1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <media/RecordBufferConverter.h>
33 #include <media/TypeConverter.h>
34 #include <utils/Log.h>
35 #include <utils/Trace.h>
36
37 #include <private/media/AudioTrackShared.h>
38 #include <private/android_filesystem_config.h>
39 #include <audio_utils/mono_blend.h>
40 #include <audio_utils/primitives.h>
41 #include <audio_utils/format.h>
42 #include <audio_utils/minifloat.h>
43 #include <system/audio_effects/effect_ns.h>
44 #include <system/audio_effects/effect_aec.h>
45 #include <system/audio.h>
46
47 // NBAIO implementations
48 #include <media/nbaio/AudioStreamInSource.h>
49 #include <media/nbaio/AudioStreamOutSink.h>
50 #include <media/nbaio/MonoPipe.h>
51 #include <media/nbaio/MonoPipeReader.h>
52 #include <media/nbaio/Pipe.h>
53 #include <media/nbaio/PipeReader.h>
54 #include <media/nbaio/SourceAudioBufferProvider.h>
55 #include <mediautils/BatteryNotifier.h>
56
57 #include <powermanager/PowerManager.h>
58
59 #include "AudioFlinger.h"
60 #include "FastMixer.h"
61 #include "FastCapture.h"
62 #include "ServiceUtilities.h"
63 #include "mediautils/SchedulingPolicyService.h"
64
65 #ifdef ADD_BATTERY_DATA
66 #include <media/IMediaPlayerService.h>
67 #include <media/IMediaDeathNotifier.h>
68 #endif
69
70 #ifdef DEBUG_CPU_USAGE
71 #include <cpustats/CentralTendencyStatistics.h>
72 #include <cpustats/ThreadCpuUsage.h>
73 #endif
74
75 #include "AutoPark.h"
76
77 #include <pthread.h>
78 #include "TypedLogger.h"
79
80 // ----------------------------------------------------------------------------
81
82 // Note: the following macro is used for extremely verbose logging message. In
83 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
84 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
85 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
86 // turned on. Do not uncomment the #def below unless you really know what you
87 // are doing and want to see all of the extremely verbose messages.
88 //#define VERY_VERY_VERBOSE_LOGGING
89 #ifdef VERY_VERY_VERBOSE_LOGGING
90 #define ALOGVV ALOGV
91 #else
92 #define ALOGVV(a...) do { } while(0)
93 #endif
94
95 // TODO: Move these macro/inlines to a header file.
96 #define max(a, b) ((a) > (b) ? (a) : (b))
97 template <typename T>
min(const T & a,const T & b)98 static inline T min(const T& a, const T& b)
99 {
100 return a < b ? a : b;
101 }
102
103 #ifndef ARRAY_SIZE
104 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
105 #endif
106
107 namespace android {
108
109 // retry counts for buffer fill timeout
110 // 50 * ~20msecs = 1 second
111 static const int8_t kMaxTrackRetries = 50;
112 static const int8_t kMaxTrackStartupRetries = 50;
113 // allow less retry attempts on direct output thread.
114 // direct outputs can be a scarce resource in audio hardware and should
115 // be released as quickly as possible.
116 static const int8_t kMaxTrackRetriesDirect = 2;
117
118
119
120 // don't warn about blocked writes or record buffer overflows more often than this
121 static const nsecs_t kWarningThrottleNs = seconds(5);
122
123 // RecordThread loop sleep time upon application overrun or audio HAL read error
124 static const int kRecordThreadSleepUs = 5000;
125
126 // maximum time to wait in sendConfigEvent_l() for a status to be received
127 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
128
129 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
130 static const uint32_t kMinThreadSleepTimeUs = 5000;
131 // maximum divider applied to the active sleep time in the mixer thread loop
132 static const uint32_t kMaxThreadSleepTimeShift = 2;
133
134 // minimum normal sink buffer size, expressed in milliseconds rather than frames
135 // FIXME This should be based on experimentally observed scheduling jitter
136 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
137 // maximum normal sink buffer size
138 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
139
140 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
141 // FIXME This should be based on experimentally observed scheduling jitter
142 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
143
144 // Offloaded output thread standby delay: allows track transition without going to standby
145 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
146
147 // Direct output thread minimum sleep time in idle or active(underrun) state
148 static const nsecs_t kDirectMinSleepTimeUs = 10000;
149
150 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
151 // balance between power consumption and latency, and allows threads to be scheduled reliably
152 // by the CFS scheduler.
153 // FIXME Express other hardcoded references to 20ms with references to this constant and move
154 // it appropriately.
155 #define FMS_20 20
156
157 // Whether to use fast mixer
158 static const enum {
159 FastMixer_Never, // never initialize or use: for debugging only
160 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
161 // normal mixer multiplier is 1
162 FastMixer_Static, // initialize if needed, then use all the time if initialized,
163 // multiplier is calculated based on min & max normal mixer buffer size
164 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
165 // multiplier is calculated based on min & max normal mixer buffer size
166 // FIXME for FastMixer_Dynamic:
167 // Supporting this option will require fixing HALs that can't handle large writes.
168 // For example, one HAL implementation returns an error from a large write,
169 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
170 // We could either fix the HAL implementations, or provide a wrapper that breaks
171 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
172 } kUseFastMixer = FastMixer_Static;
173
174 // Whether to use fast capture
175 static const enum {
176 FastCapture_Never, // never initialize or use: for debugging only
177 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
178 FastCapture_Static, // initialize if needed, then use all the time if initialized
179 } kUseFastCapture = FastCapture_Static;
180
181 // Priorities for requestPriority
182 static const int kPriorityAudioApp = 2;
183 static const int kPriorityFastMixer = 3;
184 static const int kPriorityFastCapture = 3;
185
186 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
187 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
188 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
189
190 // This is the default value, if not specified by property.
191 static const int kFastTrackMultiplier = 2;
192
193 // The minimum and maximum allowed values
194 static const int kFastTrackMultiplierMin = 1;
195 static const int kFastTrackMultiplierMax = 2;
196
197 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
198 static int sFastTrackMultiplier = kFastTrackMultiplier;
199
200 // See Thread::readOnlyHeap().
201 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
202 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
203 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
204 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
205
206 // ----------------------------------------------------------------------------
207
208 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
209
sFastTrackMultiplierInit()210 static void sFastTrackMultiplierInit()
211 {
212 char value[PROPERTY_VALUE_MAX];
213 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
214 char *endptr;
215 unsigned long ul = strtoul(value, &endptr, 0);
216 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
217 sFastTrackMultiplier = (int) ul;
218 }
219 }
220 }
221
222 // ----------------------------------------------------------------------------
223
224 #ifdef ADD_BATTERY_DATA
225 // To collect the amplifier usage
addBatteryData(uint32_t params)226 static void addBatteryData(uint32_t params) {
227 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
228 if (service == NULL) {
229 // it already logged
230 return;
231 }
232
233 service->addBatteryData(params);
234 }
235 #endif
236
237 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
238 struct {
239 // call when you acquire a partial wakelock
acquireandroid::__anonf7c4eeac0308240 void acquire(const sp<IBinder> &wakeLockToken) {
241 pthread_mutex_lock(&mLock);
242 if (wakeLockToken.get() == nullptr) {
243 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
244 } else {
245 if (mCount == 0) {
246 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
247 }
248 ++mCount;
249 }
250 pthread_mutex_unlock(&mLock);
251 }
252
253 // call when you release a partial wakelock.
releaseandroid::__anonf7c4eeac0308254 void release(const sp<IBinder> &wakeLockToken) {
255 if (wakeLockToken.get() == nullptr) {
256 return;
257 }
258 pthread_mutex_lock(&mLock);
259 if (--mCount < 0) {
260 ALOGE("negative wakelock count");
261 mCount = 0;
262 }
263 pthread_mutex_unlock(&mLock);
264 }
265
266 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf7c4eeac0308267 int64_t getBoottimeOffset() {
268 pthread_mutex_lock(&mLock);
269 int64_t boottimeOffset = mBoottimeOffset;
270 pthread_mutex_unlock(&mLock);
271 return boottimeOffset;
272 }
273
274 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
275 // and the selected timebase.
276 // Currently only TIMEBASE_BOOTTIME is allowed.
277 //
278 // This only needs to be called upon acquiring the first partial wakelock
279 // after all other partial wakelocks are released.
280 //
281 // We do an empirical measurement of the offset rather than parsing
282 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf7c4eeac0308283 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
284 int clockbase;
285 switch (timebase) {
286 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
287 clockbase = SYSTEM_TIME_BOOTTIME;
288 break;
289 default:
290 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
291 break;
292 }
293 // try three times to get the clock offset, choose the one
294 // with the minimum gap in measurements.
295 const int tries = 3;
296 nsecs_t bestGap, measured;
297 for (int i = 0; i < tries; ++i) {
298 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
299 const nsecs_t tbase = systemTime(clockbase);
300 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
301 const nsecs_t gap = tmono2 - tmono;
302 if (i == 0 || gap < bestGap) {
303 bestGap = gap;
304 measured = tbase - ((tmono + tmono2) >> 1);
305 }
306 }
307
308 // to avoid micro-adjusting, we don't change the timebase
309 // unless it is significantly different.
310 //
311 // Assumption: It probably takes more than toleranceNs to
312 // suspend and resume the device.
313 static int64_t toleranceNs = 10000; // 10 us
314 if (llabs(*offset - measured) > toleranceNs) {
315 ALOGV("Adjusting timebase offset old: %lld new: %lld",
316 (long long)*offset, (long long)measured);
317 *offset = measured;
318 }
319 }
320
321 pthread_mutex_t mLock;
322 int32_t mCount;
323 int64_t mBoottimeOffset;
324 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
325
326 // ----------------------------------------------------------------------------
327 // CPU Stats
328 // ----------------------------------------------------------------------------
329
330 class CpuStats {
331 public:
332 CpuStats();
333 void sample(const String8 &title);
334 #ifdef DEBUG_CPU_USAGE
335 private:
336 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
337 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
338
339 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
340
341 int mCpuNum; // thread's current CPU number
342 int mCpukHz; // frequency of thread's current CPU in kHz
343 #endif
344 };
345
CpuStats()346 CpuStats::CpuStats()
347 #ifdef DEBUG_CPU_USAGE
348 : mCpuNum(-1), mCpukHz(-1)
349 #endif
350 {
351 }
352
sample(const String8 & title __unused)353 void CpuStats::sample(const String8 &title
354 #ifndef DEBUG_CPU_USAGE
355 __unused
356 #endif
357 ) {
358 #ifdef DEBUG_CPU_USAGE
359 // get current thread's delta CPU time in wall clock ns
360 double wcNs;
361 bool valid = mCpuUsage.sampleAndEnable(wcNs);
362
363 // record sample for wall clock statistics
364 if (valid) {
365 mWcStats.sample(wcNs);
366 }
367
368 // get the current CPU number
369 int cpuNum = sched_getcpu();
370
371 // get the current CPU frequency in kHz
372 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
373
374 // check if either CPU number or frequency changed
375 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
376 mCpuNum = cpuNum;
377 mCpukHz = cpukHz;
378 // ignore sample for purposes of cycles
379 valid = false;
380 }
381
382 // if no change in CPU number or frequency, then record sample for cycle statistics
383 if (valid && mCpukHz > 0) {
384 double cycles = wcNs * cpukHz * 0.000001;
385 mHzStats.sample(cycles);
386 }
387
388 unsigned n = mWcStats.n();
389 // mCpuUsage.elapsed() is expensive, so don't call it every loop
390 if ((n & 127) == 1) {
391 long long elapsed = mCpuUsage.elapsed();
392 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
393 double perLoop = elapsed / (double) n;
394 double perLoop100 = perLoop * 0.01;
395 double perLoop1k = perLoop * 0.001;
396 double mean = mWcStats.mean();
397 double stddev = mWcStats.stddev();
398 double minimum = mWcStats.minimum();
399 double maximum = mWcStats.maximum();
400 double meanCycles = mHzStats.mean();
401 double stddevCycles = mHzStats.stddev();
402 double minCycles = mHzStats.minimum();
403 double maxCycles = mHzStats.maximum();
404 mCpuUsage.resetElapsed();
405 mWcStats.reset();
406 mHzStats.reset();
407 ALOGD("CPU usage for %s over past %.1f secs\n"
408 " (%u mixer loops at %.1f mean ms per loop):\n"
409 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
410 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
411 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
412 title.string(),
413 elapsed * .000000001, n, perLoop * .000001,
414 mean * .001,
415 stddev * .001,
416 minimum * .001,
417 maximum * .001,
418 mean / perLoop100,
419 stddev / perLoop100,
420 minimum / perLoop100,
421 maximum / perLoop100,
422 meanCycles / perLoop1k,
423 stddevCycles / perLoop1k,
424 minCycles / perLoop1k,
425 maxCycles / perLoop1k);
426
427 }
428 }
429 #endif
430 };
431
432 // ----------------------------------------------------------------------------
433 // ThreadBase
434 // ----------------------------------------------------------------------------
435
436 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)437 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
438 {
439 switch (type) {
440 case MIXER:
441 return "MIXER";
442 case DIRECT:
443 return "DIRECT";
444 case DUPLICATING:
445 return "DUPLICATING";
446 case RECORD:
447 return "RECORD";
448 case OFFLOAD:
449 return "OFFLOAD";
450 case MMAP:
451 return "MMAP";
452 default:
453 return "unknown";
454 }
455 }
456
devicesToString(audio_devices_t devices)457 std::string devicesToString(audio_devices_t devices)
458 {
459 std::string result;
460 if (devices & AUDIO_DEVICE_BIT_IN) {
461 InputDeviceConverter::maskToString(devices, result);
462 } else {
463 OutputDeviceConverter::maskToString(devices, result);
464 }
465 return result;
466 }
467
inputFlagsToString(audio_input_flags_t flags)468 std::string inputFlagsToString(audio_input_flags_t flags)
469 {
470 std::string result;
471 InputFlagConverter::maskToString(flags, result);
472 return result;
473 }
474
outputFlagsToString(audio_output_flags_t flags)475 std::string outputFlagsToString(audio_output_flags_t flags)
476 {
477 std::string result;
478 OutputFlagConverter::maskToString(flags, result);
479 return result;
480 }
481
sourceToString(audio_source_t source)482 const char *sourceToString(audio_source_t source)
483 {
484 switch (source) {
485 case AUDIO_SOURCE_DEFAULT: return "default";
486 case AUDIO_SOURCE_MIC: return "mic";
487 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
488 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
489 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
490 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
491 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
492 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
493 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
494 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed";
495 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
496 case AUDIO_SOURCE_HOTWORD: return "hotword";
497 default: return "unknown";
498 }
499 }
500
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)501 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
502 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
503 : Thread(false /*canCallJava*/),
504 mType(type),
505 mAudioFlinger(audioFlinger),
506 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
507 // are set by PlaybackThread::readOutputParameters_l() or
508 // RecordThread::readInputParameters_l()
509 //FIXME: mStandby should be true here. Is this some kind of hack?
