1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mark_sweep.h"
18 
19 #include <atomic>
20 #include <functional>
21 #include <numeric>
22 #include <climits>
23 #include <vector>
24 
25 #include "base/bounded_fifo.h"
26 #include "base/enums.h"
27 #include "base/logging.h"
28 #include "base/macros.h"
29 #include "base/mutex-inl.h"
30 #include "base/systrace.h"
31 #include "base/time_utils.h"
32 #include "base/timing_logger.h"
33 #include "gc/accounting/card_table-inl.h"
34 #include "gc/accounting/heap_bitmap-inl.h"
35 #include "gc/accounting/mod_union_table.h"
36 #include "gc/accounting/space_bitmap-inl.h"
37 #include "gc/heap.h"
38 #include "gc/reference_processor.h"
39 #include "gc/space/large_object_space.h"
40 #include "gc/space/space-inl.h"
41 #include "mark_sweep-inl.h"
42 #include "mirror/object-inl.h"
43 #include "runtime.h"
44 #include "scoped_thread_state_change-inl.h"
45 #include "thread-inl.h"
46 #include "thread_list.h"
47 
48 namespace art {
49 namespace gc {
50 namespace collector {
51 
52 // Performance options.
53 static constexpr bool kUseRecursiveMark = false;
54 static constexpr bool kUseMarkStackPrefetch = true;
55 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
56 static constexpr bool kPreCleanCards = true;
57 
58 // Parallelism options.
59 static constexpr bool kParallelCardScan = true;
60 static constexpr bool kParallelRecursiveMark = true;
61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
63 // having this can add overhead in ProcessReferences since we may end up doing many calls of
64 // ProcessMarkStack with very small mark stacks.
65 static constexpr size_t kMinimumParallelMarkStackSize = 128;
66 static constexpr bool kParallelProcessMarkStack = true;
67 
68 // Profiling and information flags.
69 static constexpr bool kProfileLargeObjects = false;
70 static constexpr bool kMeasureOverhead = false;
71 static constexpr bool kCountTasks = false;
72 static constexpr bool kCountMarkedObjects = false;
73 
74 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
75 static constexpr bool kCheckLocks = kDebugLocking;
76 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
77 
78 // If true, revoke the rosalloc thread-local buffers at the
79 // checkpoint, as opposed to during the pause.
80 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
81 
BindBitmaps()82 void MarkSweep::BindBitmaps() {
83   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
84   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
85   // Mark all of the spaces we never collect as immune.
86   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
87     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
88       immune_spaces_.AddSpace(space);
89     }
90   }
91 }
92 
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)93 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
94     : GarbageCollector(heap,
95                        name_prefix +
96                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
97       current_space_bitmap_(nullptr),
98       mark_bitmap_(nullptr),
99       mark_stack_(nullptr),
100       gc_barrier_(new Barrier(0)),
101       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
102       is_concurrent_(is_concurrent),
103       live_stack_freeze_size_(0) {
104   std::string error_msg;
105   MemMap* mem_map = MemMap::MapAnonymous(
106       "mark sweep sweep array free buffer", nullptr,
107       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
108       PROT_READ | PROT_WRITE, false, false, &error_msg);
109   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
110   sweep_array_free_buffer_mem_map_.reset(mem_map);
111 }
112 
InitializePhase()113 void MarkSweep::InitializePhase() {
114   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
115   mark_stack_ = heap_->GetMarkStack();
116   DCHECK(mark_stack_ != nullptr);
117   immune_spaces_.Reset();
118   no_reference_class_count_.StoreRelaxed(0);
119   normal_count_.StoreRelaxed(0);
120   class_count_.StoreRelaxed(0);
121   object_array_count_.StoreRelaxed(0);
122   other_count_.StoreRelaxed(0);
123   reference_count_.StoreRelaxed(0);
124   large_object_test_.StoreRelaxed(0);
125   large_object_mark_.StoreRelaxed(0);
126   overhead_time_ .StoreRelaxed(0);
127   work_chunks_created_.StoreRelaxed(0);
128   work_chunks_deleted_.StoreRelaxed(0);
129   mark_null_count_.StoreRelaxed(0);
130   mark_immune_count_.StoreRelaxed(0);
131   mark_fastpath_count_.StoreRelaxed(0);
132   mark_slowpath_count_.StoreRelaxed(0);
133   {
134     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
135     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
136     mark_bitmap_ = heap_->GetMarkBitmap();
137   }
138   if (!GetCurrentIteration()->GetClearSoftReferences()) {
139     // Always clear soft references if a non-sticky collection.
140     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
141   }
142 }
143 
RunPhases()144 void MarkSweep::RunPhases() {
145   Thread* self = Thread::Current();
146   InitializePhase();
147   Locks::mutator_lock_->AssertNotHeld(self);
148   if (IsConcurrent()) {
149     GetHeap()->PreGcVerification(this);
150     {
151       ReaderMutexLock mu(self, *Locks::mutator_lock_);
152       MarkingPhase();
153     }
154     ScopedPause pause(this);
155     GetHeap()->PrePauseRosAllocVerification(this);
156     PausePhase();
157     RevokeAllThreadLocalBuffers();
158   } else {
159     ScopedPause pause(this);
160     GetHeap()->PreGcVerificationPaused(this);
161     MarkingPhase();
162     GetHeap()->PrePauseRosAllocVerification(this);
163     PausePhase();
164     RevokeAllThreadLocalBuffers();
165   }
166   {
167     // Sweeping always done concurrently, even for non concurrent mark sweep.
168     ReaderMutexLock mu(self, *Locks::mutator_lock_);
169     ReclaimPhase();
170   }
171   GetHeap()->PostGcVerification(this);
172   FinishPhase();
173 }
174 
ProcessReferences(Thread * self)175 void MarkSweep::ProcessReferences(Thread* self) {
176   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
177   GetHeap()->GetReferenceProcessor()->ProcessReferences(
178       true,
179       GetTimings(),
180       GetCurrentIteration()->GetClearSoftReferences(),
181       this);
182 }
183 
PausePhase()184 void MarkSweep::PausePhase() {
185   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
186   Thread* self = Thread::Current();
187   Locks::mutator_lock_->AssertExclusiveHeld(self);
188   if (IsConcurrent()) {
189     // Handle the dirty objects if we are a concurrent GC.
190     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
191     // Re-mark root set.
192     ReMarkRoots();
193     // Scan dirty objects, this is only required if we are not doing concurrent GC.
