1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "nodes.h"
17 
18 #include <cfloat>
19 
20 #include "art_method-inl.h"
21 #include "class_linker-inl.h"
22 #include "code_generator.h"
23 #include "common_dominator.h"
24 #include "ssa_builder.h"
25 #include "base/bit_vector-inl.h"
26 #include "base/bit_utils.h"
27 #include "base/stl_util.h"
28 #include "intrinsics.h"
29 #include "mirror/class-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 
32 namespace art {
33 
34 // Enable floating-point static evaluation during constant folding
35 // only if all floating-point operations and constants evaluate in the
36 // range and precision of the type used (i.e., 32-bit float, 64-bit
37 // double).
38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39 
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41   ScopedObjectAccess soa(Thread::Current());
42   // Create the inexact Object reference type and store it in the HGraph.
43   ClassLinker* linker = Runtime::Current()->GetClassLinker();
44   inexact_object_rti_ = ReferenceTypeInfo::Create(
45       handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46       /* is_exact */ false);
47 }
48 
AddBlock(HBasicBlock * block)49 void HGraph::AddBlock(HBasicBlock* block) {
50   block->SetBlockId(blocks_.size());
51   blocks_.push_back(block);
52 }
53 
FindBackEdges(ArenaBitVector * visited)54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
55   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56   DCHECK_EQ(visited->GetHighestBitSet(), -1);
57 
58   // Nodes that we're currently visiting, indexed by block id.
59   ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
60   // Number of successors visited from a given node, indexed by block id.
61   ArenaVector<size_t> successors_visited(blocks_.size(),
62                                          0u,
63                                          arena_->Adapter(kArenaAllocGraphBuilder));
64   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
65   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
66   constexpr size_t kDefaultWorklistSize = 8;
67   worklist.reserve(kDefaultWorklistSize);
68   visited->SetBit(entry_block_->GetBlockId());
69   visiting.SetBit(entry_block_->GetBlockId());
70   worklist.push_back(entry_block_);
71 
72   while (!worklist.empty()) {
73     HBasicBlock* current = worklist.back();
74     uint32_t current_id = current->GetBlockId();
75     if (successors_visited[current_id] == current->GetSuccessors().size()) {
76       visiting.ClearBit(current_id);
77       worklist.pop_back();
78     } else {
79       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
80       uint32_t successor_id = successor->GetBlockId();
81       if (visiting.IsBitSet(successor_id)) {
82         DCHECK(ContainsElement(worklist, successor));
83         successor->AddBackEdge(current);
84       } else if (!visited->IsBitSet(successor_id)) {
85         visited->SetBit(successor_id);
86         visiting.SetBit(successor_id);
87         worklist.push_back(successor);
88       }
89     }
90   }
91 }
92 
RemoveEnvironmentUses(HInstruction * instruction)93 static void RemoveEnvironmentUses(HInstruction* instruction) {
94   for (HEnvironment* environment = instruction->GetEnvironment();
95        environment != nullptr;
96        environment = environment->GetParent()) {
97     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
98       if (environment->GetInstructionAt(i) != nullptr) {
99         environment->RemoveAsUserOfInput(i);
100       }
101     }
102   }
103 }
104 
RemoveAsUser(HInstruction * instruction)105 static void RemoveAsUser(HInstruction* instruction) {
106   instruction->RemoveAsUserOfAllInputs();
107   RemoveEnvironmentUses(instruction);
108 }
109 
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const110 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
111   for (size_t i = 0; i < blocks_.size(); ++i) {
112     if (!visited.IsBitSet(i)) {
113       HBasicBlock* block = blocks_[i];
114       if (block == nullptr) continue;
115       DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
116       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
117         RemoveAsUser(it.Current());
118       }
119     }
120   }
121 }
122 
RemoveDeadBlocks(const ArenaBitVector & visited)123 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
124   for (size_t i = 0; i < blocks_.size(); ++i) {
125     if (!visited.IsBitSet(i)) {
126       HBasicBlock* block = blocks_[i];
127       if (block == nullptr) continue;
128       // We only need to update the successor, which might be live.
129       for (HBasicBlock* successor : block->GetSuccessors()) {
130         successor->RemovePredecessor(block);
131       }
132       // Remove the block from the list of blocks, so that further analyses
133       // never see it.
134       blocks_[i] = nullptr;
135       if (block->IsExitBlock()) {
136         SetExitBlock(nullptr);
137       }
138       // Mark the block as removed. This is used by the HGraphBuilder to discard
139       // the block as a branch target.
140       block->SetGraph(nullptr);
141     }
142   }
143 }
144 
BuildDominatorTree()145 GraphAnalysisResult HGraph::BuildDominatorTree() {
146   ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
147 
148   // (1) Find the back edges in the graph doing a DFS traversal.
149   FindBackEdges(&visited);
150 
151   // (2) Remove instructions and phis from blocks not visited during
152   //     the initial DFS as users from other instructions, so that
153   //     users can be safely removed before uses later.
154   RemoveInstructionsAsUsersFromDeadBlocks(visited);
155 
156   // (3) Remove blocks not visited during the initial DFS.
157   //     Step (5) requires dead blocks to be removed from the
158   //     predecessors list of live blocks.
159   RemoveDeadBlocks(visited);
160 
161   // (4) Simplify the CFG now, so that we don't need to recompute
162   //     dominators and the reverse post order.
163   SimplifyCFG();
164 
165   // (5) Compute the dominance information and the reverse post order.
166   ComputeDominanceInformation();
167 
168   // (6) Analyze loops discovered through back edge analysis, and
169   //     set the loop information on each block.
170   GraphAnalysisResult result = AnalyzeLoops();
171   if (result != kAnalysisSuccess) {
172     return result;
173   }
174 
175   // (7) Precompute per-block try membership before entering the SSA builder,
176   //     which needs the information to build catch block phis from values of
177   //     locals at throwing instructions inside try blocks.
178   ComputeTryBlockInformation();
179 
180   return kAnalysisSuccess;
181 }
182 
ClearDominanceInformation()183 void HGraph::ClearDominanceInformation() {
184   for (HBasicBlock* block : GetReversePostOrder()) {
185     block->ClearDominanceInformation();
186   }
187   reverse_post_order_.clear();
188 }
189 
ClearLoopInformation()190 void HGraph::ClearLoopInformation() {
191   SetHasIrreducibleLoops(false);
192   for (HBasicBlock* block : GetReversePostOrder()) {
193     block->SetLoopInformation(nullptr);
194   }
195 }
196 
ClearDominanceInformation()197 void HBasicBlock::ClearDominanceInformation() {
198   dominated_blocks_.clear();
199   dominator_ = nullptr;
200 }
201 
GetFirstInstructionDisregardMoves() const202 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
203   HInstruction* instruction = GetFirstInstruction();
204   while (instruction->IsParallelMove()) {
205     instruction = instruction->GetNext();
206   }
207   return instruction;
208 }
209 
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)210 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
211   DCHECK(ContainsElement(block->GetSuccessors(), successor));
212 
213   HBasicBlock* old_dominator = successor->GetDominator();
214   HBasicBlock* new_dominator =
215       (old_dominator == nullptr) ? block
216                                  : CommonDominator::ForPair(old_dominator, block);
217 
218   if (old_dominator == new_dominator) {
219     return false;
220   } else {
221     successor->SetDominator(new_dominator);
222     return true;
223   }
224 }
225 
ComputeDominanceInformation()226 void HGraph::ComputeDominanceInformation() {
227   DCHECK(reverse_post_order_.empty());
228   reverse_post_order_.reserve(blocks_.size());
229   reverse_post_order_.push_back(entry_block_);
230 
231   // Number of visits of a given node, indexed by block id.
232   ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
233   // Number of successors visited from a given node, indexed by block id.
234   ArenaVector<size_t> successors_visited(blocks_.size(),
235                                          0u,
236                                          arena_->Adapter(kArenaAllocGraphBuilder));
237   // Nodes for which we need to visit successors.
238   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
239   constexpr size_t kDefaultWorklistSize = 8;
240   worklist.reserve(kDefaultWorklistSize);
241   worklist.push_back(entry_block_);
242 
243   while (!worklist.empty()) {
244     HBasicBlock* current = worklist.back();
245     uint32_t current_id = current->GetBlockId();
246     if (successors_visited[current_id] == current->GetSuccessors().size()) {
247       worklist.pop_back();
248     } else {
249       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
250       UpdateDominatorOfSuccessor(current, successor);
251 
252       // Once all the forward edges have been visited, we know the immediate
253       // dominator of the block. We can then start visiting its successors.
254       if (++visits[successor->GetBlockId()] ==
255           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
256         reverse_post_order_.push_back(successor);
257         worklist.push_back(successor);
258       }
259     }
260   }
261 
262   // Check if the graph has back edges not dominated by their respective headers.
263   // If so, we need to update the dominators of those headers and recursively of
264   // their successors. We do that with a fix-point iteration over all blocks.
265   // The algorithm is guaranteed to terminate because it loops only if the sum
266   // of all dominator chains has decreased in the current iteration.
267   bool must_run_fix_point = false;
268   for (HBasicBlock* block : blocks_) {
269     if (block != nullptr &&
270         block->IsLoopHeader() &&
271         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
272       must_run_fix_point = true;
273       break;
274     }
275   }
276   if (must_run_fix_point) {
277     bool update_occurred = true;
278     while (update_occurred) {
279       update_occurred = false;
280       for (HBasicBlock* block : GetReversePostOrder()) {
281         for (HBasicBlock* successor : block->GetSuccessors()) {
282           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
283         }
284       }
285     }
286   }
287 
288   // Make sure that there are no remaining blocks whose dominator information
289   // needs to be updated.
290   if (kIsDebugBuild) {
291     for (HBasicBlock* block : GetReversePostOrder()) {
292       for (HBasicBlock* successor : block->GetSuccessors()) {
293         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
294       }
295     }
296   }
297 
298   // Populate `dominated_blocks_` information after computing all dominators.
299   // The potential presence of irreducible loops requires to do it after.
300   for (HBasicBlock* block : GetReversePostOrder()) {
301     if (!block->IsEntryBlock()) {
302       block->GetDominator()->AddDominatedBlock(block);
303     }
304   }
305 }
306 
SplitEdge(HBasicBlock * block,HBasicBlock * successor)307 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
308   HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
309   AddBlock(new_block);
310   // Use `InsertBetween` to ensure the predecessor index and successor index of
311   // `block` and `successor` are preserved.
312   new_block->InsertBetween(block, successor);
313   return new_block;
314 }
315 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)316 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
317   // Insert a new node between `block` and `successor` to split the
318   // critical edge.
319   HBasicBlock* new_block = SplitEdge(block, successor);
320   new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
321   if (successor->IsLoopHeader()) {
322     // If we split at a back edge boundary, make the new block the back edge.
323     HLoopInformation* info = successor->GetLoopInformation();
324     if (info->IsBackEdge(*block)) {
325       info->RemoveBackEdge(block);
326       info->AddBackEdge(new_block);
327     }
328   }
329 }
330 
SimplifyLoop(HBasicBlock * header)331 void HGraph::SimplifyLoop(HBasicBlock* header) {
332   HLoopInformation* info = header->GetLoopInformation();
333 
334   // Make sure the loop has only one pre header. This simplifies SSA building by having
335   // to just look at the pre header to know which locals are initialized at entry of the
336   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
337   // this graph.
338   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
339   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
340     HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
341     AddBlock(pre_header);
342     pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
343 
344     for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
345       HBasicBlock* predecessor = header->GetPredecessors()[pred];
346       if (!info->IsBackEdge(*predecessor)) {
347         predecessor->ReplaceSuccessor(header, pre_header);
348         pred--;
349       }
350     }
351     pre_header->AddSuccessor(header);
352   }
353 
354   // Make sure the first predecessor of a loop header is the incoming block.
355   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
356     HBasicBlock* to_swap = header->GetPredecessors()[0];
357     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
358       HBasicBlock* predecessor = header->GetPredecessors()[pred];
359       if (!info->IsBackEdge(*predecessor)) {
360         header->predecessors_[pred] = to_swap;
361         header->predecessors_[0] = predecessor;
362         break;
363       }
364     }
365   }
366 
367   HInstruction* first_instruction = header->GetFirstInstruction();
368   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
369     // Called from DeadBlockElimination. Update SuspendCheck pointer.
