1 /** @file
2 Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
3
4 Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16
17 //
18 // SMM CPU Private Data structure that contains SMM Configuration Protocol
19 // along its supporting fields.
20 //
21 SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
22 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
23 NULL, // SmmCpuHandle
24 NULL, // Pointer to ProcessorInfo array
25 NULL, // Pointer to Operation array
26 NULL, // Pointer to CpuSaveStateSize array
27 NULL, // Pointer to CpuSaveState array
28 { {0} }, // SmmReservedSmramRegion
29 {
30 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
31 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
32 0, // SmmCoreEntryContext.NumberOfCpus
33 NULL, // SmmCoreEntryContext.CpuSaveStateSize
34 NULL // SmmCoreEntryContext.CpuSaveState
35 },
36 NULL, // SmmCoreEntry
37 {
38 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
39 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
40 },
41 };
42
43 CPU_HOT_PLUG_DATA mCpuHotPlugData = {
44 CPU_HOT_PLUG_DATA_REVISION_1, // Revision
45 0, // Array Length of SmBase and APIC ID
46 NULL, // Pointer to APIC ID array
47 NULL, // Pointer to SMBASE array
48 0, // Reserved
49 0, // SmrrBase
50 0 // SmrrSize
51 };
52
53 //
54 // Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
55 //
56 SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
57
58 //
59 // SMM Relocation variables
60 //
61 volatile BOOLEAN *mRebased;
62 volatile BOOLEAN mIsBsp;
63
64 ///
65 /// Handle for the SMM CPU Protocol
66 ///
67 EFI_HANDLE mSmmCpuHandle = NULL;
68
69 ///
70 /// SMM CPU Protocol instance
71 ///
72 EFI_SMM_CPU_PROTOCOL mSmmCpu = {
73 SmmReadSaveState,
74 SmmWriteSaveState
75 };
76
77 EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
78
79 //
80 // SMM stack information
81 //
82 UINTN mSmmStackArrayBase;
83 UINTN mSmmStackArrayEnd;
84 UINTN mSmmStackSize;
85
86 //
87 // Pointer to structure used during S3 Resume
88 //
89 SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
90
91 UINTN mMaxNumberOfCpus = 1;
92 UINTN mNumberOfCpus = 1;
93
94 //
95 // SMM ready to lock flag
96 //
97 BOOLEAN mSmmReadyToLock = FALSE;
98
99 //
100 // Global used to cache PCD for SMM Code Access Check enable
101 //
102 BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
103
104 //
105 // Spin lock used to serialize setting of SMM Code Access Check feature
106 //
107 SPIN_LOCK mConfigSmmCodeAccessCheckLock;
108
109 /**
110 Initialize IDT to setup exception handlers for SMM.
111
112 **/
113 VOID
InitializeSmmIdt(VOID)114 InitializeSmmIdt (
115 VOID
116 )
117 {
118 EFI_STATUS Status;
119 BOOLEAN InterruptState;
120 IA32_DESCRIPTOR DxeIdtr;
121 //
122 // Disable Interrupt and save DXE IDT table
123 //
124 InterruptState = SaveAndDisableInterrupts ();
125 AsmReadIdtr (&DxeIdtr);
126 //
127 // Load SMM temporary IDT table
128 //
129 AsmWriteIdtr (&gcSmiIdtr);
130 //
131 // Setup SMM default exception handlers, SMM IDT table
132 // will be updated and saved in gcSmiIdtr
133 //
134 Status = InitializeCpuExceptionHandlers (NULL);
135 ASSERT_EFI_ERROR (Status);
136 //
137 // Restore DXE IDT table and CPU interrupt
138 //
139 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
140 SetInterruptState (InterruptState);
141 }
142
143 /**
144 Search module name by input IP address and output it.
145
146 @param CallerIpAddress Caller instruction pointer.
147
148 **/
149 VOID
DumpModuleInfoByIp(IN UINTN CallerIpAddress)150 DumpModuleInfoByIp (
151 IN UINTN CallerIpAddress
152 )
153 {
154 UINTN Pe32Data;
155 EFI_IMAGE_DOS_HEADER *DosHdr;
156 EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
157 VOID *PdbPointer;
158 UINT64 DumpIpAddress;
159
160 //
161 // Find Image Base
162 //
163 Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
164 while (Pe32Data != 0) {
165 DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
166 if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
167 //
168 // DOS image header is present, so read the PE header after the DOS image header.
169 //
170 Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
171 //
172 // Make sure PE header address does not overflow and is less than the initial address.
173 //
174 if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
175 if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
176 //
177 // It's PE image.
178 //
179 break;
180 }
181 }
182 }
183
184 //
185 // Not found the image base, check the previous aligned address
186 //
187 Pe32Data -= SIZE_4KB;
188 }
189
190 DumpIpAddress = CallerIpAddress;
191 DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));
192
193 if (Pe32Data != 0) {
194 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
195 if (PdbPointer != NULL) {
196 DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
197 }
198 }
199 }
200
201 /**
202 Read information from the CPU save state.
203
204 @param This EFI_SMM_CPU_PROTOCOL instance
205 @param Width The number of bytes to read from the CPU save state.
