1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for metadata subclasses.
12 /// They represent the different flavors of metadata that live in LLVM.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_METADATA_H
17 #define LLVM_IR_METADATA_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/ilist_node.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <type_traits>
30
31 namespace llvm {
32
33 class LLVMContext;
34 class Module;
35 class ModuleSlotTracker;
36
37 enum LLVMConstants : uint32_t {
38 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
39 };
40
41 /// \brief Root of the metadata hierarchy.
42 ///
43 /// This is a root class for typeless data in the IR.
44 class Metadata {
45 friend class ReplaceableMetadataImpl;
46
47 /// \brief RTTI.
48 const unsigned char SubclassID;
49
50 protected:
51 /// \brief Active type of storage.
52 enum StorageType { Uniqued, Distinct, Temporary };
53
54 /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
55 unsigned char Storage;
56 // TODO: expose remaining bits to subclasses.
57
58 unsigned short SubclassData16;
59 unsigned SubclassData32;
60
61 public:
62 enum MetadataKind {
63 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
64 #include "llvm/IR/Metadata.def"
65 };
66
67 protected:
Metadata(unsigned ID,StorageType Storage)68 Metadata(unsigned ID, StorageType Storage)
69 : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
70 static_assert(sizeof(*this) == 8, "Metdata fields poorly packed");
71 }
72 ~Metadata() = default;
73
74 /// \brief Default handling of a changed operand, which asserts.
75 ///
76 /// If subclasses pass themselves in as owners to a tracking node reference,
77 /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)78 void handleChangedOperand(void *, Metadata *) {
79 llvm_unreachable("Unimplemented in Metadata subclass");
80 }
81
82 public:
getMetadataID()83 unsigned getMetadataID() const { return SubclassID; }
84
85 /// \brief User-friendly dump.
86 ///
87 /// If \c M is provided, metadata nodes will be numbered canonically;
88 /// otherwise, pointer addresses are substituted.
89 ///
90 /// Note: this uses an explicit overload instead of default arguments so that
91 /// the nullptr version is easy to call from a debugger.
92 ///
93 /// @{
94 void dump() const;
95 void dump(const Module *M) const;
96 /// @}
97
98 /// \brief Print.
99 ///
100 /// Prints definition of \c this.
101 ///
102 /// If \c M is provided, metadata nodes will be numbered canonically;
103 /// otherwise, pointer addresses are substituted.
104 /// @{
105 void print(raw_ostream &OS, const Module *M = nullptr,
106 bool IsForDebug = false) const;
107 void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
108 bool IsForDebug = false) const;
109 /// @}
110
111 /// \brief Print as operand.
112 ///
113 /// Prints reference of \c this.
114 ///
115 /// If \c M is provided, metadata nodes will be numbered canonically;
116 /// otherwise, pointer addresses are substituted.
117 /// @{
118 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
119 void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
120 const Module *M = nullptr) const;
121 /// @}
122 };
123
124 #define HANDLE_METADATA(CLASS) class CLASS;
125 #include "llvm/IR/Metadata.def"
126
127 // Provide specializations of isa so that we don't need definitions of
128 // subclasses to see if the metadata is a subclass.
129 #define HANDLE_METADATA_LEAF(CLASS) \
130 template <> struct isa_impl<CLASS, Metadata> { \
131 static inline bool doit(const Metadata &MD) { \
132 return MD.getMetadataID() == Metadata::CLASS##Kind; \
133 } \
134 };
135 #include "llvm/IR/Metadata.def"
136
137 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
138 MD.print(OS);
139 return OS;
140 }
141
142 /// \brief Metadata wrapper in the Value hierarchy.
143 ///
144 /// A member of the \a Value hierarchy to represent a reference to metadata.
145 /// This allows, e.g., instrinsics to have metadata as operands.
146 ///
147 /// Notably, this is the only thing in either hierarchy that is allowed to
148 /// reference \a LocalAsMetadata.
149 class MetadataAsValue : public Value {
150 friend class ReplaceableMetadataImpl;
151 friend class LLVMContextImpl;
152
153 Metadata *MD;
154
155 MetadataAsValue(Type *Ty, Metadata *MD);
156 ~MetadataAsValue() override;
157
158 /// \brief Drop use of metadata (during teardown).
dropUse()159 void dropUse() { MD = nullptr; }
160
161 public:
162 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
163 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
getMetadata()164 Metadata *getMetadata() const { return MD; }
165
classof(const Value * V)166 static bool classof(const Value *V) {
167 return V->getValueID() == MetadataAsValueVal;
168 }
169
170 private:
171 void handleChangedMetadata(Metadata *MD);
172 void track();
173 void untrack();
174 };
175
176 /// \brief API for tracking metadata references through RAUW and deletion.
177 ///
178 /// Shared API for updating \a Metadata pointers in subclasses that support
179 /// RAUW.
180 ///
181 /// This API is not meant to be used directly. See \a TrackingMDRef for a
182 /// user-friendly tracking reference.
183 class MetadataTracking {
184 public:
185 /// \brief Track the reference to metadata.
186 ///
187 /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
188 /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
189 /// deleted, \c MD will be set to \c nullptr.
