1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33 
DeleteDeadBlock(BasicBlock * BB)34 void llvm::DeleteDeadBlock(BasicBlock *BB) {
35   assert((pred_begin(BB) == pred_end(BB) ||
36          // Can delete self loop.
37          BB->getSinglePredecessor() == BB) && "Block is not dead!");
38   TerminatorInst *BBTerm = BB->getTerminator();
39 
40   // Loop through all of our successors and make sure they know that one
41   // of their predecessors is going away.
42   for (BasicBlock *Succ : BBTerm->successors())
43     Succ->removePredecessor(BB);
44 
45   // Zap all the instructions in the block.
46   while (!BB->empty()) {
47     Instruction &I = BB->back();
48     // If this instruction is used, replace uses with an arbitrary value.
49     // Because control flow can't get here, we don't care what we replace the
50     // value with.  Note that since this block is unreachable, and all values
51     // contained within it must dominate their uses, that all uses will
52     // eventually be removed (they are themselves dead).
53     if (!I.use_empty())
54       I.replaceAllUsesWith(UndefValue::get(I.getType()));
55     BB->getInstList().pop_back();
56   }
57 
58   // Zap the block!
59   BB->eraseFromParent();
60 }
61 
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceResults * MemDep)62 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
63                                    MemoryDependenceResults *MemDep) {
64   if (!isa<PHINode>(BB->begin())) return;
65 
66   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
67     if (PN->getIncomingValue(0) != PN)
68       PN->replaceAllUsesWith(PN->getIncomingValue(0));
69     else
70       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
71 
72     if (MemDep)
73       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
74 
75     PN->eraseFromParent();
76   }
77 }
78 
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI)79 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
80   // Recursively deleting a PHI may cause multiple PHIs to be deleted
81   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
82   SmallVector<WeakVH, 8> PHIs;
83   for (BasicBlock::iterator I = BB->begin();
84        PHINode *PN = dyn_cast<PHINode>(I); ++I)
85     PHIs.push_back(PN);
86 
87   bool Changed = false;
88   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
89     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
90       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
91 
92   return Changed;
93 }
94 
MergeBlockIntoPredecessor(BasicBlock * BB,DominatorTree * DT,LoopInfo * LI,MemoryDependenceResults * MemDep)95 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
96                                      LoopInfo *LI,
97                                      MemoryDependenceResults *MemDep) {
98   // Don't merge away blocks who have their address taken.
99   if (BB->hasAddressTaken()) return false;
100 
101   // Can't merge if there are multiple predecessors, or no predecessors.
102   BasicBlock *PredBB = BB->getUniquePredecessor();
103   if (!PredBB) return false;
104 
105   // Don't break self-loops.
106   if (PredBB == BB) return false;
107   // Don't break unwinding instructions.
108   if (PredBB->getTerminator()->isExceptional())
109     return false;
110 
111   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
112   BasicBlock *OnlySucc = BB;
113   for (; SI != SE; ++SI)
114     if (*SI != OnlySucc) {
115       OnlySucc = nullptr;     // There are multiple distinct successors!
116       break;
117     }
118 
119   // Can't merge if there are multiple successors.
120   if (!OnlySucc) return false;
121 
122   // Can't merge if there is PHI loop.
123   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
124     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
125       for (Value *IncValue : PN->incoming_values())
126         if (IncValue == PN)
127           return false;
128     } else
129       break;
130   }
131 
132   // Begin by getting rid of unneeded PHIs.
133   if (isa<PHINode>(BB->front()))
134     FoldSingleEntryPHINodes(BB, MemDep);
135 
136   // Delete the unconditional branch from the predecessor...
137   PredBB->getInstList().pop_back();
138 
139   // Make all PHI nodes that referred to BB now refer to Pred as their
140   // source...
141   BB->replaceAllUsesWith(PredBB);
142 
143   // Move all definitions in the successor to the predecessor...
144   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
145 
146   // Inherit predecessors name if it exists.
147   if (!PredBB->hasName())
148     PredBB->takeName(BB);
149 
150   // Finally, erase the old block and update dominator info.