206 @param Register Specifies the CPU register to read form the save state.
207 @param CpuIndex Specifies the zero-based index of the CPU save state.
208 @param Buffer Upon return, this holds the CPU register value read from the save state.
209
210 @retval EFI_SUCCESS The register was read from Save State
211 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
212 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
213
214 **/
215 EFI_STATUS
216 EFIAPI
SmmReadSaveState(IN CONST EFI_SMM_CPU_PROTOCOL * This,IN UINTN Width,IN EFI_SMM_SAVE_STATE_REGISTER Register,IN UINTN CpuIndex,OUT VOID * Buffer)217 SmmReadSaveState (
218 IN CONST EFI_SMM_CPU_PROTOCOL *This,
219 IN UINTN Width,
220 IN EFI_SMM_SAVE_STATE_REGISTER Register,
221 IN UINTN CpuIndex,
222 OUT VOID *Buffer
223 )
224 {
225 EFI_STATUS Status;
226
227 //
228 // Retrieve pointer to the specified CPU's SMM Save State buffer
229 //
230 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
231 return EFI_INVALID_PARAMETER;
232 }
233
234 //
235 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
236 //
237 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
238 //
239 // The pseudo-register only supports the 64-bit size specified by Width.
240 //
241 if (Width != sizeof (UINT64)) {
242 return EFI_INVALID_PARAMETER;
243 }
244 //
245 // If the processor is in SMM at the time the SMI occurred,
246 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
247 // Otherwise, EFI_NOT_FOUND is returned.
248 //
249 if (mSmmMpSyncData->CpuData[CpuIndex].Present) {
250 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
251 return EFI_SUCCESS;
252 } else {
253 return EFI_NOT_FOUND;
254 }
255 }
256
257 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
258 return EFI_INVALID_PARAMETER;
259 }
260
261 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
262 if (Status == EFI_UNSUPPORTED) {
263 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
264 }
265 return Status;
266 }
267
268 /**
269 Write data to the CPU save state.
270
271 @param This EFI_SMM_CPU_PROTOCOL instance
272 @param Width The number of bytes to read from the CPU save state.
273 @param Register Specifies the CPU register to write to the save state.
274 @param CpuIndex Specifies the zero-based index of the CPU save state
275 @param Buffer Upon entry, this holds the new CPU register value.
276
277 @retval EFI_SUCCESS The register was written from Save State
278 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
279 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
280
281 **/
282 EFI_STATUS
283 EFIAPI
SmmWriteSaveState(IN CONST EFI_SMM_CPU_PROTOCOL * This,IN UINTN Width,IN EFI_SMM_SAVE_STATE_REGISTER Register,IN UINTN CpuIndex,IN CONST VOID * Buffer)284 SmmWriteSaveState (
285 IN CONST EFI_SMM_CPU_PROTOCOL *This,
286 IN UINTN Width,
287 IN EFI_SMM_SAVE_STATE_REGISTER Register,
288 IN UINTN CpuIndex,
289 IN CONST VOID *Buffer
290 )
291 {
292 EFI_STATUS Status;
293
294 //
295 // Retrieve pointer to the specified CPU's SMM Save State buffer
296 //
297 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
298 return EFI_INVALID_PARAMETER;
299 }
300
301 //
302 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
303 //
304 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
305 return EFI_SUCCESS;
306 }
307
308 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
313 if (Status == EFI_UNSUPPORTED) {
314 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
315 }
316 return Status;
317 }
318
319
320 /**
321 C function for SMI handler. To change all processor's SMMBase Register.
322
323 **/
324 VOID
325 EFIAPI
SmmInitHandler(VOID)326 SmmInitHandler (
327 VOID
328 )
329 {
330 UINT32 ApicId;
331 UINTN Index;
332
333 //
334 // Update SMM IDT entries' code segment and load IDT
335 //
336 AsmWriteIdtr (&gcSmiIdtr);
337 ApicId = GetApicId ();
338
339 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
340
341 for (Index = 0; Index < mNumberOfCpus; Index++) {
342 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
343 //
344 // Initialize SMM specific features on the currently executing CPU
345 //
346 SmmCpuFeaturesInitializeProcessor (
347 Index,
348 mIsBsp,
349 gSmmCpuPrivate->ProcessorInfo,
350 &mCpuHotPlugData
351 );
352
353 if (mIsBsp) {
354 //
355 // BSP rebase is already done above.
356 // Initialize private data during S3 resume
357 //
358 InitializeMpSyncData ();
359 }
360
361 //
362 // Hook return after RSM to set SMM re-based flag
363 //
364 SemaphoreHook (Index, &mRebased[Index]);
365
366 return;
367 }
368 }
369 ASSERT (FALSE);
370 }
371
372 /**
373 Relocate SmmBases for each processor.
374
375 Execute on first boot and all S3 resumes
376
377 **/
378 VOID
379 EFIAPI
SmmRelocateBases(VOID)380 SmmRelocateBases (
381 VOID
382 )
383 {
384 UINT8 BakBuf[BACK_BUF_SIZE];
385 SMRAM_SAVE_STATE_MAP BakBuf2;
386 SMRAM_SAVE_STATE_MAP *CpuStatePtr;
387 UINT8 *U8Ptr;
388 UINT32 ApicId;
389 UINTN Index;
390 UINTN BspIndex;
391
392 //
393 // Make sure the reserved size is large enough for procedure SmmInitTemplate.