190 ///
191 /// If tracking isn't supported, \c *MD will not change.
192 ///
193 /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)194 static bool track(Metadata *&MD) {
195 return track(&MD, *MD, static_cast<Metadata *>(nullptr));
196 }
197
198 /// \brief Track the reference to metadata for \a Metadata.
199 ///
200 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
201 /// tell it that its operand changed. This could trigger \c Owner being
202 /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)203 static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
204 return track(Ref, MD, &Owner);
205 }
206
207 /// \brief Track the reference to metadata for \a MetadataAsValue.
208 ///
209 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
210 /// tell it that its operand changed. This could trigger \c Owner being
211 /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)212 static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
213 return track(Ref, MD, &Owner);
214 }
215
216 /// \brief Stop tracking a reference to metadata.
217 ///
218 /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)219 static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
220 static void untrack(void *Ref, Metadata &MD);
221
222 /// \brief Move tracking from one reference to another.
223 ///
224 /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
225 /// except that ownership callbacks are maintained.
226 ///
227 /// Note: it is an error if \c *MD does not equal \c New.
228 ///
229 /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)230 static bool retrack(Metadata *&MD, Metadata *&New) {
231 return retrack(&MD, *MD, &New);
232 }
233 static bool retrack(void *Ref, Metadata &MD, void *New);
234
235 /// \brief Check whether metadata is replaceable.
236 static bool isReplaceable(const Metadata &MD);
237
238 typedef PointerUnion<MetadataAsValue *, Metadata *> OwnerTy;
239
240 private:
241 /// \brief Track a reference to metadata for an owner.
242 ///
243 /// Generalized version of tracking.
244 static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
245 };
246
247 /// \brief Shared implementation of use-lists for replaceable metadata.
248 ///
249 /// Most metadata cannot be RAUW'ed. This is a shared implementation of
250 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
251 /// and \a TempMDNode).
252 class ReplaceableMetadataImpl {
253 friend class MetadataTracking;
254
255 public:
256 typedef MetadataTracking::OwnerTy OwnerTy;
257
258 private:
259 LLVMContext &Context;
260 uint64_t NextIndex;
261 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
262
263 public:
ReplaceableMetadataImpl(LLVMContext & Context)264 ReplaceableMetadataImpl(LLVMContext &Context)
265 : Context(Context), NextIndex(0) {}
~ReplaceableMetadataImpl()266 ~ReplaceableMetadataImpl() {
267 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
268 }
269
getContext()270 LLVMContext &getContext() const { return Context; }
271
272 /// \brief Replace all uses of this with MD.
273 ///
274 /// Replace all uses of this with \c MD, which is allowed to be null.
275 void replaceAllUsesWith(Metadata *MD);
276
277 /// \brief Resolve all uses of this.
278 ///
279 /// Resolve all uses of this, turning off RAUW permanently. If \c
280 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
281 /// is resolved.
282 void resolveAllUses(bool ResolveUsers = true);
283
284 private:
285 void addRef(void *Ref, OwnerTy Owner);
286 void dropRef(void *Ref);
287 void moveRef(void *Ref, void *New, const Metadata &MD);
288
289 /// Lazily construct RAUW support on MD.
290 ///
291 /// If this is an unresolved MDNode, RAUW support will be created on-demand.
292 /// ValueAsMetadata always has RAUW support.
293 static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
294
295 /// Get RAUW support on MD, if it exists.
296 static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
297
298 /// Check whether this node will support RAUW.
299 ///
300 /// Returns \c true unless getOrCreate() would return null.
301 static bool isReplaceable(const Metadata &MD);
302 };
303
304 /// \brief Value wrapper in the Metadata hierarchy.
305 ///
306 /// This is a custom value handle that allows other metadata to refer to
307 /// classes in the Value hierarchy.
308 ///
309 /// Because of full uniquing support, each value is only wrapped by a single \a
310 /// ValueAsMetadata object, so the lookup maps are far more efficient than
311 /// those using ValueHandleBase.
312 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
313 friend class ReplaceableMetadataImpl;
314 friend class LLVMContextImpl;
315
316 Value *V;
317
318 /// \brief Drop users without RAUW (during teardown).
dropUsers()319 void dropUsers() {
320 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
321 }
322
323 protected:
ValueAsMetadata(unsigned ID,Value * V)324 ValueAsMetadata(unsigned ID, Value *V)
325 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
326 assert(V && "Expected valid value");
327 }
328 ~ValueAsMetadata() = default;
329
330 public:
331 static ValueAsMetadata *get(Value *V);
getConstant(Value * C)332 static ConstantAsMetadata *getConstant(Value *C) {
333 return cast<ConstantAsMetadata>(get(C));
334 }
getLocal(Value * Local)335 static LocalAsMetadata *getLocal(Value *Local) {
336 return cast<LocalAsMetadata>(get(Local));
337 }
338
339 static ValueAsMetadata *getIfExists(Value *V);
getConstantIfExists(Value * C)340 static ConstantAsMetadata *getConstantIfExists(Value *C) {
341 return cast_or_null<ConstantAsMetadata>(getIfExists(C));
342 }
getLocalIfExists(Value * Local)343 static LocalAsMetadata *getLocalIfExists(Value *Local) {
344 return cast_or_null<LocalAsMetadata>(getIfExists(Local));
345 }
346
getValue()347 Value *getValue() const { return V; }
getType()348 Type *getType() const { return V->getType(); }
getContext()349 LLVMContext &getContext() const { return V->getContext(); }
350
351 static void handleDeletion(Value *V);
352 static void handleRAUW(Value *From, Value *To);
353
354 protected:
355 /// \brief Handle collisions after \a Value::replaceAllUsesWith().