151   if (DT)
152     if (DomTreeNode *DTN = DT->getNode(BB)) {
153       DomTreeNode *PredDTN = DT->getNode(PredBB);
154       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
155       for (DomTreeNode *DI : Children)
156         DT->changeImmediateDominator(DI, PredDTN);
157 
158       DT->eraseNode(BB);
159     }
160 
161   if (LI)
162     LI->removeBlock(BB);
163 
164   if (MemDep)
165     MemDep->invalidateCachedPredecessors();
166 
167   BB->eraseFromParent();
168   return true;
169 }
170 
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)171 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
172                                 BasicBlock::iterator &BI, Value *V) {
173   Instruction &I = *BI;
174   // Replaces all of the uses of the instruction with uses of the value
175   I.replaceAllUsesWith(V);
176 
177   // Make sure to propagate a name if there is one already.
178   if (I.hasName() && !V->hasName())
179     V->takeName(&I);
180 
181   // Delete the unnecessary instruction now...
182   BI = BIL.erase(BI);
183 }
184 
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)185 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
186                                BasicBlock::iterator &BI, Instruction *I) {
187   assert(I->getParent() == nullptr &&
188          "ReplaceInstWithInst: Instruction already inserted into basic block!");
189 
190   // Copy debug location to newly added instruction, if it wasn't already set
191   // by the caller.
192   if (!I->getDebugLoc())
193     I->setDebugLoc(BI->getDebugLoc());
194 
195   // Insert the new instruction into the basic block...
196   BasicBlock::iterator New = BIL.insert(BI, I);
197 
198   // Replace all uses of the old instruction, and delete it.
199   ReplaceInstWithValue(BIL, BI, I);
200 
201   // Move BI back to point to the newly inserted instruction
202   BI = New;
203 }
204 
ReplaceInstWithInst(Instruction * From,Instruction * To)205 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
206   BasicBlock::iterator BI(From);
207   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
208 }
209 
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI)210 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
211                             LoopInfo *LI) {
212   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
213 
214   // If this is a critical edge, let SplitCriticalEdge do it.
215   TerminatorInst *LatchTerm = BB->getTerminator();
216   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
217                                                 .setPreserveLCSSA()))
218     return LatchTerm->getSuccessor(SuccNum);
219 
220   // If the edge isn't critical, then BB has a single successor or Succ has a
221   // single pred.  Split the block.
222   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
223     // If the successor only has a single pred, split the top of the successor
224     // block.
225     assert(SP == BB && "CFG broken");
226     SP = nullptr;
227     return SplitBlock(Succ, &Succ->front(), DT, LI);
228   }
229 
230   // Otherwise, if BB has a single successor, split it at the bottom of the
231   // block.
232   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
233          "Should have a single succ!");
234   return SplitBlock(BB, BB->getTerminator(), DT, LI);
235 }
236 
237 unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)238 llvm::SplitAllCriticalEdges(Function &F,
239                             const CriticalEdgeSplittingOptions &Options) {
240   unsigned NumBroken = 0;
241   for (BasicBlock &BB : F) {
242     TerminatorInst *TI = BB.getTerminator();
243     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
244       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
245         if (SplitCriticalEdge(TI, i, Options))
246           ++NumBroken;
247   }
248   return NumBroken;
249 }
250 
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,LoopInfo * LI)251 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
252                              DominatorTree *DT, LoopInfo *LI) {
253   BasicBlock::iterator SplitIt = SplitPt->getIterator();
254   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
255     ++SplitIt;
256   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
257 
258   // The new block lives in whichever loop the old one did. This preserves
259   // LCSSA as well, because we force the split point to be after any PHI nodes.
260   if (LI)
261     if (Loop *L = LI->getLoopFor(Old))
262       L->addBasicBlockToLoop(New, *LI);
263 
264   if (DT)
265     // Old dominates New. New node dominates all other nodes dominated by Old.