394 //
395 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
396
397 //
398 // Patch ASM code template with current CR0, CR3, and CR4 values
399 //
400 gSmmCr0 = (UINT32)AsmReadCr0 ();
401 gSmmCr3 = (UINT32)AsmReadCr3 ();
402 gSmmCr4 = (UINT32)AsmReadCr4 ();
403
404 //
405 // Patch GDTR for SMM base relocation
406 //
407 gcSmiInitGdtr.Base = gcSmiGdtr.Base;
408 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
409
410 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
411 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
412
413 //
414 // Backup original contents at address 0x38000
415 //
416 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
417 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
418
419 //
420 // Load image for relocation
421 //
422 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
423
424 //
425 // Retrieve the local APIC ID of current processor
426 //
427 ApicId = GetApicId ();
428
429 //
430 // Relocate SM bases for all APs
431 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
432 //
433 mIsBsp = FALSE;
434 BspIndex = (UINTN)-1;
435 for (Index = 0; Index < mNumberOfCpus; Index++) {
436 mRebased[Index] = FALSE;
437 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
438 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
439 //
440 // Wait for this AP to finish its 1st SMI
441 //
442 while (!mRebased[Index]);
443 } else {
444 //
445 // BSP will be Relocated later
446 //
447 BspIndex = Index;
448 }
449 }
450
451 //
452 // Relocate BSP's SMM base
453 //
454 ASSERT (BspIndex != (UINTN)-1);
455 mIsBsp = TRUE;
456 SendSmiIpi (ApicId);
457 //
458 // Wait for the BSP to finish its 1st SMI
459 //
460 while (!mRebased[BspIndex]);
461
462 //
463 // Restore contents at address 0x38000
464 //
465 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
466 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
467 }
468
469 /**
470 Perform SMM initialization for all processors in the S3 boot path.
471
472 For a native platform, MP initialization in the S3 boot path is also performed in this function.
473 **/
474 VOID
475 EFIAPI
SmmRestoreCpu(VOID)476 SmmRestoreCpu (
477 VOID
478 )
479 {
480 SMM_S3_RESUME_STATE *SmmS3ResumeState;
481 IA32_DESCRIPTOR Ia32Idtr;
482 IA32_DESCRIPTOR X64Idtr;
483 IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
484 EFI_STATUS Status;
485
486 DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
487
488 //
489 // See if there is enough context to resume PEI Phase
490 //
491 if (mSmmS3ResumeState == NULL) {
492 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
493 CpuDeadLoop ();
494 }
495
496 SmmS3ResumeState = mSmmS3ResumeState;
497 ASSERT (SmmS3ResumeState != NULL);
498
499 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
500 //
501 // Save the IA32 IDT Descriptor
502 //
503 AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
504
505 //
506 // Setup X64 IDT table
507 //
508 ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
509 X64Idtr.Base = (UINTN) IdtEntryTable;
510 X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
511 AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
512
513 //
514 // Setup the default exception handler
515 //
516 Status = InitializeCpuExceptionHandlers (NULL);
517 ASSERT_EFI_ERROR (Status);
518
519 //
520 // Initialize Debug Agent to support source level debug
521 //
522 InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
523 }
524
525 //
526 // Skip initialization if mAcpiCpuData is not valid
527 //
528 if (mAcpiCpuData.NumberOfCpus > 0) {
529 //
530 // First time microcode load and restore MTRRs
531 //
532 EarlyInitializeCpu ();
533 }
534
535 //
536 // Restore SMBASE for BSP and all APs
537 //
538 SmmRelocateBases ();
539
540 //
541 // Skip initialization if mAcpiCpuData is not valid
542 //
543 if (mAcpiCpuData.NumberOfCpus > 0) {
544 //
545 // Restore MSRs for BSP and all APs
546 //
547 InitializeCpu ();
548 }
549
550 //
551 // Set a flag to restore SMM configuration in S3 path.
552 //
553 mRestoreSmmConfigurationInS3 = TRUE;
554
555 DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
556 DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
557 DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
558 DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
559 DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
560
561 //
562 // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
563 //
564 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
565 DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
566
567 SwitchStack (
568 (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
569 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
570 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
571 (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
572 );
573 }
574
575 //
576 // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
577 //
578 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
579 DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
580 //
581 // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
582 //
583 SaveAndSetDebugTimerInterrupt (FALSE);
584 //
585 // Restore IA32 IDT table
586 //
587 AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
588 AsmDisablePaging64 (
589 SmmS3ResumeState->ReturnCs,
590 (UINT32)SmmS3ResumeState->ReturnEntryPoint,
591 (UINT32)SmmS3ResumeState->ReturnContext1,
592 (UINT32)SmmS3ResumeState->ReturnContext2,
593 (UINT32)SmmS3ResumeState->ReturnStackPointer
594 );
595 }
596
597 //
598 // Can not resume PEI Phase
599 //
600 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
601 CpuDeadLoop ();
602 }
603
604 /**
605 Copy register table from ACPI NVS memory into SMRAM.
606
607 @param[in] DestinationRegisterTableList Points to destination register table.