356 ///
357 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
358 /// \a Value gets RAUW'ed and the target already exists, this is used to
359 /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)360 void replaceAllUsesWith(Metadata *MD) {
361 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
362 }
363
364 public:
classof(const Metadata * MD)365 static bool classof(const Metadata *MD) {
366 return MD->getMetadataID() == LocalAsMetadataKind ||
367 MD->getMetadataID() == ConstantAsMetadataKind;
368 }
369 };
370
371 class ConstantAsMetadata : public ValueAsMetadata {
372 friend class ValueAsMetadata;
373
ConstantAsMetadata(Constant * C)374 ConstantAsMetadata(Constant *C)
375 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
376
377 public:
get(Constant * C)378 static ConstantAsMetadata *get(Constant *C) {
379 return ValueAsMetadata::getConstant(C);
380 }
getIfExists(Constant * C)381 static ConstantAsMetadata *getIfExists(Constant *C) {
382 return ValueAsMetadata::getConstantIfExists(C);
383 }
384
getValue()385 Constant *getValue() const {
386 return cast<Constant>(ValueAsMetadata::getValue());
387 }
388
classof(const Metadata * MD)389 static bool classof(const Metadata *MD) {
390 return MD->getMetadataID() == ConstantAsMetadataKind;
391 }
392 };
393
394 class LocalAsMetadata : public ValueAsMetadata {
395 friend class ValueAsMetadata;
396
LocalAsMetadata(Value * Local)397 LocalAsMetadata(Value *Local)
398 : ValueAsMetadata(LocalAsMetadataKind, Local) {
399 assert(!isa<Constant>(Local) && "Expected local value");
400 }
401
402 public:
get(Value * Local)403 static LocalAsMetadata *get(Value *Local) {
404 return ValueAsMetadata::getLocal(Local);
405 }
getIfExists(Value * Local)406 static LocalAsMetadata *getIfExists(Value *Local) {
407 return ValueAsMetadata::getLocalIfExists(Local);
408 }
409
classof(const Metadata * MD)410 static bool classof(const Metadata *MD) {
411 return MD->getMetadataID() == LocalAsMetadataKind;
412 }
413 };
414
415 /// \brief Transitional API for extracting constants from Metadata.
416 ///
417 /// This namespace contains transitional functions for metadata that points to
418 /// \a Constants.
419 ///
420 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
421 /// operands could refer to any \a Value. There's was a lot of code like this:
422 ///
423 /// \code
424 /// MDNode *N = ...;
425 /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
426 /// \endcode
427 ///
428 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
429 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
430 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
431 /// cast in the \a Value hierarchy. Besides creating boiler-plate, this
432 /// requires subtle control flow changes.
433 ///
434 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
435 /// so that metadata can refer to numbers without traversing a bridge to the \a
436 /// Value hierarchy. In this final state, the code above would look like this:
437 ///
438 /// \code
439 /// MDNode *N = ...;
440 /// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
441 /// \endcode
442 ///
443 /// The API in this namespace supports the transition. \a MDInt doesn't exist
444 /// yet, and even once it does, changing each metadata schema to use it is its
445 /// own mini-project. In the meantime this API prevents us from introducing
446 /// complex and bug-prone control flow that will disappear in the end. In
447 /// particular, the above code looks like this:
448 ///
449 /// \code
450 /// MDNode *N = ...;
451 /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
452 /// \endcode
453 ///
454 /// The full set of provided functions includes:
455 ///
456 /// mdconst::hasa <=> isa
457 /// mdconst::extract <=> cast
458 /// mdconst::extract_or_null <=> cast_or_null
459 /// mdconst::dyn_extract <=> dyn_cast
460 /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
461 ///
462 /// The target of the cast must be a subclass of \a Constant.
463 namespace mdconst {
464
465 namespace detail {
466 template <class T> T &make();
467 template <class T, class Result> struct HasDereference {
468 typedef char Yes[1];
469 typedef char No[2];
470 template <size_t N> struct SFINAE {};
471
472 template <class U, class V>
473 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
474 template <class U, class V> static No &hasDereference(...);
475
476 static const bool value =
477 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
478 };
479 template <class V, class M> struct IsValidPointer {
480 static const bool value = std::is_base_of<Constant, V>::value &&
481 HasDereference<M, const Metadata &>::value;
482 };
483 template <class V, class M> struct IsValidReference {
484 static const bool value = std::is_base_of<Constant, V>::value &&
485 std::is_convertible<M, const Metadata &>::value;
486 };
487 } // end namespace detail
488
489 /// \brief Check whether Metadata has a Value.
490 ///
491 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
492 /// type \c X.