510 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
511 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
512 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
513 // mName will be set by concrete (non-virtual) subclass
514 mDeathRecipient(new PMDeathRecipient(this)),
515 mSystemReady(systemReady),
516 mSignalPending(false)
517 {
518 memset(&mPatch, 0, sizeof(struct audio_patch));
519 }
520
~ThreadBase()521 AudioFlinger::ThreadBase::~ThreadBase()
522 {
523 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
524 mConfigEvents.clear();
525
526 // do not lock the mutex in destructor
527 releaseWakeLock_l();
528 if (mPowerManager != 0) {
529 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
530 binder->unlinkToDeath(mDeathRecipient);
531 }
532 }
533
readyToRun()534 status_t AudioFlinger::ThreadBase::readyToRun()
535 {
536 status_t status = initCheck();
537 if (status == NO_ERROR) {
538 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
539 } else {
540 ALOGE("No working audio driver found.");
541 }
542 return status;
543 }
544
exit()545 void AudioFlinger::ThreadBase::exit()
546 {
547 ALOGV("ThreadBase::exit");
548 // do any cleanup required for exit to succeed
549 preExit();
550 {
551 // This lock prevents the following race in thread (uniprocessor for illustration):
552 // if (!exitPending()) {
553 // // context switch from here to exit()
554 // // exit() calls requestExit(), what exitPending() observes
555 // // exit() calls signal(), which is dropped since no waiters
556 // // context switch back from exit() to here
557 // mWaitWorkCV.wait(...);
558 // // now thread is hung
559 // }
560 AutoMutex lock(mLock);
561 requestExit();
562 mWaitWorkCV.broadcast();
563 }
564 // When Thread::requestExitAndWait is made virtual and this method is renamed to
565 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
566 requestExitAndWait();
567 }
568
setParameters(const String8 & keyValuePairs)569 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
570 {
571 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
572 Mutex::Autolock _l(mLock);
573
574 return sendSetParameterConfigEvent_l(keyValuePairs);
575 }
576
577 // sendConfigEvent_l() must be called with ThreadBase::mLock held
578 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)579 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
580 {
581 status_t status = NO_ERROR;
582
583 if (event->mRequiresSystemReady && !mSystemReady) {
584 event->mWaitStatus = false;
585 mPendingConfigEvents.add(event);
586 return status;
587 }
588 mConfigEvents.add(event);
589 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
590 mWaitWorkCV.signal();
591 mLock.unlock();
592 {
593 Mutex::Autolock _l(event->mLock);
594 while (event->mWaitStatus) {
595 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
596 event->mStatus = TIMED_OUT;
597 event->mWaitStatus = false;
598 }
599 }
600 status = event->mStatus;
601 }
602 mLock.lock();
603 return status;
604 }
605
sendIoConfigEvent(audio_io_config_event event,pid_t pid)606 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
607 {
608 Mutex::Autolock _l(mLock);
609 sendIoConfigEvent_l(event, pid);
610 }
611
612 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)613 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
614 {
615 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
616 sendConfigEvent_l(configEvent);
617 }
618
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)619 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
620 {
621 Mutex::Autolock _l(mLock);
622 sendPrioConfigEvent_l(pid, tid, prio, forApp);
623 }
624
625 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)626 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
627 pid_t pid, pid_t tid, int32_t prio, bool forApp)
628 {
629 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
630 sendConfigEvent_l(configEvent);
631 }
632
633 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)634 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
635 {
636 sp<ConfigEvent> configEvent;
637 AudioParameter param(keyValuePair);
638 int value;
639 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
640 setMasterMono_l(value != 0);
641 if (param.size() == 1) {
642 return NO_ERROR; // should be a solo parameter - we don't pass down
643 }
644 param.remove(String8(AudioParameter::keyMonoOutput));
645 configEvent = new SetParameterConfigEvent(param.toString());
646 } else {
647 configEvent = new SetParameterConfigEvent(keyValuePair);
648 }
649 return sendConfigEvent_l(configEvent);
650 }
651
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)652 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
653 const struct audio_patch *patch,
654 audio_patch_handle_t *handle)
655 {
656 Mutex::Autolock _l(mLock);
657 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
658 status_t status = sendConfigEvent_l(configEvent);
659 if (status == NO_ERROR) {
660 CreateAudioPatchConfigEventData *data =
661 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
662 *handle = data->mHandle;
663 }
664 return status;
665 }
666
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)667 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
668 const audio_patch_handle_t handle)
669 {
670 Mutex::Autolock _l(mLock);
671 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
672 return sendConfigEvent_l(configEvent);
673 }
674
675
676 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()677 void AudioFlinger::ThreadBase::processConfigEvents_l()
678 {
679 bool configChanged = false;
680
681 while (!mConfigEvents.isEmpty()) {
682 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
683 sp<ConfigEvent> event = mConfigEvents[0];
684 mConfigEvents.removeAt(0);
685 switch (event->mType) {
686 case CFG_EVENT_PRIO: {
687 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
688 // FIXME Need to understand why this has to be done asynchronously
689 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
690 true /*asynchronous*/);
691 if (err != 0) {
692 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
693 data->mPrio, data->mPid, data->mTid, err);
694 }
695 } break;
696 case CFG_EVENT_IO: {
697 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
698 ioConfigChanged(data->mEvent, data->mPid);
699 } break;
700 case CFG_EVENT_SET_PARAMETER: {
701 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
702 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
703 configChanged = true;
704 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
705 data->mKeyValuePairs.string());
706 }
707 } break;
708 case CFG_EVENT_CREATE_AUDIO_PATCH: {
709 const audio_devices_t oldDevice = getDevice();
710 CreateAudioPatchConfigEventData *data =
711 (CreateAudioPatchConfigEventData *)event->mData.get();
712 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
713 const audio_devices_t newDevice = getDevice();
714 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
715 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
716 (unsigned)newDevice, devicesToString(newDevice).c_str());
717 } break;
718 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
719 const audio_devices_t oldDevice = getDevice();
720 ReleaseAudioPatchConfigEventData *data =
721 (ReleaseAudioPatchConfigEventData *)event->mData.get();
722 event->mStatus = releaseAudioPatch_l(data->mHandle);
723 const audio_devices_t newDevice = getDevice();
724 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
725 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
726 (unsigned)newDevice, devicesToString(newDevice).c_str());
727 } break;
728 default:
729 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
730 break;
731 }
732 {
733 Mutex::Autolock _l(event->mLock);
734 if (event->mWaitStatus) {
735 event->mWaitStatus = false;
736 event->mCond.signal();
737 }
738 }
739 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
740 }
741
742 if (configChanged) {
743 cacheParameters_l();
744 }
745 }
746
channelMaskToString(audio_channel_mask_t mask,bool output)747 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
748 String8 s;
749 const audio_channel_representation_t representation =
750 audio_channel_mask_get_representation(mask);
751
752 switch (representation) {
753 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
754 if (output) {
755 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
756 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
757 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
758 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
759 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
760 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
761 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
762 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
763 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
764 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
765 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
766 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
767 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
768 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
769 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
770 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
771 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
772 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
773 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
774 } else {
775 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
776 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
777 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
778 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
779 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
780 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
781 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
782 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
783 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
784 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
785 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
786 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
787 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
788 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
789 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
790 }
791 const int len = s.length();
792 if (len > 2) {
793 (void) s.lockBuffer(len); // needed?
794 s.unlockBuffer(len - 2); // remove trailing ", "
795 }
796 return s;
797 }
798 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
799 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
800 return s;
801 default:
802 s.appendFormat("unknown mask, representation:%d bits:%#x",
803 representation, audio_channel_mask_get_bits(mask));
804 return s;
805 }
806 }
807
dumpBase(int fd,const Vector<String16> & args __unused)808 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
809 {
810 const size_t SIZE = 256;
811 char buffer[SIZE];
812 String8 result;
813
814 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
815 this, mThreadName, getTid(), type(), threadTypeToString(type()));
816
817 bool locked = AudioFlinger::dumpTryLock(mLock);
818 if (!locked) {
819 dprintf(fd, " Thread may be deadlocked\n");
820 }
821
822 dprintf(fd, " I/O handle: %d\n", mId);
823 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
824 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
825 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
826 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
827 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
828 dprintf(fd, " Channel count: %u\n", mChannelCount);
829 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
830 channelMaskToString(mChannelMask, mType != RECORD).string());
831 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
832 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
833 dprintf(fd, " Pending config events:");
834 size_t numConfig = mConfigEvents.size();
835 if (numConfig) {
836 for (size_t i = 0; i < numConfig; i++) {
837 mConfigEvents[i]->dump(buffer, SIZE);
838 dprintf(fd, "\n %s", buffer);
839 }
840 dprintf(fd, "\n");
841 } else {
842 dprintf(fd, " none\n");
843 }
844 // Note: output device may be used by capture threads for effects such as AEC.
845 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).c_str());
846 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).c_str());
847 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
848
849 if (locked) {
850 mLock.unlock();
851 }
852 }
853
dumpEffectChains(int fd,const Vector<String16> & args)854 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
855 {
856 const size_t SIZE = 256;
857 char buffer[SIZE];
858 String8 result;
859
860 size_t numEffectChains = mEffectChains.size();
861 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
862 write(fd, buffer, strlen(buffer));
863
864 for (size_t i = 0; i < numEffectChains; ++i) {
865 sp<EffectChain> chain = mEffectChains[i];
866 if (chain != 0) {
867 chain->dump(fd, args);
868 }
869 }
870 }
871
acquireWakeLock()872 void AudioFlinger::ThreadBase::acquireWakeLock()
873 {
874 Mutex::Autolock _l(mLock);
875 acquireWakeLock_l();
876 }
877
getWakeLockTag()878 String16 AudioFlinger::ThreadBase::getWakeLockTag()
879 {
880 switch (mType) {
881 case MIXER:
882 return String16("AudioMix");
883 case DIRECT:
884 return String16("AudioDirectOut");
885 case DUPLICATING:
886 return String16("AudioDup");
887 case RECORD:
888 return String16("AudioIn");
889 case OFFLOAD:
890 return String16("AudioOffload");
891 case MMAP:
892 return String16("Mmap");
893 default:
894 ALOG_ASSERT(false);
895 return String16("AudioUnknown");
896 }
897 }
898
acquireWakeLock_l()899 void AudioFlinger::ThreadBase::acquireWakeLock_l()
900 {
901 getPowerManager_l();
902 if (mPowerManager != 0) {
903 sp<IBinder> binder = new BBinder();
904 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
905 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
906 binder,
907 getWakeLockTag(),
908 String16("audioserver"),
909 true /* FIXME force oneway contrary to .aidl */);
910 if (status == NO_ERROR) {
911 mWakeLockToken = binder;
912 }
913 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
914 }
915
916 gBoottime.acquire(mWakeLockToken);
917 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
918 gBoottime.getBoottimeOffset();
919 }
920
releaseWakeLock()921 void AudioFlinger::ThreadBase::releaseWakeLock()
922 {
923 Mutex::Autolock _l(mLock);
924 releaseWakeLock_l();
925 }
926
releaseWakeLock_l()927 void AudioFlinger::ThreadBase::releaseWakeLock_l()
928 {
929 gBoottime.release(mWakeLockToken);
930 if (mWakeLockToken != 0) {
931 ALOGV("releaseWakeLock_l() %s", mThreadName);
932 if (mPowerManager != 0) {
933 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
934 true /* FIXME force oneway contrary to .aidl */);
935 }
936 mWakeLockToken.clear();
937 }
938 }
939
getPowerManager_l()940 void AudioFlinger::ThreadBase::getPowerManager_l() {
941 if (mSystemReady && mPowerManager == 0) {
942 // use checkService() to avoid blocking if power service is not up yet
943 sp<IBinder> binder =
944 defaultServiceManager()->checkService(String16("power"));
945 if (binder == 0) {
946 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
947 } else {
948 mPowerManager = interface_cast<IPowerManager>(binder);
949 binder->linkToDeath(mDeathRecipient);
950 }
951 }
952 }
953
updateWakeLockUids_l(const SortedVector<uid_t> & uids)954 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
955 getPowerManager_l();
956
957 #if !LOG_NDEBUG
958 std::stringstream s;
959 for (uid_t uid : uids) {
960 s << uid << " ";
961 }
962 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
963 #endif
964
965 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
966 if (mSystemReady) {
967 ALOGE("no wake lock to update, but system ready!");
968 } else {
969 ALOGW("no wake lock to update, system not ready yet");
970 }
971 return;
972 }
973 if (mPowerManager != 0) {
974 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
975 status_t status = mPowerManager->updateWakeLockUids(
976 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
977 true /* FIXME force oneway contrary to .aidl */);
978 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
979 }
980 }
981
clearPowerManager()982 void AudioFlinger::ThreadBase::clearPowerManager()
983 {
984 Mutex::Autolock _l(mLock);
985 releaseWakeLock_l();
986 mPowerManager.clear();
987 }
988
binderDied(const wp<IBinder> & who __unused)989 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
990 {
991 sp<ThreadBase> thread = mThread.promote();
992 if (thread != 0) {
993 thread->clearPowerManager();
994 }
995 ALOGW("power manager service died !!!");
996 }
997
setEffectSuspended(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)998 void AudioFlinger::ThreadBase::setEffectSuspended(
999 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1000 {
1001 Mutex::Autolock _l(mLock);
1002 setEffectSuspended_l(type, suspend, sessionId);
1003 }
1004
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1005 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1006 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1007 {
1008 sp<EffectChain> chain = getEffectChain_l(sessionId);
1009 if (chain != 0) {
1010 if (type != NULL) {
1011 chain->setEffectSuspended_l(type, suspend);
1012 } else {
1013 chain->setEffectSuspendedAll_l(suspend);
1014 }
1015 }
1016
1017 updateSuspendedSessions_l(type, suspend, sessionId);
1018 }
1019
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1020 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1021 {
1022 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1023 if (index < 0) {
1024 return;
1025 }
1026
1027 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1028 mSuspendedSessions.valueAt(index);
1029
1030 for (size_t i = 0; i < sessionEffects.size(); i++) {
1031 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1032 for (int j = 0; j < desc->mRefCount; j++) {
1033 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1034 chain->setEffectSuspendedAll_l(true);
1035 } else {
1036 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1037 desc->mType.timeLow);
1038 chain->setEffectSuspended_l(&desc->mType, true);
1039 }
1040 }
1041 }
1042 }
1043
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1044 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1045 bool suspend,
1046 audio_session_t sessionId)
1047 {
1048 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1049
1050 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1051
1052 if (suspend) {
1053 if (index >= 0) {
1054 sessionEffects = mSuspendedSessions.valueAt(index);
1055 } else {
1056 mSuspendedSessions.add(sessionId, sessionEffects);
1057 }
1058 } else {
1059 if (index < 0) {
1060 return;
1061 }
1062 sessionEffects = mSuspendedSessions.valueAt(index);
1063 }
1064
1065
1066 int key = EffectChain::kKeyForSuspendAll;
1067 if (type != NULL) {
1068 key = type->timeLow;
1069 }
1070 index = sessionEffects.indexOfKey(key);
1071
1072 sp<SuspendedSessionDesc> desc;
1073 if (suspend) {
1074 if (index >= 0) {
1075 desc = sessionEffects.valueAt(index);
1076 } else {
1077 desc = new SuspendedSessionDesc();
1078 if (type != NULL) {
1079 desc->mType = *type;
1080 }
1081 sessionEffects.add(key, desc);
1082 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1083 }
1084 desc->mRefCount++;
1085 } else {
1086 if (index < 0) {
1087 return;
1088 }
1089 desc = sessionEffects.valueAt(index);
1090 if (--desc->mRefCount == 0) {
1091 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1092 sessionEffects.removeItemsAt(index);
1093 if (sessionEffects.isEmpty()) {
1094 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1095 sessionId);
1096 mSuspendedSessions.removeItem(sessionId);
1097 }
1098 }
1099 }
1100 if (!sessionEffects.isEmpty()) {
1101 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1102 }
1103 }
1104
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1105 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1106 bool enabled,
1107 audio_session_t sessionId)
1108 {
1109 Mutex::Autolock _l(mLock);
1110 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1111 }
1112
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1113 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1114 bool enabled,
1115 audio_session_t sessionId)
1116 {
1117 if (mType != RECORD) {
1118 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1119 // another session. This gives the priority to well behaved effect control panels
1120 // and applications not using global effects.