608 @param[in] SourceRegisterTableList Points to source register table.
609 @param[in] NumberOfCpus Number of CPUs.
610
611 **/
612 VOID
CopyRegisterTable(IN CPU_REGISTER_TABLE * DestinationRegisterTableList,IN CPU_REGISTER_TABLE * SourceRegisterTableList,IN UINT32 NumberOfCpus)613 CopyRegisterTable (
614 IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
615 IN CPU_REGISTER_TABLE *SourceRegisterTableList,
616 IN UINT32 NumberOfCpus
617 )
618 {
619 UINTN Index;
620 UINTN Index1;
621 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
622
623 CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
624 for (Index = 0; Index < NumberOfCpus; Index++) {
625 DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool (DestinationRegisterTableList[Index].AllocatedSize);
626 ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
627 CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry, SourceRegisterTableList[Index].RegisterTableEntry, DestinationRegisterTableList[Index].AllocatedSize);
628 //
629 // Go though all MSRs in register table to initialize MSR spin lock
630 //
631 RegisterTableEntry = DestinationRegisterTableList[Index].RegisterTableEntry;
632 for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
633 if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
634 //
635 // Initialize MSR spin lock only for those MSRs need bit field writing
636 //
637 InitMsrSpinLockByIndex (RegisterTableEntry->Index);
638 }
639 }
640 }
641 }
642
643 /**
644 SMM Ready To Lock event notification handler.
645
646 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
647 perform additional lock actions that must be performed from SMM on the next SMI.
648
649 @param[in] Protocol Points to the protocol's unique identifier.
650 @param[in] Interface Points to the interface instance.
651 @param[in] Handle The handle on which the interface was installed.
652
653 @retval EFI_SUCCESS Notification handler runs successfully.
654 **/
655 EFI_STATUS
656 EFIAPI
SmmReadyToLockEventNotify(IN CONST EFI_GUID * Protocol,IN VOID * Interface,IN EFI_HANDLE Handle)657 SmmReadyToLockEventNotify (
658 IN CONST EFI_GUID *Protocol,
659 IN VOID *Interface,
660 IN EFI_HANDLE Handle
661 )
662 {
663 ACPI_CPU_DATA *AcpiCpuData;
664 IA32_DESCRIPTOR *Gdtr;
665 IA32_DESCRIPTOR *Idtr;
666
667 //
668 // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
669 //
670 mAcpiCpuData.NumberOfCpus = 0;
671
672 //
673 // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
674 //
675 AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
676 if (AcpiCpuData == 0) {
677 goto Done;
678 }
679
680 //
681 // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
682 //
683 CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
684
685 mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
686 ASSERT (mAcpiCpuData.MtrrTable != 0);
687
688 CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
689
690 mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
691 ASSERT (mAcpiCpuData.GdtrProfile != 0);
692
693 CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
694
695 mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
696 ASSERT (mAcpiCpuData.IdtrProfile != 0);
697
698 CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
699
700 mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
701 ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
702
703 CopyRegisterTable (
704 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
705 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
706 mAcpiCpuData.NumberOfCpus
707 );
708
709 mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
710 ASSERT (mAcpiCpuData.RegisterTable != 0);
711
712 CopyRegisterTable (
713 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
714 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
715 mAcpiCpuData.NumberOfCpus
716 );
717
718 //
719 // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
720 //
721 Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
722 Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
723
724 mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
725 ASSERT (mGdtForAp != NULL);
726 mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
727 mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));
728
729 CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
730 CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
731 CopyMem (mMachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
732
733 Done:
734 //
735 // Set SMM ready to lock flag and return
736 //
737 mSmmReadyToLock = TRUE;
738 return EFI_SUCCESS;
739 }
740
741 /**
742 The module Entry Point of the CPU SMM driver.
743
744 @param ImageHandle The firmware allocated handle for the EFI image.
745 @param SystemTable A pointer to the EFI System Table.
746
747 @retval EFI_SUCCESS The entry point is executed successfully.
748 @retval Other Some error occurs when executing this entry point.
749
750 **/
751 EFI_STATUS
752 EFIAPI
PiCpuSmmEntry(IN EFI_HANDLE ImageHandle,IN EFI_SYSTEM_TABLE * SystemTable)753 PiCpuSmmEntry (
754 IN EFI_HANDLE ImageHandle,
755 IN EFI_SYSTEM_TABLE *SystemTable
756 )
757 {
758 EFI_STATUS Status;
759 EFI_MP_SERVICES_PROTOCOL *MpServices;
760 UINTN NumberOfEnabledProcessors;
761 UINTN Index;
762 VOID *Buffer;
763 UINTN BufferPages;
764 UINTN TileCodeSize;
765 UINTN TileDataSize;
766 UINTN TileSize;
767 VOID *GuidHob;
768 EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
769 SMM_S3_RESUME_STATE *SmmS3ResumeState;
770 UINT8 *Stacks;
771 VOID *Registration;
772 UINT32 RegEax;
773 UINT32 RegEdx;
774 UINTN FamilyId;
775 UINTN ModelId;
776 UINT32 Cr3;
777
778 //
779 // Initialize Debug Agent to support source level debug in SMM code
780 //
781 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
782
783 //
784 // Report the start of CPU SMM initialization.