370     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
371   }
372 }
373 
ComputeTryBlockInformation()374 void HGraph::ComputeTryBlockInformation() {
375   // Iterate in reverse post order to propagate try membership information from
376   // predecessors to their successors.
377   for (HBasicBlock* block : GetReversePostOrder()) {
378     if (block->IsEntryBlock() || block->IsCatchBlock()) {
379       // Catch blocks after simplification have only exceptional predecessors
380       // and hence are never in tries.
381       continue;
382     }
383 
384     // Infer try membership from the first predecessor. Having simplified loops,
385     // the first predecessor can never be a back edge and therefore it must have
386     // been visited already and had its try membership set.
387     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
388     DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
389     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
390     if (try_entry != nullptr &&
391         (block->GetTryCatchInformation() == nullptr ||
392          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
393       // We are either setting try block membership for the first time or it
394       // has changed.
395       block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
396     }
397   }
398 }
399 
SimplifyCFG()400 void HGraph::SimplifyCFG() {
401 // Simplify the CFG for future analysis, and code generation:
402   // (1): Split critical edges.
403   // (2): Simplify loops by having only one preheader.
404   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
405   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
406   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
407     HBasicBlock* block = blocks_[block_id];
408     if (block == nullptr) continue;
409     if (block->GetSuccessors().size() > 1) {
410       // Only split normal-flow edges. We cannot split exceptional edges as they
411       // are synthesized (approximate real control flow), and we do not need to
412       // anyway. Moves that would be inserted there are performed by the runtime.
413       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
414       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
415         HBasicBlock* successor = normal_successors[j];
416         DCHECK(!successor->IsCatchBlock());
417         if (successor == exit_block_) {
418           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
419           // do not want to split because Goto->Exit is not allowed.
420           DCHECK(block->IsSingleTryBoundary());
421         } else if (successor->GetPredecessors().size() > 1) {
422           SplitCriticalEdge(block, successor);
423           // SplitCriticalEdge could have invalidated the `normal_successors`
424           // ArrayRef. We must re-acquire it.
425           normal_successors = block->GetNormalSuccessors();
426           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
427           DCHECK_EQ(e, normal_successors.size());
428         }
429       }
430     }
431     if (block->IsLoopHeader()) {
432       SimplifyLoop(block);
433     } else if (!block->IsEntryBlock() &&
434                block->GetFirstInstruction() != nullptr &&
435                block->GetFirstInstruction()->IsSuspendCheck()) {
436       // We are being called by the dead code elimiation pass, and what used to be
437       // a loop got dismantled. Just remove the suspend check.
438       block->RemoveInstruction(block->GetFirstInstruction());
439     }
440   }
441 }
442 
AnalyzeLoops() const443 GraphAnalysisResult HGraph::AnalyzeLoops() const {
444   // We iterate post order to ensure we visit inner loops before outer loops.
445   // `PopulateRecursive` needs this guarantee to know whether a natural loop
446   // contains an irreducible loop.
447   for (HBasicBlock* block : GetPostOrder()) {
448     if (block->IsLoopHeader()) {
449       if (block->IsCatchBlock()) {
450         // TODO: Dealing with exceptional back edges could be tricky because
451         //       they only approximate the real control flow. Bail out for now.
452         return kAnalysisFailThrowCatchLoop;
453       }
454       block->GetLoopInformation()->Populate();
455     }
456   }
457   return kAnalysisSuccess;
458 }
459 
Dump(std::ostream & os)460 void HLoopInformation::Dump(std::ostream& os) {
461   os << "header: " << header_->GetBlockId() << std::endl;
462   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
463   for (HBasicBlock* block : back_edges_) {
464     os << "back edge: " << block->GetBlockId() << std::endl;
465   }
466   for (HBasicBlock* block : header_->GetPredecessors()) {
467     os << "predecessor: " << block->GetBlockId() << std::endl;
468   }
469   for (uint32_t idx : blocks_.Indexes()) {
470     os << "  in loop: " << idx << std::endl;
471   }
472 }
473 
InsertConstant(HConstant * constant)474 void HGraph::InsertConstant(HConstant* constant) {
475   // New constants are inserted before the SuspendCheck at the bottom of the
476   // entry block. Note that this method can be called from the graph builder and
477   // the entry block therefore may not end with SuspendCheck->Goto yet.
478   HInstruction* insert_before = nullptr;
479 
480   HInstruction* gota = entry_block_->GetLastInstruction();
481   if (gota != nullptr && gota->IsGoto()) {
482     HInstruction* suspend_check = gota->GetPrevious();
483     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
484       insert_before = suspend_check;
485     } else {
486       insert_before = gota;
487     }
488   }
489 
490   if (insert_before == nullptr) {
491     entry_block_->AddInstruction(constant);
492   } else {
493     entry_block_->InsertInstructionBefore(constant, insert_before);
494   }
495 }
496 
GetNullConstant(uint32_t dex_pc)497 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
498   // For simplicity, don't bother reviving the cached null constant if it is
499   // not null and not in a block. Otherwise, we need to clear the instruction
500   // id and/or any invariants the graph is assuming when adding new instructions.
501   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
502     cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
503     cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
504     InsertConstant(cached_null_constant_);
505   }
506   if (kIsDebugBuild) {
507     ScopedObjectAccess soa(Thread::Current());
508     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
509   }
510   return cached_null_constant_;
511 }
512 
GetCurrentMethod()513 HCurrentMethod* HGraph::GetCurrentMethod() {
514   // For simplicity, don't bother reviving the cached current method if it is
515   // not null and not in a block. Otherwise, we need to clear the instruction
516   // id and/or any invariants the graph is assuming when adding new instructions.
517   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
518     cached_current_method_ = new (arena_) HCurrentMethod(
519         Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
520         entry_block_->GetDexPc());
521     if (entry_block_->GetFirstInstruction() == nullptr) {
522       entry_block_->AddInstruction(cached_current_method_);
523     } else {
524       entry_block_->InsertInstructionBefore(
525           cached_current_method_, entry_block_->GetFirstInstruction());
526     }
527   }
528   return cached_current_method_;
529 }
530 
GetConstant(Primitive::Type type,int64_t value,uint32_t dex_pc)531 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
532   switch (type) {
533     case Primitive::Type::kPrimBoolean:
534       DCHECK(IsUint<1>(value));
535       FALLTHROUGH_INTENDED;
536     case Primitive::Type::kPrimByte:
537     case Primitive::Type::kPrimChar:
538     case Primitive::Type::kPrimShort:
539     case Primitive::Type::kPrimInt:
540       DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
541       return GetIntConstant(static_cast<int32_t>(value), dex_pc);
542 
543     case Primitive::Type::kPrimLong:
544       return GetLongConstant(value, dex_pc);
545 
546     default:
547       LOG(FATAL) << "Unsupported constant type";
548       UNREACHABLE();
549   }
550 }
551 
CacheFloatConstant(HFloatConstant * constant)552 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
553   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
554   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
555   cached_float_constants_.Overwrite(value, constant);
556 }
557 
CacheDoubleConstant(HDoubleConstant * constant)558 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
559   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
560   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
561   cached_double_constants_.Overwrite(value, constant);
562 }
563 
Add(HBasicBlock * block)564 void HLoopInformation::Add(HBasicBlock* block) {
565   blocks_.SetBit(block->GetBlockId());
566 }
567 
Remove(HBasicBlock * block)568 void HLoopInformation::Remove(HBasicBlock* block) {
569   blocks_.ClearBit(block->GetBlockId());
570 }
571 
PopulateRecursive(HBasicBlock * block)572 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
573   if (blocks_.IsBitSet(block->GetBlockId())) {
574     return;
575   }
576 
577   blocks_.SetBit(block->GetBlockId());
578   block->SetInLoop(this);
579   if (block->IsLoopHeader()) {
580     // We're visiting loops in post-order, so inner loops must have been
581     // populated already.
582     DCHECK(block->GetLoopInformation()->IsPopulated());
583     if (block->GetLoopInformation()->IsIrreducible()) {
584       contains_irreducible_loop_ = true;
585     }
586   }
587   for (HBasicBlock* predecessor : block->GetPredecessors()) {
588     PopulateRecursive(predecessor);
589   }
590 }
591 
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)592 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
593   size_t block_id = block->GetBlockId();
594 
595   // If `block` is in `finalized`, we know its membership in the loop has been
596   // decided and it does not need to be revisited.
597   if (finalized->IsBitSet(block_id)) {
598     return;
599   }
600 
601   bool is_finalized = false;
602   if (block->IsLoopHeader()) {
603     // If we hit a loop header in an irreducible loop, we first check if the
604     // pre header of that loop belongs to the currently analyzed loop. If it does,
605     // then we visit the back edges.
606     // Note that we cannot use GetPreHeader, as the loop may have not been populated
607     // yet.
608     HBasicBlock* pre_header = block->GetPredecessors()[0];
609     PopulateIrreducibleRecursive(pre_header, finalized);
610     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
611       block->SetInLoop(this);
612       blocks_.SetBit(block_id);
613       finalized->SetBit(block_id);
614       is_finalized = true;
615 
616       HLoopInformation* info = block->GetLoopInformation();
617       for (HBasicBlock* back_edge : info->GetBackEdges()) {
618         PopulateIrreducibleRecursive(back_edge, finalized);
619       }
620     }
621   } else {
622     // Visit all predecessors. If one predecessor is part of the loop, this
623     // block is also part of this loop.
624     for (HBasicBlock* predecessor : block->GetPredecessors()) {
625       PopulateIrreducibleRecursive(predecessor, finalized);
626       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
627         block->SetInLoop(this);
628         blocks_.SetBit(block_id);
629         finalized->SetBit(block_id);
630         is_finalized = true;
631       }
632     }
633   }
634 
635   // All predecessors have been recursively visited. Mark finalized if not marked yet.
636   if (!is_finalized) {
637     finalized->SetBit(block_id);
638   }
639 }
640 
Populate()641 void HLoopInformation::Populate() {
642   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
643   // Populate this loop: starting with the back edge, recursively add predecessors
644   // that are not already part of that loop. Set the header as part of the loop
645   // to end the recursion.
646   // This is a recursive implementation of the algorithm described in
647   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
648   HGraph* graph = header_->GetGraph();
649   blocks_.SetBit(header_->GetBlockId());
650   header_->SetInLoop(this);
651 
652   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
653 
654   if (is_irreducible_loop) {
655     ArenaBitVector visited(graph->GetArena(),
656                            graph->GetBlocks().size(),
657                            /* expandable */ false,
658                            kArenaAllocGraphBuilder);
659     // Stop marking blocks at the loop header.
660     visited.SetBit(header_->GetBlockId());
661 
662     for (HBasicBlock* back_edge : GetBackEdges()) {
663       PopulateIrreducibleRecursive(back_edge, &visited);
664     }
665   } else {
666     for (HBasicBlock* back_edge : GetBackEdges()) {
667       PopulateRecursive(back_edge);
668     }
669   }
670 
671   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
672     // When compiling in OSR mode, all loops in the compiled method may be entered
673     // from the interpreter. We treat this OSR entry point just like an extra entry
674     // to an irreducible loop, so we need to mark the method's loops as irreducible.
675     // This does not apply to inlined loops which do not act as OSR entry points.
676     if (suspend_check_ == nullptr) {
677       // Just building the graph in OSR mode, this loop is not inlined. We never build an
678       // inner graph in OSR mode as we can do OSR transition only from the outer method.
679       is_irreducible_loop = true;
680     } else {
681       // Look at the suspend check's environment to determine if the loop was inlined.