493 template <class X, class Y>
494 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y && MD)495 hasa(Y &&MD) {
496 assert(MD && "Null pointer sent into hasa");
497 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
498 return isa<X>(V->getValue());
499 return false;
500 }
501 template <class X, class Y>
502 inline
503 typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
hasa(Y & MD)504 hasa(Y &MD) {
505 return hasa(&MD);
506 }
507
508 /// \brief Extract a Value from Metadata.
509 ///
510 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
511 template <class X, class Y>
512 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y && MD)513 extract(Y &&MD) {
514 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
515 }
516 template <class X, class Y>
517 inline
518 typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
extract(Y & MD)519 extract(Y &MD) {
520 return extract(&MD);
521 }
522
523 /// \brief Extract a Value from Metadata, allowing null.
524 ///
525 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
526 /// from \c MD, allowing \c MD to be null.
527 template <class X, class Y>
528 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y && MD)529 extract_or_null(Y &&MD) {
530 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
531 return cast<X>(V->getValue());
532 return nullptr;
533 }
534
535 /// \brief Extract a Value from Metadata, if any.
536 ///
537 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
538 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
539 /// Value it does contain is of the wrong subclass.
540 template <class X, class Y>
541 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y && MD)542 dyn_extract(Y &&MD) {
543 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
544 return dyn_cast<X>(V->getValue());
545 return nullptr;
546 }
547
548 /// \brief Extract a Value from Metadata, if any, allowing null.
549 ///
550 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
551 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
552 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
553 template <class X, class Y>
554 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y && MD)555 dyn_extract_or_null(Y &&MD) {
556 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
557 return dyn_cast<X>(V->getValue());
558 return nullptr;
559 }
560
561 } // end namespace mdconst
562
563 //===----------------------------------------------------------------------===//
564 /// \brief A single uniqued string.
565 ///
566 /// These are used to efficiently contain a byte sequence for metadata.
567 /// MDString is always unnamed.
568 class MDString : public Metadata {
569 friend class StringMapEntry<MDString>;
570
571 MDString(const MDString &) = delete;
572 MDString &operator=(MDString &&) = delete;
573 MDString &operator=(const MDString &) = delete;
574
575 StringMapEntry<MDString> *Entry;
MDString()576 MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
577
578 public:
579 static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)580 static MDString *get(LLVMContext &Context, const char *Str) {
581 return get(Context, Str ? StringRef(Str) : StringRef());
582 }
583
584 StringRef getString() const;
585
getLength()586 unsigned getLength() const { return (unsigned)getString().size(); }
587
588 typedef StringRef::iterator iterator;
589
590 /// \brief Pointer to the first byte of the string.
begin()591 iterator begin() const { return getString().begin(); }
592
593 /// \brief Pointer to one byte past the end of the string.
end()594 iterator end() const { return getString().end(); }
595
bytes_begin()596 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()597 const unsigned char *bytes_end() const { return getString().bytes_end(); }
598
599 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)600 static bool classof(const Metadata *MD) {
601 return MD->getMetadataID() == MDStringKind;
602 }
603 };
604
605 /// \brief A collection of metadata nodes that might be associated with a
606 /// memory access used by the alias-analysis infrastructure.
607 struct AAMDNodes {
608 explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
609 MDNode *N = nullptr)
TBAAAAMDNodes610 : TBAA(T), Scope(S), NoAlias(N) {}
611
612 bool operator==(const AAMDNodes &A) const {
613 return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
614 }
615
616 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
617
618 explicit operator bool() const { return TBAA || Scope || NoAlias; }
619
620 /// \brief The tag for type-based alias analysis.
621 MDNode *TBAA;
622
623 /// \brief The tag for alias scope specification (used with noalias).
624 MDNode *Scope;
625
626 /// \brief The tag specifying the noalias scope.
627 MDNode *NoAlias;
628 };
629
630 // Specialize DenseMapInfo for AAMDNodes.
631 template<>
632 struct DenseMapInfo<AAMDNodes> {
633 static inline AAMDNodes getEmptyKey() {
634 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
635 nullptr, nullptr);
636 }
637 static inline AAMDNodes getTombstoneKey() {
638 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
639 nullptr, nullptr);
640 }
641 static unsigned getHashValue(const AAMDNodes &Val) {
642 return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
643 DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
644 DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
645 }
646 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
647 return LHS == RHS;
648 }
649 };
650
651 /// \brief Tracking metadata reference owned by Metadata.
652 ///
653 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
654 /// of \a Metadata, which has the option of registering itself for callbacks to
655 /// re-unique itself.
656 ///
657 /// In particular, this is used by \a MDNode.