1121 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1122 // global effects
1123 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1124 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1125 }
1126 }
1127
1128 sp<EffectChain> chain = getEffectChain_l(sessionId);
1129 if (chain != 0) {
1130 chain->checkSuspendOnEffectEnabled(effect, enabled);
1131 }
1132 }
1133
1134 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1135 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1136 const effect_descriptor_t *desc, audio_session_t sessionId)
1137 {
1138 // No global effect sessions on record threads
1139 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1140 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1141 desc->name, mThreadName);
1142 return BAD_VALUE;
1143 }
1144 // only pre processing effects on record thread
1145 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1146 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1147 desc->name, mThreadName);
1148 return BAD_VALUE;
1149 }
1150
1151 // always allow effects without processing load or latency
1152 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1153 return NO_ERROR;
1154 }
1155
1156 audio_input_flags_t flags = mInput->flags;
1157 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1158 if (flags & AUDIO_INPUT_FLAG_RAW) {
1159 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1160 desc->name, mThreadName);
1161 return BAD_VALUE;
1162 }
1163 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1164 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1165 desc->name, mThreadName);
1166 return BAD_VALUE;
1167 }
1168 }
1169 return NO_ERROR;
1170 }
1171
1172 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1173 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1174 const effect_descriptor_t *desc, audio_session_t sessionId)
1175 {
1176 // no preprocessing on playback threads
1177 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1178 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1179 " thread %s", desc->name, mThreadName);
1180 return BAD_VALUE;
1181 }
1182
1183 switch (mType) {
1184 case MIXER: {
1185 // Reject any effect on mixer multichannel sinks.
1186 // TODO: fix both format and multichannel issues with effects.
1187 if (mChannelCount != FCC_2) {
1188 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1189 " thread %s", desc->name, mChannelCount, mThreadName);
1190 return BAD_VALUE;
1191 }
1192 audio_output_flags_t flags = mOutput->flags;
1193 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1194 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1195 // global effects are applied only to non fast tracks if they are SW
1196 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1197 break;
1198 }
1199 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1200 // only post processing on output stage session
1201 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1202 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1203 " on output stage session", desc->name);
1204 return BAD_VALUE;
1205 }
1206 } else {
1207 // no restriction on effects applied on non fast tracks
1208 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1209 break;
1210 }
1211 }
1212
1213 // always allow effects without processing load or latency
1214 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1215 break;
1216 }
1217 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1218 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1219 desc->name);
1220 return BAD_VALUE;
1221 }
1222 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1223 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1224 " in fast mode", desc->name);
1225 return BAD_VALUE;
1226 }
1227 }
1228 } break;
1229 case OFFLOAD:
1230 // nothing actionable on offload threads, if the effect:
1231 // - is offloadable: the effect can be created
1232 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1233 // will take care of invalidating the tracks of the thread
1234 break;
1235 case DIRECT:
1236 // Reject any effect on Direct output threads for now, since the format of
1237 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1238 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1239 desc->name, mThreadName);
1240 return BAD_VALUE;
1241 case DUPLICATING:
1242 // Reject any effect on mixer multichannel sinks.
1243 // TODO: fix both format and multichannel issues with effects.
1244 if (mChannelCount != FCC_2) {
1245 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1246 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1247 return BAD_VALUE;
1248 }
1249 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1250 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1251 " thread %s", desc->name, mThreadName);
1252 return BAD_VALUE;
1253 }
1254 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1255 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1256 " DUPLICATING thread %s", desc->name, mThreadName);
1257 return BAD_VALUE;
1258 }
1259 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1260 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1261 " DUPLICATING thread %s", desc->name, mThreadName);
1262 return BAD_VALUE;
1263 }
1264 break;
1265 default:
1266 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1267 }
1268
1269 return NO_ERROR;
1270 }
1271
1272 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1273 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1274 const sp<AudioFlinger::Client>& client,
1275 const sp<IEffectClient>& effectClient,
1276 int32_t priority,
1277 audio_session_t sessionId,
1278 effect_descriptor_t *desc,
1279 int *enabled,
1280 status_t *status,
1281 bool pinned)
1282 {
1283 sp<EffectModule> effect;
1284 sp<EffectHandle> handle;
1285 status_t lStatus;
1286 sp<EffectChain> chain;
1287 bool chainCreated = false;
1288 bool effectCreated = false;
1289 bool effectRegistered = false;
1290 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1291
1292 lStatus = initCheck();
1293 if (lStatus != NO_ERROR) {
1294 ALOGW("createEffect_l() Audio driver not initialized.");
1295 goto Exit;
1296 }
1297
1298 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1299
1300 { // scope for mLock
1301 Mutex::Autolock _l(mLock);
1302
1303 lStatus = checkEffectCompatibility_l(desc, sessionId);
1304 if (lStatus != NO_ERROR) {
1305 goto Exit;
1306 }
1307
1308 // check for existing effect chain with the requested audio session
1309 chain = getEffectChain_l(sessionId);
1310 if (chain == 0) {
1311 // create a new chain for this session
1312 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1313 chain = new EffectChain(this, sessionId);
1314 addEffectChain_l(chain);
1315 chain->setStrategy(getStrategyForSession_l(sessionId));
1316 chainCreated = true;
1317 } else {
1318 effect = chain->getEffectFromDesc_l(desc);
1319 }
1320
1321 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1322
1323 if (effect == 0) {
1324 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1325 // Check CPU and memory usage
1326 lStatus = AudioSystem::registerEffect(
1327 desc, mId, chain->strategy(), sessionId, effectId);
1328 if (lStatus != NO_ERROR) {
1329 goto Exit;
1330 }
1331 effectRegistered = true;
1332 // create a new effect module if none present in the chain
1333 lStatus = chain->createEffect_l(effect, this, desc, effectId, sessionId, pinned);
1334 if (lStatus != NO_ERROR) {
1335 goto Exit;
1336 }
1337 effectCreated = true;
1338
1339 effect->setDevice(mOutDevice);
1340 effect->setDevice(mInDevice);
1341 effect->setMode(mAudioFlinger->getMode());
1342 effect->setAudioSource(mAudioSource);
1343 }
1344 // create effect handle and connect it to effect module
1345 handle = new EffectHandle(effect, client, effectClient, priority);
1346 lStatus = handle->initCheck();
1347 if (lStatus == OK) {
1348 lStatus = effect->addHandle(handle.get());
1349 }
1350 if (enabled != NULL) {
1351 *enabled = (int)effect->isEnabled();
1352 }
1353 }
1354
1355 Exit:
1356 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1357 Mutex::Autolock _l(mLock);
1358 if (effectCreated) {
1359 chain->removeEffect_l(effect);
1360 }
1361 if (effectRegistered) {
1362 AudioSystem::unregisterEffect(effectId);
1363 }
1364 if (chainCreated) {
1365 removeEffectChain_l(chain);
1366 }
1367 handle.clear();
1368 }
1369
1370 *status = lStatus;
1371 return handle;
1372 }
1373
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1374 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1375 bool unpinIfLast)
1376 {
1377 bool remove = false;
1378 sp<EffectModule> effect;
1379 {
1380 Mutex::Autolock _l(mLock);
1381
1382 effect = handle->effect().promote();
1383 if (effect == 0) {
1384 return;
1385 }
1386 // restore suspended effects if the disconnected handle was enabled and the last one.
1387 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1388 if (remove) {
1389 removeEffect_l(effect, true);
1390 }
1391 }
1392 if (remove) {
1393 mAudioFlinger->updateOrphanEffectChains(effect);
1394 AudioSystem::unregisterEffect(effect->id());
1395 if (handle->enabled()) {
1396 checkSuspendOnEffectEnabled(effect, false, effect->sessionId());
1397 }
1398 }
1399 }
1400
getEffect(audio_session_t sessionId,int effectId)1401 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1402 int effectId)
1403 {
1404 Mutex::Autolock _l(mLock);
1405 return getEffect_l(sessionId, effectId);
1406 }
1407
getEffect_l(audio_session_t sessionId,int effectId)1408 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1409 int effectId)
1410 {
1411 sp<EffectChain> chain = getEffectChain_l(sessionId);
1412 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1413 }
1414
1415 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1416 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1417 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1418 {
1419 // check for existing effect chain with the requested audio session
1420 audio_session_t sessionId = effect->sessionId();
1421 sp<EffectChain> chain = getEffectChain_l(sessionId);
1422 bool chainCreated = false;
1423
1424 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1425 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1426 this, effect->desc().name, effect->desc().flags);
1427
1428 if (chain == 0) {
1429 // create a new chain for this session
1430 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1431 chain = new EffectChain(this, sessionId);
1432 addEffectChain_l(chain);
1433 chain->setStrategy(getStrategyForSession_l(sessionId));
1434 chainCreated = true;
1435 }
1436 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1437
1438 if (chain->getEffectFromId_l(effect->id()) != 0) {
1439 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1440 this, effect->desc().name, chain.get());
1441 return BAD_VALUE;
1442 }
1443
1444 effect->setOffloaded(mType == OFFLOAD, mId);
1445
1446 status_t status = chain->addEffect_l(effect);
1447 if (status != NO_ERROR) {
1448 if (chainCreated) {
1449 removeEffectChain_l(chain);
1450 }
1451 return status;
1452 }
1453
1454 effect->setDevice(mOutDevice);
1455 effect->setDevice(mInDevice);
1456 effect->setMode(mAudioFlinger->getMode());
1457 effect->setAudioSource(mAudioSource);
1458 return NO_ERROR;
1459 }
1460
removeEffect_l(const sp<EffectModule> & effect,bool release)1461 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1462
1463 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1464 effect_descriptor_t desc = effect->desc();
1465 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1466 detachAuxEffect_l(effect->id());
1467 }
1468
1469 sp<EffectChain> chain = effect->chain().promote();
1470 if (chain != 0) {
1471 // remove effect chain if removing last effect
1472 if (chain->removeEffect_l(effect, release) == 0) {
1473 removeEffectChain_l(chain);
1474 }
1475 } else {
1476 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1477 }
1478 }
1479
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1480 void AudioFlinger::ThreadBase::lockEffectChains_l(
1481 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1482 {
1483 effectChains = mEffectChains;
1484 for (size_t i = 0; i < mEffectChains.size(); i++) {
1485 mEffectChains[i]->lock();
1486 }
1487 }
1488
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1489 void AudioFlinger::ThreadBase::unlockEffectChains(
1490 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1491 {
1492 for (size_t i = 0; i < effectChains.size(); i++) {
1493 effectChains[i]->unlock();
1494 }
1495 }
1496
getEffectChain(audio_session_t sessionId)1497 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1498 {
1499 Mutex::Autolock _l(mLock);
1500 return getEffectChain_l(sessionId);
1501 }
1502
getEffectChain_l(audio_session_t sessionId) const1503 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1504 const
1505 {
1506 size_t size = mEffectChains.size();
1507 for (size_t i = 0; i < size; i++) {
1508 if (mEffectChains[i]->sessionId() == sessionId) {
1509 return mEffectChains[i];
1510 }
1511 }
1512 return 0;
1513 }
1514
setMode(audio_mode_t mode)1515 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1516 {
1517 Mutex::Autolock _l(mLock);
1518 size_t size = mEffectChains.size();
1519 for (size_t i = 0; i < size; i++) {
1520 mEffectChains[i]->setMode_l(mode);
1521 }
1522 }
1523
getAudioPortConfig(struct audio_port_config * config)1524 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1525 {
1526 config->type = AUDIO_PORT_TYPE_MIX;
1527 config->ext.mix.handle = mId;
1528 config->sample_rate = mSampleRate;
1529 config->format = mFormat;
1530 config->channel_mask = mChannelMask;
1531 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1532 AUDIO_PORT_CONFIG_FORMAT;
1533 }
1534
systemReady()1535 void AudioFlinger::ThreadBase::systemReady()
1536 {
1537 Mutex::Autolock _l(mLock);
1538 if (mSystemReady) {
1539 return;
1540 }
1541 mSystemReady = true;
1542
1543 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1544 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1545 }
1546 mPendingConfigEvents.clear();
1547 }
1548
1549 template <typename T>
add(const sp<T> & track)1550 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1551 ssize_t index = mActiveTracks.indexOf(track);
1552 if (index >= 0) {
1553 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1554 return index;
1555 }
1556 mActiveTracksGeneration++;
1557 mLatestActiveTrack = track;
1558 ++mBatteryCounter[track->uid()].second;
1559 return mActiveTracks.add(track);
1560 }
1561
1562 template <typename T>
remove(const sp<T> & track)1563 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1564 ssize_t index = mActiveTracks.remove(track);
1565 if (index < 0) {
1566 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1567 return index;
1568 }
1569 mActiveTracksGeneration++;
1570 --mBatteryCounter[track->uid()].second;
1571 // mLatestActiveTrack is not cleared even if is the same as track.