266     if (DomTreeNode *OldNode = DT->getNode(Old)) {
267       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
268 
269       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
270       for (DomTreeNode *I : Children)
271         DT->changeImmediateDominator(I, NewNode);
272     }
273 
274   return New;
275 }
276 
277 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA,bool & HasLoopExit)278 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
279                                       ArrayRef<BasicBlock *> Preds,
280                                       DominatorTree *DT, LoopInfo *LI,
281                                       bool PreserveLCSSA, bool &HasLoopExit) {
282   // Update dominator tree if available.
283   if (DT)
284     DT->splitBlock(NewBB);
285 
286   // The rest of the logic is only relevant for updating the loop structures.
287   if (!LI)
288     return;
289 
290   Loop *L = LI->getLoopFor(OldBB);
291 
292   // If we need to preserve loop analyses, collect some information about how
293   // this split will affect loops.
294   bool IsLoopEntry = !!L;
295   bool SplitMakesNewLoopHeader = false;
296   for (BasicBlock *Pred : Preds) {
297     // If we need to preserve LCSSA, determine if any of the preds is a loop
298     // exit.
299     if (PreserveLCSSA)
300       if (Loop *PL = LI->getLoopFor(Pred))
301         if (!PL->contains(OldBB))
302           HasLoopExit = true;
303 
304     // If we need to preserve LoopInfo, note whether any of the preds crosses
305     // an interesting loop boundary.
306     if (!L)
307       continue;
308     if (L->contains(Pred))
309       IsLoopEntry = false;
310     else
311       SplitMakesNewLoopHeader = true;
312   }
313 
314   // Unless we have a loop for OldBB, nothing else to do here.
315   if (!L)
316     return;
317 
318   if (IsLoopEntry) {
319     // Add the new block to the nearest enclosing loop (and not an adjacent
320     // loop). To find this, examine each of the predecessors and determine which
321     // loops enclose them, and select the most-nested loop which contains the
322     // loop containing the block being split.
323     Loop *InnermostPredLoop = nullptr;
324     for (BasicBlock *Pred : Preds) {
325       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
326         // Seek a loop which actually contains the block being split (to avoid
327         // adjacent loops).
328         while (PredLoop && !PredLoop->contains(OldBB))
329           PredLoop = PredLoop->getParentLoop();
330 
331         // Select the most-nested of these loops which contains the block.
332         if (PredLoop && PredLoop->contains(OldBB) &&
333             (!InnermostPredLoop ||
334              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
335           InnermostPredLoop = PredLoop;
336       }
337     }
338 
339     if (InnermostPredLoop)
340       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
341   } else {
342     L->addBasicBlockToLoop(NewBB, *LI);
343     if (SplitMakesNewLoopHeader)
344       L->moveToHeader(NewBB);
345   }
346 }
347 
348 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
349 /// This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)350 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
351                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
352                            bool HasLoopExit) {
353   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
354   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
355   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
356     PHINode *PN = cast<PHINode>(I++);
357 
358     // Check to see if all of the values coming in are the same.  If so, we
359     // don't need to create a new PHI node, unless it's needed for LCSSA.
360     Value *InVal = nullptr;
361     if (!HasLoopExit) {
362       InVal = PN->getIncomingValueForBlock(Preds[0]);
363       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364         if (!PredSet.count(PN->getIncomingBlock(i)))
365           continue;
366         if (!InVal)
367           InVal = PN->getIncomingValue(i);
368         else if (InVal != PN->getIncomingValue(i)) {
369           InVal = nullptr;
370           break;
371         }
372       }
373     }
374 
375     if (InVal) {
376       // If all incoming values for the new PHI would be the same, just don't
377       // make a new PHI.  Instead, just remove the incoming values from the old
378       // PHI.
379 
380       // NOTE! This loop walks backwards for a reason! First off, this minimizes
381       // the cost of removal if we end up removing a large number of values, and
382       // second off, this ensures that the indices for the incoming values
383       // aren't invalidated when we remove one.
384       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
385         if (PredSet.count(PN->getIncomingBlock(i)))
386           PN->removeIncomingValue(i, false);
387 
388       // Add an incoming value to the PHI node in the loop for the preheader
389       // edge.
390       PN->addIncoming(InVal, NewBB);
391       continue;
392     }
393 
394     // If the values coming into the block are not the same, we need a new
395     // PHI.