194     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
195   }
196   {
197     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
198     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
199     heap_->SwapStacks();
200     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
201     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
202     // stacks and don't want anybody to allocate into the live stack.
203     RevokeAllThreadLocalAllocationStacks(self);
204   }
205   heap_->PreSweepingGcVerification(this);
206   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
207   // weak before we sweep them. Since this new system weak may not be marked, the GC may
208   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
209   // reference to a string that is about to be swept.
210   Runtime::Current()->DisallowNewSystemWeaks();
211   // Enable the reference processing slow path, needs to be done with mutators paused since there
212   // is no lock in the GetReferent fast path.
213   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
214 }
215 
PreCleanCards()216 void MarkSweep::PreCleanCards() {
217   // Don't do this for non concurrent GCs since they don't have any dirty cards.
218   if (kPreCleanCards && IsConcurrent()) {
219     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
220     Thread* self = Thread::Current();
221     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
222     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
223     heap_->ProcessCards(GetTimings(), false, true, false);
224     // The checkpoint root marking is required to avoid a race condition which occurs if the
225     // following happens during a reference write:
226     // 1. mutator dirties the card (write barrier)
227     // 2. GC ages the card (the above ProcessCards call)
228     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
229     // 4. mutator writes the value (corresponding to the write barrier in 1.)
230     // This causes the GC to age the card but not necessarily mark the reference which the mutator
231     // wrote into the object stored in the card.
232     // Having the checkpoint fixes this issue since it ensures that the card mark and the
233     // reference write are visible to the GC before the card is scanned (this is due to locks being
234     // acquired / released in the checkpoint code).
235     // The other roots are also marked to help reduce the pause.
236     MarkRootsCheckpoint(self, false);
237     MarkNonThreadRoots();
238     MarkConcurrentRoots(
239         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
240     // Process the newly aged cards.
241     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
242     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
243     // in the next GC.
244   }
245 }
246 
RevokeAllThreadLocalAllocationStacks(Thread * self)247 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
248   if (kUseThreadLocalAllocationStack) {
249     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
250     Locks::mutator_lock_->AssertExclusiveHeld(self);
251     heap_->RevokeAllThreadLocalAllocationStacks(self);
252   }
253 }
254 
MarkingPhase()255 void MarkSweep::MarkingPhase() {
256   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
257   Thread* self = Thread::Current();
258   BindBitmaps();
259   FindDefaultSpaceBitmap();
260   // Process dirty cards and add dirty cards to mod union tables.
261   // If the GC type is non sticky, then we just clear the cards instead of ageing them.
262   heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
263   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
264   MarkRoots(self);
265   MarkReachableObjects();
266   // Pre-clean dirtied cards to reduce pauses.
267   PreCleanCards();
268 }
269 
270 class MarkSweep::ScanObjectVisitor {
271  public:
ScanObjectVisitor(MarkSweep * const mark_sweep)272   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
273       : mark_sweep_(mark_sweep) {}
274 
operator ()(ObjPtr<mirror::Object> obj) const275   void operator()(ObjPtr<mirror::Object> obj) const
276       ALWAYS_INLINE
277       REQUIRES(Locks::heap_bitmap_lock_)
278       REQUIRES_SHARED(Locks::mutator_lock_) {
279     if (kCheckLocks) {
280       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
281       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
282     }
283     mark_sweep_->ScanObject(obj.Ptr());
284   }
285 
286  private:
287   MarkSweep* const mark_sweep_;
288 };
289 
UpdateAndMarkModUnion()290 void MarkSweep::UpdateAndMarkModUnion() {
291   for (const auto& space : immune_spaces_.GetSpaces()) {
292     const char* name = space->IsZygoteSpace()
293         ? "UpdateAndMarkZygoteModUnionTable"
294         : "UpdateAndMarkImageModUnionTable";
295     DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
296     TimingLogger::ScopedTiming t(name, GetTimings());
297     accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
298     if (mod_union_table != nullptr) {
299       mod_union_table->UpdateAndMarkReferences(this);
300     } else {
301       // No mod-union table, scan all the live bits. This can only occur for app images.
302       space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
303                                                reinterpret_cast<uintptr_t>(space->End()),
304                                                ScanObjectVisitor(this));
305     }
306   }
307 }
308 
MarkReachableObjects()309 void MarkSweep::MarkReachableObjects() {
310   UpdateAndMarkModUnion();
311   // Recursively mark all the non-image bits set in the mark bitmap.
312   RecursiveMark();
313 }
314 
ReclaimPhase()315 void MarkSweep::ReclaimPhase() {
316   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
317   Thread* const self = Thread::Current();
318   // Process the references concurrently.
319   ProcessReferences(self);
320   SweepSystemWeaks(self);
321   Runtime* const runtime = Runtime::Current();
322   runtime->AllowNewSystemWeaks();
323   // Clean up class loaders after system weaks are swept since that is how we know if class
324   // unloading occurred.
325   runtime->GetClassLinker()->CleanupClassLoaders();
326   {
327     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
328     GetHeap()->RecordFreeRevoke();
329     // Reclaim unmarked objects.
330     Sweep(false);
331     // Swap the live and mark bitmaps for each space which we modified space. This is an
332     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
333     // bitmaps.
334     SwapBitmaps();
335     // Unbind the live and mark bitmaps.
336     GetHeap()->UnBindBitmaps();
337   }
338 }
339 
FindDefaultSpaceBitmap()340 void MarkSweep::FindDefaultSpaceBitmap() {
341   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
342   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
343     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
344     // We want to have the main space instead of non moving if possible.
345     if (bitmap != nullptr &&
346         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
347       current_space_bitmap_ = bitmap;
348       // If we are not the non moving space exit the loop early since this will be good enough.
349       if (space != heap_->GetNonMovingSpace()) {
350         break;
351       }
352     }
353   }
354   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
355       << heap_->DumpSpaces();
356 }
357 
ExpandMarkStack()358 void MarkSweep::ExpandMarkStack() {
359   ResizeMarkStack(mark_stack_->Capacity() * 2);
360 }
361 
ResizeMarkStack(size_t new_size)362 void MarkSweep::ResizeMarkStack(size_t new_size) {
363   // Rare case, no need to have Thread::Current be a parameter.
364   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
365     // Someone else acquired the lock and expanded the mark stack before us.