658 class MDOperand {
659 MDOperand(MDOperand &&) = delete;
660 MDOperand(const MDOperand &) = delete;
661 MDOperand &operator=(MDOperand &&) = delete;
662 MDOperand &operator=(const MDOperand &) = delete;
663
664 Metadata *MD;
665
666 public:
667 MDOperand() : MD(nullptr) {}
668 ~MDOperand() { untrack(); }
669
670 Metadata *get() const { return MD; }
671 operator Metadata *() const { return get(); }
672 Metadata *operator->() const { return get(); }
673 Metadata &operator*() const { return *get(); }
674
675 void reset() {
676 untrack();
677 MD = nullptr;
678 }
679 void reset(Metadata *MD, Metadata *Owner) {
680 untrack();
681 this->MD = MD;
682 track(Owner);
683 }
684
685 private:
686 void track(Metadata *Owner) {
687 if (MD) {
688 if (Owner)
689 MetadataTracking::track(this, *MD, *Owner);
690 else
691 MetadataTracking::track(MD);
692 }
693 }
694 void untrack() {
695 assert(static_cast<void *>(this) == &MD && "Expected same address");
696 if (MD)
697 MetadataTracking::untrack(MD);
698 }
699 };
700
701 template <> struct simplify_type<MDOperand> {
702 typedef Metadata *SimpleType;
703 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
704 };
705
706 template <> struct simplify_type<const MDOperand> {
707 typedef Metadata *SimpleType;
708 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
709 };
710
711 /// \brief Pointer to the context, with optional RAUW support.
712 ///
713 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
714 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
715 class ContextAndReplaceableUses {
716 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
717
718 ContextAndReplaceableUses() = delete;
719 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
720 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
721 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
722 ContextAndReplaceableUses &
723 operator=(const ContextAndReplaceableUses &) = delete;
724
725 public:
726 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
727 ContextAndReplaceableUses(
728 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
729 : Ptr(ReplaceableUses.release()) {
730 assert(getReplaceableUses() && "Expected non-null replaceable uses");
731 }
732 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
733
734 operator LLVMContext &() { return getContext(); }
735
736 /// \brief Whether this contains RAUW support.
737 bool hasReplaceableUses() const {
738 return Ptr.is<ReplaceableMetadataImpl *>();
739 }
740 LLVMContext &getContext() const {
741 if (hasReplaceableUses())
742 return getReplaceableUses()->getContext();
743 return *Ptr.get<LLVMContext *>();
744 }
745 ReplaceableMetadataImpl *getReplaceableUses() const {
746 if (hasReplaceableUses())
747 return Ptr.get<ReplaceableMetadataImpl *>();
748 return nullptr;
749 }
750
751 /// Ensure that this has RAUW support, and then return it.
752 ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
753 if (!hasReplaceableUses())
754 makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
755 return getReplaceableUses();
756 }
757
758 /// \brief Assign RAUW support to this.
759 ///
760 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
761 /// not be null).
762 void
763 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
764 assert(ReplaceableUses && "Expected non-null replaceable uses");
765 assert(&ReplaceableUses->getContext() == &getContext() &&
766 "Expected same context");
767 delete getReplaceableUses();
768 Ptr = ReplaceableUses.release();
769 }
770
771 /// \brief Drop RAUW support.
772 ///
773 /// Cede ownership of RAUW support, returning it.
774 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
775 assert(hasReplaceableUses() && "Expected to own replaceable uses");
776 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
777 getReplaceableUses());
778 Ptr = &ReplaceableUses->getContext();
779 return ReplaceableUses;
780 }
781 };
782
783 struct TempMDNodeDeleter {
784 inline void operator()(MDNode *Node) const;
785 };
786
787 #define HANDLE_MDNODE_LEAF(CLASS) \
788 typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
789 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
790 #include "llvm/IR/Metadata.def"
791
792 /// \brief Metadata node.
793 ///
794 /// Metadata nodes can be uniqued, like constants, or distinct. Temporary
795 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
796 /// until forward references are known. The basic metadata node is an \a
797 /// MDTuple.
798 ///
799 /// There is limited support for RAUW at construction time. At construction
800 /// time, if any operand is a temporary node (or an unresolved uniqued node,
801 /// which indicates a transitive temporary operand), the node itself will be
802 /// unresolved. As soon as all operands become resolved, it will drop RAUW
803 /// support permanently.
804 ///
805 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
806 /// to be called on some member of the cycle once all temporary nodes have been
807 /// replaced.
808 class MDNode : public Metadata {
809 friend class ReplaceableMetadataImpl;
810 friend class LLVMContextImpl;
811
812 MDNode(const MDNode &) = delete;
813 void operator=(const MDNode &) = delete;
814 void *operator new(size_t) = delete;
815
816 unsigned NumOperands;
817 unsigned NumUnresolved;
818
819 ContextAndReplaceableUses Context;
820
821 protected:
822 void *operator new(size_t Size, unsigned NumOps);
823 void operator delete(void *Mem);
824
825 /// \brief Required by std, but never called.
826 void operator delete(void *, unsigned) {
827 llvm_unreachable("Constructor throws?");
828 }
829
830 /// \brief Required by std, but never called.
831 void operator delete(void *, unsigned, bool) {
832 llvm_unreachable("Constructor throws?");
833 }
834
835 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
836 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
837 ~MDNode() = default;
838
839 void dropAllReferences();
840
841 MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
842 MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
843
844 typedef iterator_range<MDOperand *> mutable_op_range;
845 mutable_op_range mutable_operands() {
846 return mutable_op_range(mutable_begin(), mutable_end());
847 }
848
849 public:
850 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
851 static inline MDTuple *getIfExists(LLVMContext &Context,
852 ArrayRef<Metadata *> MDs);
853 static inline MDTuple *getDistinct(LLVMContext &Context,
854 ArrayRef<Metadata *> MDs);
855 static inline TempMDTuple getTemporary(LLVMContext &Context,
856 ArrayRef<Metadata *> MDs);
857
858 /// \brief Create a (temporary) clone of this.