396     // Create the new PHI node, insert it into NewBB at the end of the block
397     PHINode *NewPHI =
398         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
399 
400     // NOTE! This loop walks backwards for a reason! First off, this minimizes
401     // the cost of removal if we end up removing a large number of values, and
402     // second off, this ensures that the indices for the incoming values aren't
403     // invalidated when we remove one.
404     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
405       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
406       if (PredSet.count(IncomingBB)) {
407         Value *V = PN->removeIncomingValue(i, false);
408         NewPHI->addIncoming(V, IncomingBB);
409       }
410     }
411 
412     PN->addIncoming(NewPHI, NewBB);
413   }
414 }
415 
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)416 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
417                                          ArrayRef<BasicBlock *> Preds,
418                                          const char *Suffix, DominatorTree *DT,
419                                          LoopInfo *LI, bool PreserveLCSSA) {
420   // Do not attempt to split that which cannot be split.
421   if (!BB->canSplitPredecessors())
422     return nullptr;
423 
424   // For the landingpads we need to act a bit differently.
425   // Delegate this work to the SplitLandingPadPredecessors.
426   if (BB->isLandingPad()) {
427     SmallVector<BasicBlock*, 2> NewBBs;
428     std::string NewName = std::string(Suffix) + ".split-lp";
429 
430     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
431                                 LI, PreserveLCSSA);
432     return NewBBs[0];
433   }
434 
435   // Create new basic block, insert right before the original block.
436   BasicBlock *NewBB = BasicBlock::Create(
437       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
438 
439   // The new block unconditionally branches to the old block.
440   BranchInst *BI = BranchInst::Create(BB, NewBB);
441   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
442 
443   // Move the edges from Preds to point to NewBB instead of BB.
444   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
445     // This is slightly more strict than necessary; the minimum requirement
446     // is that there be no more than one indirectbr branching to BB. And
447     // all BlockAddress uses would need to be updated.
448     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
449            "Cannot split an edge from an IndirectBrInst");
450     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
451   }
452 
453   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
454   // node becomes an incoming value for BB's phi node.  However, if the Preds
455   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
456   // account for the newly created predecessor.
457   if (Preds.size() == 0) {
458     // Insert dummy values as the incoming value.
459     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
460       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
461     return NewBB;
462   }
463 
464   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
465   bool HasLoopExit = false;
466   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
467                             HasLoopExit);
468 
469   // Update the PHI nodes in BB with the values coming from NewBB.
470   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
471   return NewBB;
472 }
473 
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)474 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
475                                        ArrayRef<BasicBlock *> Preds,
476                                        const char *Suffix1, const char *Suffix2,
477                                        SmallVectorImpl<BasicBlock *> &NewBBs,
478                                        DominatorTree *DT, LoopInfo *LI,
479                                        bool PreserveLCSSA) {
480   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
481 
482   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
483   // it right before the original block.
484   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
485                                           OrigBB->getName() + Suffix1,
486                                           OrigBB->getParent(), OrigBB);
487   NewBBs.push_back(NewBB1);
488 
489   // The new block unconditionally branches to the old block.
490   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
491   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
492 
493   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
494   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
495     // This is slightly more strict than necessary; the minimum requirement
496     // is that there be no more than one indirectbr branching to BB. And
497     // all BlockAddress uses would need to be updated.
498     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
499            "Cannot split an edge from an IndirectBrInst");
500     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
501   }
502 
503   bool HasLoopExit = false;
504   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
505                             HasLoopExit);
506 
507   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
508   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
509 
510   // Move the remaining edges from OrigBB to point to NewBB2.
511   SmallVector<BasicBlock*, 8> NewBB2Preds;
512   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
513        i != e; ) {
514     BasicBlock *Pred = *i++;
515     if (Pred == NewBB1) continue;
516     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
517            "Cannot split an edge from an IndirectBrInst");
518     NewBB2Preds.push_back(Pred);
519     e = pred_end(OrigBB);
520   }
521 
522   BasicBlock *NewBB2 = nullptr;
523   if (!NewBB2Preds.empty()) {
524     // Create another basic block for the rest of OrigBB's predecessors.