366     return;
367   }
368   std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
369   CHECK_LE(mark_stack_->Size(), new_size);
370   mark_stack_->Resize(new_size);
371   for (auto& obj : temp) {
372     mark_stack_->PushBack(obj.AsMirrorPtr());
373   }
374 }
375 
MarkObject(mirror::Object * obj)376 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
377   MarkObject(obj, nullptr, MemberOffset(0));
378   return obj;
379 }
380 
MarkObjectNonNullParallel(mirror::Object * obj)381 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
382   DCHECK(obj != nullptr);
383   if (MarkObjectParallel(obj)) {
384     MutexLock mu(Thread::Current(), mark_stack_lock_);
385     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
386       ExpandMarkStack();
387     }
388     // The object must be pushed on to the mark stack.
389     mark_stack_->PushBack(obj);
390   }
391 }
392 
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * ref,bool do_atomic_update ATTRIBUTE_UNUSED)393 bool MarkSweep::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref,
394                                             bool do_atomic_update ATTRIBUTE_UNUSED) {
395   mirror::Object* obj = ref->AsMirrorPtr();
396   if (obj == nullptr) {
397     return true;
398   }
399   return IsMarked(obj);
400 }
401 
402 class MarkSweep::MarkObjectSlowPath {
403  public:
MarkObjectSlowPath(MarkSweep * mark_sweep,mirror::Object * holder=nullptr,MemberOffset offset=MemberOffset (0))404   explicit MarkObjectSlowPath(MarkSweep* mark_sweep,
405                               mirror::Object* holder = nullptr,
406                               MemberOffset offset = MemberOffset(0))
407       : mark_sweep_(mark_sweep),
408         holder_(holder),
409         offset_(offset) {}
410 
operator ()(const mirror::Object * obj) const411   void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
412     if (kProfileLargeObjects) {
413       // TODO: Differentiate between marking and testing somehow.
414       ++mark_sweep_->large_object_test_;
415       ++mark_sweep_->large_object_mark_;
416     }
417     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
418     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
419                  (kIsDebugBuild && large_object_space != nullptr &&
420                      !large_object_space->Contains(obj)))) {
421       // Lowest priority logging first:
422       PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
423       MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), true);
424       // Buffer the output in the string stream since it is more important than the stack traces
425       // and we want it to have log priority. The stack traces are printed from Runtime::Abort
426       // which is called from LOG(FATAL) but before the abort message.
427       std::ostringstream oss;
428       oss << "Tried to mark " << obj << " not contained by any spaces" << std::endl;
429       if (holder_ != nullptr) {
430         size_t holder_size = holder_->SizeOf();
431         ArtField* field = holder_->FindFieldByOffset(offset_);
432         oss << "Field info: "
433             << " holder=" << holder_
434             << " holder is "
435             << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
436                 ? "alive" : "dead")
437             << " holder_size=" << holder_size
438             << " holder_type=" << holder_->PrettyTypeOf()
439             << " offset=" << offset_.Uint32Value()
440             << " field=" << (field != nullptr ? field->GetName() : "nullptr")
441             << " field_type="
442             << (field != nullptr ? field->GetTypeDescriptor() : "")
443             << " first_ref_field_offset="
444             << (holder_->IsClass()
445                 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
446                     kRuntimePointerSize)
447                 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
448             << " num_of_ref_fields="
449             << (holder_->IsClass()
450                 ? holder_->AsClass()->NumReferenceStaticFields()
451                 : holder_->GetClass()->NumReferenceInstanceFields())
452             << std::endl;
453         // Print the memory content of the holder.
454         for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
455           uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
456           oss << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = " << std::hex << p[i]
457               << std::endl;
458         }
459       }
460       oss << "Attempting see if it's a bad thread root" << std::endl;
461       mark_sweep_->VerifySuspendedThreadRoots(oss);
462       LOG(FATAL) << oss.str();
463     }
464   }
465 
466  private:
467   MarkSweep* const mark_sweep_;
468   mirror::Object* const holder_;
469   MemberOffset offset_;
470 };
471 
MarkObjectNonNull(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)472 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
473                                          mirror::Object* holder,
474                                          MemberOffset offset) {
475   DCHECK(obj != nullptr);
476   if (kUseBakerReadBarrier) {
477     // Verify all the objects have the correct state installed.
478     obj->AssertReadBarrierState();
479   }
480   if (immune_spaces_.IsInImmuneRegion(obj)) {
481     if (kCountMarkedObjects) {
482       ++mark_immune_count_;
483     }
484     DCHECK(mark_bitmap_->Test(obj));
485   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
486     if (kCountMarkedObjects) {
487       ++mark_fastpath_count_;
488     }
489     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
490       PushOnMarkStack(obj);  // This object was not previously marked.
491     }
492   } else {
493     if (kCountMarkedObjects) {
494       ++mark_slowpath_count_;
495     }
496     MarkObjectSlowPath visitor(this, holder, offset);
497     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
498     // will check again.
499     if (!mark_bitmap_->Set(obj, visitor)) {
500       PushOnMarkStack(obj);  // Was not already marked, push.
501     }
502   }
503 }
504 
PushOnMarkStack(mirror::Object * obj)505 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
506   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
507     // Lock is not needed but is here anyways to please annotalysis.
508     MutexLock mu(Thread::Current(), mark_stack_lock_);
509     ExpandMarkStack();
510   }
511   // The object must be pushed on to the mark stack.
512   mark_stack_->PushBack(obj);
513 }
514 
MarkObjectParallel(mirror::Object * obj)515 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
516   DCHECK(obj != nullptr);
517   if (kUseBakerReadBarrier) {
518     // Verify all the objects have the correct state installed.
519     obj->AssertReadBarrierState();
520   }
521   if (immune_spaces_.IsInImmuneRegion(obj)) {
522     DCHECK(IsMarked(obj) != nullptr);
523     return false;
524   }
525   // Try to take advantage of locality of references within a space, failing this find the space
526   // the hard way.