859 TempMDNode clone() const;
860
861 /// \brief Deallocate a node created by getTemporary.
862 ///
863 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
864 /// references will be reset.
865 static void deleteTemporary(MDNode *N);
866
867 LLVMContext &getContext() const { return Context.getContext(); }
868
869 /// \brief Replace a specific operand.
870 void replaceOperandWith(unsigned I, Metadata *New);
871
872 /// \brief Check if node is fully resolved.
873 ///
874 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
875 /// this always returns \c true.
876 ///
877 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
878 /// support (because all operands are resolved).
879 ///
880 /// As forward declarations are resolved, their containers should get
881 /// resolved automatically. However, if this (or one of its operands) is
882 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
883 bool isResolved() const { return !isTemporary() && !NumUnresolved; }
884
885 bool isUniqued() const { return Storage == Uniqued; }
886 bool isDistinct() const { return Storage == Distinct; }
887 bool isTemporary() const { return Storage == Temporary; }
888
889 /// \brief RAUW a temporary.
890 ///
891 /// \pre \a isTemporary() must be \c true.
892 void replaceAllUsesWith(Metadata *MD) {
893 assert(isTemporary() && "Expected temporary node");
894 if (Context.hasReplaceableUses())
895 Context.getReplaceableUses()->replaceAllUsesWith(MD);
896 }
897
898 /// \brief Resolve cycles.
899 ///
900 /// Once all forward declarations have been resolved, force cycles to be
901 /// resolved.
902 ///
903 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
904 void resolveCycles();
905
906 /// \brief Replace a temporary node with a permanent one.
907 ///
908 /// Try to create a uniqued version of \c N -- in place, if possible -- and
909 /// return it. If \c N cannot be uniqued, return a distinct node instead.
910 template <class T>
911 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
912 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
913 return cast<T>(N.release()->replaceWithPermanentImpl());
914 }
915
916 /// \brief Replace a temporary node with a uniqued one.
917 ///
918 /// Create a uniqued version of \c N -- in place, if possible -- and return
919 /// it. Takes ownership of the temporary node.
920 ///
921 /// \pre N does not self-reference.
922 template <class T>
923 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
924 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
925 return cast<T>(N.release()->replaceWithUniquedImpl());
926 }
927
928 /// \brief Replace a temporary node with a distinct one.
929 ///
930 /// Create a distinct version of \c N -- in place, if possible -- and return
931 /// it. Takes ownership of the temporary node.
932 template <class T>
933 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
934 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
935 return cast<T>(N.release()->replaceWithDistinctImpl());
936 }
937
938 private:
939 MDNode *replaceWithPermanentImpl();
940 MDNode *replaceWithUniquedImpl();
941 MDNode *replaceWithDistinctImpl();
942
943 protected:
944 /// \brief Set an operand.
945 ///
946 /// Sets the operand directly, without worrying about uniquing.
947 void setOperand(unsigned I, Metadata *New);
948
949 void storeDistinctInContext();
950 template <class T, class StoreT>
951 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
952 template <class T> static T *storeImpl(T *N, StorageType Storage);
953
954 private:
955 void handleChangedOperand(void *Ref, Metadata *New);
956
957 /// Resolve a unique, unresolved node.
958 void resolve();
959
960 /// Drop RAUW support, if any.
961 void dropReplaceableUses();
962
963 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
964 void decrementUnresolvedOperandCount();
965 void countUnresolvedOperands();
966
967 /// \brief Mutate this to be "uniqued".
968 ///
969 /// Mutate this so that \a isUniqued().
970 /// \pre \a isTemporary().
971 /// \pre already added to uniquing set.
972 void makeUniqued();
973
974 /// \brief Mutate this to be "distinct".
975 ///
976 /// Mutate this so that \a isDistinct().
977 /// \pre \a isTemporary().
978 void makeDistinct();
979
980 void deleteAsSubclass();
981 MDNode *uniquify();
982 void eraseFromStore();
983
984 template <class NodeTy> struct HasCachedHash;
985 template <class NodeTy>
986 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
987 N->recalculateHash();
988 }
989 template <class NodeTy>
990 static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
991 template <class NodeTy>
992 static void dispatchResetHash(NodeTy *N, std::true_type) {
993 N->setHash(0);
994 }
995 template <class NodeTy>
996 static void dispatchResetHash(NodeTy *, std::false_type) {}
997
998 public:
999 typedef const MDOperand *op_iterator;
1000 typedef iterator_range<op_iterator> op_range;
1001
1002 op_iterator op_begin() const {
1003 return const_cast<MDNode *>(this)->mutable_begin();
1004 }
1005 op_iterator op_end() const {
1006 return const_cast<MDNode *>(this)->mutable_end();
1007 }
1008 op_range operands() const { return op_range(op_begin(), op_end()); }
1009
1010 const MDOperand &getOperand(unsigned I) const {
1011 assert(I < NumOperands && "Out of range");
1012 return op_begin()[I];
1013 }
1014
1015 /// \brief Return number of MDNode operands.
