if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ...
1178 SkConic dst[2];
1179 this->chop(dst);
1180 // check to see if the first chop generates a pair of lines
1181 if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
1182 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
1183 pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines
1184 pts[4] = dst[1].fPts[2];
1185 pow2 = 1;
1186 SkDEBUGCODE(endPts = &pts[5]);
1187 goto commonFinitePtCheck;
1188 }
1189 }
1190 SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1191 commonFinitePtCheck:
1192 const int quadCount = 1 << pow2;
1193 const int ptCount = 2 * quadCount + 1;
1194 SkASSERT(endPts - pts == ptCount);
1195 if (!SkPointsAreFinite(pts, ptCount)) {
1196 // if we generated a non-finite, pin ourselves to the middle of the hull,
1197 // as our first and last are already on the first/last pts of the hull.
1198 for (int i = 1; i < ptCount - 1; ++i) {
1199 pts[i] = fPts[1];
1200 }
1201 }
1202 return 1 << pow2;
1203 }
1204
findXExtrema(SkScalar * t) const1205 bool SkConic::findXExtrema(SkScalar* t) const {
1206 return conic_find_extrema(&fPts[0].fX, fW, t);
1207 }
1208
findYExtrema(SkScalar * t) const1209 bool SkConic::findYExtrema(SkScalar* t) const {
1210 return conic_find_extrema(&fPts[0].fY, fW, t);
1211 }
1212
chopAtXExtrema(SkConic dst[2]) const1213 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1214 SkScalar t;
1215 if (this->findXExtrema(&t)) {
1216 if (!this->chopAt(t, dst)) {
1217 // if chop can't return finite values, don't chop
1218 return false;
1219 }
1220 // now clean-up the middle, since we know t was meant to be at
1221 // an X-extrema
1222 SkScalar value = dst[0].fPts[2].fX;
1223 dst[0].fPts[1].fX = value;
1224 dst[1].fPts[0].fX = value;
1225 dst[1].fPts[1].fX = value;
1226 return true;
1227 }
1228 return false;
1229 }
1230
chopAtYExtrema(SkConic dst[2]) const1231 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1232 SkScalar t;
1233 if (this->findYExtrema(&t)) {
1234 if (!this->chopAt(t, dst)) {
1235 // if chop can't return finite values, don't chop
1236 return false;
1237 }
1238 // now clean-up the middle, since we know t was meant to be at
1239 // an Y-extrema
1240 SkScalar value = dst[0].fPts[2].fY;
1241 dst[0].fPts[1].fY = value;
1242 dst[1].fPts[0].fY = value;
1243 dst[1].fPts[1].fY = value;
1244 return true;
1245 }
1246 return false;
1247 }
1248
computeTightBounds(SkRect * bounds) const1249 void SkConic::computeTightBounds(SkRect* bounds) const {
1250 SkPoint pts[4];
1251 pts[0] = fPts[0];
1252 pts[1] = fPts[2];
1253 int count = 2;
1254
1255 SkScalar t;
1256 if (this->findXExtrema(&t)) {
1257 this->evalAt(t, &pts[count++]);
1258 }
1259 if (this->findYExtrema(&t)) {
1260 this->evalAt(t, &pts[count++]);
1261 }
1262 bounds->set(pts, count);
1263 }
1264
computeFastBounds(SkRect * bounds) const1265 void SkConic::computeFastBounds(SkRect* bounds) const {
1266 bounds->set(fPts, 3);
1267 }
1268
1269 #if 0 // unimplemented
1270 bool SkConic::findMaxCurvature(SkScalar* t) const {
1271 // TODO: Implement me
1272 return false;
1273 }
1274 #endif
1275
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1276 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1277 const SkMatrix& matrix) {
1278 if (!matrix.hasPerspective()) {
1279 return w;
1280 }
1281
1282 SkP3D src[3], dst[3];
1283
1284 ratquad_mapTo3D(pts, w, src);
1285
1286 matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1287
1288 // w' = sqrt(w1*w1/w0*w2)
1289 SkScalar w0 = dst[0].fZ;
1290 SkScalar w1 = dst[1].fZ;
1291 SkScalar w2 = dst[2].fZ;
1292 w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1293 return w;
1294 }
1295
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1296 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1297 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1298 // rotate by x,y so that uStart is (1.0)
1299 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1300 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1301
1302 SkScalar absY = SkScalarAbs(y);
1303
1304 // check for (effectively) coincident vectors
1305 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1306 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1307 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1308 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1309 return 0;
1310 }
1311
1312 if (dir == kCCW_SkRotationDirection) {
1313 y = -y;
1314 }
1315
1316 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1317 // 0 == [0 .. 90)
1318 // 1 == [90 ..180)
1319 // 2 == [180..270)
1320 // 3 == [270..360)
1321 //
1322 int quadrant = 0;
1323 if (0 == y) {
1324 quadrant = 2; // 180
1325 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1326 } else if (0 == x) {
1327 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1328 quadrant = y > 0 ? 1 : 3; // 90 : 270
1329 } else {
1330 if (y < 0) {
1331 quadrant += 2;
1332 }
1333 if ((x < 0) != (y < 0)) {
1334 quadrant += 1;
1335 }
1336 }
1337
1338 const SkPoint quadrantPts[] = {
1339 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1340 };
1341 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1342
1343 int conicCount = quadrant;
1344 for (int i = 0; i < conicCount; ++i) {
1345 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1346 }
1347
1348 // Now compute any remaing (sub-90-degree) arc for the last conic
1349 const SkPoint finalP = { x, y };
1350 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1351 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1352 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1353
1354 if (dot < 1) {
1355 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1356 // compute the bisector vector, and then rescale to be the off-curve point.
1357 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1358 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1359 // This is nice, since our computed weight is cos(theta/2) as well!
1360 //
1361 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1362 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1363 if (!lastQ.equalsWithinTolerance(offCurve)) {
1364 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1365 conicCount += 1;
1366 }
1367 }
1368
1369 // now handle counter-clockwise and the initial unitStart rotation
1370 SkMatrix matrix;
1371 matrix.setSinCos(uStart.fY, uStart.fX);
1372 if (dir == kCCW_SkRotationDirection) {
1373 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1374 }
1375 if (userMatrix) {
1376 matrix.postConcat(*userMatrix);
1377 }
1378 for (int i = 0; i < conicCount; ++i) {
1379 matrix.mapPoints(dst[i].fPts, 3);
1380 }
1381 return conicCount;
1382 }
1383