527   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
528   if (LIKELY(object_bitmap->HasAddress(obj))) {
529     return !object_bitmap->AtomicTestAndSet(obj);
530   }
531   MarkObjectSlowPath visitor(this);
532   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
533 }
534 
MarkHeapReference(mirror::HeapReference<mirror::Object> * ref,bool do_atomic_update ATTRIBUTE_UNUSED)535 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref,
536                                   bool do_atomic_update ATTRIBUTE_UNUSED) {
537   MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
538 }
539 
540 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)541 inline void MarkSweep::MarkObject(mirror::Object* obj,
542                                   mirror::Object* holder,
543                                   MemberOffset offset) {
544   if (obj != nullptr) {
545     MarkObjectNonNull(obj, holder, offset);
546   } else if (kCountMarkedObjects) {
547     ++mark_null_count_;
548   }
549 }
550 
551 class MarkSweep::VerifyRootMarkedVisitor : public SingleRootVisitor {
552  public:
VerifyRootMarkedVisitor(MarkSweep * collector)553   explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
554 
VisitRoot(mirror::Object * root,const RootInfo & info)555   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
556       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
557     CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
558   }
559 
560  private:
561   MarkSweep* const collector_;
562 };
563 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)564 void MarkSweep::VisitRoots(mirror::Object*** roots,
565                            size_t count,
566                            const RootInfo& info ATTRIBUTE_UNUSED) {
567   for (size_t i = 0; i < count; ++i) {
568     MarkObjectNonNull(*roots[i]);
569   }
570 }
571 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)572 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
573                            size_t count,
574                            const RootInfo& info ATTRIBUTE_UNUSED) {
575   for (size_t i = 0; i < count; ++i) {
576     MarkObjectNonNull(roots[i]->AsMirrorPtr());
577   }
578 }
579 
580 class MarkSweep::VerifyRootVisitor : public SingleRootVisitor {
581  public:
VerifyRootVisitor(std::ostream & os)582   explicit VerifyRootVisitor(std::ostream& os) : os_(os) {}
583 
VisitRoot(mirror::Object * root,const RootInfo & info)584   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
585       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
586     // See if the root is on any space bitmap.
587     auto* heap = Runtime::Current()->GetHeap();
588     if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
589       space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
590       if (large_object_space != nullptr && !large_object_space->Contains(root)) {
591         os_ << "Found invalid root: " << root << " " << info << std::endl;
592       }
593     }
594   }
595 
596  private:
597   std::ostream& os_;
598 };
599 
VerifySuspendedThreadRoots(std::ostream & os)600 void MarkSweep::VerifySuspendedThreadRoots(std::ostream& os) {
601   VerifyRootVisitor visitor(os);
602   Runtime::Current()->GetThreadList()->VisitRootsForSuspendedThreads(&visitor);
603 }
604 
MarkRoots(Thread * self)605 void MarkSweep::MarkRoots(Thread* self) {
606   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
607   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
608     // If we exclusively hold the mutator lock, all threads must be suspended.
609     Runtime::Current()->VisitRoots(this);
610     RevokeAllThreadLocalAllocationStacks(self);
611   } else {
612     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
613     // At this point the live stack should no longer have any mutators which push into it.
614     MarkNonThreadRoots();
615     MarkConcurrentRoots(
616         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
617   }
618 }
619 
MarkNonThreadRoots()620 void MarkSweep::MarkNonThreadRoots() {
621   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
622   Runtime::Current()->VisitNonThreadRoots(this);
623 }
624 
MarkConcurrentRoots(VisitRootFlags flags)625 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
626   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
627   // Visit all runtime roots and clear dirty flags.
628   Runtime::Current()->VisitConcurrentRoots(this, flags);
629 }
630 
631 class MarkSweep::DelayReferenceReferentVisitor {
632  public:
DelayReferenceReferentVisitor(MarkSweep * collector)633   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
634 
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const635   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
636       REQUIRES(Locks::heap_bitmap_lock_)
637       REQUIRES_SHARED(Locks::mutator_lock_) {
638     collector_->DelayReferenceReferent(klass, ref);
639   }
640 
641  private:
642   MarkSweep* const collector_;
643 };
644 
645 template <bool kUseFinger = false>
646 class MarkSweep::MarkStackTask : public Task {
647  public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack)648   MarkStackTask(ThreadPool* thread_pool,
649                 MarkSweep* mark_sweep,
650                 size_t mark_stack_size,
651                 StackReference<mirror::Object>* mark_stack)
652       : mark_sweep_(mark_sweep),
653         thread_pool_(thread_pool),
654         mark_stack_pos_(mark_stack_size) {
655     // We may have to copy part of an existing mark stack when another mark stack overflows.
656     if (mark_stack_size != 0) {
657       DCHECK(mark_stack != nullptr);
658       // TODO: Check performance?
659       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
660     }
661     if (kCountTasks) {
662       ++mark_sweep_->work_chunks_created_;
663     }
664   }
665 
666   static const size_t kMaxSize = 1 * KB;
667 
668  protected:
669   class MarkObjectParallelVisitor {
670    public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)671     ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
672                                             MarkSweep* mark_sweep)
673         : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
674 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const675     ALWAYS_INLINE void operator()(mirror::Object* obj,
676                     MemberOffset offset,
677                     bool is_static ATTRIBUTE_UNUSED) const
678         REQUIRES_SHARED(Locks::mutator_lock_) {
679       Mark(obj->GetFieldObject<mirror::Object>(offset));
680     }
681 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const682     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
683         REQUIRES_SHARED(Locks::mutator_lock_) {
684       if (!root->IsNull()) {
685         VisitRoot(root);
686       }
687     }
688 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const689     void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
690         REQUIRES_SHARED(Locks::mutator_lock_) {
691       if (kCheckLocks) {
692         Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
693         Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
694       }
695       Mark(root->AsMirrorPtr());
696     }
697 
698    private:
Mark(mirror::Object * ref) const699     ALWAYS_INLINE void Mark(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
700       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
701         if (kUseFinger) {
702           std::atomic_thread_fence(std::memory_order_seq_cst);
703           if (reinterpret_cast<uintptr_t>(ref) >=
704               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
705             return;
706           }
707         }
708         chunk_task_->MarkStackPush(ref);
709       }
710     }
711 
712     MarkStackTask<kUseFinger>* const chunk_task_;
713     MarkSweep* const mark_sweep_;
714   };
715 
716   class ScanObjectParallelVisitor {
717    public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)718     ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
719         : chunk_task_(chunk_task) {}
720 
721     // No thread safety analysis since multiple threads will use this visitor.
operator ()(mirror::Object * obj) const722     void operator()(mirror::Object* obj) const
723         REQUIRES(Locks::heap_bitmap_lock_)
724         REQUIRES_SHARED(Locks::mutator_lock_) {
725       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
726       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
727       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
728       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
729     }
730 
731    private:
732     MarkStackTask<kUseFinger>* const chunk_task_;
733   };
734 
~MarkStackTask()735   virtual ~MarkStackTask() {
736     // Make sure that we have cleared our mark stack.