682       DCHECK(suspend_check_->HasEnvironment());
683       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
684         is_irreducible_loop = true;
685       }
686     }
687   }
688   if (is_irreducible_loop) {
689     irreducible_ = true;
690     contains_irreducible_loop_ = true;
691     graph->SetHasIrreducibleLoops(true);
692   }
693   graph->SetHasLoops(true);
694 }
695 
GetPreHeader() const696 HBasicBlock* HLoopInformation::GetPreHeader() const {
697   HBasicBlock* block = header_->GetPredecessors()[0];
698   DCHECK(irreducible_ || (block == header_->GetDominator()));
699   return block;
700 }
701 
Contains(const HBasicBlock & block) const702 bool HLoopInformation::Contains(const HBasicBlock& block) const {
703   return blocks_.IsBitSet(block.GetBlockId());
704 }
705 
IsIn(const HLoopInformation & other) const706 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
707   return other.blocks_.IsBitSet(header_->GetBlockId());
708 }
709 
IsDefinedOutOfTheLoop(HInstruction * instruction) const710 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
711   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
712 }
713 
GetLifetimeEnd() const714 size_t HLoopInformation::GetLifetimeEnd() const {
715   size_t last_position = 0;
716   for (HBasicBlock* back_edge : GetBackEdges()) {
717     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
718   }
719   return last_position;
720 }
721 
HasBackEdgeNotDominatedByHeader() const722 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
723   for (HBasicBlock* back_edge : GetBackEdges()) {
724     DCHECK(back_edge->GetDominator() != nullptr);
725     if (!header_->Dominates(back_edge)) {
726       return true;
727     }
728   }
729   return false;
730 }
731 
DominatesAllBackEdges(HBasicBlock * block)732 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
733   for (HBasicBlock* back_edge : GetBackEdges()) {
734     if (!block->Dominates(back_edge)) {
735       return false;
736     }
737   }
738   return true;
739 }
740 
741 
HasExitEdge() const742 bool HLoopInformation::HasExitEdge() const {
743   // Determine if this loop has at least one exit edge.
744   HBlocksInLoopReversePostOrderIterator it_loop(*this);
745   for (; !it_loop.Done(); it_loop.Advance()) {
746     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
747       if (!Contains(*successor)) {
748         return true;
749       }
750     }
751   }
752   return false;
753 }
754 
Dominates(HBasicBlock * other) const755 bool HBasicBlock::Dominates(HBasicBlock* other) const {
756   // Walk up the dominator tree from `other`, to find out if `this`
757   // is an ancestor.
758   HBasicBlock* current = other;
759   while (current != nullptr) {
760     if (current == this) {
761       return true;
762     }
763     current = current->GetDominator();
764   }
765   return false;
766 }
767 
UpdateInputsUsers(HInstruction * instruction)768 static void UpdateInputsUsers(HInstruction* instruction) {
769   HInputsRef inputs = instruction->GetInputs();
770   for (size_t i = 0; i < inputs.size(); ++i) {
771     inputs[i]->AddUseAt(instruction, i);
772   }
773   // Environment should be created later.
774   DCHECK(!instruction->HasEnvironment());
775 }
776 
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)777 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
778                                                   HInstruction* replacement) {
779   DCHECK(initial->GetBlock() == this);
780   if (initial->IsControlFlow()) {
781     // We can only replace a control flow instruction with another control flow instruction.
782     DCHECK(replacement->IsControlFlow());
783     DCHECK_EQ(replacement->GetId(), -1);
784     DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
785     DCHECK_EQ(initial->GetBlock(), this);
786     DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
787     DCHECK(initial->GetUses().empty());
788     DCHECK(initial->GetEnvUses().empty());
789     replacement->SetBlock(this);
790     replacement->SetId(GetGraph()->GetNextInstructionId());
791     instructions_.InsertInstructionBefore(replacement, initial);
792     UpdateInputsUsers(replacement);
793   } else {
794     InsertInstructionBefore(replacement, initial);
795     initial->ReplaceWith(replacement);
796   }
797   RemoveInstruction(initial);
798 }
799 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)800 static void Add(HInstructionList* instruction_list,
801                 HBasicBlock* block,
802                 HInstruction* instruction) {
803   DCHECK(instruction->GetBlock() == nullptr);
804   DCHECK_EQ(instruction->GetId(), -1);
805   instruction->SetBlock(block);
806   instruction->SetId(block->GetGraph()->GetNextInstructionId());
807   UpdateInputsUsers(instruction);
808   instruction_list->AddInstruction(instruction);
809 }
810 
AddInstruction(HInstruction * instruction)811 void HBasicBlock::AddInstruction(HInstruction* instruction) {
812   Add(&instructions_, this, instruction);
813 }
814 
AddPhi(HPhi * phi)815 void HBasicBlock::AddPhi(HPhi* phi) {
816   Add(&phis_, this, phi);
817 }
818 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)819 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
820   DCHECK(!cursor->IsPhi());
821   DCHECK(!instruction->IsPhi());
822   DCHECK_EQ(instruction->GetId(), -1);
823   DCHECK_NE(cursor->GetId(), -1);
824   DCHECK_EQ(cursor->GetBlock(), this);
825   DCHECK(!instruction->IsControlFlow());
826   instruction->SetBlock(this);
827   instruction->SetId(GetGraph()->GetNextInstructionId());
828   UpdateInputsUsers(instruction);
829   instructions_.InsertInstructionBefore(instruction, cursor);
830 }
831 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)832 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
833   DCHECK(!cursor->IsPhi());
834   DCHECK(!instruction->IsPhi());
835   DCHECK_EQ(instruction->GetId(), -1);
836   DCHECK_NE(cursor->GetId(), -1);
837   DCHECK_EQ(cursor->GetBlock(), this);
838   DCHECK(!instruction->IsControlFlow());
839   DCHECK(!cursor->IsControlFlow());
840   instruction->SetBlock(this);
841   instruction->SetId(GetGraph()->GetNextInstructionId());
842   UpdateInputsUsers(instruction);
843   instructions_.InsertInstructionAfter(instruction, cursor);
844 }
845 
InsertPhiAfter(HPhi * phi,HPhi * cursor)846 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
847   DCHECK_EQ(phi->GetId(), -1);
848   DCHECK_NE(cursor->GetId(), -1);
849   DCHECK_EQ(cursor->GetBlock(), this);
850   phi->SetBlock(this);
851   phi->SetId(GetGraph()->GetNextInstructionId());
852   UpdateInputsUsers(phi);
853   phis_.InsertInstructionAfter(phi, cursor);
854 }
855 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)856 static void Remove(HInstructionList* instruction_list,
857                    HBasicBlock* block,
858                    HInstruction* instruction,
859                    bool ensure_safety) {
860   DCHECK_EQ(block, instruction->GetBlock());
861   instruction->SetBlock(nullptr);
862   instruction_list->RemoveInstruction(instruction);
863   if (ensure_safety) {
864     DCHECK(instruction->GetUses().empty());
865     DCHECK(instruction->GetEnvUses().empty());
866     RemoveAsUser(instruction);
867   }
868 }
869 
RemoveInstruction(HInstruction * instruction,bool ensure_safety)870 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
871   DCHECK(!instruction->IsPhi());
872   Remove(&instructions_, this, instruction, ensure_safety);
873 }
874 
RemovePhi(HPhi * phi,bool ensure_safety)875 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
876   Remove(&phis_, this, phi, ensure_safety);
877 }
878 
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)879 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
880   if (instruction->IsPhi()) {
881     RemovePhi(instruction->AsPhi(), ensure_safety);
882   } else {
883     RemoveInstruction(instruction, ensure_safety);
884   }
885 }
886 
CopyFrom(const ArenaVector<HInstruction * > & locals)887 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
888   for (size_t i = 0; i < locals.size(); i++) {
889     HInstruction* instruction = locals[i];
890     SetRawEnvAt(i, instruction);
891     if (instruction != nullptr) {
892       instruction->AddEnvUseAt(this, i);
893     }
894   }
895 }
896 
CopyFrom(HEnvironment * env)897 void HEnvironment::CopyFrom(HEnvironment* env) {
898   for (size_t i = 0; i < env->Size(); i++) {
899     HInstruction* instruction = env->GetInstructionAt(i);
900     SetRawEnvAt(i, instruction);
901     if (instruction != nullptr) {
902       instruction->AddEnvUseAt(this, i);
903     }
904   }
905 }
906 
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)907 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
908                                                  HBasicBlock* loop_header) {
909   DCHECK(loop_header->IsLoopHeader());
910   for (size_t i = 0; i < env->Size(); i++) {
911     HInstruction* instruction = env->GetInstructionAt(i);
912     SetRawEnvAt(i, instruction);
913     if (instruction == nullptr) {
914       continue;
915     }
916     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
917       // At the end of the loop pre-header, the corresponding value for instruction
918       // is the first input of the phi.
919       HInstruction* initial = instruction->AsPhi()->InputAt(0);
920       SetRawEnvAt(i, initial);
921       initial->AddEnvUseAt(this, i);
922     } else {
923       instruction->AddEnvUseAt(this, i);
924     }
925   }
926 }
927 
RemoveAsUserOfInput(size_t index) const928 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
929   const HUserRecord<HEnvironment*>& env_use = vregs_[index];
930   HInstruction* user = env_use.GetInstruction();
931   auto before_env_use_node = env_use.GetBeforeUseNode();
932   user->env_uses_.erase_after(before_env_use_node);
933   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
934 }
935 
GetKind() const936 HInstruction::InstructionKind HInstruction::GetKind() const {
937   return GetKindInternal();
938 }
939 
GetNextDisregardingMoves() const940 HInstruction* HInstruction::GetNextDisregardingMoves() const {
941   HInstruction* next = GetNext();
942   while (next != nullptr && next->IsParallelMove()) {
943     next = next->GetNext();
944   }
945   return next;
946 }
947 
GetPreviousDisregardingMoves() const948 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
949   HInstruction* previous = GetPrevious();
950   while (previous != nullptr && previous->IsParallelMove()) {
951     previous = previous->GetPrevious();
952   }
953   return previous;
954 }
955 
AddInstruction(HInstruction * instruction)956 void HInstructionList::AddInstruction(HInstruction* instruction) {
957   if (first_instruction_ == nullptr) {
958     DCHECK(last_instruction_ == nullptr);
959     first_instruction_ = last_instruction_ = instruction;
960   } else {
961     last_instruction_->next_ = instruction;
962     instruction->previous_ = last_instruction_;
963     last_instruction_ = instruction;
964   }
965 }
966 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)967 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
968   DCHECK(Contains(cursor));
969   if (cursor == first_instruction_) {
970     cursor->previous_ = instruction;
971     instruction->next_ = cursor;
972     first_instruction_ = instruction;
973   } else {
974     instruction->previous_ = cursor->previous_;
975     instruction->next_ = cursor;
976     cursor->previous_ = instruction;
977     instruction->previous_->next_ = instruction;
978   }
979 }
980 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)981 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
982   DCHECK(Contains(cursor));
983   if (cursor == last_instruction_) {
984     cursor->next_ = instruction;
985     instruction->previous_ = cursor;
986     last_instruction_ = instruction;
987   } else {
988     instruction->next_ = cursor->next_;
989     instruction->previous_ = cursor;
990     cursor->next_ = instruction;
991     instruction->next_->previous_ = instruction;
992   }
993 }
994 
RemoveInstruction(HInstruction * instruction)995 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
996   if (instruction->previous_ != nullptr) {
997     instruction->previous_->next_ = instruction->next_;
998   }
999   if (instruction->next_ != nullptr) {
1000     instruction->next_->previous_ = instruction->previous_;
1001   }
1002   if (instruction == first_instruction_) {
1003     first_instruction_ = instruction->next_;
1004   }
1005   if (instruction == last_instruction_) {
1006     last_instruction_ = instruction->previous_;
1007   }
1008 }
1009 
Contains(HInstruction * instruction) const1010 bool HInstructionList::Contains(HInstruction* instruction) const {
1011   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1012     if (it.Current() == instruction) {
1013       return true;
1014     }
1015   }
1016   return false;
1017 }
1018 
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1019 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1020                                    const HInstruction* instruction2) const {
1021   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1022   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1023     if (it.Current() == instruction1) {
1024       return true;
1025     }
1026     if (it.Current() == instruction2) {
1027       return false;
1028     }
1029   }
1030   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1031   return true;
1032 }
1033 
StrictlyDominates(HInstruction * other_instruction) const1034 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1035   if (other_instruction == this) {
1036     // An instruction does not strictly dominate itself.
1037     return false;
1038   }
1039   HBasicBlock* block = GetBlock();
1040   HBasicBlock* other_block = other_instruction->GetBlock();
1041   if (block != other_block) {
1042     return GetBlock()->Dominates(other_instruction->GetBlock());
1043   } else {
1044     // If both instructions are in the same block, ensure this
1045     // instruction comes before `other_instruction`.
1046     if (IsPhi()) {
1047       if (!other_instruction->IsPhi()) {
1048         // Phis appear before non phi-instructions so this instruction
1049         // dominates `other_instruction`.
1050         return true;
1051       } else {
1052         // There is no order among phis.
1053         LOG(FATAL) << "There is no dominance between phis of a same block.";
1054         return false;
1055       }
1056     } else {
1057       // `this` is not a phi.