525     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
526                                 OrigBB->getName() + Suffix2,
527                                 OrigBB->getParent(), OrigBB);
528     NewBBs.push_back(NewBB2);
529 
530     // The new block unconditionally branches to the old block.
531     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
532     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
533 
534     // Move the remaining edges from OrigBB to point to NewBB2.
535     for (BasicBlock *NewBB2Pred : NewBB2Preds)
536       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
537 
538     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
539     HasLoopExit = false;
540     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
541                               PreserveLCSSA, HasLoopExit);
542 
543     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
544     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
545   }
546 
547   LandingPadInst *LPad = OrigBB->getLandingPadInst();
548   Instruction *Clone1 = LPad->clone();
549   Clone1->setName(Twine("lpad") + Suffix1);
550   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
551 
552   if (NewBB2) {
553     Instruction *Clone2 = LPad->clone();
554     Clone2->setName(Twine("lpad") + Suffix2);
555     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
556 
557     // Create a PHI node for the two cloned landingpad instructions only
558     // if the original landingpad instruction has some uses.
559     if (!LPad->use_empty()) {
560       assert(!LPad->getType()->isTokenTy() &&
561              "Split cannot be applied if LPad is token type. Otherwise an "
562              "invalid PHINode of token type would be created.");
563       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
564       PN->addIncoming(Clone1, NewBB1);
565       PN->addIncoming(Clone2, NewBB2);
566       LPad->replaceAllUsesWith(PN);
567     }
568     LPad->eraseFromParent();
569   } else {
570     // There is no second clone. Just replace the landing pad with the first
571     // clone.
572     LPad->replaceAllUsesWith(Clone1);
573     LPad->eraseFromParent();
574   }
575 }
576 
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred)577 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
578                                              BasicBlock *Pred) {
579   Instruction *UncondBranch = Pred->getTerminator();
580   // Clone the return and add it to the end of the predecessor.
581   Instruction *NewRet = RI->clone();
582   Pred->getInstList().push_back(NewRet);
583 
584   // If the return instruction returns a value, and if the value was a
585   // PHI node in "BB", propagate the right value into the return.
586   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
587        i != e; ++i) {
588     Value *V = *i;
589     Instruction *NewBC = nullptr;
590     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
591       // Return value might be bitcasted. Clone and insert it before the
592       // return instruction.
593       V = BCI->getOperand(0);
594       NewBC = BCI->clone();
595       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
596       *i = NewBC;
597     }
598     if (PHINode *PN = dyn_cast<PHINode>(V)) {
599       if (PN->getParent() == BB) {
600         if (NewBC)
601           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
602         else
603           *i = PN->getIncomingValueForBlock(Pred);
604       }
605     }
606   }
607 
608   // Update any PHI nodes in the returning block to realize that we no
609   // longer branch to them.
610   BB->removePredecessor(Pred);
611   UncondBranch->eraseFromParent();
612   return cast<ReturnInst>(NewRet);
613 }
614 
615 TerminatorInst *
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DominatorTree * DT,LoopInfo * LI)616 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
617                                 bool Unreachable, MDNode *BranchWeights,
618                                 DominatorTree *DT, LoopInfo *LI) {
619   BasicBlock *Head = SplitBefore->getParent();
620   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
621   TerminatorInst *HeadOldTerm = Head->getTerminator();
622   LLVMContext &C = Head->getContext();
623   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
624   TerminatorInst *CheckTerm;
625   if (Unreachable)
626     CheckTerm = new UnreachableInst(C, ThenBlock);
627   else
628     CheckTerm = BranchInst::Create(Tail, ThenBlock);
629   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
630   BranchInst *HeadNewTerm =
631     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
632   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
633   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
634 
635   if (DT) {
636     if (DomTreeNode *OldNode = DT->getNode(Head)) {
637       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
638 
639       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
640       for (DomTreeNode *Child : Children)
641         DT->changeImmediateDominator(Child, NewNode);
642 
643       // Head dominates ThenBlock.