1016 unsigned getNumOperands() const { return NumOperands; }
1017
1018 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
1019 static bool classof(const Metadata *MD) {
1020 switch (MD->getMetadataID()) {
1021 default:
1022 return false;
1023 #define HANDLE_MDNODE_LEAF(CLASS) \
1024 case CLASS##Kind: \
1025 return true;
1026 #include "llvm/IR/Metadata.def"
1027 }
1028 }
1029
1030 /// \brief Check whether MDNode is a vtable access.
1031 bool isTBAAVtableAccess() const;
1032
1033 /// \brief Methods for metadata merging.
1034 static MDNode *concatenate(MDNode *A, MDNode *B);
1035 static MDNode *intersect(MDNode *A, MDNode *B);
1036 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1037 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1038 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1039 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1040 static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1041
1042 };
1043
1044 /// \brief Tuple of metadata.
1045 ///
1046 /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
1047 /// default based on their operands.
1048 class MDTuple : public MDNode {
1049 friend class LLVMContextImpl;
1050 friend class MDNode;
1051
1052 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1053 ArrayRef<Metadata *> Vals)
1054 : MDNode(C, MDTupleKind, Storage, Vals) {
1055 setHash(Hash);
1056 }
1057 ~MDTuple() { dropAllReferences(); }
1058
1059 void setHash(unsigned Hash) { SubclassData32 = Hash; }
1060 void recalculateHash();
1061
1062 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1063 StorageType Storage, bool ShouldCreate = true);
1064
1065 TempMDTuple cloneImpl() const {
1066 return getTemporary(getContext(),
1067 SmallVector<Metadata *, 4>(op_begin(), op_end()));
1068 }
1069
1070 public:
1071 /// \brief Get the hash, if any.
1072 unsigned getHash() const { return SubclassData32; }
1073
1074 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1075 return getImpl(Context, MDs, Uniqued);
1076 }
1077 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1078 return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1079 }
1080
1081 /// \brief Return a distinct node.
1082 ///
1083 /// Return a distinct node -- i.e., a node that is not uniqued.
1084 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1085 return getImpl(Context, MDs, Distinct);
1086 }
1087
1088 /// \brief Return a temporary node.
1089 ///
1090 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1091 /// not uniqued, may be RAUW'd, and must be manually deleted with
1092 /// deleteTemporary.
1093 static TempMDTuple getTemporary(LLVMContext &Context,
1094 ArrayRef<Metadata *> MDs) {
1095 return TempMDTuple(getImpl(Context, MDs, Temporary));
1096 }
1097
1098 /// \brief Return a (temporary) clone of this.
1099 TempMDTuple clone() const { return cloneImpl(); }
1100
1101 static bool classof(const Metadata *MD) {
1102 return MD->getMetadataID() == MDTupleKind;
1103 }
1104 };
1105
1106 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1107 return MDTuple::get(Context, MDs);
1108 }
1109 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1110 return MDTuple::getIfExists(Context, MDs);
1111 }
1112 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1113 return MDTuple::getDistinct(Context, MDs);
1114 }
1115 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1116 ArrayRef<Metadata *> MDs) {
1117 return MDTuple::getTemporary(Context, MDs);
1118 }
1119
1120 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1121 MDNode::deleteTemporary(Node);
1122 }
1123
1124 /// \brief Typed iterator through MDNode operands.
1125 ///
1126 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1127 /// particular Metadata subclass.
1128 template <class T>
1129 class TypedMDOperandIterator
1130 : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1131 MDNode::op_iterator I = nullptr;
1132
1133 public:
1134 TypedMDOperandIterator() = default;
1135 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1136 T *operator*() const { return cast_or_null<T>(*I); }
1137 TypedMDOperandIterator &operator++() {
1138 ++I;
1139 return *this;
1140 }
1141 TypedMDOperandIterator operator++(int) {
1142 TypedMDOperandIterator Temp(*this);
1143 ++I;
1144 return Temp;
1145 }
1146 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1147 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1148 };
1149
1150 /// \brief Typed, array-like tuple of metadata.
1151 ///
1152 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1153 /// particular type of metadata.
1154 template <class T> class MDTupleTypedArrayWrapper {
1155 const MDTuple *N = nullptr;
1156
1157 public:
1158 MDTupleTypedArrayWrapper() = default;
1159 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1160
1161 template <class U>
1162 MDTupleTypedArrayWrapper(
1163 const MDTupleTypedArrayWrapper<U> &Other,
1164 typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1165 nullptr)
1166 : N(Other.get()) {}
1167
1168 template <class U>
1169 explicit MDTupleTypedArrayWrapper(
1170 const MDTupleTypedArrayWrapper<U> &Other,
1171 typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1172 nullptr)
1173 : N(Other.get()) {}
1174
1175 explicit operator bool() const { return get(); }
1176 explicit operator MDTuple *() const { return get(); }
1177
1178 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1179 MDTuple *operator->() const { return get(); }
1180 MDTuple &operator*() const { return *get(); }
1181
1182 // FIXME: Fix callers and remove condition on N.