1058       if (other_instruction->IsPhi()) {
1059         // Phis appear before non phi-instructions so this instruction
1060         // does not dominate `other_instruction`.
1061         return false;
1062       } else {
1063         // Check whether this instruction comes before
1064         // `other_instruction` in the instruction list.
1065         return block->GetInstructions().FoundBefore(this, other_instruction);
1066       }
1067     }
1068   }
1069 }
1070 
RemoveEnvironment()1071 void HInstruction::RemoveEnvironment() {
1072   RemoveEnvironmentUses(this);
1073   environment_ = nullptr;
1074 }
1075 
ReplaceWith(HInstruction * other)1076 void HInstruction::ReplaceWith(HInstruction* other) {
1077   DCHECK(other != nullptr);
1078   // Note: fixup_end remains valid across splice_after().
1079   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1080   other->uses_.splice_after(other->uses_.before_begin(), uses_);
1081   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1082 
1083   // Note: env_fixup_end remains valid across splice_after().
1084   auto env_fixup_end =
1085       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1086   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1087   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1088 
1089   DCHECK(uses_.empty());
1090   DCHECK(env_uses_.empty());
1091 }
1092 
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1093 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1094   const HUseList<HInstruction*>& uses = GetUses();
1095   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1096     HInstruction* user = it->GetUser();
1097     size_t index = it->GetIndex();
1098     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1099     ++it;
1100     if (dominator->StrictlyDominates(user)) {
1101       user->ReplaceInput(replacement, index);
1102     }
1103   }
1104 }
1105 
ReplaceInput(HInstruction * replacement,size_t index)1106 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1107   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1108   if (input_use.GetInstruction() == replacement) {
1109     // Nothing to do.
1110     return;
1111   }
1112   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1113   // Note: fixup_end remains valid across splice_after().
1114   auto fixup_end =
1115       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1116   replacement->uses_.splice_after(replacement->uses_.before_begin(),
1117                                   input_use.GetInstruction()->uses_,
1118                                   before_use_node);
1119   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1120   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1121 }
1122 
EnvironmentSize() const1123 size_t HInstruction::EnvironmentSize() const {
1124   return HasEnvironment() ? environment_->Size() : 0;
1125 }
1126 
AddInput(HInstruction * input)1127 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1128   DCHECK(input->GetBlock() != nullptr);
1129   inputs_.push_back(HUserRecord<HInstruction*>(input));
1130   input->AddUseAt(this, inputs_.size() - 1);
1131 }
1132 
InsertInputAt(size_t index,HInstruction * input)1133 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1134   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1135   input->AddUseAt(this, index);
1136   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1137   for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1138     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1139     inputs_[i].GetUseNode()->SetIndex(i);
1140   }
1141 }
1142 
RemoveInputAt(size_t index)1143 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1144   RemoveAsUserOfInput(index);
1145   inputs_.erase(inputs_.begin() + index);
1146   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1147   for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1148     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1149     inputs_[i].GetUseNode()->SetIndex(i);
1150   }
1151 }
1152 
1153 #define DEFINE_ACCEPT(name, super)                                             \
1154 void H##name::Accept(HGraphVisitor* visitor) {                                 \
1155   visitor->Visit##name(this);                                                  \
1156 }
1157 
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1158 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1159 
1160 #undef DEFINE_ACCEPT
1161 
1162 void HGraphVisitor::VisitInsertionOrder() {
1163   const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1164   for (HBasicBlock* block : blocks) {
1165     if (block != nullptr) {
1166       VisitBasicBlock(block);
1167     }
1168   }
1169 }
1170 
VisitReversePostOrder()1171 void HGraphVisitor::VisitReversePostOrder() {
1172   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1173     VisitBasicBlock(block);
1174   }
1175 }
1176 
VisitBasicBlock(HBasicBlock * block)1177 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1178   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1179     it.Current()->Accept(this);
1180   }
1181   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1182     it.Current()->Accept(this);
1183   }
1184 }
1185 
TryStaticEvaluation() const1186 HConstant* HTypeConversion::TryStaticEvaluation() const {
1187   HGraph* graph = GetBlock()->GetGraph();
1188   if (GetInput()->IsIntConstant()) {
1189     int32_t value = GetInput()->AsIntConstant()->GetValue();
1190     switch (GetResultType()) {
1191       case Primitive::kPrimLong:
1192         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1193       case Primitive::kPrimFloat:
1194         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1195       case Primitive::kPrimDouble:
1196         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1197       default:
1198         return nullptr;
1199     }
1200   } else if (GetInput()->IsLongConstant()) {
1201     int64_t value = GetInput()->AsLongConstant()->GetValue();
1202     switch (GetResultType()) {
1203       case Primitive::kPrimInt:
1204         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1205       case Primitive::kPrimFloat:
1206         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1207       case Primitive::kPrimDouble:
1208         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1209       default:
1210         return nullptr;
1211     }
1212   } else if (GetInput()->IsFloatConstant()) {
1213     float value = GetInput()->AsFloatConstant()->GetValue();
1214     switch (GetResultType()) {
1215       case Primitive::kPrimInt:
1216         if (std::isnan(value))
1217           return graph->GetIntConstant(0, GetDexPc());
1218         if (value >= kPrimIntMax)
1219           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1220         if (value <= kPrimIntMin)
1221           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1222         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1223       case Primitive::kPrimLong:
1224         if (std::isnan(value))
1225           return graph->GetLongConstant(0, GetDexPc());
1226         if (value >= kPrimLongMax)
1227           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1228         if (value <= kPrimLongMin)
1229           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1230         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1231       case Primitive::kPrimDouble:
1232         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1233       default:
1234         return nullptr;
1235     }
1236   } else if (GetInput()->IsDoubleConstant()) {
1237     double value = GetInput()->AsDoubleConstant()->GetValue();
1238     switch (GetResultType()) {
1239       case Primitive::kPrimInt:
1240         if (std::isnan(value))
1241           return graph->GetIntConstant(0, GetDexPc());
1242         if (value >= kPrimIntMax)
1243           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1244         if (value <= kPrimLongMin)
1245           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1246         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1247       case Primitive::kPrimLong:
1248         if (std::isnan(value))
1249           return graph->GetLongConstant(0, GetDexPc());
1250         if (value >= kPrimLongMax)
1251           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1252         if (value <= kPrimLongMin)
1253           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1254         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1255       case Primitive::kPrimFloat:
1256         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1257       default:
1258         return nullptr;
1259     }
1260   }
1261   return nullptr;
1262 }
1263 
TryStaticEvaluation() const1264 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1265   if (GetInput()->IsIntConstant()) {
1266     return Evaluate(GetInput()->AsIntConstant());
1267   } else if (GetInput()->IsLongConstant()) {
1268     return Evaluate(GetInput()->AsLongConstant());
1269   } else if (kEnableFloatingPointStaticEvaluation) {
1270     if (GetInput()->IsFloatConstant()) {
1271       return Evaluate(GetInput()->AsFloatConstant());
1272     } else if (GetInput()->IsDoubleConstant()) {
1273       return Evaluate(GetInput()->AsDoubleConstant());
1274     }
1275   }
1276   return nullptr;
1277 }
1278 
TryStaticEvaluation() const1279 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1280   if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1281     return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1282   } else if (GetLeft()->IsLongConstant()) {
1283     if (GetRight()->IsIntConstant()) {
1284       // The binop(long, int) case is only valid for shifts and rotations.
1285       DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1286       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1287     } else if (GetRight()->IsLongConstant()) {
1288       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1289     }
1290   } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1291     // The binop(null, null) case is only valid for equal and not-equal conditions.
1292     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1293     return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1294   } else if (kEnableFloatingPointStaticEvaluation) {
1295     if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1296       return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1297     } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1298       return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1299     }
1300   }
1301   return nullptr;
1302 }
1303 
GetConstantRight() const1304 HConstant* HBinaryOperation::GetConstantRight() const {
1305   if (GetRight()->IsConstant()) {
1306     return GetRight()->AsConstant();
1307   } else if (IsCommutative() && GetLeft()->IsConstant()) {
1308     return GetLeft()->AsConstant();
1309   } else {
1310     return nullptr;
1311   }
1312 }
1313 
1314 // If `GetConstantRight()` returns one of the input, this returns the other
1315 // one. Otherwise it returns null.
GetLeastConstantLeft() const1316 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1317   HInstruction* most_constant_right = GetConstantRight();
1318   if (most_constant_right == nullptr) {
1319     return nullptr;
1320   } else if (most_constant_right == GetLeft()) {
1321     return GetRight();
1322   } else {
1323     return GetLeft();
1324   }
1325 }
1326 
operator <<(std::ostream & os,const ComparisonBias & rhs)1327 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1328   switch (rhs) {
1329     case ComparisonBias::kNoBias:
1330       return os << "no_bias";
1331     case ComparisonBias::kGtBias:
1332       return os << "gt_bias";
1333     case ComparisonBias::kLtBias:
1334       return os << "lt_bias";
1335     default:
1336       LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1337       UNREACHABLE();
1338   }
1339 }
1340 
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1341 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1342   return this == instruction->GetPreviousDisregardingMoves();
1343 }
1344 
Equals(const HInstruction * other) const1345 bool HInstruction::Equals(const HInstruction* other) const {
1346   if (!InstructionTypeEquals(other)) return false;
1347   DCHECK_EQ(GetKind(), other->GetKind());
1348   if (!InstructionDataEquals(other)) return false;
1349   if (GetType() != other->GetType()) return false;
1350   HConstInputsRef inputs = GetInputs();
1351   HConstInputsRef other_inputs = other->GetInputs();
1352   if (inputs.size() != other_inputs.size()) return false;
1353   for (size_t i = 0; i != inputs.size(); ++i) {
1354     if (inputs[i] != other_inputs[i]) return false;
1355   }
1356 
1357   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1358   return true;
1359 }
1360 
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1361 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1362 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1363   switch (rhs) {
1364     FOR_EACH_INSTRUCTION(DECLARE_CASE)
1365     default:
1366       os << "Unknown instruction kind " << static_cast<int>(rhs);
1367       break;
1368   }
1369 #undef DECLARE_CASE
1370   return os;
1371 }
1372 
MoveBefore(HInstruction * cursor,bool do_checks)1373 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1374   if (do_checks) {
1375     DCHECK(!IsPhi());
1376     DCHECK(!IsControlFlow());
1377     DCHECK(CanBeMoved() ||
1378            // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1379            IsShouldDeoptimizeFlag());
1380     DCHECK(!cursor->IsPhi());
1381   }
1382 
1383   next_->previous_ = previous_;
1384   if (previous_ != nullptr) {
1385     previous_->next_ = next_;
1386   }
1387   if (block_->instructions_.first_instruction_ == this) {
1388     block_->instructions_.first_instruction_ = next_;
1389   }
1390   DCHECK_NE(block_->instructions_.last_instruction_, this);
1391 
1392   previous_ = cursor->previous_;
1393   if (previous_ != nullptr) {
1394     previous_->next_ = this;
1395   }
1396   next_ = cursor;
1397   cursor->previous_ = this;
1398   block_ = cursor->block_;
1399 
1400   if (block_->instructions_.first_instruction_ == cursor) {
1401     block_->instructions_.first_instruction_ = this;
1402   }
1403 }
1404 
MoveBeforeFirstUserAndOutOfLoops()1405 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1406   DCHECK(!CanThrow());
1407   DCHECK(!HasSideEffects());
1408   DCHECK(!HasEnvironmentUses());
1409   DCHECK(HasNonEnvironmentUses());
1410   DCHECK(!IsPhi());  // Makes no sense for Phi.
1411   DCHECK_EQ(InputCount(), 0u);
1412 
1413   // Find the target block.
1414   auto uses_it = GetUses().begin();
1415   auto uses_end = GetUses().end();
1416   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1417   ++uses_it;
1418   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1419     ++uses_it;
1420   }
1421   if (uses_it != uses_end) {
1422     // This instruction has uses in two or more blocks. Find the common dominator.
1423     CommonDominator finder(target_block);
1424     for (; uses_it != uses_end; ++uses_it) {
1425       finder.Update(uses_it->GetUser()->GetBlock());
1426     }
1427     target_block = finder.Get();
1428     DCHECK(target_block != nullptr);
1429   }
1430   // Move to the first dominator not in a loop.
1431   while (target_block->IsInLoop()) {
1432     target_block = target_block->GetDominator();
1433     DCHECK(target_block != nullptr);
1434   }
1435 
1436   // Find insertion position.