737     DCHECK_EQ(mark_stack_pos_, 0U);
738     if (kCountTasks) {
739       ++mark_sweep_->work_chunks_deleted_;
740     }
741   }
742 
743   MarkSweep* const mark_sweep_;
744   ThreadPool* const thread_pool_;
745   // Thread local mark stack for this task.
746   StackReference<mirror::Object> mark_stack_[kMaxSize];
747   // Mark stack position.
748   size_t mark_stack_pos_;
749 
MarkStackPush(mirror::Object * obj)750   ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
751       REQUIRES_SHARED(Locks::mutator_lock_) {
752     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
753       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
754       mark_stack_pos_ /= 2;
755       auto* task = new MarkStackTask(thread_pool_,
756                                      mark_sweep_,
757                                      kMaxSize - mark_stack_pos_,
758                                      mark_stack_ + mark_stack_pos_);
759       thread_pool_->AddTask(Thread::Current(), task);
760     }
761     DCHECK(obj != nullptr);
762     DCHECK_LT(mark_stack_pos_, kMaxSize);
763     mark_stack_[mark_stack_pos_++].Assign(obj);
764   }
765 
Finalize()766   virtual void Finalize() {
767     delete this;
768   }
769 
770   // Scans all of the objects
Run(Thread * self ATTRIBUTE_UNUSED)771   virtual void Run(Thread* self ATTRIBUTE_UNUSED)
772       REQUIRES(Locks::heap_bitmap_lock_)
773       REQUIRES_SHARED(Locks::mutator_lock_) {
774     ScanObjectParallelVisitor visitor(this);
775     // TODO: Tune this.
776     static const size_t kFifoSize = 4;
777     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
778     for (;;) {
779       mirror::Object* obj = nullptr;
780       if (kUseMarkStackPrefetch) {
781         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
782           mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
783           DCHECK(mark_stack_obj != nullptr);
784           __builtin_prefetch(mark_stack_obj);
785           prefetch_fifo.push_back(mark_stack_obj);
786         }
787         if (UNLIKELY(prefetch_fifo.empty())) {
788           break;
789         }
790         obj = prefetch_fifo.front();
791         prefetch_fifo.pop_front();
792       } else {
793         if (UNLIKELY(mark_stack_pos_ == 0)) {
794           break;
795         }
796         obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
797       }
798       DCHECK(obj != nullptr);
799       visitor(obj);
800     }
801   }
802 };
803 
804 class MarkSweep::CardScanTask : public MarkStackTask<false> {
805  public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uint8_t * begin,uint8_t * end,uint8_t minimum_age,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack_obj,bool clear_card)806   CardScanTask(ThreadPool* thread_pool,
807                MarkSweep* mark_sweep,
808                accounting::ContinuousSpaceBitmap* bitmap,
809                uint8_t* begin,
810                uint8_t* end,
811                uint8_t minimum_age,
812                size_t mark_stack_size,
813                StackReference<mirror::Object>* mark_stack_obj,
814                bool clear_card)
815       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
816         bitmap_(bitmap),
817         begin_(begin),
818         end_(end),
819         minimum_age_(minimum_age),
820         clear_card_(clear_card) {}
821 
822  protected:
823   accounting::ContinuousSpaceBitmap* const bitmap_;
824   uint8_t* const begin_;
825   uint8_t* const end_;
826   const uint8_t minimum_age_;
827   const bool clear_card_;
828 
Finalize()829   virtual void Finalize() {
830     delete this;
831   }
832 
Run(Thread * self)833   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
834     ScanObjectParallelVisitor visitor(this);
835     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
836     size_t cards_scanned = clear_card_
837         ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
838         : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
839     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
840         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
841     // Finish by emptying our local mark stack.
842     MarkStackTask::Run(self);
843   }
844 };
845 
GetThreadCount(bool paused) const846 size_t MarkSweep::GetThreadCount(bool paused) const {
847   // Use less threads if we are in a background state (non jank perceptible) since we want to leave
848   // more CPU time for the foreground apps.
849   if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
850     return 1;
851   }
852   return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
853 }
854 
ScanGrayObjects(bool paused,uint8_t minimum_age)855 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
856   accounting::CardTable* card_table = GetHeap()->GetCardTable();
857   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
858   size_t thread_count = GetThreadCount(paused);
859   // The parallel version with only one thread is faster for card scanning, TODO: fix.
860   if (kParallelCardScan && thread_count > 1) {
861     Thread* self = Thread::Current();
862     // Can't have a different split for each space since multiple spaces can have their cards being
863     // scanned at the same time.
864     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
865         GetTimings());
866     // Try to take some of the mark stack since we can pass this off to the worker tasks.
867     StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
868     StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
869     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
870     // Estimated number of work tasks we will create.
871     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
872     DCHECK_NE(mark_stack_tasks, 0U);
873     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
874                                              mark_stack_size / mark_stack_tasks + 1);
875     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
876       if (space->GetMarkBitmap() == nullptr) {
877         continue;
878       }
879       uint8_t* card_begin = space->Begin();
880       uint8_t* card_end = space->End();
881       // Align up the end address. For example, the image space's end
882       // may not be card-size-aligned.
883       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
884       DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
885       DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
886       // Calculate how many bytes of heap we will scan,
887       const size_t address_range = card_end - card_begin;
888       // Calculate how much address range each task gets.
889       const size_t card_delta = RoundUp(address_range / thread_count + 1,
890                                         accounting::CardTable::kCardSize);
891       // If paused and the space is neither zygote nor image space, we could clear the dirty
892       // cards to avoid accumulating them to increase card scanning load in the following GC
893       // cycles. We need to keep dirty cards of image space and zygote space in order to track
894       // references to the other spaces.
895       bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
896       // Create the worker tasks for this space.
897       while (card_begin != card_end) {
898         // Add a range of cards.
899         size_t addr_remaining = card_end - card_begin;
900         size_t card_increment = std::min(card_delta, addr_remaining);
901         // Take from the back of the mark stack.
902         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
903         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
904         mark_stack_end -= mark_stack_increment;
905         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
906         DCHECK_EQ(mark_stack_end, mark_stack_->End());
907         // Add the new task to the thread pool.