1183 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1184 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1185
1186 // FIXME: Fix callers and remove condition on N.
1187 typedef TypedMDOperandIterator<T> iterator;
1188 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1189 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1190 };
1191
1192 #define HANDLE_METADATA(CLASS) \
1193 typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
1194 #include "llvm/IR/Metadata.def"
1195
1196 /// Placeholder metadata for operands of distinct MDNodes.
1197 ///
1198 /// This is a lightweight placeholder for an operand of a distinct node. It's
1199 /// purpose is to help track forward references when creating a distinct node.
1200 /// This allows distinct nodes involved in a cycle to be constructed before
1201 /// their operands without requiring a heavyweight temporary node with
1202 /// full-blown RAUW support.
1203 ///
1204 /// Each placeholder supports only a single MDNode user. Clients should pass
1205 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1206 /// should be replaced with.
1207 ///
1208 /// While it would be possible to implement move operators, they would be
1209 /// fairly expensive. Leave them unimplemented to discourage their use
1210 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1211 class DistinctMDOperandPlaceholder : public Metadata {
1212 friend class MetadataTracking;
1213
1214 Metadata **Use = nullptr;
1215
1216 DistinctMDOperandPlaceholder() = delete;
1217 DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1218 DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1219
1220 public:
1221 explicit DistinctMDOperandPlaceholder(unsigned ID)
1222 : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1223 SubclassData32 = ID;
1224 }
1225
1226 ~DistinctMDOperandPlaceholder() {
1227 if (Use)
1228 *Use = nullptr;
1229 }
1230
1231 unsigned getID() const { return SubclassData32; }
1232
1233 /// Replace the use of this with MD.
1234 void replaceUseWith(Metadata *MD) {
1235 if (!Use)
1236 return;
1237 *Use = MD;
1238 Use = nullptr;
1239 }
1240 };
1241
1242 //===----------------------------------------------------------------------===//
1243 /// \brief A tuple of MDNodes.
1244 ///
1245 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1246 /// to modules, have names, and contain lists of MDNodes.
1247 ///
1248 /// TODO: Inherit from Metadata.
1249 class NamedMDNode : public ilist_node<NamedMDNode> {
1250 friend struct ilist_traits<NamedMDNode>;
1251 friend class LLVMContextImpl;
1252 friend class Module;
1253 NamedMDNode(const NamedMDNode &) = delete;
1254
1255 std::string Name;
1256 Module *Parent;
1257 void *Operands; // SmallVector<TrackingMDRef, 4>
1258
1259 void setParent(Module *M) { Parent = M; }
1260
1261 explicit NamedMDNode(const Twine &N);
1262
1263 template<class T1, class T2>
1264 class op_iterator_impl :
1265 public std::iterator<std::bidirectional_iterator_tag, T2> {
1266 const NamedMDNode *Node;
1267 unsigned Idx;
1268 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
1269
1270 friend class NamedMDNode;
1271
1272 public:
1273 op_iterator_impl() : Node(nullptr), Idx(0) { }
1274
1275 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1276 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1277 op_iterator_impl &operator++() {
1278 ++Idx;
1279 return *this;
1280 }
1281 op_iterator_impl operator++(int) {
1282 op_iterator_impl tmp(*this);
1283 operator++();
1284 return tmp;
1285 }
1286 op_iterator_impl &operator--() {
1287 --Idx;
1288 return *this;
1289 }
1290 op_iterator_impl operator--(int) {
1291 op_iterator_impl tmp(*this);
1292 operator--();
1293 return tmp;
1294 }
1295
1296 T1 operator*() const { return Node->getOperand(Idx); }
1297 };
1298
1299 public:
1300 /// \brief Drop all references and remove the node from parent module.
1301 void eraseFromParent();
1302
1303 /// \brief Remove all uses and clear node vector.
1304 void dropAllReferences();
1305
1306 ~NamedMDNode();
1307
1308 /// \brief Get the module that holds this named metadata collection.
1309 inline Module *getParent() { return Parent; }
1310 inline const Module *getParent() const { return Parent; }
1311
1312 MDNode *getOperand(unsigned i) const;
1313 unsigned getNumOperands() const;
1314 void addOperand(MDNode *M);
1315 void setOperand(unsigned I, MDNode *New);
1316 StringRef getName() const;
1317 void print(raw_ostream &ROS, bool IsForDebug = false) const;
1318 void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1319 bool IsForDebug = false) const;
1320 void dump() const;
1321
1322 // ---------------------------------------------------------------------------
1323 // Operand Iterator interface...
1324 //
1325 typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
1326 op_iterator op_begin() { return op_iterator(this, 0); }
1327 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1328
1329 typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
1330 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1331 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1332
1333 inline iterator_range<op_iterator> operands() {
1334 return make_range(op_begin(), op_end());
1335 }
1336 inline iterator_range<const_op_iterator> operands() const {
1337 return make_range(op_begin(), op_end());
1338 }
1339 };
1340
1341 } // end llvm namespace
1342
1343 #endif // LLVM_IR_METADATA_H
1344