1437   HInstruction* insert_pos = nullptr;
1438   for (const HUseListNode<HInstruction*>& use : GetUses()) {
1439     if (use.GetUser()->GetBlock() == target_block &&
1440         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1441       insert_pos = use.GetUser();
1442     }
1443   }
1444   if (insert_pos == nullptr) {
1445     // No user in `target_block`, insert before the control flow instruction.
1446     insert_pos = target_block->GetLastInstruction();
1447     DCHECK(insert_pos->IsControlFlow());
1448     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1449     if (insert_pos->IsIf()) {
1450       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1451       if (if_input == insert_pos->GetPrevious()) {
1452         insert_pos = if_input;
1453       }
1454     }
1455   }
1456   MoveBefore(insert_pos);
1457 }
1458 
SplitBefore(HInstruction * cursor)1459 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1460   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1461   DCHECK_EQ(cursor->GetBlock(), this);
1462 
1463   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1464                                                                     cursor->GetDexPc());
1465   new_block->instructions_.first_instruction_ = cursor;
1466   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1467   instructions_.last_instruction_ = cursor->previous_;
1468   if (cursor->previous_ == nullptr) {
1469     instructions_.first_instruction_ = nullptr;
1470   } else {
1471     cursor->previous_->next_ = nullptr;
1472     cursor->previous_ = nullptr;
1473   }
1474 
1475   new_block->instructions_.SetBlockOfInstructions(new_block);
1476   AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
1477 
1478   for (HBasicBlock* successor : GetSuccessors()) {
1479     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1480   }
1481   new_block->successors_.swap(successors_);
1482   DCHECK(successors_.empty());
1483   AddSuccessor(new_block);
1484 
1485   GetGraph()->AddBlock(new_block);
1486   return new_block;
1487 }
1488 
CreateImmediateDominator()1489 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1490   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1491   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1492 
1493   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1494 
1495   for (HBasicBlock* predecessor : GetPredecessors()) {
1496     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1497   }
1498   new_block->predecessors_.swap(predecessors_);
1499   DCHECK(predecessors_.empty());
1500   AddPredecessor(new_block);
1501 
1502   GetGraph()->AddBlock(new_block);
1503   return new_block;
1504 }
1505 
SplitBeforeForInlining(HInstruction * cursor)1506 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1507   DCHECK_EQ(cursor->GetBlock(), this);
1508 
1509   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1510                                                                     cursor->GetDexPc());
1511   new_block->instructions_.first_instruction_ = cursor;
1512   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1513   instructions_.last_instruction_ = cursor->previous_;
1514   if (cursor->previous_ == nullptr) {
1515     instructions_.first_instruction_ = nullptr;
1516   } else {
1517     cursor->previous_->next_ = nullptr;
1518     cursor->previous_ = nullptr;
1519   }
1520 
1521   new_block->instructions_.SetBlockOfInstructions(new_block);
1522 
1523   for (HBasicBlock* successor : GetSuccessors()) {
1524     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1525   }
1526   new_block->successors_.swap(successors_);
1527   DCHECK(successors_.empty());
1528 
1529   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1530     dominated->dominator_ = new_block;
1531   }
1532   new_block->dominated_blocks_.swap(dominated_blocks_);
1533   DCHECK(dominated_blocks_.empty());
1534   return new_block;
1535 }
1536 
SplitAfterForInlining(HInstruction * cursor)1537 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1538   DCHECK(!cursor->IsControlFlow());
1539   DCHECK_NE(instructions_.last_instruction_, cursor);
1540   DCHECK_EQ(cursor->GetBlock(), this);
1541 
1542   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1543   new_block->instructions_.first_instruction_ = cursor->GetNext();
1544   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1545   cursor->next_->previous_ = nullptr;
1546   cursor->next_ = nullptr;
1547   instructions_.last_instruction_ = cursor;
1548 
1549   new_block->instructions_.SetBlockOfInstructions(new_block);
1550   for (HBasicBlock* successor : GetSuccessors()) {
1551     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1552   }
1553   new_block->successors_.swap(successors_);
1554   DCHECK(successors_.empty());
1555 
1556   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1557     dominated->dominator_ = new_block;
1558   }
1559   new_block->dominated_blocks_.swap(dominated_blocks_);
1560   DCHECK(dominated_blocks_.empty());
1561   return new_block;
1562 }
1563 
ComputeTryEntryOfSuccessors() const1564 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1565   if (EndsWithTryBoundary()) {
1566     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1567     if (try_boundary->IsEntry()) {
1568       DCHECK(!IsTryBlock());
1569       return try_boundary;
1570     } else {
1571       DCHECK(IsTryBlock());
1572       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1573       return nullptr;
1574     }
1575   } else if (IsTryBlock()) {
1576     return &try_catch_information_->GetTryEntry();
1577   } else {
1578     return nullptr;
1579   }
1580 }
1581 
HasThrowingInstructions() const1582 bool HBasicBlock::HasThrowingInstructions() const {
1583   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1584     if (it.Current()->CanThrow()) {
1585       return true;
1586     }
1587   }
1588   return false;
1589 }
1590 
HasOnlyOneInstruction(const HBasicBlock & block)1591 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1592   return block.GetPhis().IsEmpty()
1593       && !block.GetInstructions().IsEmpty()
1594       && block.GetFirstInstruction() == block.GetLastInstruction();
1595 }
1596 
IsSingleGoto() const1597 bool HBasicBlock::IsSingleGoto() const {
1598   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1599 }
1600 
IsSingleTryBoundary() const1601 bool HBasicBlock::IsSingleTryBoundary() const {
1602   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1603 }
1604 
EndsWithControlFlowInstruction() const1605 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1606   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1607 }
1608 
EndsWithIf() const1609 bool HBasicBlock::EndsWithIf() const {
1610   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1611 }
1612 
EndsWithTryBoundary() const1613 bool HBasicBlock::EndsWithTryBoundary() const {
1614   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1615 }
1616 
HasSinglePhi() const1617 bool HBasicBlock::HasSinglePhi() const {
1618   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1619 }
1620 
GetNormalSuccessors() const1621 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1622   if (EndsWithTryBoundary()) {
1623     // The normal-flow successor of HTryBoundary is always stored at index zero.
1624     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1625     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1626   } else {
1627     // All successors of blocks not ending with TryBoundary are normal.
1628     return ArrayRef<HBasicBlock* const>(successors_);
1629   }
1630 }
1631 
GetExceptionalSuccessors() const1632 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1633   if (EndsWithTryBoundary()) {
1634     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1635   } else {
1636     // Blocks not ending with TryBoundary do not have exceptional successors.
1637     return ArrayRef<HBasicBlock* const>();
1638   }
1639 }
1640 
HasSameExceptionHandlersAs(const HTryBoundary & other) const1641 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1642   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1643   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1644 
1645   size_t length = handlers1.size();
1646   if (length != handlers2.size()) {
1647     return false;
1648   }
1649 
1650   // Exception handlers need to be stored in the same order.
1651   for (size_t i = 0; i < length; ++i) {
1652     if (handlers1[i] != handlers2[i]) {
1653       return false;
1654     }
1655   }
1656   return true;
1657 }
1658 
CountSize() const1659 size_t HInstructionList::CountSize() const {
1660   size_t size = 0;
1661   HInstruction* current = first_instruction_;
1662   for (; current != nullptr; current = current->GetNext()) {
1663     size++;
1664   }
1665   return size;
1666 }
1667 
SetBlockOfInstructions(HBasicBlock * block) const1668 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
1669   for (HInstruction* current = first_instruction_;
1670        current != nullptr;
1671        current = current->GetNext()) {
1672     current->SetBlock(block);
1673   }
1674 }
1675 
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)1676 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
1677   DCHECK(Contains(cursor));
1678   if (!instruction_list.IsEmpty()) {
1679     if (cursor == last_instruction_) {
1680       last_instruction_ = instruction_list.last_instruction_;
1681     } else {
1682       cursor->next_->previous_ = instruction_list.last_instruction_;
1683     }
1684     instruction_list.last_instruction_->next_ = cursor->next_;
1685     cursor->next_ = instruction_list.first_instruction_;
1686     instruction_list.first_instruction_->previous_ = cursor;
1687   }
1688 }
1689 
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)1690 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
1691   DCHECK(Contains(cursor));
1692   if (!instruction_list.IsEmpty()) {
1693     if (cursor == first_instruction_) {
1694       first_instruction_ = instruction_list.first_instruction_;
1695     } else {
1696       cursor->previous_->next_ = instruction_list.first_instruction_;
1697     }
1698     instruction_list.last_instruction_->next_ = cursor;
1699     instruction_list.first_instruction_->previous_ = cursor->previous_;
1700     cursor->previous_ = instruction_list.last_instruction_;
1701   }
1702 }
1703 
Add(const HInstructionList & instruction_list)1704 void HInstructionList::Add(const HInstructionList& instruction_list) {
1705   if (IsEmpty()) {
1706     first_instruction_ = instruction_list.first_instruction_;
1707     last_instruction_ = instruction_list.last_instruction_;
1708   } else {
1709     AddAfter(last_instruction_, instruction_list);
1710   }
1711 }
1712 
1713 // Should be called on instructions in a dead block in post order. This method
1714 // assumes `insn` has been removed from all users with the exception of catch
1715 // phis because of missing exceptional edges in the graph. It removes the
1716 // instruction from catch phi uses, together with inputs of other catch phis in
1717 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)1718 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
1719   DCHECK(!insn->HasEnvironmentUses());
1720   while (insn->HasNonEnvironmentUses()) {
1721     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
1722     size_t use_index = use.GetIndex();
1723     HBasicBlock* user_block =  use.GetUser()->GetBlock();
1724     DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
1725     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1726       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
1727     }
1728   }
1729 }
1730 
DisconnectAndDelete()1731 void HBasicBlock::DisconnectAndDelete() {
1732   // Dominators must be removed after all the blocks they dominate. This way
1733   // a loop header is removed last, a requirement for correct loop information
1734   // iteration.
1735   DCHECK(dominated_blocks_.empty());
1736 
1737   // The following steps gradually remove the block from all its dependants in
1738   // post order (b/27683071).
1739 
1740   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
1741   //     We need to do this before step (4) which destroys the predecessor list.
1742   HBasicBlock* loop_update_start = this;
1743   if (IsLoopHeader()) {
1744     HLoopInformation* loop_info = GetLoopInformation();
1745     // All other blocks in this loop should have been removed because the header
1746     // was their dominator.
1747     // Note that we do not remove `this` from `loop_info` as it is unreachable.
1748     DCHECK(!loop_info->IsIrreducible());
1749     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
1750     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
1751     loop_update_start = loop_info->GetPreHeader();
1752   }
1753 
1754   // (2) Disconnect the block from its successors and update their phis.
1755   for (HBasicBlock* successor : successors_) {
1756     // Delete this block from the list of predecessors.
1757     size_t this_index = successor->GetPredecessorIndexOf(this);
1758     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
1759 
1760     // Check that `successor` has other predecessors, otherwise `this` is the
1761     // dominator of `successor` which violates the order DCHECKed at the top.
1762     DCHECK(!successor->predecessors_.empty());
1763 
1764     // Remove this block's entries in the successor's phis. Skip exceptional
1765     // successors because catch phi inputs do not correspond to predecessor
1766     // blocks but throwing instructions. The inputs of the catch phis will be
1767     // updated in step (3).
1768     if (!successor->IsCatchBlock()) {
1769       if (successor->predecessors_.size() == 1u) {
1770         // The successor has just one predecessor left. Replace phis with the only
1771         // remaining input.
1772         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1773           HPhi* phi = phi_it.Current()->AsPhi();
1774           phi->ReplaceWith(phi->InputAt(1 - this_index));
1775           successor->RemovePhi(phi);
1776         }
1777       } else {
1778         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1779           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1780         }
1781       }
1782     }
1783   }
1784   successors_.clear();
1785 
1786   // (3) Remove instructions and phis. Instructions should have no remaining uses
1787   //     except in catch phis. If an instruction is used by a catch phi at `index`,
1788   //     remove `index`-th input of all phis in the catch block since they are
1789   //     guaranteed dead. Note that we may miss dead inputs this way but the
1790   //     graph will always remain consistent.