644       DT->addNewBlock(ThenBlock, Head);
645     }
646   }
647 
648   if (LI) {
649     Loop *L = LI->getLoopFor(Head);
650     L->addBasicBlockToLoop(ThenBlock, *LI);
651     L->addBasicBlockToLoop(Tail, *LI);
652   }
653 
654   return CheckTerm;
655 }
656 
SplitBlockAndInsertIfThenElse(Value * Cond,Instruction * SplitBefore,TerminatorInst ** ThenTerm,TerminatorInst ** ElseTerm,MDNode * BranchWeights)657 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
658                                          TerminatorInst **ThenTerm,
659                                          TerminatorInst **ElseTerm,
660                                          MDNode *BranchWeights) {
661   BasicBlock *Head = SplitBefore->getParent();
662   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
663   TerminatorInst *HeadOldTerm = Head->getTerminator();
664   LLVMContext &C = Head->getContext();
665   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
666   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
667   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
668   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
669   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
670   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
671   BranchInst *HeadNewTerm =
672     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
673   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
674   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
675 }
676 
677 
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)678 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
679                              BasicBlock *&IfFalse) {
680   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
681   BasicBlock *Pred1 = nullptr;
682   BasicBlock *Pred2 = nullptr;
683 
684   if (SomePHI) {
685     if (SomePHI->getNumIncomingValues() != 2)
686       return nullptr;
687     Pred1 = SomePHI->getIncomingBlock(0);
688     Pred2 = SomePHI->getIncomingBlock(1);
689   } else {
690     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
691     if (PI == PE) // No predecessor
692       return nullptr;
693     Pred1 = *PI++;
694     if (PI == PE) // Only one predecessor
695       return nullptr;
696     Pred2 = *PI++;
697     if (PI != PE) // More than two predecessors
698       return nullptr;
699   }
700 
701   // We can only handle branches.  Other control flow will be lowered to
702   // branches if possible anyway.
703   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
704   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
705   if (!Pred1Br || !Pred2Br)
706     return nullptr;
707 
708   // Eliminate code duplication by ensuring that Pred1Br is conditional if
709   // either are.
710   if (Pred2Br->isConditional()) {
711     // If both branches are conditional, we don't have an "if statement".  In
712     // reality, we could transform this case, but since the condition will be
713     // required anyway, we stand no chance of eliminating it, so the xform is
714     // probably not profitable.
715     if (Pred1Br->isConditional())
716       return nullptr;
717 
718     std::swap(Pred1, Pred2);
719     std::swap(Pred1Br, Pred2Br);
720   }
721 
722   if (Pred1Br->isConditional()) {
723     // The only thing we have to watch out for here is to make sure that Pred2
724     // doesn't have incoming edges from other blocks.  If it does, the condition
725     // doesn't dominate BB.
726     if (!Pred2->getSinglePredecessor())
727       return nullptr;
728 
729     // If we found a conditional branch predecessor, make sure that it branches
730     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
731     if (Pred1Br->getSuccessor(0) == BB &&
732         Pred1Br->getSuccessor(1) == Pred2) {
733       IfTrue = Pred1;
734       IfFalse = Pred2;
735     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
736                Pred1Br->getSuccessor(1) == BB) {
737       IfTrue = Pred2;
738       IfFalse = Pred1;
739     } else {
740       // We know that one arm of the conditional goes to BB, so the other must
741       // go somewhere unrelated, and this must not be an "if statement".
742       return nullptr;
743     }
744 
745     return Pred1Br->getCondition();
746   }
747 
748   // Ok, if we got here, both predecessors end with an unconditional branch to
749   // BB.  Don't panic!  If both blocks only have a single (identical)
750   // predecessor, and THAT is a conditional branch, then we're all ok!
751   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
752   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
753     return nullptr;
754 
755   // Otherwise, if this is a conditional branch, then we can use it!
756   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
757   if (!BI) return nullptr;
758 
759   assert(BI->isConditional() && "Two successors but not conditional?");
760   if (BI->getSuccessor(0) == Pred1) {
761     IfTrue = Pred1;
762     IfFalse = Pred2;
763   } else {
764     IfTrue = Pred2;
765     IfFalse = Pred1;
766   }
767   return BI->getCondition();
768 }
769