785 //
786 REPORT_STATUS_CODE (
787 EFI_PROGRESS_CODE,
788 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
789 );
790
791 //
792 // Fix segment address of the long-mode-switch jump
793 //
794 if (sizeof (UINTN) == sizeof (UINT64)) {
795 gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
796 }
797
798 //
799 // Find out SMRR Base and SMRR Size
800 //
801 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
802
803 //
804 // Get MP Services Protocol
805 //
806 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
807 ASSERT_EFI_ERROR (Status);
808
809 //
810 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
811 //
812 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
813 ASSERT_EFI_ERROR (Status);
814 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
815
816 //
817 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
818 // A constant BSP index makes no sense because it may be hot removed.
819 //
820 DEBUG_CODE (
821 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
822
823 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
824 }
825 );
826
827 //
828 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
829 //
830 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
831 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
832
833 //
834 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
835 //
836 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
837 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
838 } else {
839 mMaxNumberOfCpus = mNumberOfCpus;
840 }
841 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
842
843 //
844 // The CPU save state and code for the SMI entry point are tiled within an SMRAM
845 // allocated buffer. The minimum size of this buffer for a uniprocessor system
846 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
847 // just below SMBASE + 64KB. If more than one CPU is present in the platform,
848 // then the SMI entry point and the CPU save state areas can be tiles to minimize
849 // the total amount SMRAM required for all the CPUs. The tile size can be computed
850 // by adding the // CPU save state size, any extra CPU specific context, and
851 // the size of code that must be placed at the SMI entry point to transfer
852 // control to a C function in the native SMM execution mode. This size is
853 // rounded up to the nearest power of 2 to give the tile size for a each CPU.
854 // The total amount of memory required is the maximum number of CPUs that
855 // platform supports times the tile size. The picture below shows the tiling,
856 // where m is the number of tiles that fit in 32KB.
857 //
858 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
859 // | CPU m+1 Save State |
860 // +-----------------------------+
861 // | CPU m+1 Extra Data |
862 // +-----------------------------+
863 // | Padding |
864 // +-----------------------------+
865 // | CPU 2m SMI Entry |
866 // +#############################+ <-- Base of allocated buffer + 64 KB
867 // | CPU m-1 Save State |
868 // +-----------------------------+
869 // | CPU m-1 Extra Data |
870 // +-----------------------------+
871 // | Padding |
872 // +-----------------------------+
873 // | CPU 2m-1 SMI Entry |
874 // +=============================+ <-- 2^n offset from Base of allocated buffer
875 // | . . . . . . . . . . . . |
876 // +=============================+ <-- 2^n offset from Base of allocated buffer
877 // | CPU 2 Save State |
878 // +-----------------------------+
879 // | CPU 2 Extra Data |
880 // +-----------------------------+
881 // | Padding |
882 // +-----------------------------+
883 // | CPU m+1 SMI Entry |
884 // +=============================+ <-- Base of allocated buffer + 32 KB
885 // | CPU 1 Save State |
886 // +-----------------------------+
887 // | CPU 1 Extra Data |
888 // +-----------------------------+
889 // | Padding |
890 // +-----------------------------+
891 // | CPU m SMI Entry |
892 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
893 // | CPU 0 Save State |
894 // +-----------------------------+
895 // | CPU 0 Extra Data |
896 // +-----------------------------+
897 // | Padding |
898 // +-----------------------------+
899 // | CPU m-1 SMI Entry |
900 // +=============================+ <-- 2^n offset from Base of allocated buffer
901 // | . . . . . . . . . . . . |
902 // +=============================+ <-- 2^n offset from Base of allocated buffer
903 // | Padding |
904 // +-----------------------------+
905 // | CPU 1 SMI Entry |
906 // +=============================+ <-- 2^n offset from Base of allocated buffer
907 // | Padding |
908 // +-----------------------------+
909 // | CPU 0 SMI Entry |
910 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
911 //
912
913 //
914 // Retrieve CPU Family
915 //
916 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
917 FamilyId = (RegEax >> 8) & 0xf;
918 ModelId = (RegEax >> 4) & 0xf;
919 if (FamilyId == 0x06 || FamilyId == 0x0f) {
920 ModelId = ModelId | ((RegEax >> 12) & 0xf0);
921 }
922
923 RegEdx = 0;
924 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
925 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
926 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
927 }
928 //
929 // Determine the mode of the CPU at the time an SMI occurs
930 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
931 // Volume 3C, Section 34.4.1.1
932 //
933 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
934 if ((RegEdx & BIT29) != 0) {
935 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
936 }
937 if (FamilyId == 0x06) {
938 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
939 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
940 }
941 }
942
943 //
944 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
945 // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point. This size
946 // is rounded up to nearest power of 2.