1791   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1792     HInstruction* insn = it.Current();
1793     RemoveUsesOfDeadInstruction(insn);
1794     RemoveInstruction(insn);
1795   }
1796   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
1797     HPhi* insn = it.Current()->AsPhi();
1798     RemoveUsesOfDeadInstruction(insn);
1799     RemovePhi(insn);
1800   }
1801 
1802   // (4) Disconnect the block from its predecessors and update their
1803   //     control-flow instructions.
1804   for (HBasicBlock* predecessor : predecessors_) {
1805     // We should not see any back edges as they would have been removed by step (3).
1806     DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
1807 
1808     HInstruction* last_instruction = predecessor->GetLastInstruction();
1809     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
1810       // This block is the only normal-flow successor of the TryBoundary which
1811       // makes `predecessor` dead. Since DCE removes blocks in post order,
1812       // exception handlers of this TryBoundary were already visited and any
1813       // remaining handlers therefore must be live. We remove `predecessor` from
1814       // their list of predecessors.
1815       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
1816       while (predecessor->GetSuccessors().size() > 1) {
1817         HBasicBlock* handler = predecessor->GetSuccessors()[1];
1818         DCHECK(handler->IsCatchBlock());
1819         predecessor->RemoveSuccessor(handler);
1820         handler->RemovePredecessor(predecessor);
1821       }
1822     }
1823 
1824     predecessor->RemoveSuccessor(this);
1825     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
1826     if (num_pred_successors == 1u) {
1827       // If we have one successor after removing one, then we must have
1828       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
1829       // successor. Replace those with a HGoto.
1830       DCHECK(last_instruction->IsIf() ||
1831              last_instruction->IsPackedSwitch() ||
1832              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1833       predecessor->RemoveInstruction(last_instruction);
1834       predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
1835     } else if (num_pred_successors == 0u) {
1836       // The predecessor has no remaining successors and therefore must be dead.
1837       // We deliberately leave it without a control-flow instruction so that the
1838       // GraphChecker fails unless it is not removed during the pass too.
1839       predecessor->RemoveInstruction(last_instruction);
1840     } else {
1841       // There are multiple successors left. The removed block might be a successor
1842       // of a PackedSwitch which will be completely removed (perhaps replaced with
1843       // a Goto), or we are deleting a catch block from a TryBoundary. In either
1844       // case, leave `last_instruction` as is for now.
1845       DCHECK(last_instruction->IsPackedSwitch() ||
1846              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1847     }
1848   }
1849   predecessors_.clear();
1850 
1851   // (5) Remove the block from all loops it is included in. Skip the inner-most
1852   //     loop if this is the loop header (see definition of `loop_update_start`)
1853   //     because the loop header's predecessor list has been destroyed in step (4).
1854   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
1855     HLoopInformation* loop_info = it.Current();
1856     loop_info->Remove(this);
1857     if (loop_info->IsBackEdge(*this)) {
1858       // If this was the last back edge of the loop, we deliberately leave the
1859       // loop in an inconsistent state and will fail GraphChecker unless the
1860       // entire loop is removed during the pass.
1861       loop_info->RemoveBackEdge(this);
1862     }
1863   }
1864 
1865   // (6) Disconnect from the dominator.
1866   dominator_->RemoveDominatedBlock(this);
1867   SetDominator(nullptr);
1868 
1869   // (7) Delete from the graph, update reverse post order.
1870   graph_->DeleteDeadEmptyBlock(this);
1871   SetGraph(nullptr);
1872 }
1873 
MergeInstructionsWith(HBasicBlock * other)1874 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
1875   DCHECK(EndsWithControlFlowInstruction());
1876   RemoveInstruction(GetLastInstruction());
1877   instructions_.Add(other->GetInstructions());
1878   other->instructions_.SetBlockOfInstructions(this);
1879   other->instructions_.Clear();
1880 }
1881 
MergeWith(HBasicBlock * other)1882 void HBasicBlock::MergeWith(HBasicBlock* other) {
1883   DCHECK_EQ(GetGraph(), other->GetGraph());
1884   DCHECK(ContainsElement(dominated_blocks_, other));
1885   DCHECK_EQ(GetSingleSuccessor(), other);
1886   DCHECK_EQ(other->GetSinglePredecessor(), this);
1887   DCHECK(other->GetPhis().IsEmpty());
1888 
1889   // Move instructions from `other` to `this`.
1890   MergeInstructionsWith(other);
1891 
1892   // Remove `other` from the loops it is included in.
1893   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1894     HLoopInformation* loop_info = it.Current();
1895     loop_info->Remove(other);
1896     if (loop_info->IsBackEdge(*other)) {
1897       loop_info->ReplaceBackEdge(other, this);
1898     }
1899   }
1900 
1901   // Update links to the successors of `other`.
1902   successors_.clear();
1903   for (HBasicBlock* successor : other->GetSuccessors()) {
1904     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
1905   }
1906   successors_.swap(other->successors_);
1907   DCHECK(other->successors_.empty());
1908 
1909   // Update the dominator tree.
1910   RemoveDominatedBlock(other);
1911   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1912     dominated->SetDominator(this);
1913   }
1914   dominated_blocks_.insert(
1915       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
1916   other->dominated_blocks_.clear();
1917   other->dominator_ = nullptr;
1918 
1919   // Clear the list of predecessors of `other` in preparation of deleting it.
1920   other->predecessors_.clear();
1921 
1922   // Delete `other` from the graph. The function updates reverse post order.
1923   graph_->DeleteDeadEmptyBlock(other);
1924   other->SetGraph(nullptr);
1925 }
1926 
MergeWithInlined(HBasicBlock * other)1927 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
1928   DCHECK_NE(GetGraph(), other->GetGraph());
1929   DCHECK(GetDominatedBlocks().empty());
1930   DCHECK(GetSuccessors().empty());
1931   DCHECK(!EndsWithControlFlowInstruction());
1932   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
1933   DCHECK(other->GetPhis().IsEmpty());
1934   DCHECK(!other->IsInLoop());
1935 
1936   // Move instructions from `other` to `this`.
1937   instructions_.Add(other->GetInstructions());
1938   other->instructions_.SetBlockOfInstructions(this);
1939 
1940   // Update links to the successors of `other`.
1941   successors_.clear();
1942   for (HBasicBlock* successor : other->GetSuccessors()) {
1943     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
1944   }
1945   successors_.swap(other->successors_);
1946   DCHECK(other->successors_.empty());
1947 
1948   // Update the dominator tree.
1949   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1950     dominated->SetDominator(this);
1951   }
1952   dominated_blocks_.insert(
1953       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
1954   other->dominated_blocks_.clear();
1955   other->dominator_ = nullptr;
1956   other->graph_ = nullptr;
1957 }
1958 
ReplaceWith(HBasicBlock * other)1959 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
1960   while (!GetPredecessors().empty()) {
1961     HBasicBlock* predecessor = GetPredecessors()[0];
1962     predecessor->ReplaceSuccessor(this, other);
1963   }
1964   while (!GetSuccessors().empty()) {
1965     HBasicBlock* successor = GetSuccessors()[0];
1966     successor->ReplacePredecessor(this, other);
1967   }
1968   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1969     other->AddDominatedBlock(dominated);
1970   }
1971   GetDominator()->ReplaceDominatedBlock(this, other);
1972   other->SetDominator(GetDominator());
1973   dominator_ = nullptr;
1974   graph_ = nullptr;
1975 }
1976 
DeleteDeadEmptyBlock(HBasicBlock * block)1977 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
1978   DCHECK_EQ(block->GetGraph(), this);
1979   DCHECK(block->GetSuccessors().empty());
1980   DCHECK(block->GetPredecessors().empty());
1981   DCHECK(block->GetDominatedBlocks().empty());
1982   DCHECK(block->GetDominator() == nullptr);
1983   DCHECK(block->GetInstructions().IsEmpty());
1984   DCHECK(block->GetPhis().IsEmpty());
1985 
1986   if (block->IsExitBlock()) {
1987     SetExitBlock(nullptr);
1988   }
1989 
1990   RemoveElement(reverse_post_order_, block);
1991   blocks_[block->GetBlockId()] = nullptr;
1992   block->SetGraph(nullptr);
1993 }
1994 
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)1995 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
1996                                                    HBasicBlock* reference,
1997                                                    bool replace_if_back_edge) {
1998   if (block->IsLoopHeader()) {
1999     // Clear the information of which blocks are contained in that loop. Since the
2000     // information is stored as a bit vector based on block ids, we have to update
2001     // it, as those block ids were specific to the callee graph and we are now adding
2002     // these blocks to the caller graph.
2003     block->GetLoopInformation()->ClearAllBlocks();
2004   }
2005 
2006   // If not already in a loop, update the loop information.
2007   if (!block->IsInLoop()) {
2008     block->SetLoopInformation(reference->GetLoopInformation());
2009   }
2010 
2011   // If the block is in a loop, update all its outward loops.
2012   HLoopInformation* loop_info = block->GetLoopInformation();
2013   if (loop_info != nullptr) {
2014     for (HLoopInformationOutwardIterator loop_it(*block);
2015          !loop_it.Done();
2016          loop_it.Advance()) {
2017       loop_it.Current()->Add(block);
2018     }
2019     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2020       loop_info->ReplaceBackEdge(reference, block);
2021     }
2022   }
2023 
2024   // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2025   TryCatchInformation* try_catch_info = reference->IsTryBlock()
2026       ? reference->GetTryCatchInformation()
2027       : nullptr;
2028   block->SetTryCatchInformation(try_catch_info);
2029 }
2030 
InlineInto(HGraph * outer_graph,HInvoke * invoke)2031 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2032   DCHECK(HasExitBlock()) << "Unimplemented scenario";
2033   // Update the environments in this graph to have the invoke's environment
2034   // as parent.
2035   {
2036     // Skip the entry block, we do not need to update the entry's suspend check.
2037     for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2038       for (HInstructionIterator instr_it(block->GetInstructions());
2039            !instr_it.Done();
2040            instr_it.Advance()) {
2041         HInstruction* current = instr_it.Current();
2042         if (current->NeedsEnvironment()) {
2043           DCHECK(current->HasEnvironment());
2044           current->GetEnvironment()->SetAndCopyParentChain(
2045               outer_graph->GetArena(), invoke->GetEnvironment());
2046         }
2047       }
2048     }
2049   }
2050   outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2051 
2052   if (HasBoundsChecks()) {
2053     outer_graph->SetHasBoundsChecks(true);
2054   }
2055   if (HasLoops()) {
2056     outer_graph->SetHasLoops(true);
2057   }
2058   if (HasIrreducibleLoops()) {
2059     outer_graph->SetHasIrreducibleLoops(true);
2060   }
2061   if (HasTryCatch()) {
2062     outer_graph->SetHasTryCatch(true);
2063   }
2064   if (HasSIMD()) {
2065     outer_graph->SetHasSIMD(true);
2066   }
2067 
2068   HInstruction* return_value = nullptr;
2069   if (GetBlocks().size() == 3) {
2070     // Inliner already made sure we don't inline methods that always throw.
2071     DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2072     // Simple case of an entry block, a body block, and an exit block.
2073     // Put the body block's instruction into `invoke`'s block.
2074     HBasicBlock* body = GetBlocks()[1];
2075     DCHECK(GetBlocks()[0]->IsEntryBlock());
2076     DCHECK(GetBlocks()[2]->IsExitBlock());
2077     DCHECK(!body->IsExitBlock());
2078     DCHECK(!body->IsInLoop());
2079     HInstruction* last = body->GetLastInstruction();
2080 
2081     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2082     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2083     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2084 
2085     // Replace the invoke with the return value of the inlined graph.
2086     if (last->IsReturn()) {
2087       return_value = last->InputAt(0);
2088     } else {
2089       DCHECK(last->IsReturnVoid());
2090     }
2091 
2092     invoke->GetBlock()->RemoveInstruction(last);
2093   } else {
2094     // Need to inline multiple blocks. We split `invoke`'s block
2095     // into two blocks, merge the first block of the inlined graph into
2096     // the first half, and replace the exit block of the inlined graph
2097     // with the second half.
2098     ArenaAllocator* allocator = outer_graph->GetArena();
2099     HBasicBlock* at = invoke->GetBlock();
2100     // Note that we split before the invoke only to simplify polymorphic inlining.