1572 return index;
1573 }
1574
1575 template <typename T>
clear()1576 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1577 for (const sp<T> &track : mActiveTracks) {
1578 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1579 }
1580 mLastActiveTracksGeneration = mActiveTracksGeneration;
1581 mActiveTracks.clear();
1582 mLatestActiveTrack.clear();
1583 mBatteryCounter.clear();
1584 }
1585
1586 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1587 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1588 sp<ThreadBase> thread, bool force) {
1589 // Updates ActiveTracks client uids to the thread wakelock.
1590 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1591 thread->updateWakeLockUids_l(getWakeLockUids());
1592 mLastActiveTracksGeneration = mActiveTracksGeneration;
1593 }
1594
1595 // Updates BatteryNotifier uids
1596 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1597 const uid_t uid = it->first;
1598 ssize_t &previous = it->second.first;
1599 ssize_t ¤t = it->second.second;
1600 if (current > 0) {
1601 if (previous == 0) {
1602 BatteryNotifier::getInstance().noteStartAudio(uid);
1603 }
1604 previous = current;
1605 ++it;
1606 } else if (current == 0) {
1607 if (previous > 0) {
1608 BatteryNotifier::getInstance().noteStopAudio(uid);
1609 }
1610 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1611 } else /* (current < 0) */ {
1612 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1613 }
1614 }
1615 }
1616
broadcast_l()1617 void AudioFlinger::ThreadBase::broadcast_l()
1618 {
1619 // Thread could be blocked waiting for async
1620 // so signal it to handle state changes immediately
1621 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1622 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1623 mSignalPending = true;
1624 mWaitWorkCV.broadcast();
1625 }
1626
1627 // ----------------------------------------------------------------------------
1628 // Playback
1629 // ----------------------------------------------------------------------------
1630
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1631 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1632 AudioStreamOut* output,
1633 audio_io_handle_t id,
1634 audio_devices_t device,
1635 type_t type,
1636 bool systemReady)
1637 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1638 mNormalFrameCount(0), mSinkBuffer(NULL),
1639 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1640 mMixerBuffer(NULL),
1641 mMixerBufferSize(0),
1642 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1643 mMixerBufferValid(false),
1644 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1645 mEffectBuffer(NULL),
1646 mEffectBufferSize(0),
1647 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1648 mEffectBufferValid(false),
1649 mSuspended(0), mBytesWritten(0),
1650 mFramesWritten(0),
1651 mSuspendedFrames(0),
1652 // mStreamTypes[] initialized in constructor body
1653 mOutput(output),
1654 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1655 mMixerStatus(MIXER_IDLE),
1656 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1657 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1658 mBytesRemaining(0),
1659 mCurrentWriteLength(0),
1660 mUseAsyncWrite(false),
1661 mWriteAckSequence(0),
1662 mDrainSequence(0),
1663 mScreenState(AudioFlinger::mScreenState),
1664 // index 0 is reserved for normal mixer's submix
1665 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1666 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1667 {
1668 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1669 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1670
1671 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1672 // it would be safer to explicitly pass initial masterVolume/masterMute as
1673 // parameter.
1674 //
1675 // If the HAL we are using has support for master volume or master mute,
1676 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1677 // and the mute set to false).
1678 mMasterVolume = audioFlinger->masterVolume_l();
1679 mMasterMute = audioFlinger->masterMute_l();
1680 if (mOutput && mOutput->audioHwDev) {
1681 if (mOutput->audioHwDev->canSetMasterVolume()) {
1682 mMasterVolume = 1.0;
1683 }
1684
1685 if (mOutput->audioHwDev->canSetMasterMute()) {
1686 mMasterMute = false;
1687 }
1688 }
1689
1690 readOutputParameters_l();
1691
1692 // ++ operator does not compile
1693 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1694 stream = (audio_stream_type_t) (stream + 1)) {
1695 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1696 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1697 }
1698 }
1699
~PlaybackThread()1700 AudioFlinger::PlaybackThread::~PlaybackThread()
1701 {
1702 mAudioFlinger->unregisterWriter(mNBLogWriter);
1703 free(mSinkBuffer);
1704 free(mMixerBuffer);
1705 free(mEffectBuffer);
1706 }
1707
dump(int fd,const Vector<String16> & args)1708 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1709 {
1710 dumpInternals(fd, args);
1711 dumpTracks(fd, args);
1712 dumpEffectChains(fd, args);
1713 dprintf(fd, " Local log:\n");
1714 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
1715 }
1716
dumpTracks(int fd,const Vector<String16> & args __unused)1717 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1718 {
1719 const size_t SIZE = 256;
1720 char buffer[SIZE];
1721 String8 result;
1722
1723 result.appendFormat(" Stream volumes in dB: ");
1724 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1725 const stream_type_t *st = &mStreamTypes[i];
1726 if (i > 0) {
1727 result.appendFormat(", ");
1728 }
1729 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1730 if (st->mute) {
1731 result.append("M");
1732 }
1733 }
1734 result.append("\n");
1735 write(fd, result.string(), result.length());
1736 result.clear();
1737
1738 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1739 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1740 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1741 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1742
1743 size_t numtracks = mTracks.size();
1744 size_t numactive = mActiveTracks.size();
1745 dprintf(fd, " %zu Tracks", numtracks);
1746 size_t numactiveseen = 0;
1747 if (numtracks) {
1748 dprintf(fd, " of which %zu are active\n", numactive);
1749 Track::appendDumpHeader(result);
1750 for (size_t i = 0; i < numtracks; ++i) {
1751 sp<Track> track = mTracks[i];
1752 if (track != 0) {
1753 bool active = mActiveTracks.indexOf(track) >= 0;
1754 if (active) {
1755 numactiveseen++;
1756 }
1757 track->dump(buffer, SIZE, active);
1758 result.append(buffer);
1759 }
1760 }
1761 } else {
1762 result.append("\n");
1763 }
1764 if (numactiveseen != numactive) {
1765 // some tracks in the active list were not in the tracks list
1766 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1767 " not in the track list\n");
1768 result.append(buffer);
1769 Track::appendDumpHeader(result);
1770 for (size_t i = 0; i < numactive; ++i) {
1771 sp<Track> track = mActiveTracks[i];
1772 if (mTracks.indexOf(track) < 0) {
1773 track->dump(buffer, SIZE, true);
1774 result.append(buffer);
1775 }
1776 }
1777 }
1778
1779 write(fd, result.string(), result.size());
1780 }
1781
dumpInternals(int fd,const Vector<String16> & args)1782 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1783 {
1784 dumpBase(fd, args);
1785
1786 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1787 dprintf(fd, " Last write occurred (msecs): %llu\n",
1788 (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1789 dprintf(fd, " Total writes: %d\n", mNumWrites);
1790 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1791 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1792 dprintf(fd, " Suspend count: %d\n", mSuspended);
1793 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1794 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1795 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1796 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1797 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1798 AudioStreamOut *output = mOutput;
1799 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1800 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
1801 output, flags, outputFlagsToString(flags).c_str());
1802 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1803 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1804 if (mPipeSink.get() != nullptr) {
1805 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1806 }
1807 if (output != nullptr) {
1808 dprintf(fd, " Hal stream dump:\n");
1809 (void)output->stream->dump(fd);
1810 }
1811 }
1812
1813 // Thread virtuals
1814
onFirstRef()1815 void AudioFlinger::PlaybackThread::onFirstRef()
1816 {
1817 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1818 }
1819
1820 // ThreadBase virtuals
preExit()1821 void AudioFlinger::PlaybackThread::preExit()
1822 {
1823 ALOGV(" preExit()");
1824 // FIXME this is using hard-coded strings but in the future, this functionality will be
1825 // converted to use audio HAL extensions required to support tunneling
1826 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1827 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1828 }
1829
1830 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId)1831 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1832 const sp<AudioFlinger::Client>& client,
1833 audio_stream_type_t streamType,
1834 uint32_t sampleRate,
1835 audio_format_t format,
1836 audio_channel_mask_t channelMask,
1837 size_t *pFrameCount,
1838 const sp<IMemory>& sharedBuffer,
1839 audio_session_t sessionId,
1840 audio_output_flags_t *flags,
1841 pid_t tid,
1842 uid_t uid,
1843 status_t *status,
1844 audio_port_handle_t portId)
1845 {
1846 size_t frameCount = *pFrameCount;
1847 sp<Track> track;
1848 status_t lStatus;
1849 audio_output_flags_t outputFlags = mOutput->flags;
1850
1851 // special case for FAST flag considered OK if fast mixer is present
1852 if (hasFastMixer()) {
1853 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1854 }
1855
1856 // Check if requested flags are compatible with output stream flags
1857 if ((*flags & outputFlags) != *flags) {
1858 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1859 *flags, outputFlags);
1860 *flags = (audio_output_flags_t)(*flags & outputFlags);
1861 }
1862
1863 // client expresses a preference for FAST, but we get the final say
1864 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1865 if (
1866 // PCM data
1867 audio_is_linear_pcm(format) &&
1868 // TODO: extract as a data library function that checks that a computationally
1869 // expensive downmixer is not required: isFastOutputChannelConversion()
1870 (channelMask == mChannelMask ||
1871 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1872 (channelMask == AUDIO_CHANNEL_OUT_MONO
1873 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1874 // hardware sample rate
1875 (sampleRate == mSampleRate) &&
1876 // normal mixer has an associated fast mixer
1877 hasFastMixer() &&
1878 // there are sufficient fast track slots available
1879 (mFastTrackAvailMask != 0)
1880 // FIXME test that MixerThread for this fast track has a capable output HAL
1881 // FIXME add a permission test also?
1882 ) {
1883 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1884 if (sharedBuffer == 0) {
1885 // read the fast track multiplier property the first time it is needed
1886 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1887 if (ok != 0) {
1888 ALOGE("%s pthread_once failed: %d", __func__, ok);
1889 }
1890 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1891 }
1892
1893 // check compatibility with audio effects.
1894 { // scope for mLock
1895 Mutex::Autolock _l(mLock);
1896 for (audio_session_t session : {
1897 AUDIO_SESSION_OUTPUT_STAGE,
1898 AUDIO_SESSION_OUTPUT_MIX,
1899 sessionId,
1900 }) {
1901 sp<EffectChain> chain = getEffectChain_l(session);
1902 if (chain.get() != nullptr) {
1903 audio_output_flags_t old = *flags;
1904 chain->checkOutputFlagCompatibility(flags);
1905 if (old != *flags) {
1906 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
1907 (int)session, (int)old, (int)*flags);
1908 }
1909 }
1910 }
1911 }
1912 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1913 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1914 frameCount, mFrameCount);
1915 } else {
1916 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1917 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1918 "sampleRate=%u mSampleRate=%u "
1919 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1920 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1921 audio_is_linear_pcm(format),
1922 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1923 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1924 }
1925 }
1926 // For normal PCM streaming tracks, update minimum frame count.
1927 // For compatibility with AudioTrack calculation, buffer depth is forced
1928 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1929 // This is probably too conservative, but legacy application code may depend on it.
1930 // If you change this calculation, also review the start threshold which is related.
1931 if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1932 && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1933 // this must match AudioTrack.cpp calculateMinFrameCount().
1934 // TODO: Move to a common library
1935 uint32_t latencyMs = 0;
1936 lStatus = mOutput->stream->getLatency(&latencyMs);
1937 if (lStatus != OK) {
1938 ALOGE("Error when retrieving output stream latency: %d", lStatus);
1939 goto Exit;
1940 }
1941 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1942 if (minBufCount < 2) {
1943 minBufCount = 2;
1944 }
1945 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1946 // or the client should compute and pass in a larger buffer request.
1947 size_t minFrameCount =
1948 minBufCount * sourceFramesNeededWithTimestretch(
1949 sampleRate, mNormalFrameCount,
1950 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1951 if (frameCount < minFrameCount) { // including frameCount == 0
1952 frameCount = minFrameCount;
1953 }
1954 }
1955 *pFrameCount = frameCount;
1956
1957 switch (mType) {
1958
1959 case DIRECT:
1960 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1961 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1962 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1963 "for output %p with format %#x",
1964 sampleRate, format, channelMask, mOutput, mFormat);
1965 lStatus = BAD_VALUE;
1966 goto Exit;
1967 }
1968 }
1969 break;
1970
1971 case OFFLOAD:
1972 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1973 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1974 "for output %p with format %#x",
1975 sampleRate, format, channelMask, mOutput, mFormat);
1976 lStatus = BAD_VALUE;
1977 goto Exit;
1978 }
1979 break;
1980
1981 default:
1982 if (!audio_is_linear_pcm(format)) {
1983 ALOGE("createTrack_l() Bad parameter: format %#x \""
1984 "for output %p with format %#x",
1985 format, mOutput, mFormat);
1986 lStatus = BAD_VALUE;
1987 goto Exit;
1988 }
1989 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1990 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1991 lStatus = BAD_VALUE;
1992 goto Exit;
1993 }
1994 break;
1995
1996 }
1997
1998 lStatus = initCheck();
1999 if (lStatus != NO_ERROR) {
2000 ALOGE("createTrack_l() audio driver not initialized");
2001 goto Exit;
2002 }
2003
2004 { // scope for mLock
2005 Mutex::Autolock _l(mLock);
2006
2007 // all tracks in same audio session must share the same routing strategy otherwise
2008 // conflicts will happen when tracks are moved from one output to another by audio policy
2009 // manager
2010 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2011 for (size_t i = 0; i < mTracks.size(); ++i) {
2012 sp<Track> t = mTracks[i];
2013 if (t != 0 && t->isExternalTrack()) {
2014 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2015 if (sessionId == t->sessionId() && strategy != actual) {
2016 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2017 strategy, actual);
2018 lStatus = BAD_VALUE;
2019 goto Exit;
2020 }
2021 }
2022 }
2023
2024 track = new Track(this, client, streamType, sampleRate, format,
2025 channelMask, frameCount, NULL, sharedBuffer,
2026 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2027
2028 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2029 if (lStatus != NO_ERROR) {
2030 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2031 // track must be cleared from the caller as the caller has the AF lock
2032 goto Exit;
2033 }
2034 mTracks.add(track);
2035
2036 sp<EffectChain> chain = getEffectChain_l(sessionId);
2037 if (chain != 0) {
2038 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2039 track->setMainBuffer(chain->inBuffer());
2040 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2041 chain->incTrackCnt();
2042 }
2043
2044 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2045 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2046 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2047 // so ask activity manager to do this on our behalf
2048 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*isForApp*/);
2049 }
2050 }
2051
2052 lStatus = NO_ERROR;
2053
2054 Exit:
2055 *status = lStatus;
2056 return track;
2057 }
2058
correctLatency_l(uint32_t latency) const2059 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2060 {
2061 return latency;
2062 }
2063
latency() const2064 uint32_t AudioFlinger::PlaybackThread::latency() const
2065 {
2066 Mutex::Autolock _l(mLock);
2067 return latency_l();
2068 }
latency_l() const2069 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2070 {
2071 uint32_t latency;
2072 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2073 return correctLatency_l(latency);
2074 }
2075 return 0;
2076 }
2077
setMasterVolume(float value)2078 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2079 {
2080 Mutex::Autolock _l(mLock);
2081 // Don't apply master volume in SW if our HAL can do it for us.