947 //
948 TileCodeSize = GetSmiHandlerSize ();
949 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);
950 TileDataSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR);
951 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);
952 TileSize = TileDataSize + TileCodeSize - 1;
953 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
954 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));
955
956 //
957 // If the TileSize is larger than space available for the SMI Handler of CPU[i],
958 // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
959 // the ASSERT(). If this ASSERT() is triggered, then the SMI Handler size must be
960 // reduced.
961 //
962 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
963
964 //
965 // Allocate buffer for all of the tiles.
966 //
967 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
968 // Volume 3C, Section 34.11 SMBASE Relocation
969 // For Pentium and Intel486 processors, the SMBASE values must be
970 // aligned on a 32-KByte boundary or the processor will enter shutdown
971 // state during the execution of a RSM instruction.
972 //
973 // Intel486 processors: FamilyId is 4
974 // Pentium processors : FamilyId is 5
975 //
976 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));
977 if ((FamilyId == 4) || (FamilyId == 5)) {
978 Buffer = AllocateAlignedPages (BufferPages, SIZE_32KB);
979 } else {
980 Buffer = AllocateAlignedPages (BufferPages, SIZE_4KB);
981 }
982 ASSERT (Buffer != NULL);
983 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));
984
985 //
986 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
987 //
988 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
989 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
990
991 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
992 ASSERT (gSmmCpuPrivate->Operation != NULL);
993
994 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
995 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
996
997 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
998 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
999
1000 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
1001 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
1002
1003 //
1004 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
1005 //
1006 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
1007 ASSERT (mCpuHotPlugData.ApicId != NULL);
1008 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
1009 ASSERT (mCpuHotPlugData.SmBase != NULL);
1010 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
1011
1012 //
1013 // Retrieve APIC ID of each enabled processor from the MP Services protocol.
1014 // Also compute the SMBASE address, CPU Save State address, and CPU Save state
1015 // size for each CPU in the platform
1016 //
1017 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
1018 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
1019 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
1020 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
1021 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
1022
1023 if (Index < mNumberOfCpus) {
1024 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
1025 ASSERT_EFI_ERROR (Status);
1026 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
1027
1028 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
1029 Index,
1030 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
1031 mCpuHotPlugData.SmBase[Index],
1032 gSmmCpuPrivate->CpuSaveState[Index],
1033 gSmmCpuPrivate->CpuSaveStateSize[Index]
1034 ));
1035 } else {
1036 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
1037 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
1038 }
1039 }
1040
1041 //
1042 // Allocate SMI stacks for all processors.
1043 //
1044 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
1045 //
1046 // 2 more pages is allocated for each processor.
1047 // one is guard page and the other is known good stack.
1048 //
1049 // +-------------------------------------------+-----+-------------------------------------------+
1050 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
1051 // +-------------------------------------------+-----+-------------------------------------------+
1052 // | | | |
1053 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
1054 //
1055 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
1056 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
1057 ASSERT (Stacks != NULL);
1058 mSmmStackArrayBase = (UINTN)Stacks;
1059 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
1060 } else {
1061 mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
1062 Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
1063 ASSERT (Stacks != NULL);
1064 }
1065
1066 //
1067 // Set SMI stack for SMM base relocation
1068 //
1069 gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));
1070
1071 //
1072 // Initialize IDT
1073 //
1074 InitializeSmmIdt ();
1075
1076 //
1077 // Relocate SMM Base addresses to the ones allocated from SMRAM
1078 //
1079 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
1080 ASSERT (mRebased != NULL);
1081 SmmRelocateBases ();
1082
1083 //
1084 // Call hook for BSP to perform extra actions in normal mode after all
1085 // SMM base addresses have been relocated on all CPUs
1086 //
1087 SmmCpuFeaturesSmmRelocationComplete ();
1088
1089 //
1090 // SMM Time initialization
1091 //
1092 InitializeSmmTimer ();
1093
1094 //
1095 // Initialize MP globals
1096 //
1097 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);
1098
1099 //
1100 // Fill in SMM Reserved Regions
1101 //
1102 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
1103 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
1104
1105 //
1106 // Install the SMM Configuration Protocol onto a new handle on the handle database.