2101     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2102 
2103     HBasicBlock* first = entry_block_->GetSuccessors()[0];
2104     DCHECK(!first->IsInLoop());
2105     at->MergeWithInlined(first);
2106     exit_block_->ReplaceWith(to);
2107 
2108     // Update the meta information surrounding blocks:
2109     // (1) the graph they are now in,
2110     // (2) the reverse post order of that graph,
2111     // (3) their potential loop information, inner and outer,
2112     // (4) try block membership.
2113     // Note that we do not need to update catch phi inputs because they
2114     // correspond to the register file of the outer method which the inlinee
2115     // cannot modify.
2116 
2117     // We don't add the entry block, the exit block, and the first block, which
2118     // has been merged with `at`.
2119     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2120 
2121     // We add the `to` block.
2122     static constexpr int kNumberOfNewBlocksInCaller = 1;
2123     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2124         + kNumberOfNewBlocksInCaller;
2125 
2126     // Find the location of `at` in the outer graph's reverse post order. The new
2127     // blocks will be added after it.
2128     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2129     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2130 
2131     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2132     // and (4) to the blocks that apply.
2133     for (HBasicBlock* current : GetReversePostOrder()) {
2134       if (current != exit_block_ && current != entry_block_ && current != first) {
2135         DCHECK(current->GetTryCatchInformation() == nullptr);
2136         DCHECK(current->GetGraph() == this);
2137         current->SetGraph(outer_graph);
2138         outer_graph->AddBlock(current);
2139         outer_graph->reverse_post_order_[++index_of_at] = current;
2140         UpdateLoopAndTryInformationOfNewBlock(current, at,  /* replace_if_back_edge */ false);
2141       }
2142     }
2143 
2144     // Do (1), (2), (3) and (4) to `to`.
2145     to->SetGraph(outer_graph);
2146     outer_graph->AddBlock(to);
2147     outer_graph->reverse_post_order_[++index_of_at] = to;
2148     // Only `to` can become a back edge, as the inlined blocks
2149     // are predecessors of `to`.
2150     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2151 
2152     // Update all predecessors of the exit block (now the `to` block)
2153     // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2154     // to now get the outer graph exit block as successor. Note that the inliner
2155     // currently doesn't support inlining methods with try/catch.
2156     HPhi* return_value_phi = nullptr;
2157     bool rerun_dominance = false;
2158     bool rerun_loop_analysis = false;
2159     for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2160       HBasicBlock* predecessor = to->GetPredecessors()[pred];
2161       HInstruction* last = predecessor->GetLastInstruction();
2162       if (last->IsThrow()) {
2163         DCHECK(!at->IsTryBlock());
2164         predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2165         --pred;
2166         // We need to re-run dominance information, as the exit block now has
2167         // a new dominator.
2168         rerun_dominance = true;
2169         if (predecessor->GetLoopInformation() != nullptr) {
2170           // The exit block and blocks post dominated by the exit block do not belong
2171           // to any loop. Because we do not compute the post dominators, we need to re-run
2172           // loop analysis to get the loop information correct.
2173           rerun_loop_analysis = true;
2174         }
2175       } else {
2176         if (last->IsReturnVoid()) {
2177           DCHECK(return_value == nullptr);
2178           DCHECK(return_value_phi == nullptr);
2179         } else {
2180           DCHECK(last->IsReturn());
2181           if (return_value_phi != nullptr) {
2182             return_value_phi->AddInput(last->InputAt(0));
2183           } else if (return_value == nullptr) {
2184             return_value = last->InputAt(0);
2185           } else {
2186             // There will be multiple returns.
2187             return_value_phi = new (allocator) HPhi(
2188                 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2189             to->AddPhi(return_value_phi);
2190             return_value_phi->AddInput(return_value);
2191             return_value_phi->AddInput(last->InputAt(0));
2192             return_value = return_value_phi;
2193           }
2194         }
2195         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2196         predecessor->RemoveInstruction(last);
2197       }
2198     }
2199     if (rerun_loop_analysis) {
2200       DCHECK(!outer_graph->HasIrreducibleLoops())
2201           << "Recomputing loop information in graphs with irreducible loops "
2202           << "is unsupported, as it could lead to loop header changes";
2203       outer_graph->ClearLoopInformation();
2204       outer_graph->ClearDominanceInformation();
2205       outer_graph->BuildDominatorTree();
2206     } else if (rerun_dominance) {
2207       outer_graph->ClearDominanceInformation();
2208       outer_graph->ComputeDominanceInformation();
2209     }
2210   }
2211 
2212   // Walk over the entry block and:
2213   // - Move constants from the entry block to the outer_graph's entry block,
2214   // - Replace HParameterValue instructions with their real value.
2215   // - Remove suspend checks, that hold an environment.
2216   // We must do this after the other blocks have been inlined, otherwise ids of
2217   // constants could overlap with the inner graph.
2218   size_t parameter_index = 0;
2219   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2220     HInstruction* current = it.Current();
2221     HInstruction* replacement = nullptr;
2222     if (current->IsNullConstant()) {
2223       replacement = outer_graph->GetNullConstant(current->GetDexPc());
2224     } else if (current->IsIntConstant()) {
2225       replacement = outer_graph->GetIntConstant(
2226           current->AsIntConstant()->GetValue(), current->GetDexPc());
2227     } else if (current->IsLongConstant()) {
2228       replacement = outer_graph->GetLongConstant(
2229           current->AsLongConstant()->GetValue(), current->GetDexPc());
2230     } else if (current->IsFloatConstant()) {
2231       replacement = outer_graph->GetFloatConstant(
2232           current->AsFloatConstant()->GetValue(), current->GetDexPc());
2233     } else if (current->IsDoubleConstant()) {
2234       replacement = outer_graph->GetDoubleConstant(
2235           current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2236     } else if (current->IsParameterValue()) {
2237       if (kIsDebugBuild
2238           && invoke->IsInvokeStaticOrDirect()
2239           && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2240         // Ensure we do not use the last input of `invoke`, as it
2241         // contains a clinit check which is not an actual argument.
2242         size_t last_input_index = invoke->InputCount() - 1;
2243         DCHECK(parameter_index != last_input_index);
2244       }
2245       replacement = invoke->InputAt(parameter_index++);
2246     } else if (current->IsCurrentMethod()) {
2247       replacement = outer_graph->GetCurrentMethod();
2248     } else {
2249       DCHECK(current->IsGoto() || current->IsSuspendCheck());
2250       entry_block_->RemoveInstruction(current);
2251     }
2252     if (replacement != nullptr) {
2253       current->ReplaceWith(replacement);
2254       // If the current is the return value then we need to update the latter.
2255       if (current == return_value) {
2256         DCHECK_EQ(entry_block_, return_value->GetBlock());
2257         return_value = replacement;
2258       }
2259     }
2260   }
2261 
2262   return return_value;
2263 }
2264 
2265 /*
2266  * Loop will be transformed to:
2267  *       old_pre_header
2268  *             |
2269  *          if_block
2270  *           /    \
2271  *  true_block   false_block
2272  *           \    /
2273  *       new_pre_header
2274  *             |
2275  *           header
2276  */
TransformLoopHeaderForBCE(HBasicBlock * header)2277 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2278   DCHECK(header->IsLoopHeader());
2279   HBasicBlock* old_pre_header = header->GetDominator();
2280 
2281   // Need extra block to avoid critical edge.
2282   HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2283   HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2284   HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2285   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2286   AddBlock(if_block);
2287   AddBlock(true_block);
2288   AddBlock(false_block);
2289   AddBlock(new_pre_header);
2290 
2291   header->ReplacePredecessor(old_pre_header, new_pre_header);
2292   old_pre_header->successors_.clear();
2293   old_pre_header->dominated_blocks_.clear();
2294 
2295   old_pre_header->AddSuccessor(if_block);
2296   if_block->AddSuccessor(true_block);  // True successor
2297   if_block->AddSuccessor(false_block);  // False successor
2298   true_block->AddSuccessor(new_pre_header);
2299   false_block->AddSuccessor(new_pre_header);
2300 
2301   old_pre_header->dominated_blocks_.push_back(if_block);
2302   if_block->SetDominator(old_pre_header);
2303   if_block->dominated_blocks_.push_back(true_block);
2304   true_block->SetDominator(if_block);
2305   if_block->dominated_blocks_.push_back(false_block);
2306   false_block->SetDominator(if_block);
2307   if_block->dominated_blocks_.push_back(new_pre_header);
2308   new_pre_header->SetDominator(if_block);
2309   new_pre_header->dominated_blocks_.push_back(header);
2310   header->SetDominator(new_pre_header);
2311 
2312   // Fix reverse post order.
2313   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2314   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2315   reverse_post_order_[index_of_header++] = if_block;
2316   reverse_post_order_[index_of_header++] = true_block;
2317   reverse_post_order_[index_of_header++] = false_block;
2318   reverse_post_order_[index_of_header++] = new_pre_header;
2319 
2320   // The pre_header can never be a back edge of a loop.
2321   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2322          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2323   UpdateLoopAndTryInformationOfNewBlock(
2324       if_block, old_pre_header, /* replace_if_back_edge */ false);
2325   UpdateLoopAndTryInformationOfNewBlock(
2326       true_block, old_pre_header, /* replace_if_back_edge */ false);
2327   UpdateLoopAndTryInformationOfNewBlock(
2328       false_block, old_pre_header, /* replace_if_back_edge */ false);
2329   UpdateLoopAndTryInformationOfNewBlock(
2330       new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2331 }
2332 
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2333 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2334                                                    HBasicBlock* body,
2335                                                    HBasicBlock* exit) {
2336   DCHECK(header->IsLoopHeader());
2337   HLoopInformation* loop = header->GetLoopInformation();
2338 
2339   // Add new loop blocks.
2340   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2341   HBasicBlock* new_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2342   HBasicBlock* new_body = new (arena_) HBasicBlock(this, header->GetDexPc());
2343   AddBlock(new_pre_header);
2344   AddBlock(new_header);
2345   AddBlock(new_body);
2346 
2347   // Set up control flow.
2348   header->ReplaceSuccessor(exit, new_pre_header);
2349   new_pre_header->AddSuccessor(new_header);
2350   new_header->AddSuccessor(exit);
2351   new_header->AddSuccessor(new_body);
2352   new_body->AddSuccessor(new_header);
2353 
2354   // Set up dominators.
2355   header->ReplaceDominatedBlock(exit, new_pre_header);
2356   new_pre_header->SetDominator(header);
2357   new_pre_header->dominated_blocks_.push_back(new_header);
2358   new_header->SetDominator(new_pre_header);
2359   new_header->dominated_blocks_.push_back(new_body);
2360   new_body->SetDominator(new_header);
2361   new_header->dominated_blocks_.push_back(exit);
2362   exit->SetDominator(new_header);
2363 
2364   // Fix reverse post order.
2365   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2366   MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2367   reverse_post_order_[++index_of_header] = new_pre_header;
2368   reverse_post_order_[++index_of_header] = new_header;
2369   size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2370   MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2371   reverse_post_order_[index_of_body] = new_body;
2372 
2373   // Add gotos and suspend check (client must add conditional in header).
2374   new_pre_header->AddInstruction(new (arena_) HGoto());
2375   HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(header->GetDexPc());
2376   new_header->AddInstruction(suspend_check);
2377   new_body->AddInstruction(new (arena_) HGoto());
2378   suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2379       loop->GetSuspendCheck()->GetEnvironment(), header);
2380 
2381   // Update loop information.
2382   new_header->AddBackEdge(new_body);
2383   new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2384   new_header->GetLoopInformation()->Populate();
2385   new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
2386   HLoopInformationOutwardIterator it(*new_header);
2387   for (it.Advance(); !it.Done(); it.Advance()) {
2388     it.Current()->Add(new_pre_header);
2389     it.Current()->Add(new_header);
2390     it.Current()->Add(new_body);
2391   }
2392   return new_pre_header;
2393 }
2394 
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2395 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2396     REQUIRES_SHARED(Locks::mutator_lock_) {
2397   if (rti.IsValid()) {
2398     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2399         << " upper_bound_rti: " << upper_bound_rti
2400         << " rti: " << rti;
2401     DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2402         << " upper_bound_rti: " << upper_bound_rti
2403         << " rti: " << rti;
2404   }
2405 }
2406 
SetReferenceTypeInfo(ReferenceTypeInfo rti)2407 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2408   if (kIsDebugBuild) {
2409     DCHECK_EQ(GetType(), Primitive::kPrimNot);
2410     ScopedObjectAccess soa(Thread::Current());
2411     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2412     if (IsBoundType()) {
2413       // Having the test here spares us from making the method virtual just for
2414       // the sake of a DCHECK.