908         auto* task = new CardScanTask(thread_pool,
909                                       this,
910                                       space->GetMarkBitmap(),
911                                       card_begin,
912                                       card_begin + card_increment,
913                                       minimum_age,
914                                       mark_stack_increment,
915                                       mark_stack_end,
916                                       clear_card);
917         thread_pool->AddTask(self, task);
918         card_begin += card_increment;
919       }
920     }
921 
922     // Note: the card scan below may dirty new cards (and scan them)
923     // as a side effect when a Reference object is encountered and
924     // queued during the marking. See b/11465268.
925     thread_pool->SetMaxActiveWorkers(thread_count - 1);
926     thread_pool->StartWorkers(self);
927     thread_pool->Wait(self, true, true);
928     thread_pool->StopWorkers(self);
929   } else {
930     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
931       if (space->GetMarkBitmap() != nullptr) {
932         // Image spaces are handled properly since live == marked for them.
933         const char* name = nullptr;
934         switch (space->GetGcRetentionPolicy()) {
935         case space::kGcRetentionPolicyNeverCollect:
936           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
937           break;
938         case space::kGcRetentionPolicyFullCollect:
939           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
940           break;
941         case space::kGcRetentionPolicyAlwaysCollect:
942           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
943           break;
944         default:
945           LOG(FATAL) << "Unreachable";
946           UNREACHABLE();
947         }
948         TimingLogger::ScopedTiming t(name, GetTimings());
949         ScanObjectVisitor visitor(this);
950         bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
951         if (clear_card) {
952           card_table->Scan<true>(space->GetMarkBitmap(),
953                                  space->Begin(),
954                                  space->End(),
955                                  visitor,
956                                  minimum_age);
957         } else {
958           card_table->Scan<false>(space->GetMarkBitmap(),
959                                   space->Begin(),
960                                   space->End(),
961                                   visitor,
962                                   minimum_age);
963         }
964       }
965     }
966   }
967 }
968 
969 class MarkSweep::RecursiveMarkTask : public MarkStackTask<false> {
970  public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)971   RecursiveMarkTask(ThreadPool* thread_pool,
972                     MarkSweep* mark_sweep,
973                     accounting::ContinuousSpaceBitmap* bitmap,
974                     uintptr_t begin,
975                     uintptr_t end)
976       : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
977         bitmap_(bitmap),
978         begin_(begin),
979         end_(end) {}
980 
981  protected:
982   accounting::ContinuousSpaceBitmap* const bitmap_;
983   const uintptr_t begin_;
984   const uintptr_t end_;
985 
Finalize()986   virtual void Finalize() {
987     delete this;
988   }
989 
990   // Scans all of the objects
Run(Thread * self)991   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
992     ScanObjectParallelVisitor visitor(this);
993     bitmap_->VisitMarkedRange(begin_, end_, visitor);
994     // Finish by emptying our local mark stack.
995     MarkStackTask::Run(self);
996   }
997 };
998 
999 // Populates the mark stack based on the set of marked objects and
1000 // recursively marks until the mark stack is emptied.
RecursiveMark()1001 void MarkSweep::RecursiveMark() {
1002   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1003   // RecursiveMark will build the lists of known instances of the Reference classes. See
1004   // DelayReferenceReferent for details.
1005   if (kUseRecursiveMark) {
1006     const bool partial = GetGcType() == kGcTypePartial;
1007     ScanObjectVisitor scan_visitor(this);
1008     auto* self = Thread::Current();
1009     ThreadPool* thread_pool = heap_->GetThreadPool();
1010     size_t thread_count = GetThreadCount(false);
1011     const bool parallel = kParallelRecursiveMark && thread_count > 1;
1012     mark_stack_->Reset();
1013     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1014       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
1015           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
1016         current_space_bitmap_ = space->GetMarkBitmap();
1017         if (current_space_bitmap_ == nullptr) {
1018           continue;
1019         }
1020         if (parallel) {
1021           // We will use the mark stack the future.
1022           // CHECK(mark_stack_->IsEmpty());
1023           // This function does not handle heap end increasing, so we must use the space end.
1024           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1025           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1026           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
1027 
1028           // Create a few worker tasks.
1029           const size_t n = thread_count * 2;
1030           while (begin != end) {
1031             uintptr_t start = begin;
1032             uintptr_t delta = (end - begin) / n;
1033             delta = RoundUp(delta, KB);
1034             if (delta < 16 * KB) delta = end - begin;
1035             begin += delta;
1036             auto* task = new RecursiveMarkTask(thread_pool,
1037                                                this,
1038                                                current_space_bitmap_,
1039                                                start,
1040                                                begin);
1041             thread_pool->AddTask(self, task);
1042           }
1043           thread_pool->SetMaxActiveWorkers(thread_count - 1);
1044           thread_pool->StartWorkers(self);
1045           thread_pool->Wait(self, true, true);
1046           thread_pool->StopWorkers(self);
1047         } else {
1048           // This function does not handle heap end increasing, so we must use the space end.
1049           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1050           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1051           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
1052         }
1053       }
1054     }
1055   }
1056   ProcessMarkStack(false);
1057 }
1058 
RecursiveMarkDirtyObjects(bool paused,uint8_t minimum_age)1059 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
1060   ScanGrayObjects(paused, minimum_age);
1061   ProcessMarkStack(paused);
1062 }
1063 
ReMarkRoots()1064 void MarkSweep::ReMarkRoots() {
1065   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1066   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1067   Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1068       kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1069   if (kVerifyRootsMarked) {
1070     TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1071     VerifyRootMarkedVisitor visitor(this);
1072     Runtime::Current()->VisitRoots(&visitor);
1073   }
1074 }
1075 
SweepSystemWeaks(Thread * self)1076 void MarkSweep::SweepSystemWeaks(Thread* self) {
1077   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1078   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1079   Runtime::Current()->SweepSystemWeaks(this);
1080 }
1081 
1082 class MarkSweep::VerifySystemWeakVisitor : public IsMarkedVisitor {
1083  public:
VerifySystemWeakVisitor(MarkSweep * mark_sweep)1084   explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1085 
IsMarked(mirror::Object * obj)1086   virtual mirror::Object* IsMarked(mirror::Object* obj)
1087       OVERRIDE
1088       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1089     mark_sweep_->VerifyIsLive(obj);
1090     return obj;
1091   }
1092 
1093   MarkSweep* const mark_sweep_;
1094 };
1095 
VerifyIsLive(const mirror::Object * obj)1096 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1097   if (!heap_->GetLiveBitmap()->Test(obj)) {
1098     // TODO: Consider live stack? Has this code bitrotted?