2082 if (mOutput && mOutput->audioHwDev &&
2083 mOutput->audioHwDev->canSetMasterVolume()) {
2084 mMasterVolume = 1.0;
2085 } else {
2086 mMasterVolume = value;
2087 }
2088 }
2089
setMasterMute(bool muted)2090 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2091 {
2092 if (isDuplicating()) {
2093 return;
2094 }
2095 Mutex::Autolock _l(mLock);
2096 // Don't apply master mute in SW if our HAL can do it for us.
2097 if (mOutput && mOutput->audioHwDev &&
2098 mOutput->audioHwDev->canSetMasterMute()) {
2099 mMasterMute = false;
2100 } else {
2101 mMasterMute = muted;
2102 }
2103 }
2104
setStreamVolume(audio_stream_type_t stream,float value)2105 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2106 {
2107 Mutex::Autolock _l(mLock);
2108 mStreamTypes[stream].volume = value;
2109 broadcast_l();
2110 }
2111
setStreamMute(audio_stream_type_t stream,bool muted)2112 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2113 {
2114 Mutex::Autolock _l(mLock);
2115 mStreamTypes[stream].mute = muted;
2116 broadcast_l();
2117 }
2118
streamVolume(audio_stream_type_t stream) const2119 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2120 {
2121 Mutex::Autolock _l(mLock);
2122 return mStreamTypes[stream].volume;
2123 }
2124
2125 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2126 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2127 {
2128 status_t status = ALREADY_EXISTS;
2129
2130 if (mActiveTracks.indexOf(track) < 0) {
2131 // the track is newly added, make sure it fills up all its
2132 // buffers before playing. This is to ensure the client will
2133 // effectively get the latency it requested.
2134 if (track->isExternalTrack()) {
2135 TrackBase::track_state state = track->mState;
2136 mLock.unlock();
2137 status = AudioSystem::startOutput(mId, track->streamType(),
2138 track->sessionId());
2139 mLock.lock();
2140 // abort track was stopped/paused while we released the lock
2141 if (state != track->mState) {
2142 if (status == NO_ERROR) {
2143 mLock.unlock();
2144 AudioSystem::stopOutput(mId, track->streamType(),
2145 track->sessionId());
2146 mLock.lock();
2147 }
2148 return INVALID_OPERATION;
2149 }
2150 // abort if start is rejected by audio policy manager
2151 if (status != NO_ERROR) {
2152 return PERMISSION_DENIED;
2153 }
2154 #ifdef ADD_BATTERY_DATA
2155 // to track the speaker usage
2156 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2157 #endif
2158 }
2159
2160 // set retry count for buffer fill
2161 if (track->isOffloaded()) {
2162 if (track->isStopping_1()) {
2163 track->mRetryCount = kMaxTrackStopRetriesOffload;
2164 } else {
2165 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2166 }
2167 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2168 } else {
2169 track->mRetryCount = kMaxTrackStartupRetries;
2170 track->mFillingUpStatus =
2171 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2172 }
2173
2174 track->mResetDone = false;
2175 track->mPresentationCompleteFrames = 0;
2176 mActiveTracks.add(track);
2177 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2178 if (chain != 0) {
2179 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2180 track->sessionId());
2181 chain->incActiveTrackCnt();
2182 }
2183
2184 char buffer[256];
2185 track->dump(buffer, ARRAY_SIZE(buffer), false /* active */);
2186 mLocalLog.log("addTrack_l (%p) %s", track.get(), buffer + 4); // log for analysis
2187
2188 status = NO_ERROR;
2189 }
2190
2191 onAddNewTrack_l();
2192 return status;
2193 }
2194
destroyTrack_l(const sp<Track> & track)2195 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2196 {
2197 track->terminate();
2198 // active tracks are removed by threadLoop()
2199 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2200 track->mState = TrackBase::STOPPED;
2201 if (!trackActive) {
2202 removeTrack_l(track);
2203 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2204 track->mState = TrackBase::STOPPING_1;
2205 }
2206
2207 return trackActive;
2208 }
2209
removeTrack_l(const sp<Track> & track)2210 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2211 {
2212 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2213
2214 char buffer[256];
2215 track->dump(buffer, ARRAY_SIZE(buffer), false /* active */);
2216 mLocalLog.log("removeTrack_l (%p) %s", track.get(), buffer + 4); // log for analysis
2217
2218 mTracks.remove(track);
2219 deleteTrackName_l(track->name());
2220 // redundant as track is about to be destroyed, for dumpsys only
2221 track->mName = -1;
2222 if (track->isFastTrack()) {
2223 int index = track->mFastIndex;
2224 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2225 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2226 mFastTrackAvailMask |= 1 << index;
2227 // redundant as track is about to be destroyed, for dumpsys only
2228 track->mFastIndex = -1;
2229 }
2230 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2231 if (chain != 0) {
2232 chain->decTrackCnt();
2233 }
2234 }
2235
getParameters(const String8 & keys)2236 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2237 {
2238 Mutex::Autolock _l(mLock);
2239 String8 out_s8;
2240 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2241 return out_s8;
2242 }
2243 return String8();
2244 }
2245
ioConfigChanged(audio_io_config_event event,pid_t pid)2246 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2247 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2248 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2249
2250 desc->mIoHandle = mId;
2251
2252 switch (event) {
2253 case AUDIO_OUTPUT_OPENED:
2254 case AUDIO_OUTPUT_CONFIG_CHANGED:
2255 desc->mPatch = mPatch;
2256 desc->mChannelMask = mChannelMask;
2257 desc->mSamplingRate = mSampleRate;
2258 desc->mFormat = mFormat;
2259 desc->mFrameCount = mNormalFrameCount; // FIXME see
2260 // AudioFlinger::frameCount(audio_io_handle_t)
2261 desc->mFrameCountHAL = mFrameCount;
2262 desc->mLatency = latency_l();
2263 break;
2264
2265 case AUDIO_OUTPUT_CLOSED:
2266 default:
2267 break;
2268 }
2269 mAudioFlinger->ioConfigChanged(event, desc, pid);
2270 }
2271
onWriteReady()2272 void AudioFlinger::PlaybackThread::onWriteReady()
2273 {
2274 mCallbackThread->resetWriteBlocked();
2275 }
2276
onDrainReady()2277 void AudioFlinger::PlaybackThread::onDrainReady()
2278 {
2279 mCallbackThread->resetDraining();
2280 }
2281
onError()2282 void AudioFlinger::PlaybackThread::onError()
2283 {
2284 mCallbackThread->setAsyncError();
2285 }
2286
resetWriteBlocked(uint32_t sequence)2287 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2288 {
2289 Mutex::Autolock _l(mLock);
2290 // reject out of sequence requests
2291 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2292 mWriteAckSequence &= ~1;
2293 mWaitWorkCV.signal();
2294 }
2295 }
2296
resetDraining(uint32_t sequence)2297 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2298 {
2299 Mutex::Autolock _l(mLock);
2300 // reject out of sequence requests
2301 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2302 mDrainSequence &= ~1;
2303 mWaitWorkCV.signal();
2304 }
2305 }
2306
readOutputParameters_l()2307 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2308 {
2309 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2310 mSampleRate = mOutput->getSampleRate();
2311 mChannelMask = mOutput->getChannelMask();
2312 if (!audio_is_output_channel(mChannelMask)) {
2313 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2314 }
2315 if ((mType == MIXER || mType == DUPLICATING)
2316 && !isValidPcmSinkChannelMask(mChannelMask)) {
2317 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2318 mChannelMask);
2319 }
2320 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2321
2322 // Get actual HAL format.
2323 status_t result = mOutput->stream->getFormat(&mHALFormat);
2324 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2325 // Get format from the shim, which will be different than the HAL format
2326 // if playing compressed audio over HDMI passthrough.
2327 mFormat = mOutput->getFormat();
2328 if (!audio_is_valid_format(mFormat)) {
2329 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2330 }
2331 if ((mType == MIXER || mType == DUPLICATING)
2332 && !isValidPcmSinkFormat(mFormat)) {
2333 LOG_FATAL("HAL format %#x not supported for mixed output",
2334 mFormat);
2335 }
2336 mFrameSize = mOutput->getFrameSize();
2337 result = mOutput->stream->getBufferSize(&mBufferSize);
2338 LOG_ALWAYS_FATAL_IF(result != OK,
2339 "Error when retrieving output stream buffer size: %d", result);
2340 mFrameCount = mBufferSize / mFrameSize;
2341 if (mFrameCount & 15) {
2342 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2343 mFrameCount);
2344 }
2345
2346 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2347 if (mOutput->stream->setCallback(this) == OK) {
2348 mUseAsyncWrite = true;
2349 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2350 }
2351 }
2352
2353 mHwSupportsPause = false;
2354 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2355 bool supportsPause = false, supportsResume = false;
2356 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2357 if (supportsPause && supportsResume) {
2358 mHwSupportsPause = true;
2359 } else if (supportsPause) {
2360 ALOGW("direct output implements pause but not resume");
2361 } else if (supportsResume) {
2362 ALOGW("direct output implements resume but not pause");
2363 }
2364 }
2365 }
2366 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2367 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2368 }
2369
2370 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2371 // For best precision, we use float instead of the associated output
2372 // device format (typically PCM 16 bit).
2373
2374 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2375 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2376 mBufferSize = mFrameSize * mFrameCount;
2377
2378 // TODO: We currently use the associated output device channel mask and sample rate.
2379 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2380 // (if a valid mask) to avoid premature downmix.
2381 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2382 // instead of the output device sample rate to avoid loss of high frequency information.
2383 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2384 }
2385
2386 // Calculate size of normal sink buffer relative to the HAL output buffer size
2387 double multiplier = 1.0;
2388 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2389 kUseFastMixer == FastMixer_Dynamic)) {
2390 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2391 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2392
2393 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2394 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2395 maxNormalFrameCount = maxNormalFrameCount & ~15;
2396 if (maxNormalFrameCount < minNormalFrameCount) {
2397 maxNormalFrameCount = minNormalFrameCount;
2398 }
2399 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2400 if (multiplier <= 1.0) {
2401 multiplier = 1.0;
2402 } else if (multiplier <= 2.0) {
2403 if (2 * mFrameCount <= maxNormalFrameCount) {
2404 multiplier = 2.0;
2405 } else {
2406 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2407 }
2408 } else {
2409 multiplier = floor(multiplier);
2410 }
2411 }
2412 mNormalFrameCount = multiplier * mFrameCount;
2413 // round up to nearest 16 frames to satisfy AudioMixer
2414 if (mType == MIXER || mType == DUPLICATING) {
2415 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2416 }
2417 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2418 mNormalFrameCount);
2419
2420 // Check if we want to throttle the processing to no more than 2x normal rate
2421 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2422 mThreadThrottleTimeMs = 0;
2423 mThreadThrottleEndMs = 0;
2424 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2425
2426 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2427 // Originally this was int16_t[] array, need to remove legacy implications.
2428 free(mSinkBuffer);
2429 mSinkBuffer = NULL;
2430 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2431 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2432 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2433 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2434
2435 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2436 // drives the output.
2437 free(mMixerBuffer);
2438 mMixerBuffer = NULL;
2439 if (mMixerBufferEnabled) {
2440 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2441 mMixerBufferSize = mNormalFrameCount * mChannelCount
2442 * audio_bytes_per_sample(mMixerBufferFormat);
2443 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2444 }
2445 free(mEffectBuffer);
2446 mEffectBuffer = NULL;
2447 if (mEffectBufferEnabled) {
2448 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2449 mEffectBufferSize = mNormalFrameCount * mChannelCount
2450 * audio_bytes_per_sample(mEffectBufferFormat);
2451 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2452 }
2453
2454 // force reconfiguration of effect chains and engines to take new buffer size and audio
2455 // parameters into account
2456 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2457 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2458 // matter.
2459 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2460 Vector< sp<EffectChain> > effectChains = mEffectChains;
2461 for (size_t i = 0; i < effectChains.size(); i ++) {
2462 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2463 }
2464 }
2465
2466
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2467 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2468 {
2469 if (halFrames == NULL || dspFrames == NULL) {
2470 return BAD_VALUE;
2471 }
2472 Mutex::Autolock _l(mLock);
2473 if (initCheck() != NO_ERROR) {
2474 return INVALID_OPERATION;
2475 }
2476 int64_t framesWritten = mBytesWritten / mFrameSize;
2477 *halFrames = framesWritten;
2478
2479 if (isSuspended()) {
2480 // return an estimation of rendered frames when the output is suspended
2481 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2482 *dspFrames = (uint32_t)
2483 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2484 return NO_ERROR;
2485 } else {
2486 status_t status;
2487 uint32_t frames;
2488 status = mOutput->getRenderPosition(&frames);
2489 *dspFrames = (size_t)frames;
2490 return status;
2491 }
2492 }
2493
2494 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const2495 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2496 {
2497 uint32_t result = 0;
2498 if (getEffectChain_l(sessionId) != 0) {
2499 result = EFFECT_SESSION;
2500 }
2501
2502 for (size_t i = 0; i < mTracks.size(); ++i) {
2503 sp<Track> track = mTracks[i];
2504 if (sessionId == track->sessionId() && !track->isInvalid()) {
2505 result |= TRACK_SESSION;
2506 if (track->isFastTrack()) {
2507 result |= FAST_SESSION;
2508 }
2509 break;
2510 }
2511 }
2512
2513 return result;
2514 }
2515
getStrategyForSession_l(audio_session_t sessionId)2516 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2517 {
2518 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2519 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2520 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2521 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2522 }
2523 for (size_t i = 0; i < mTracks.size(); i++) {
2524 sp<Track> track = mTracks[i];
2525 if (sessionId == track->sessionId() && !track->isInvalid()) {
2526 return AudioSystem::getStrategyForStream(track->streamType());
2527 }
2528 }
2529 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2530 }
2531
2532
getOutput() const2533 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2534 {
2535 Mutex::Autolock _l(mLock);
2536 return mOutput;
2537 }
2538
clearOutput()2539 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2540 {
2541 Mutex::Autolock _l(mLock);
2542 AudioStreamOut *output = mOutput;
2543 mOutput = NULL;
2544 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2545 // must push a NULL and wait for ack
2546 mOutputSink.clear();
2547 mPipeSink.clear();
2548 mNormalSink.clear();
2549 return output;
2550 }
2551
2552 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2553 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2554 {
2555 if (mOutput == NULL) {
2556 return NULL;
2557 }
2558 return mOutput->stream;
2559 }
2560
activeSleepTimeUs() const2561 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2562 {
2563 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2564 }
2565
setSyncEvent(const sp<SyncEvent> & event)2566 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2567 {
2568 if (!isValidSyncEvent(event)) {
2569 return BAD_VALUE;
2570 }
2571
2572 Mutex::Autolock _l(mLock);
2573
2574 for (size_t i = 0; i < mTracks.size(); ++i) {
2575 sp<Track> track = mTracks[i];
2576 if (event->triggerSession() == track->sessionId()) {
2577 (void) track->setSyncEvent(event);
2578 return NO_ERROR;
2579 }
2580 }
2581
2582 return NAME_NOT_FOUND;
2583 }
2584
isValidSyncEvent(const sp<SyncEvent> & event) const2585 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2586 {
2587 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2588 }
2589
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2590 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2591 const Vector< sp<Track> >& tracksToRemove)
2592 {
2593 size_t count = tracksToRemove.size();
2594 if (count > 0) {
2595 for (size_t i = 0 ; i < count ; i++) {
2596 const sp<Track>& track = tracksToRemove.itemAt(i);
2597 if (track->isExternalTrack()) {
2598 AudioSystem::stopOutput(mId, track->streamType(),
2599 track->sessionId());
2600 #ifdef ADD_BATTERY_DATA
2601 // to track the speaker usage
2602 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2603 #endif
2604 if (track->isTerminated()) {
2605 AudioSystem::releaseOutput(mId, track->streamType(),
2606 track->sessionId());
2607 }
2608 }
2609 }
2610 }
2611 }
2612
checkSilentMode_l()2613 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2614 {
2615 if (!mMasterMute) {
2616 char value[PROPERTY_VALUE_MAX];
2617 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2618 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2619 return;
2620 }
2621 if (property_get("ro.audio.silent", value, "0") > 0) {
2622 char *endptr;
2623 unsigned long ul = strtoul(value, &endptr, 0);
2624 if (*endptr == '\0' && ul != 0) {
2625 ALOGD("Silence is golden");
2626 // The setprop command will not allow a property to be changed after
2627 // the first time it is set, so we don't have to worry about un-muting.