2415       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2416     }
2417   }
2418   reference_type_handle_ = rti.GetTypeHandle();
2419   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2420 }
2421 
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2422 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2423   if (kIsDebugBuild) {
2424     ScopedObjectAccess soa(Thread::Current());
2425     DCHECK(upper_bound.IsValid());
2426     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2427     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2428   }
2429   upper_bound_ = upper_bound;
2430   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2431 }
2432 
Create(TypeHandle type_handle,bool is_exact)2433 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2434   if (kIsDebugBuild) {
2435     ScopedObjectAccess soa(Thread::Current());
2436     DCHECK(IsValidHandle(type_handle));
2437     if (!is_exact) {
2438       DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2439           << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2440     }
2441   }
2442   return ReferenceTypeInfo(type_handle, is_exact);
2443 }
2444 
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2445 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2446   ScopedObjectAccess soa(Thread::Current());
2447   os << "["
2448      << " is_valid=" << rhs.IsValid()
2449      << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2450      << " is_exact=" << rhs.IsExact()
2451      << " ]";
2452   return os;
2453 }
2454 
HasAnyEnvironmentUseBefore(HInstruction * other)2455 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2456   // For now, assume that instructions in different blocks may use the
2457   // environment.
2458   // TODO: Use the control flow to decide if this is true.
2459   if (GetBlock() != other->GetBlock()) {
2460     return true;
2461   }
2462 
2463   // We know that we are in the same block. Walk from 'this' to 'other',
2464   // checking to see if there is any instruction with an environment.
2465   HInstruction* current = this;
2466   for (; current != other && current != nullptr; current = current->GetNext()) {
2467     // This is a conservative check, as the instruction result may not be in
2468     // the referenced environment.
2469     if (current->HasEnvironment()) {
2470       return true;
2471     }
2472   }
2473 
2474   // We should have been called with 'this' before 'other' in the block.
2475   // Just confirm this.
2476   DCHECK(current != nullptr);
2477   return false;
2478 }
2479 
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2480 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2481                            IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2482                            IntrinsicSideEffects side_effects,
2483                            IntrinsicExceptions exceptions) {
2484   intrinsic_ = intrinsic;
2485   IntrinsicOptimizations opt(this);
2486 
2487   // Adjust method's side effects from intrinsic table.
2488   switch (side_effects) {
2489     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2490     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2491     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2492     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2493   }
2494 
2495   if (needs_env_or_cache == kNoEnvironmentOrCache) {
2496     opt.SetDoesNotNeedDexCache();
2497     opt.SetDoesNotNeedEnvironment();
2498   } else {
2499     // If we need an environment, that means there will be a call, which can trigger GC.
2500     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2501   }
2502   // Adjust method's exception status from intrinsic table.
2503   SetCanThrow(exceptions == kCanThrow);
2504 }
2505 
IsStringAlloc() const2506 bool HNewInstance::IsStringAlloc() const {
2507   ScopedObjectAccess soa(Thread::Current());
2508   return GetReferenceTypeInfo().IsStringClass();
2509 }
2510 
NeedsEnvironment() const2511 bool HInvoke::NeedsEnvironment() const {
2512   if (!IsIntrinsic()) {
2513     return true;
2514   }
2515   IntrinsicOptimizations opt(*this);
2516   return !opt.GetDoesNotNeedEnvironment();
2517 }
2518 
GetDexFileForPcRelativeDexCache() const2519 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2520   ArtMethod* caller = GetEnvironment()->GetMethod();
2521   ScopedObjectAccess soa(Thread::Current());
2522   // `caller` is null for a top-level graph representing a method whose declaring
2523   // class was not resolved.
2524   return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2525 }
2526 
NeedsDexCacheOfDeclaringClass() const2527 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2528   if (GetMethodLoadKind() != MethodLoadKind::kDexCacheViaMethod) {
2529     return false;
2530   }
2531   if (!IsIntrinsic()) {
2532     return true;
2533   }
2534   IntrinsicOptimizations opt(*this);
2535   return !opt.GetDoesNotNeedDexCache();
2536 }
2537 
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2538 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2539   switch (rhs) {
2540     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2541       return os << "string_init";
2542     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2543       return os << "recursive";
2544     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2545       return os << "direct";
2546     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
2547       return os << "dex_cache_pc_relative";
2548     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod:
2549       return os << "dex_cache_via_method";
2550     default:
2551       LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2552       UNREACHABLE();
2553   }
2554 }
2555 
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2556 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2557   switch (rhs) {
2558     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2559       return os << "explicit";
2560     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2561       return os << "implicit";
2562     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2563       return os << "none";
2564     default:
2565       LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2566       UNREACHABLE();
2567   }
2568 }
2569 
InstructionDataEquals(const HInstruction * other) const2570 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2571   const HLoadClass* other_load_class = other->AsLoadClass();
2572   // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2573   // names rather than type indexes. However, we shall also have to re-think the hash code.
2574   if (type_index_ != other_load_class->type_index_ ||
2575       GetPackedFields() != other_load_class->GetPackedFields()) {
2576     return false;
2577   }
2578   switch (GetLoadKind()) {
2579     case LoadKind::kBootImageAddress:
2580     case LoadKind::kJitTableAddress: {
2581       ScopedObjectAccess soa(Thread::Current());
2582       return GetClass().Get() == other_load_class->GetClass().Get();
2583     }
2584     default:
2585       DCHECK(HasTypeReference(GetLoadKind()));
2586       return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2587   }
2588 }
2589 
SetLoadKind(LoadKind load_kind)2590 void HLoadClass::SetLoadKind(LoadKind load_kind) {
2591   SetPackedField<LoadKindField>(load_kind);
2592 
2593   if (load_kind != LoadKind::kDexCacheViaMethod &&
2594       load_kind != LoadKind::kReferrersClass) {
2595     RemoveAsUserOfInput(0u);
2596     SetRawInputAt(0u, nullptr);
2597   }
2598 
2599   if (!NeedsEnvironment()) {
2600     RemoveEnvironment();
2601     SetSideEffects(SideEffects::None());
2602   }
2603 }
2604 
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2605 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2606   switch (rhs) {
2607     case HLoadClass::LoadKind::kReferrersClass:
2608       return os << "ReferrersClass";
2609     case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
2610       return os << "BootImageLinkTimeAddress";
2611     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2612       return os << "BootImageLinkTimePcRelative";
2613     case HLoadClass::LoadKind::kBootImageAddress:
2614       return os << "BootImageAddress";
2615     case HLoadClass::LoadKind::kBssEntry:
2616       return os << "BssEntry";
2617     case HLoadClass::LoadKind::kJitTableAddress:
2618       return os << "JitTableAddress";
2619     case HLoadClass::LoadKind::kDexCacheViaMethod:
2620       return os << "DexCacheViaMethod";
2621     default:
2622       LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2623       UNREACHABLE();
2624   }
2625 }
2626 
InstructionDataEquals(const HInstruction * other) const2627 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2628   const HLoadString* other_load_string = other->AsLoadString();
2629   // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2630   // rather than their indexes. However, we shall also have to re-think the hash code.
2631   if (string_index_ != other_load_string->string_index_ ||
2632       GetPackedFields() != other_load_string->GetPackedFields()) {
2633     return false;
2634   }
2635   switch (GetLoadKind()) {
2636     case LoadKind::kBootImageAddress:
2637     case LoadKind::kJitTableAddress: {
2638       ScopedObjectAccess soa(Thread::Current());
2639       return GetString().Get() == other_load_string->GetString().Get();
2640     }
2641     default:
2642       return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2643   }
2644 }
2645 
SetLoadKind(LoadKind load_kind)2646 void HLoadString::SetLoadKind(LoadKind load_kind) {
2647   // Once sharpened, the load kind should not be changed again.
2648   DCHECK_EQ(GetLoadKind(), LoadKind::kDexCacheViaMethod);
2649   SetPackedField<LoadKindField>(load_kind);
2650 
2651   if (load_kind != LoadKind::kDexCacheViaMethod) {
2652     RemoveAsUserOfInput(0u);
2653     SetRawInputAt(0u, nullptr);
2654   }
2655   if (!NeedsEnvironment()) {
2656     RemoveEnvironment();
2657     SetSideEffects(SideEffects::None());
2658   }
2659 }
2660 
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2661 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2662   switch (rhs) {
2663     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
2664       return os << "BootImageLinkTimeAddress";
2665     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2666       return os << "BootImageLinkTimePcRelative";
2667     case HLoadString::LoadKind::kBootImageAddress:
2668       return os << "BootImageAddress";
2669     case HLoadString::LoadKind::kBssEntry:
2670       return os << "BssEntry";
2671     case HLoadString::LoadKind::kJitTableAddress:
2672       return os << "JitTableAddress";
2673     case HLoadString::LoadKind::kDexCacheViaMethod:
2674       return os << "DexCacheViaMethod";
2675     default:
2676       LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2677       UNREACHABLE();
2678   }
2679 }
2680 
RemoveEnvironmentUsers()2681 void HInstruction::RemoveEnvironmentUsers() {
2682   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
2683     HEnvironment* user = use.GetUser();
2684     user->SetRawEnvAt(use.GetIndex(), nullptr);
2685   }
2686   env_uses_.clear();
2687 }
2688 
2689 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)2690 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
2691   ArenaAllocator* allocator = GetArena();
2692 
2693   if (cond->IsCondition() &&
2694       !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
2695     // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
2696     HInstruction* lhs = cond->InputAt(0);
2697     HInstruction* rhs = cond->InputAt(1);
2698     HInstruction* replacement = nullptr;
2699     switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
2700       case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
2701       case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
2702       case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
2703       case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
2704       case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
2705       case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
2706       case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
2707       case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
2708       case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
2709       case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
2710       default:
2711         LOG(FATAL) << "Unexpected condition";
2712         UNREACHABLE();
2713     }
2714     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2715     return replacement;
2716   } else if (cond->IsIntConstant()) {
2717     HIntConstant* int_const = cond->AsIntConstant();
2718     if (int_const->IsFalse()) {
2719       return GetIntConstant(1);
2720     } else {
2721       DCHECK(int_const->IsTrue()) << int_const->GetValue();
2722       return GetIntConstant(0);
2723     }
2724   } else {
2725     HInstruction* replacement = new (allocator) HBooleanNot(cond);
2726     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2727     return replacement;
2728   }
2729 }
2730 
operator <<(std::ostream & os,const MoveOperands & rhs)2731 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
2732   os << "["
2733      << " source=" << rhs.GetSource()
2734      << " destination=" << rhs.GetDestination()
2735      << " type=" << rhs.GetType()
2736      << " instruction=";
2737   if (rhs.GetInstruction() != nullptr) {
2738     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
2739   } else {
2740     os << "null";
2741   }
2742   os << " ]";
2743   return os;
2744 }
2745 
operator <<(std::ostream & os,TypeCheckKind rhs)2746 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
2747   switch (rhs) {
2748     case TypeCheckKind::kUnresolvedCheck:
2749       return os << "unresolved_check";
2750     case TypeCheckKind::kExactCheck:
2751       return os << "exact_check";
2752     case TypeCheckKind::kClassHierarchyCheck:
2753       return os << "class_hierarchy_check";
2754     case TypeCheckKind::kAbstractClassCheck:
2755       return os << "abstract_class_check";
2756     case TypeCheckKind::kInterfaceCheck:
2757       return os << "interface_check";
2758     case TypeCheckKind::kArrayObjectCheck:
2759       return os << "array_object_check";
2760     case TypeCheckKind::kArrayCheck:
2761       return os << "array_check";
2762     default:
2763       LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
2764       UNREACHABLE();
2765   }
2766 }
2767 
operator <<(std::ostream & os,const MemBarrierKind & kind)2768 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
2769   switch (kind) {
2770     case MemBarrierKind::kAnyStore:
2771       return os << "AnyStore";
2772     case MemBarrierKind::kLoadAny:
2773       return os << "LoadAny";
2774     case MemBarrierKind::kStoreStore:
2775       return os << "StoreStore";
2776     case MemBarrierKind::kAnyAny:
2777       return os << "AnyAny";
2778     case MemBarrierKind::kNTStoreStore:
2779       return os << "NTStoreStore";
2780 
2781     default:
2782       LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
2783       UNREACHABLE();
2784   }
2785 }
2786 
2787 }  // namespace art
2788