1107 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
1108 // to an SMRAM address will be present in the handle database
1109 //
1110 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
1111 &gSmmCpuPrivate->SmmCpuHandle,
1112 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
1113 NULL
1114 );
1115 ASSERT_EFI_ERROR (Status);
1116
1117 //
1118 // Install the SMM CPU Protocol into SMM protocol database
1119 //
1120 Status = gSmst->SmmInstallProtocolInterface (
1121 &mSmmCpuHandle,
1122 &gEfiSmmCpuProtocolGuid,
1123 EFI_NATIVE_INTERFACE,
1124 &mSmmCpu
1125 );
1126 ASSERT_EFI_ERROR (Status);
1127
1128 //
1129 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
1130 //
1131 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
1132 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
1133 ASSERT_EFI_ERROR (Status);
1134 }
1135
1136 //
1137 // Initialize SMM CPU Services Support
1138 //
1139 Status = InitializeSmmCpuServices (mSmmCpuHandle);
1140 ASSERT_EFI_ERROR (Status);
1141
1142 //
1143 // register SMM Ready To Lock Protocol notification
1144 //
1145 Status = gSmst->SmmRegisterProtocolNotify (
1146 &gEfiSmmReadyToLockProtocolGuid,
1147 SmmReadyToLockEventNotify,
1148 &Registration
1149 );
1150 ASSERT_EFI_ERROR (Status);
1151
1152 GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
1153 if (GuidHob != NULL) {
1154 SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
1155
1156 DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
1157 DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
1158
1159 SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
1160 ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
1161
1162 mSmmS3ResumeState = SmmS3ResumeState;
1163 SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
1164
1165 SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
1166
1167 SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
1168 SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
1169 if (SmmS3ResumeState->SmmS3StackBase == 0) {
1170 SmmS3ResumeState->SmmS3StackSize = 0;
1171 }
1172
1173 SmmS3ResumeState->SmmS3Cr0 = gSmmCr0;
1174 SmmS3ResumeState->SmmS3Cr3 = Cr3;
1175 SmmS3ResumeState->SmmS3Cr4 = gSmmCr4;
1176
1177 if (sizeof (UINTN) == sizeof (UINT64)) {
1178 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
1179 }
1180 if (sizeof (UINTN) == sizeof (UINT32)) {
1181 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
1182 }
1183 }
1184
1185 //
1186 // Check XD and BTS features
1187 //
1188 CheckProcessorFeature ();
1189
1190 //
1191 // Initialize SMM Profile feature
1192 //
1193 InitSmmProfile (Cr3);
1194
1195 //
1196 // Patch SmmS3ResumeState->SmmS3Cr3
1197 //
1198 InitSmmS3Cr3 ();
1199
1200 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
1201
1202 return EFI_SUCCESS;
1203 }
1204
1205 /**
1206
1207 Find out SMRAM information including SMRR base and SMRR size.
1208
1209 @param SmrrBase SMRR base
1210 @param SmrrSize SMRR size
1211
1212 **/
1213 VOID
FindSmramInfo(OUT UINT32 * SmrrBase,OUT UINT32 * SmrrSize)1214 FindSmramInfo (
1215 OUT UINT32 *SmrrBase,
1216 OUT UINT32 *SmrrSize
1217 )
1218 {
1219 EFI_STATUS Status;
1220 UINTN Size;
1221 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
1222 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
1223 EFI_SMRAM_DESCRIPTOR *SmramRanges;
1224 UINTN SmramRangeCount;
1225 UINTN Index;
1226 UINT64 MaxSize;
1227 BOOLEAN Found;
1228
1229 //
1230 // Get SMM Access Protocol
1231 //
1232 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
1233 ASSERT_EFI_ERROR (Status);
1234
1235 //
1236 // Get SMRAM information
1237 //
1238 Size = 0;
1239 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
1240 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1241
1242 SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
1243 ASSERT (SmramRanges != NULL);
1244
1245 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
1246 ASSERT_EFI_ERROR (Status);
1247
1248 SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
1249
1250 //
1251 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
1252 //
1253 CurrentSmramRange = NULL;
1254 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
1255 //
1256 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
1257 //
1258 if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
1259 continue;
1260 }
1261
1262 if (SmramRanges[Index].CpuStart >= BASE_1MB) {
1263 if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
1264 if (SmramRanges[Index].PhysicalSize >= MaxSize) {
1265 MaxSize = SmramRanges[Index].PhysicalSize;
1266 CurrentSmramRange = &SmramRanges[Index];
1267 }
1268 }
1269 }
1270 }
1271
1272 ASSERT (CurrentSmramRange != NULL);
1273
1274 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
1275 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
1276
1277 do {
1278 Found = FALSE;
1279 for (Index = 0; Index < SmramRangeCount; Index++) {
1280 if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
1281 *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
1282 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1283 Found = TRUE;
1284 } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
1285 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1286 Found = TRUE;
1287 }
1288 }
1289 } while (Found);
1290
1291 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
1292 }
1293
1294 /**
1295 Configure SMM Code Access Check feature on an AP.
1296 SMM Feature Control MSR will be locked after configuration.
1297
1298 @param[in,out] Buffer Pointer to private data buffer.