1099     CHECK(!heap_->allocation_stack_->Contains(obj))
1100         << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1101   }
1102 }
1103 
VerifySystemWeaks()1104 void MarkSweep::VerifySystemWeaks() {
1105   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1106   // Verify system weaks, uses a special object visitor which returns the input object.
1107   VerifySystemWeakVisitor visitor(this);
1108   Runtime::Current()->SweepSystemWeaks(&visitor);
1109 }
1110 
1111 class MarkSweep::CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1112  public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1113   CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1114                             bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1115       : mark_sweep_(mark_sweep),
1116         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1117             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1118   }
1119 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1120   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1121       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_)
1122       REQUIRES(Locks::heap_bitmap_lock_) {
1123     for (size_t i = 0; i < count; ++i) {
1124       mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1125     }
1126   }
1127 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1128   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1129                   size_t count,
1130                   const RootInfo& info ATTRIBUTE_UNUSED)
1131       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_)
1132       REQUIRES(Locks::heap_bitmap_lock_) {
1133     for (size_t i = 0; i < count; ++i) {
1134       mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1135     }
1136   }
1137 
Run(Thread * thread)1138   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1139     ScopedTrace trace("Marking thread roots");
1140     // Note: self is not necessarily equal to thread since thread may be suspended.
1141     Thread* const self = Thread::Current();
1142     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1143         << thread->GetState() << " thread " << thread << " self " << self;
1144     thread->VisitRoots(this);
1145     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1146       ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
1147       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1148     }
1149     // If thread is a running mutator, then act on behalf of the garbage collector.
1150     // See the code in ThreadList::RunCheckpoint.
1151     mark_sweep_->GetBarrier().Pass(self);
1152   }
1153 
1154  private:
1155   MarkSweep* const mark_sweep_;
1156   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1157 };
1158 
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1159 void MarkSweep::MarkRootsCheckpoint(Thread* self,
1160                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1161   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1162   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1163   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1164   // Request the check point is run on all threads returning a count of the threads that must
1165   // run through the barrier including self.
1166   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1167   // Release locks then wait for all mutator threads to pass the barrier.
1168   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1169   // then no need to release locks.
1170   if (barrier_count == 0) {
1171     return;
1172   }
1173   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1174   Locks::mutator_lock_->SharedUnlock(self);
1175   {
1176     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1177     gc_barrier_->Increment(self, barrier_count);
1178   }
1179   Locks::mutator_lock_->SharedLock(self);
1180   Locks::heap_bitmap_lock_->ExclusiveLock(self);
1181 }
1182 
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1183 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1184   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1185   Thread* self = Thread::Current();
1186   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1187       sweep_array_free_buffer_mem_map_->BaseBegin());
1188   size_t chunk_free_pos = 0;
1189   ObjectBytePair freed;
1190   ObjectBytePair freed_los;
1191   // How many objects are left in the array, modified after each space is swept.
1192   StackReference<mirror::Object>* objects = allocations->Begin();
1193   size_t count = allocations->Size();
1194   // Change the order to ensure that the non-moving space last swept as an optimization.
1195   std::vector<space::ContinuousSpace*> sweep_spaces;
1196   space::ContinuousSpace* non_moving_space = nullptr;
1197   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1198     if (space->IsAllocSpace() &&
1199         !immune_spaces_.ContainsSpace(space) &&
1200         space->GetLiveBitmap() != nullptr) {
1201       if (space == heap_->GetNonMovingSpace()) {
1202         non_moving_space = space;
1203       } else {
1204         sweep_spaces.push_back(space);
1205       }
1206     }
1207   }
1208   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1209   // the other alloc spaces as an optimization.
1210   if (non_moving_space != nullptr) {
1211     sweep_spaces.push_back(non_moving_space);
1212   }
1213   // Start by sweeping the continuous spaces.
1214   for (space::ContinuousSpace* space : sweep_spaces) {
1215     space::AllocSpace* alloc_space = space->AsAllocSpace();
1216     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1217     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1218     if (swap_bitmaps) {
1219       std::swap(live_bitmap, mark_bitmap);
1220     }
1221     StackReference<mirror::Object>* out = objects;
1222     for (size_t i = 0; i < count; ++i) {
1223       mirror::Object* const obj = objects[i].AsMirrorPtr();
1224       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1225         continue;
1226       }
1227       if (space->HasAddress(obj)) {
1228         // This object is in the space, remove it from the array and add it to the sweep buffer
1229         // if needed.
1230         if (!mark_bitmap->Test(obj)) {
1231           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1232             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1233             freed.objects += chunk_free_pos;
1234             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1235             chunk_free_pos = 0;
1236           }
1237           chunk_free_buffer[chunk_free_pos++] = obj;
1238         }
1239       } else {
1240         (out++)->Assign(obj);
1241       }
1242     }
1243     if (chunk_free_pos > 0) {
1244       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1245       freed.objects += chunk_free_pos;
1246       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1247       chunk_free_pos = 0;
1248     }
1249     // All of the references which space contained are no longer in the allocation stack, update
1250     // the count.
1251     count = out - objects;
1252   }
1253   // Handle the large object space.
1254   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1255   if (large_object_space != nullptr) {
1256     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1257     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1258     if (swap_bitmaps) {
1259       std::swap(large_live_objects, large_mark_objects);
1260     }
1261     for (size_t i = 0; i < count; ++i) {
1262       mirror::Object* const obj = objects[i].AsMirrorPtr();
1263       // Handle large objects.
1264       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1265         continue;
1266       }
1267       if (!large_mark_objects->Test(obj)) {
1268         ++freed_los.objects;
1269         freed_los.bytes += large_object_space->Free(self, obj);
1270       }
1271     }
1272   }
1273   {
1274     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1275     RecordFree(freed);
1276     RecordFreeLOS(freed_los);
1277     t2.NewTiming("ResetStack");
1278     allocations->Reset();
1279   }
1280   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1281 }
1282 
Sweep(bool swap_bitmaps)1283 void MarkSweep::Sweep(bool swap_bitmaps) {
1284   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1285   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1286   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1287   {
1288     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1289     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1290     // knowing that new allocations won't be marked as live.