2628 setMasterMute_l(true);
2629 }
2630 }
2631 }
2632 }
2633
2634 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2635 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2636 {
2637 mInWrite = true;
2638 ssize_t bytesWritten;
2639 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2640
2641 // If an NBAIO sink is present, use it to write the normal mixer's submix
2642 if (mNormalSink != 0) {
2643
2644 const size_t count = mBytesRemaining / mFrameSize;
2645
2646 ATRACE_BEGIN("write");
2647 // update the setpoint when AudioFlinger::mScreenState changes
2648 uint32_t screenState = AudioFlinger::mScreenState;
2649 if (screenState != mScreenState) {
2650 mScreenState = screenState;
2651 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2652 if (pipe != NULL) {
2653 pipe->setAvgFrames((mScreenState & 1) ?
2654 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2655 }
2656 }
2657 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2658 ATRACE_END();
2659 if (framesWritten > 0) {
2660 bytesWritten = framesWritten * mFrameSize;
2661 } else {
2662 bytesWritten = framesWritten;
2663 }
2664 // otherwise use the HAL / AudioStreamOut directly
2665 } else {
2666 // Direct output and offload threads
2667
2668 if (mUseAsyncWrite) {
2669 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2670 mWriteAckSequence += 2;
2671 mWriteAckSequence |= 1;
2672 ALOG_ASSERT(mCallbackThread != 0);
2673 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2674 }
2675 // FIXME We should have an implementation of timestamps for direct output threads.
2676 // They are used e.g for multichannel PCM playback over HDMI.
2677 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2678
2679 if (mUseAsyncWrite &&
2680 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2681 // do not wait for async callback in case of error of full write
2682 mWriteAckSequence &= ~1;
2683 ALOG_ASSERT(mCallbackThread != 0);
2684 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2685 }
2686 }
2687
2688 mNumWrites++;
2689 mInWrite = false;
2690 mStandby = false;
2691 return bytesWritten;
2692 }
2693
threadLoop_drain()2694 void AudioFlinger::PlaybackThread::threadLoop_drain()
2695 {
2696 bool supportsDrain = false;
2697 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
2698 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2699 if (mUseAsyncWrite) {
2700 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2701 mDrainSequence |= 1;
2702 ALOG_ASSERT(mCallbackThread != 0);
2703 mCallbackThread->setDraining(mDrainSequence);
2704 }
2705 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
2706 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
2707 }
2708 }
2709
threadLoop_exit()2710 void AudioFlinger::PlaybackThread::threadLoop_exit()
2711 {
2712 {
2713 Mutex::Autolock _l(mLock);
2714 for (size_t i = 0; i < mTracks.size(); i++) {
2715 sp<Track> track = mTracks[i];
2716 track->invalidate();
2717 }
2718 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
2719 // After we exit there are no more track changes sent to BatteryNotifier
2720 // because that requires an active threadLoop.
2721 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
2722 mActiveTracks.clear();
2723 }
2724 }
2725
2726 /*
2727 The derived values that are cached:
2728 - mSinkBufferSize from frame count * frame size
2729 - mActiveSleepTimeUs from activeSleepTimeUs()
2730 - mIdleSleepTimeUs from idleSleepTimeUs()
2731 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2732 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2733 - maxPeriod from frame count and sample rate (MIXER only)
2734
2735 The parameters that affect these derived values are:
2736 - frame count
2737 - frame size
2738 - sample rate
2739 - device type: A2DP or not
2740 - device latency
2741 - format: PCM or not
2742 - active sleep time
2743 - idle sleep time
2744 */
2745
cacheParameters_l()2746 void AudioFlinger::PlaybackThread::cacheParameters_l()
2747 {
2748 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2749 mActiveSleepTimeUs = activeSleepTimeUs();
2750 mIdleSleepTimeUs = idleSleepTimeUs();
2751
2752 // make sure standby delay is not too short when connected to an A2DP sink to avoid
2753 // truncating audio when going to standby.
2754 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2755 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2756 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2757 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2758 }
2759 }
2760 }
2761
invalidateTracks_l(audio_stream_type_t streamType)2762 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2763 {
2764 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2765 this, streamType, mTracks.size());
2766 bool trackMatch = false;
2767 size_t size = mTracks.size();
2768 for (size_t i = 0; i < size; i++) {
2769 sp<Track> t = mTracks[i];
2770 if (t->streamType() == streamType && t->isExternalTrack()) {
2771 t->invalidate();
2772 trackMatch = true;
2773 }
2774 }
2775 return trackMatch;
2776 }
2777
invalidateTracks(audio_stream_type_t streamType)2778 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2779 {
2780 Mutex::Autolock _l(mLock);
2781 invalidateTracks_l(streamType);
2782 }
2783
addEffectChain_l(const sp<EffectChain> & chain)2784 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2785 {
2786 audio_session_t session = chain->sessionId();
2787 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
2788 status_t result = EffectBufferHalInterface::mirror(
2789 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
2790 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
2791 &halInBuffer);
2792 if (result != OK) return result;
2793 halOutBuffer = halInBuffer;
2794 int16_t *buffer = reinterpret_cast<int16_t*>(halInBuffer->externalData());
2795
2796 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2797 if (session > AUDIO_SESSION_OUTPUT_MIX) {
2798 // Only one effect chain can be present in direct output thread and it uses
2799 // the sink buffer as input
2800 if (mType != DIRECT) {
2801 size_t numSamples = mNormalFrameCount * mChannelCount;
2802 status_t result = EffectBufferHalInterface::allocate(
2803 numSamples * sizeof(int16_t),
2804 &halInBuffer);
2805 if (result != OK) return result;
2806 buffer = halInBuffer->audioBuffer()->s16;
2807 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
2808 buffer, session);
2809 }
2810
2811 // Attach all tracks with same session ID to this chain.
2812 for (size_t i = 0; i < mTracks.size(); ++i) {
2813 sp<Track> track = mTracks[i];
2814 if (session == track->sessionId()) {
2815 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2816 buffer);
2817 track->setMainBuffer(buffer);
2818 chain->incTrackCnt();
2819 }
2820 }
2821
2822 // indicate all active tracks in the chain
2823 for (const sp<Track> &track : mActiveTracks) {
2824 if (session == track->sessionId()) {
2825 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2826 chain->incActiveTrackCnt();
2827 }
2828 }
2829 }
2830 chain->setThread(this);
2831 chain->setInBuffer(halInBuffer);
2832 chain->setOutBuffer(halOutBuffer);
2833 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2834 // chains list in order to be processed last as it contains output stage effects.
2835 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2836 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2837 // after track specific effects and before output stage.
2838 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2839 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2840 // Effect chain for other sessions are inserted at beginning of effect
2841 // chains list to be processed before output mix effects. Relative order between other
2842 // sessions is not important.
2843 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2844 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2845 "audio_session_t constants misdefined");
2846 size_t size = mEffectChains.size();
2847 size_t i = 0;
2848 for (i = 0; i < size; i++) {
2849 if (mEffectChains[i]->sessionId() < session) {
2850 break;
2851 }
2852 }
2853 mEffectChains.insertAt(chain, i);
2854 checkSuspendOnAddEffectChain_l(chain);
2855
2856 return NO_ERROR;
2857 }
2858
removeEffectChain_l(const sp<EffectChain> & chain)2859 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2860 {
2861 audio_session_t session = chain->sessionId();
2862
2863 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2864
2865 for (size_t i = 0; i < mEffectChains.size(); i++) {
2866 if (chain == mEffectChains[i]) {
2867 mEffectChains.removeAt(i);
2868 // detach all active tracks from the chain
2869 for (const sp<Track> &track : mActiveTracks) {
2870 if (session == track->sessionId()) {
2871 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2872 chain.get(), session);
2873 chain->decActiveTrackCnt();
2874 }
2875 }
2876
2877 // detach all tracks with same session ID from this chain
2878 for (size_t i = 0; i < mTracks.size(); ++i) {
2879 sp<Track> track = mTracks[i];
2880 if (session == track->sessionId()) {
2881 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2882 chain->decTrackCnt();
2883 }
2884 }
2885 break;
2886 }
2887 }
2888 return mEffectChains.size();
2889 }
2890
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)2891 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2892 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2893 {
2894 Mutex::Autolock _l(mLock);
2895 return attachAuxEffect_l(track, EffectId);
2896 }
2897
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)2898 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2899 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2900 {
2901 status_t status = NO_ERROR;
2902
2903 if (EffectId == 0) {
2904 track->setAuxBuffer(0, NULL);
2905 } else {
2906 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2907 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2908 if (effect != 0) {
2909 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2910 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2911 } else {
2912 status = INVALID_OPERATION;
2913 }
2914 } else {
2915 status = BAD_VALUE;
2916 }
2917 }
2918 return status;
2919 }
2920
detachAuxEffect_l(int effectId)2921 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2922 {
2923 for (size_t i = 0; i < mTracks.size(); ++i) {
2924 sp<Track> track = mTracks[i];
2925 if (track->auxEffectId() == effectId) {
2926 attachAuxEffect_l(track, 0);
2927 }
2928 }
2929 }
2930
threadLoop()2931 bool AudioFlinger::PlaybackThread::threadLoop()
2932 {
2933 logWriterTLS = mNBLogWriter.get();
2934
2935 Vector< sp<Track> > tracksToRemove;
2936
2937 mStandbyTimeNs = systemTime();
2938 nsecs_t lastWriteFinished = -1; // time last server write completed
2939 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2940
2941 // MIXER
2942 nsecs_t lastWarning = 0;
2943
2944 // DUPLICATING
2945 // FIXME could this be made local to while loop?
2946 writeFrames = 0;
2947
2948 cacheParameters_l();
2949 mSleepTimeUs = mIdleSleepTimeUs;
2950
2951 if (mType == MIXER) {
2952 sleepTimeShift = 0;
2953 }
2954
2955 CpuStats cpuStats;
2956 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2957
2958 acquireWakeLock();
2959
2960 // mNBLogWriter->log can only be called while thread mutex mLock is held.
2961 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2962 // and then that string will be logged at the next convenient opportunity.
2963 const char *logString = NULL;
2964
2965 // Estimated time for next buffer to be written to hal. This is used only on
2966 // suspended mode (for now) to help schedule the wait time until next iteration.
2967 nsecs_t timeLoopNextNs = 0;
2968
2969 checkSilentMode_l();
2970 #if 0
2971 int z = 0; // used in logFormat example
2972 #endif
2973 while (!exitPending())
2974 {
2975 // Log merge requests are performed during AudioFlinger binder transactions, but
2976 // that does not cover audio playback. It's requested here for that reason.
2977 mAudioFlinger->requestLogMerge();
2978
2979 cpuStats.sample(myName);
2980
2981 Vector< sp<EffectChain> > effectChains;
2982
2983 { // scope for mLock
2984
2985 Mutex::Autolock _l(mLock);
2986
2987 processConfigEvents_l();
2988
2989 if (logString != NULL) {
2990 mNBLogWriter->logTimestamp();
2991 mNBLogWriter->log(logString);
2992 logString = NULL;
2993 }
2994
2995 // Gather the framesReleased counters for all active tracks,
2996 // and associate with the sink frames written out. We need
2997 // this to convert the sink timestamp to the track timestamp.
2998 bool kernelLocationUpdate = false;
2999 if (mNormalSink != 0) {
3000 // Note: The DuplicatingThread may not have a mNormalSink.
3001 // We always fetch the timestamp here because often the downstream
3002 // sink will block while writing.
3003 ExtendedTimestamp timestamp; // use private copy to fetch
3004 (void) mNormalSink->getTimestamp(timestamp);
3005
3006 // We keep track of the last valid kernel position in case we are in underrun
3007 // and the normal mixer period is the same as the fast mixer period, or there
3008 // is some error from the HAL.
3009 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3010 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3011 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3012 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3013 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3014
3015 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3016 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3017 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3018 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3019 }
3020
3021 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3022 kernelLocationUpdate = true;
3023 } else {
3024 ALOGVV("getTimestamp error - no valid kernel position");
3025 }
3026
3027 // copy over kernel info
3028 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3029 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3030 + mSuspendedFrames; // add frames discarded when suspended
3031 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3032 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3033 }
3034 // mFramesWritten for non-offloaded tracks are contiguous
3035 // even after standby() is called. This is useful for the track frame
3036 // to sink frame mapping.
3037 bool serverLocationUpdate = false;
3038 if (mFramesWritten != lastFramesWritten) {
3039 serverLocationUpdate = true;
3040 lastFramesWritten = mFramesWritten;
3041 }
3042 // Only update timestamps if there is a meaningful change.