1299 **/
1300 VOID
1301 EFIAPI
ConfigSmmCodeAccessCheckOnCurrentProcessor(IN OUT VOID * Buffer)1302 ConfigSmmCodeAccessCheckOnCurrentProcessor (
1303 IN OUT VOID *Buffer
1304 )
1305 {
1306 UINTN CpuIndex;
1307 UINT64 SmmFeatureControlMsr;
1308 UINT64 NewSmmFeatureControlMsr;
1309
1310 //
1311 // Retrieve the CPU Index from the context passed in
1312 //
1313 CpuIndex = *(UINTN *)Buffer;
1314
1315 //
1316 // Get the current SMM Feature Control MSR value
1317 //
1318 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
1319
1320 //
1321 // Compute the new SMM Feature Control MSR value
1322 //
1323 NewSmmFeatureControlMsr = SmmFeatureControlMsr;
1324 if (mSmmCodeAccessCheckEnable) {
1325 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
1326 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
1327 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
1328 }
1329 }
1330
1331 //
1332 // Only set the SMM Feature Control MSR value if the new value is different than the current value
1333 //
1334 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
1335 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
1336 }
1337
1338 //
1339 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
1340 //
1341 ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
1342 }
1343
1344 /**
1345 Configure SMM Code Access Check feature for all processors.
1346 SMM Feature Control MSR will be locked after configuration.
1347 **/
1348 VOID
ConfigSmmCodeAccessCheck(VOID)1349 ConfigSmmCodeAccessCheck (
1350 VOID
1351 )
1352 {
1353 UINTN Index;
1354 EFI_STATUS Status;
1355
1356 //
1357 // Check to see if the Feature Control MSR is supported on this CPU
1358 //
1359 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1360 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
1361 mSmmCodeAccessCheckEnable = FALSE;
1362 return;
1363 }
1364
1365 //
1366 // Check to see if the CPU supports the SMM Code Access Check feature
1367 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
1368 //
1369 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
1370 mSmmCodeAccessCheckEnable = FALSE;
1371 return;
1372 }
1373
1374 //
1375 // Initialize the lock used to serialize the MSR programming in BSP and all APs
1376 //
1377 InitializeSpinLock (&mConfigSmmCodeAccessCheckLock);
1378
1379 //
1380 // Acquire Config SMM Code Access Check spin lock. The BSP will release the
1381 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1382 //
1383 AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);
1384
1385 //
1386 // Enable SMM Code Access Check feature on the BSP.
1387 //
1388 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
1389
1390 //
1391 // Enable SMM Code Access Check feature for the APs.
1392 //
1393 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1394 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
1395
1396 //
1397 // Acquire Config SMM Code Access Check spin lock. The AP will release the
1398 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1399 //
1400 AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);
1401
1402 //
1403 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
1404 //
1405 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
1406 ASSERT_EFI_ERROR (Status);
1407
1408 //
1409 // Wait for the AP to release the Config SMM Code Access Check spin lock.
1410 //
1411 while (!AcquireSpinLockOrFail (&mConfigSmmCodeAccessCheckLock)) {
1412 CpuPause ();
1413 }
1414
1415 //
1416 // Release the Config SMM Code Access Check spin lock.
1417 //
1418 ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
1419 }
1420 }
1421 }
1422
1423 /**
1424 This API provides a way to allocate memory for page table.
1425
1426 This API can be called more once to allocate memory for page tables.
1427
1428 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
1429 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
1430 is returned. If there is not enough memory remaining to satisfy the request, then NULL is
1431 returned.
1432
1433 @param Pages The number of 4 KB pages to allocate.
1434
1435 @return A pointer to the allocated buffer or NULL if allocation fails.
1436
1437 **/
1438 VOID *
AllocatePageTableMemory(IN UINTN Pages)1439 AllocatePageTableMemory (
1440 IN UINTN Pages
1441 )
1442 {
1443 VOID *Buffer;
1444
1445 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);
1446 if (Buffer != NULL) {
1447 return Buffer;
1448 }
1449 return AllocatePages (Pages);
1450 }
1451
1452 /**
1453 Perform the remaining tasks.
1454
1455 **/
1456 VOID
PerformRemainingTasks(VOID)1457 PerformRemainingTasks (
1458 VOID
1459 )
1460 {
1461 if (mSmmReadyToLock) {
1462 //
1463 // Start SMM Profile feature
1464 //
1465 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1466 SmmProfileStart ();
1467 }
1468 //
1469 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
1470 //
1471 InitPaging ();
1472 //
1473 // Configure SMM Code Access Check feature if available.
1474 //
1475 ConfigSmmCodeAccessCheck ();
1476
1477 SmmCpuFeaturesCompleteSmmReadyToLock ();
1478
1479 //
1480 // Clean SMM ready to lock flag
1481 //
1482 mSmmReadyToLock = FALSE;
1483 }
1484 }
1485
1486 /**
1487 Perform the pre tasks.
1488
1489 **/
1490 VOID
PerformPreTasks(VOID)1491 PerformPreTasks (
1492 VOID
1493 )
1494 {
1495 //
1496 // Restore SMM Configuration in S3 boot path.
1497 //
1498 if (mRestoreSmmConfigurationInS3) {
1499 //
1500 // Need make sure gSmst is correct because below function may use them.
1501 //
1502 gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
1503 gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1504 gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
1505 gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
1506 gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
1507
1508 //
1509 // Configure SMM Code Access Check feature if available.
1510 //
1511 ConfigSmmCodeAccessCheck ();
1512
1513 SmmCpuFeaturesCompleteSmmReadyToLock ();
1514
1515 mRestoreSmmConfigurationInS3 = FALSE;
1516 }
1517 }
1518