1291     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1292     heap_->MarkAllocStackAsLive(live_stack);
1293     live_stack->Reset();
1294     DCHECK(mark_stack_->IsEmpty());
1295   }
1296   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1297     if (space->IsContinuousMemMapAllocSpace()) {
1298       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1299       TimingLogger::ScopedTiming split(
1300           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
1301           GetTimings());
1302       RecordFree(alloc_space->Sweep(swap_bitmaps));
1303     }
1304   }
1305   SweepLargeObjects(swap_bitmaps);
1306 }
1307 
SweepLargeObjects(bool swap_bitmaps)1308 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1309   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1310   if (los != nullptr) {
1311     TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1312     RecordFreeLOS(los->Sweep(swap_bitmaps));
1313   }
1314 }
1315 
1316 // Process the "referent" field lin a java.lang.ref.Reference.  If the referent has not yet been
1317 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref)1318 void MarkSweep::DelayReferenceReferent(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) {
1319   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1320 }
1321 
1322 class MarkVisitor {
1323  public:
MarkVisitor(MarkSweep * const mark_sweep)1324   ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
1325 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1326   ALWAYS_INLINE void operator()(mirror::Object* obj,
1327                                 MemberOffset offset,
1328                                 bool is_static ATTRIBUTE_UNUSED) const
1329       REQUIRES(Locks::heap_bitmap_lock_)
1330       REQUIRES_SHARED(Locks::mutator_lock_) {
1331     if (kCheckLocks) {
1332       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1333       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1334     }
1335     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1336   }
1337 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1338   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1339       REQUIRES(Locks::heap_bitmap_lock_)
1340       REQUIRES_SHARED(Locks::mutator_lock_) {
1341     if (!root->IsNull()) {
1342       VisitRoot(root);
1343     }
1344   }
1345 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1346   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1347       REQUIRES(Locks::heap_bitmap_lock_)
1348       REQUIRES_SHARED(Locks::mutator_lock_) {
1349     if (kCheckLocks) {
1350       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1351       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1352     }
1353     mark_sweep_->MarkObject(root->AsMirrorPtr());
1354   }
1355 
1356  private:
1357   MarkSweep* const mark_sweep_;
1358 };
1359 
1360 // Scans an object reference.  Determines the type of the reference
1361 // and dispatches to a specialized scanning routine.
ScanObject(mirror::Object * obj)1362 void MarkSweep::ScanObject(mirror::Object* obj) {
1363   MarkVisitor mark_visitor(this);
1364   DelayReferenceReferentVisitor ref_visitor(this);
1365   ScanObjectVisit(obj, mark_visitor, ref_visitor);
1366 }
1367 
ProcessMarkStackParallel(size_t thread_count)1368 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1369   Thread* self = Thread::Current();
1370   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1371   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1372                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1373   CHECK_GT(chunk_size, 0U);
1374   // Split the current mark stack up into work tasks.
1375   for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1376     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1377     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1378     it += delta;
1379   }
1380   thread_pool->SetMaxActiveWorkers(thread_count - 1);
1381   thread_pool->StartWorkers(self);
1382   thread_pool->Wait(self, true, true);
1383   thread_pool->StopWorkers(self);
1384   mark_stack_->Reset();
1385   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1386            work_chunks_deleted_.LoadSequentiallyConsistent())
1387       << " some of the work chunks were leaked";
1388 }
1389 
1390 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1391 void MarkSweep::ProcessMarkStack(bool paused) {
1392   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1393   size_t thread_count = GetThreadCount(paused);
1394   if (kParallelProcessMarkStack && thread_count > 1 &&
1395       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1396     ProcessMarkStackParallel(thread_count);
1397   } else {
1398     // TODO: Tune this.
1399     static const size_t kFifoSize = 4;
1400     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1401     for (;;) {
1402       mirror::Object* obj = nullptr;
1403       if (kUseMarkStackPrefetch) {
1404         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1405           mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1406           DCHECK(mark_stack_obj != nullptr);
1407           __builtin_prefetch(mark_stack_obj);
1408           prefetch_fifo.push_back(mark_stack_obj);
1409         }
1410         if (prefetch_fifo.empty()) {
1411           break;
1412         }
1413         obj = prefetch_fifo.front();
1414         prefetch_fifo.pop_front();
1415       } else {
1416         if (mark_stack_->IsEmpty()) {
1417           break;
1418         }
1419         obj = mark_stack_->PopBack();
1420       }
1421       DCHECK(obj != nullptr);
1422       ScanObject(obj);
1423     }
1424   }
1425 }
1426 
IsMarked(mirror::Object * object)1427 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1428   if (immune_spaces_.IsInImmuneRegion(object)) {
1429     return object;
1430   }
1431   if (current_space_bitmap_->HasAddress(object)) {
1432     return current_space_bitmap_->Test(object) ? object : nullptr;
1433   }
1434   return mark_bitmap_->Test(object) ? object : nullptr;
1435 }
1436 
FinishPhase()1437 void MarkSweep::FinishPhase() {
1438   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1439   if (kCountScannedTypes) {
1440     VLOG(gc)
1441         << "MarkSweep scanned"
1442         << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
1443         << " normal objects=" << normal_count_.LoadRelaxed()
1444         << " classes=" << class_count_.LoadRelaxed()
1445         << " object arrays=" << object_array_count_.LoadRelaxed()
1446         << " references=" << reference_count_.LoadRelaxed()
1447         << " other=" << other_count_.LoadRelaxed();
1448   }
1449   if (kCountTasks) {
1450     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1451   }
1452   if (kMeasureOverhead) {
1453     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1454   }
1455   if (kProfileLargeObjects) {
1456     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1457         << " marked " << large_object_mark_.LoadRelaxed();
1458   }
1459   if (kCountMarkedObjects) {
1460     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1461         << " immune=" <<  mark_immune_count_.LoadRelaxed()
1462         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1463         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1464   }
1465   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1466   mark_stack_->Reset();
1467   Thread* const self = Thread::Current();
1468   ReaderMutexLock mu(self, *Locks::mutator_lock_);
1469   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
1470   heap_->ClearMarkedObjects();
1471 }
1472 
RevokeAllThreadLocalBuffers()1473 void MarkSweep::RevokeAllThreadLocalBuffers() {
1474   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1475     // If concurrent, rosalloc thread-local buffers are revoked at the
1476     // thread checkpoint. Bump pointer space thread-local buffers must
1477     // not be in use.
1478     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1479   } else {
1480     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1481     GetHeap()->RevokeAllThreadLocalBuffers();
1482   }
1483 }
1484 
1485 }  // namespace collector
1486 }  // namespace gc
1487 }  // namespace art
1488