3043 // Either the kernel timestamp must be valid or we have written something.
3044 if (kernelLocationUpdate || serverLocationUpdate) {
3045 if (serverLocationUpdate) {
3046 // use the time before we called the HAL write - it is a bit more accurate
3047 // to when the server last read data than the current time here.
3048 //
3049 // If we haven't written anything, mLastWriteTime will be -1
3050 // and we use systemTime().
3051 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3052 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3053 ? systemTime() : mLastWriteTime;
3054 }
3055
3056 for (const sp<Track> &t : mActiveTracks) {
3057 if (!t->isFastTrack()) {
3058 t->updateTrackFrameInfo(
3059 t->mAudioTrackServerProxy->framesReleased(),
3060 mFramesWritten,
3061 mTimestamp);
3062 }
3063 }
3064 }
3065 #if 0
3066 // logFormat example
3067 if (z % 100 == 0) {
3068 timespec ts;
3069 clock_gettime(CLOCK_MONOTONIC, &ts);
3070 LOGT("This is an integer %d, this is a float %f, this is my "
3071 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3072 LOGT("A deceptive null-terminated string %\0");
3073 }
3074 ++z;
3075 #endif
3076 saveOutputTracks();
3077 if (mSignalPending) {
3078 // A signal was raised while we were unlocked
3079 mSignalPending = false;
3080 } else if (waitingAsyncCallback_l()) {
3081 if (exitPending()) {
3082 break;
3083 }
3084 bool released = false;
3085 if (!keepWakeLock()) {
3086 releaseWakeLock_l();
3087 released = true;
3088 }
3089
3090 const int64_t waitNs = computeWaitTimeNs_l();
3091 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3092 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3093 if (status == TIMED_OUT) {
3094 mSignalPending = true; // if timeout recheck everything
3095 }
3096 ALOGV("async completion/wake");
3097 if (released) {
3098 acquireWakeLock_l();
3099 }
3100 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3101 mSleepTimeUs = 0;
3102
3103 continue;
3104 }
3105 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3106 isSuspended()) {
3107 // put audio hardware into standby after short delay
3108 if (shouldStandby_l()) {
3109
3110 threadLoop_standby();
3111
3112 mStandby = true;
3113 }
3114
3115 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3116 // we're about to wait, flush the binder command buffer
3117 IPCThreadState::self()->flushCommands();
3118
3119 clearOutputTracks();
3120
3121 if (exitPending()) {
3122 break;
3123 }
3124
3125 releaseWakeLock_l();
3126 // wait until we have something to do...
3127 ALOGV("%s going to sleep", myName.string());
3128 mWaitWorkCV.wait(mLock);
3129 ALOGV("%s waking up", myName.string());
3130 acquireWakeLock_l();
3131
3132 mMixerStatus = MIXER_IDLE;
3133 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3134 mBytesWritten = 0;
3135 mBytesRemaining = 0;
3136 checkSilentMode_l();
3137
3138 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3139 mSleepTimeUs = mIdleSleepTimeUs;
3140 if (mType == MIXER) {
3141 sleepTimeShift = 0;
3142 }
3143
3144 continue;
3145 }
3146 }
3147 // mMixerStatusIgnoringFastTracks is also updated internally
3148 mMixerStatus = prepareTracks_l(&tracksToRemove);
3149
3150 mActiveTracks.updatePowerState(this);
3151
3152 // prevent any changes in effect chain list and in each effect chain
3153 // during mixing and effect process as the audio buffers could be deleted
3154 // or modified if an effect is created or deleted
3155 lockEffectChains_l(effectChains);
3156 } // mLock scope ends
3157
3158 if (mBytesRemaining == 0) {
3159 mCurrentWriteLength = 0;
3160 if (mMixerStatus == MIXER_TRACKS_READY) {
3161 // threadLoop_mix() sets mCurrentWriteLength
3162 threadLoop_mix();
3163 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3164 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3165 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3166 // must be written to HAL
3167 threadLoop_sleepTime();
3168 if (mSleepTimeUs == 0) {
3169 mCurrentWriteLength = mSinkBufferSize;
3170 }
3171 }
3172 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3173 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3174 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3175 // or mSinkBuffer (if there are no effects).
3176 //
3177 // This is done pre-effects computation; if effects change to
3178 // support higher precision, this needs to move.
3179 //
3180 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3181 // TODO use mSleepTimeUs == 0 as an additional condition.
3182 if (mMixerBufferValid) {
3183 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3184 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3185
3186 // mono blend occurs for mixer threads only (not direct or offloaded)
3187 // and is handled here if we're going directly to the sink.
3188 if (requireMonoBlend() && !mEffectBufferValid) {
3189 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3190 true /*limit*/);
3191 }
3192
3193 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3194 mNormalFrameCount * mChannelCount);
3195 }
3196
3197 mBytesRemaining = mCurrentWriteLength;
3198 if (isSuspended()) {
3199 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3200 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3201 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3202 mBytesWritten += mBytesRemaining;
3203 mFramesWritten += framesRemaining;
3204 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3205 mBytesRemaining = 0;
3206 }
3207
3208 // only process effects if we're going to write
3209 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3210 for (size_t i = 0; i < effectChains.size(); i ++) {
3211 effectChains[i]->process_l();
3212 }
3213 }
3214 }
3215 // Process effect chains for offloaded thread even if no audio
3216 // was read from audio track: process only updates effect state
3217 // and thus does have to be synchronized with audio writes but may have
3218 // to be called while waiting for async write callback
3219 if (mType == OFFLOAD) {
3220 for (size_t i = 0; i < effectChains.size(); i ++) {
3221 effectChains[i]->process_l();
3222 }
3223 }
3224
3225 // Only if the Effects buffer is enabled and there is data in the
3226 // Effects buffer (buffer valid), we need to
3227 // copy into the sink buffer.
3228 // TODO use mSleepTimeUs == 0 as an additional condition.
3229 if (mEffectBufferValid) {
3230 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3231
3232 if (requireMonoBlend()) {
3233 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3234 true /*limit*/);
3235 }
3236
3237 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3238 mNormalFrameCount * mChannelCount);
3239 }
3240
3241 // enable changes in effect chain
3242 unlockEffectChains(effectChains);
3243
3244 if (!waitingAsyncCallback()) {
3245 // mSleepTimeUs == 0 means we must write to audio hardware
3246 if (mSleepTimeUs == 0) {
3247 ssize_t ret = 0;
3248 // We save lastWriteFinished here, as previousLastWriteFinished,
3249 // for throttling. On thread start, previousLastWriteFinished will be
3250 // set to -1, which properly results in no throttling after the first write.
3251 nsecs_t previousLastWriteFinished = lastWriteFinished;
3252 nsecs_t delta = 0;
3253 if (mBytesRemaining) {
3254 // FIXME rewrite to reduce number of system calls
3255 mLastWriteTime = systemTime(); // also used for dumpsys
3256 ret = threadLoop_write();
3257 lastWriteFinished = systemTime();
3258 delta = lastWriteFinished - mLastWriteTime;
3259 if (ret < 0) {
3260 mBytesRemaining = 0;
3261 } else {
3262 mBytesWritten += ret;
3263 mBytesRemaining -= ret;
3264 mFramesWritten += ret / mFrameSize;
3265 }
3266 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3267 (mMixerStatus == MIXER_DRAIN_ALL)) {
3268 threadLoop_drain();
3269 }
3270 if (mType == MIXER && !mStandby) {
3271 // write blocked detection
3272 if (delta > maxPeriod) {
3273 mNumDelayedWrites++;
3274 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3275 ATRACE_NAME("underrun");
3276 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3277 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3278 lastWarning = lastWriteFinished;
3279 }
3280 }
3281
3282 if (mThreadThrottle
3283 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3284 && ret > 0) { // we wrote something
3285 // Limit MixerThread data processing to no more than twice the
3286 // expected processing rate.
3287 //
3288 // This helps prevent underruns with NuPlayer and other applications
3289 // which may set up buffers that are close to the minimum size, or use
3290 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3291 //
3292 // The throttle smooths out sudden large data drains from the device,
3293 // e.g. when it comes out of standby, which often causes problems with
3294 // (1) mixer threads without a fast mixer (which has its own warm-up)
3295 // (2) minimum buffer sized tracks (even if the track is full,
3296 // the app won't fill fast enough to handle the sudden draw).
3297 //
3298 // Total time spent in last processing cycle equals time spent in
3299 // 1. threadLoop_write, as well as time spent in
3300 // 2. threadLoop_mix (significant for heavy mixing, especially
3301 // on low tier processors)
3302
3303 // it's OK if deltaMs is an overestimate.
3304 const int32_t deltaMs =
3305 (lastWriteFinished - previousLastWriteFinished) / 1000000;
3306 const int32_t throttleMs = mHalfBufferMs - deltaMs;
3307 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3308 usleep(throttleMs * 1000);
3309 // notify of throttle start on verbose log
3310 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3311 "mixer(%p) throttle begin:"
3312 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3313 this, ret, deltaMs, throttleMs);
3314 mThreadThrottleTimeMs += throttleMs;
3315 // Throttle must be attributed to the previous mixer loop's write time
3316 // to allow back-to-back throttling.
3317 lastWriteFinished += throttleMs * 1000000;
3318 } else {
3319 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3320 if (diff > 0) {
3321 // notify of throttle end on debug log
3322 // but prevent spamming for bluetooth
3323 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3324 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3325 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3326 }
3327 }
3328 }
3329 }
3330
3331 } else {
3332 ATRACE_BEGIN("sleep");
3333 Mutex::Autolock _l(mLock);
3334 // suspended requires accurate metering of sleep time.
3335 if (isSuspended()) {
3336 // advance by expected sleepTime
3337 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3338 const nsecs_t nowNs = systemTime();
3339
3340 // compute expected next time vs current time.
3341 // (negative deltas are treated as delays).
3342 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3343 if (deltaNs < -kMaxNextBufferDelayNs) {
3344 // Delays longer than the max allowed trigger a reset.
3345 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
3346 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
3347 timeLoopNextNs = nowNs + deltaNs;
3348 } else if (deltaNs < 0) {
3349 // Delays within the max delay allowed: zero the delta/sleepTime
3350 // to help the system catch up in the next iteration(s)
3351 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
3352 deltaNs = 0;
3353 }
3354 // update sleep time (which is >= 0)
3355 mSleepTimeUs = deltaNs / 1000;
3356 }
3357 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3358 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3359 }
3360 ATRACE_END();
3361 }
3362 }
3363
3364 // Finally let go of removed track(s), without the lock held
3365 // since we can't guarantee the destructors won't acquire that
3366 // same lock. This will also mutate and push a new fast mixer state.
3367 threadLoop_removeTracks(tracksToRemove);
3368 tracksToRemove.clear();
3369
3370 // FIXME I don't understand the need for this here;
3371 // it was in the original code but maybe the
3372 // assignment in saveOutputTracks() makes this unnecessary?
3373 clearOutputTracks();
3374
3375 // Effect chains will be actually deleted here if they were removed from
3376 // mEffectChains list during mixing or effects processing
3377 effectChains.clear();
3378
3379 // FIXME Note that the above .clear() is no longer necessary since effectChains
3380 // is now local to this block, but will keep it for now (at least until merge done).
3381 }
3382
3383 threadLoop_exit();
3384
3385 if (!mStandby) {
3386 threadLoop_standby();
3387 mStandby = true;
3388 }
3389
3390 releaseWakeLock();
3391
3392 ALOGV("Thread %p type %d exiting", this, mType);
3393 return false;
3394 }
3395
3396 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3397 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3398 {
3399 size_t count = tracksToRemove.size();
3400 if (count > 0) {
3401 for (size_t i=0 ; i<count ; i++) {
3402 const sp<Track>& track = tracksToRemove.itemAt(i);
3403 mActiveTracks.remove(track);
3404 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3405 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3406 if (chain != 0) {
3407 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3408 track->sessionId());
3409 chain->decActiveTrackCnt();
3410 }
3411 if (track->isTerminated()) {
3412 removeTrack_l(track);
3413 } else { // inactive but not terminated
3414 char buffer[256];
3415 track->dump(buffer, ARRAY_SIZE(buffer), false /* active */);
3416 mLocalLog.log("removeTracks_l(%p) %s", track.get(), buffer + 4);
3417 }
3418 }
3419 }
3420
3421 }
3422
getTimestamp_l(AudioTimestamp & timestamp)3423 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3424 {
3425 if (mNormalSink != 0) {
3426 ExtendedTimestamp ets;
3427 status_t status = mNormalSink->getTimestamp(ets);
3428 if (status == NO_ERROR) {
3429 status = ets.getBestTimestamp(×tamp);
3430 }
3431 return status;
3432 }
3433 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
3434 uint64_t position64;
3435 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
3436 timestamp.mPosition = (uint32_t)position64;
3437 return NO_ERROR;
3438 }
3439 }
3440 return INVALID_OPERATION;
3441 }
3442
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3443 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3444 audio_patch_handle_t *handle)
3445 {
3446 status_t status;
3447 if (property_get_bool("af.patch_park", false /* default_value */)) {
3448 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3449 // or if HAL does not properly lock against access.
3450 AutoPark<FastMixer> park(mFastMixer);
3451 status = PlaybackThread::createAudioPatch_l(patch, handle);
3452 } else {
3453 status = PlaybackThread::createAudioPatch_l(patch, handle);
3454 }
3455 return status;
3456 }
3457
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3458 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3459 audio_patch_handle_t *handle)
3460 {
3461 status_t status = NO_ERROR;
3462
3463 // store new device and send to effects
3464 audio_devices_t type = AUDIO_DEVICE_NONE;
3465 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3466 type |= patch->sinks[i].ext.device.type;
3467 }
3468
3469 #ifdef ADD_BATTERY_DATA
3470 // when changing the audio output device, call addBatteryData to notify
3471 // the change
3472 if (mOutDevice != type) {
3473 uint32_t params = 0;
3474 // check whether speaker is on
3475 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3476 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3477 }
3478
3479 audio_devices_t deviceWithoutSpeaker
3480 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3481 // check if any other device (except speaker) is on
3482 if (type & deviceWithoutSpeaker) {
3483 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3484 }
3485
3486 if (params != 0) {
3487 addBatteryData(params);
3488 }
3489 }
3490 #endif
3491
3492 for (size_t i = 0; i < mEffectChains.size(); i++) {
3493 mEffectChains[i]->setDevice_l(type);
3494 }
3495
3496 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3497 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3498 bool configChanged = mPrevOutDevice != type;
3499 mOutDevice = type;
3500 mPatch = *patch;
3501
3502 if (mOutput->audioHwDev->supportsAudioPatches()) {
3503 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3504 status = hwDevice->createAudioPatch(patch->num_sources,
3505 patch->sources,
3506 patch->num_sinks,
3507 patch->sinks,
3508 handle);
3509 } else {
3510 char *address;
3511 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3512 //FIXME: we only support address on first sink with HAL version < 3.0
3513 address = audio_device_address_to_parameter(
3514 patch->sinks[0].ext.device.type,
3515 patch->sinks[0].ext.device.address);
3516 } else {
3517 address = (char *)calloc(1, 1);
3518 }
3519 AudioParameter param = AudioParameter(String8(address));
3520 free(address);
3521 param.addInt(String8(AudioParameter::keyRouting), (int)type);
3522 status = mOutput->stream->setParameters(param.toString());
3523 *handle = AUDIO_PATCH_HANDLE_NONE;
3524 }
3525 if (configChanged) {
3526 mPrevOutDevice = type;
3527 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3528 }
3529 return status;
3530 }
3531
releaseAudioPatch_l(const audio_patch_handle_t handle)3532 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3533 {
3534 status_t status;
3535 if (property_get_bool("af.patch_park", false /* default_value */)) {
3536 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3537 // or if HAL does not properly lock against access.
3538 AutoPark<FastMixer> park(mFastMixer);
3539 status = PlaybackThread::releaseAudioPatch_l(handle);
3540 } else {
3541 status = PlaybackThread::releaseAudioPatch_l(handle);
3542 }
3543 return status;
3544 }
3545
releaseAudioPatch_l(const audio_patch_handle_t handle)3546 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3547 {
3548 status_t status = NO_ERROR;
3549
3550 mOutDevice = AUDIO_DEVICE_NONE;
3551
3552 if (mOutput->audioHwDev->supportsAudioPatches()) {
3553 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3554 status = hwDevice->releaseAudioPatch(handle);
3555 } else {
3556 AudioParameter param;
3557 param.addInt(String8(AudioParameter::keyRouting), 0);
3558 status = mOutput->stream->setParameters(param.toString());
3559 }
3560 return status;
3561 }
3562
addPatchTrack(const sp<PatchTrack> & track)3563 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3564 {
3565 Mutex::Autolock _l(mLock);
3566 mTracks.add(track);
3567 }
3568
deletePatchTrack(const sp<PatchTrack> & track)3569 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3570 {
3571 Mutex::Autolock _l(mLock);
3572 destroyTrack_l(track);
3573 }
3574
getAudioPortConfig(struct audio_port_config * config)3575 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3576 {
3577 ThreadBase::getAudioPortConfig(config);
3578 config->role = AUDIO_PORT_ROLE_SOURCE;
3579 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3580 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3581 }
3582
3583 // ----------------------------------------------------------------------------
3584
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3585 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3586 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3587 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3588 // mAudioMixer below
3589 // mFastMixer below
3590 mFastMixerFutex(0),
3591 mMasterMono(false)
3592 // mOutputSink below
3593 // mPipeSink below
3594 // mNormalSink below
3595 {
3596 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3597 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3598 "mFrameCount=%zu, mNormalFrameCount=%zu",
3599 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3600 mNormalFrameCount);
3601 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3602
3603 if (type == DUPLICATING) {
3604 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3605 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3606 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3607 return;
3608 }
3609 // create an NBAIO sink for the HAL output stream, and negotiate
3610 mOutputSink = new AudioStreamOutSink(output->stream);
3611 size_t numCounterOffers = 0;
3612 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3613 #if !LOG_NDEBUG
3614 ssize_t index =
3615 #else
3616 (void)
3617 #endif
3618 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3619 ALOG_ASSERT(index == 0);
3620
3621 // initialize fast mixer depending on configuration
3622 bool initFastMixer;
3623 switch (kUseFastMixer) {
3624 case FastMixer_Never:
3625 initFastMixer = false;
3626 break;
3627 case FastMixer_Always:
3628 initFastMixer = true;
3629 break;
3630 case FastMixer_Static:
3631 case FastMixer_Dynamic:
3632 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
3633 // where the period is less than an experimentally determined threshold that can be
3634 // scheduled reliably with CFS. However, the BT A2DP HAL is
3635 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
3636 initFastMixer = mFrameCount < mNormalFrameCount
3637 && (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) == 0;
3638 break;
3639 }
3640 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
3641 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
3642 mFrameCount, mNormalFrameCount);
3643 if (initFastMixer) {
3644 audio_format_t fastMixerFormat;
3645 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3646 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3647 } else {
3648 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3649 }
3650 if (mFormat != fastMixerFormat) {
3651 // change our Sink format to accept our intermediate precision
3652 mFormat = fastMixerFormat;
3653 free(mSinkBuffer);
3654 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3655 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3656 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3657 }
3658
3659 // create a MonoPipe to connect our submix to FastMixer
3660 NBAIO_Format format = mOutputSink->format();
3661 #ifdef TEE_SINK
3662 NBAIO_Format origformat = format;
3663 #endif
3664 // adjust format to match that of the Fast Mixer
3665 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3666 format.mFormat = fastMixerFormat;
3667 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3668
3669 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3670 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3671 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3672 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3673 const NBAIO_Format offers[1] = {format};
3674 size_t numCounterOffers = 0;
3675 #if !LOG_NDEBUG || defined(TEE_SINK)
3676 ssize_t index =
3677 #else
3678 (void)
3679 #endif
3680 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3681 ALOG_ASSERT(index == 0);
3682 monoPipe->setAvgFrames((mScreenState & 1) ?
3683 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3684 mPipeSink = monoPipe;
3685
3686 #ifdef TEE_SINK
3687 if (mTeeSinkOutputEnabled) {
3688 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3689 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3690 const NBAIO_Format offers2[1] = {origformat};
3691 numCounterOffers = 0;
3692 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3693 ALOG_ASSERT(index == 0);
3694 mTeeSink = teeSink;
3695 PipeReader *teeSource = new PipeReader(*teeSink);
3696 numCounterOffers = 0;
3697 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3698 ALOG_ASSERT(index == 0);
3699 mTeeSource = teeSource;
3700 }
3701 #endif
3702
3703 // create fast mixer and configure it initially with just one fast track for our submix
3704 mFastMixer = new FastMixer();
3705 FastMixerStateQueue *sq = mFastMixer->sq();
3706 #ifdef STATE_QUEUE_DUMP
3707 sq->setObserverDump(&mStateQueueObserverDump);
3708 sq->setMutatorDump(&mStateQueueMutatorDump);
3709 #endif
3710 FastMixerState *state = sq->begin();
3711 FastTrack *fastTrack = &state->mFastTracks[0];
3712 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3713 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3714 fastTrack->mVolumeProvider = NULL;
3715 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3716 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3717 fastTrack->mGeneration++;
3718 state->mFastTracksGen++;
3719 state->mTrackMask = 1;
3720 // fast mixer will use the HAL output sink
3721 state->mOutputSink = mOutputSink.get();
3722 state->mOutputSinkGen++;
3723 state->mFrameCount = mFrameCount;
3724 state->mCommand = FastMixerState::COLD_IDLE;
3725 // already done in constructor initialization list
3726 //mFastMixerFutex = 0;
3727 state->mColdFutexAddr = &mFastMixerFutex;
3728 state->mColdGen++;
3729 state->mDumpState = &mFastMixerDumpState;
3730 #ifdef TEE_SINK
3731 state->mTeeSink = mTeeSink.get();
3732 #endif
3733 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3734 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3735 sq->end();
3736 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3737
3738 // start the fast mixer
3739 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3740 pid_t tid = mFastMixer->getTid();
3741 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer, false);
3742 stream()->setHalThreadPriority(kPriorityFastMixer);
3743
3744 #ifdef AUDIO_WATCHDOG
3745 // create and start the watchdog
3746 mAudioWatchdog = new AudioWatchdog();
3747 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3748 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3749 tid = mAudioWatchdog->getTid();
3750 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3751 #endif
3752
3753 }
3754
3755 switch (kUseFastMixer) {
3756 case FastMixer_Never:
3757 case FastMixer_Dynamic:
3758 mNormalSink = mOutputSink;
3759 break;
3760 case FastMixer_Always:
3761 mNormalSink = mPipeSink;
3762 break;
3763 case FastMixer_Static:
3764 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3765 break;
3766 }
3767 }
3768
~MixerThread()3769 AudioFlinger::MixerThread::~MixerThread()
3770 {
3771 if (mFastMixer != 0) {
3772 FastMixerStateQueue *sq = mFastMixer->sq();
3773 FastMixerState *state = sq->begin();
3774 if (state->mCommand == FastMixerState::COLD_IDLE) {
3775 int32_t old = android_atomic_inc(&mFastMixerFutex);
3776 if (old == -1) {
3777 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3778 }
3779 }
3780 state->mCommand = FastMixerState::EXIT;
3781 sq->end();
3782 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3783 mFastMixer->join();
3784 // Though the fast mixer thread has exited, it's state queue is still valid.
3785 // We'll use that extract the final state which contains one remaining fast track
3786 // corresponding to our sub-mix.
3787 state = sq->begin();
3788 ALOG_ASSERT(state->mTrackMask == 1);
3789 FastTrack *fastTrack = &state->mFastTracks[0];
3790 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3791 delete fastTrack->mBufferProvider;
3792 sq->end(false /*didModify*/);
3793 mFastMixer.clear();
3794 #ifdef AUDIO_WATCHDOG
3795 if (mAudioWatchdog != 0) {
3796 mAudioWatchdog->requestExit();
3797 mAudioWatchdog->requestExitAndWait();
3798 mAudioWatchdog.clear();
3799 }
3800 #endif
3801 }
3802 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3803 delete mAudioMixer;
3804 }
3805
3806
correctLatency_l(uint32_t latency) const3807 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3808 {
3809 if (mFastMixer != 0) {
3810 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3811 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3812 }
3813 return latency;
3814 }
3815
3816
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3817 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3818 {
3819 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3820 }
3821
threadLoop_write()3822 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3823 {
3824 // FIXME we should only do one push per cycle; confirm this is true
3825 // Start the fast mixer if it's not already running
3826 if (mFastMixer != 0) {
3827 FastMixerStateQueue *sq = mFastMixer->sq();
3828 FastMixerState *state = sq->begin();
3829 if (state->mCommand != FastMixerState::MIX_WRITE &&
3830 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3831 if (state->mCommand == FastMixerState::COLD_IDLE) {
3832
3833 // FIXME workaround for first HAL write being CPU bound on some devices
3834 ATRACE_BEGIN("write");
3835 mOutput->write((char *)mSinkBuffer, 0);
3836 ATRACE_END();
3837
3838 int32_t old = android_atomic_inc(&mFastMixerFutex);
3839 if (old == -1) {
3840 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3841 }
3842 #ifdef AUDIO_WATCHDOG
3843 if (mAudioWatchdog != 0) {
3844 mAudioWatchdog->resume();
3845 }
3846 #endif
3847 }
3848 state->mCommand = FastMixerState::MIX_WRITE;
3849 #ifdef FAST_THREAD_STATISTICS
3850 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3851 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3852 #endif
3853 sq->end();
3854 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3855 if (kUseFastMixer == FastMixer_Dynamic) {
3856 mNormalSink = mPipeSink;
3857 }
3858 } else {
3859 sq->end(false /*didModify*/);
3860 }
3861 }
3862 return PlaybackThread::threadLoop_write();
3863 }
3864
threadLoop_standby()3865 void AudioFlinger::MixerThread::threadLoop_standby()
3866 {
3867 // Idle the fast mixer if it's currently running
3868 if (mFastMixer != 0) {
3869 FastMixerStateQueue *sq = mFastMixer->sq();
3870 FastMixerState *state = sq->begin();
3871 if (!(state->mCommand & FastMixerState::IDLE)) {
3872 // Report any frames trapped in the Monopipe
3873 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
3874 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
3875 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
3876 "monoPipeWritten:%lld monoPipeLeft:%lld",
3877 (long long)mFramesWritten, (long long)mSuspendedFrames,
3878 (long long)mPipeSink->framesWritten(), pipeFrames);
3879 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
3880
3881 state->mCommand = FastMixerState::COLD_IDLE;
3882 state->mColdFutexAddr = &mFastMixerFutex;
3883 state->mColdGen++;
3884 mFastMixerFutex = 0;
3885 sq->end();
3886 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3887 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3888 if (kUseFastMixer == FastMixer_Dynamic) {
3889 mNormalSink = mOutputSink;
3890 }
3891 #ifdef AUDIO_WATCHDOG
3892 if (mAudioWatchdog != 0) {
3893 mAudioWatchdog->pause();
3894 }
3895 #endif
3896 } else {
3897 sq->end(false /*didModify*/);
3898 }
3899 }
3900 PlaybackThread::threadLoop_standby();
3901 }
3902
waitingAsyncCallback_l()3903 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3904 {
3905 return false;
3906 }
3907
shouldStandby_l()3908 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3909 {
3910 return !mStandby;
3911 }
3912
waitingAsyncCallback()3913 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3914 {
3915 Mutex::Autolock _l(mLock);
3916 return waitingAsyncCallback_l();
3917 }
3918
3919 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3920 void AudioFlinger::PlaybackThread::threadLoop_standby()
3921 {
3922 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3923 mOutput->standby();
3924 if (mUseAsyncWrite != 0) {
3925 // discard any pending drain or write ack by incrementing sequence
3926 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3927 mDrainSequence = (mDrainSequence + 2) & ~1;
3928 ALOG_ASSERT(mCallbackThread != 0);
3929 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3930 mCallbackThread->setDraining(mDrainSequence);
3931 }
3932 mHwPaused = false;
3933 }
3934
onAddNewTrack_l()3935 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3936 {
3937 ALOGV("signal playback thread");
3938 broadcast_l();
3939 }
3940
onAsyncError()3941 void AudioFlinger::PlaybackThread::onAsyncError()
3942 {
3943 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3944 invalidateTracks((audio_stream_type_t)i);
3945 }
3946 }
3947
threadLoop_mix()3948 void AudioFlinger::MixerThread::threadLoop_mix()
3949 {
3950 // mix buffers...
3951 mAudioMixer->process();
3952 mCurrentWriteLength = mSinkBufferSize;
3953 // increase sleep time progressively when application underrun condition clears.
3954 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3955 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3956 // such that we would underrun the audio HAL.
3957 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3958 sleepTimeShift--;
3959 }
3960 mSleepTimeUs = 0;
3961 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3962 //TODO: delay standby when effects have a tail
3963
3964 }
3965
threadLoop_sleepTime()3966 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3967 {
3968 // If no tracks are ready, sleep once for the duration of an output
3969 // buffer size, then write 0s to the output
3970 if (mSleepTimeUs == 0) {
3971 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3972 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3973 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3974 mSleepTimeUs = kMinThreadSleepTimeUs;
3975 }
3976 // reduce sleep time in case of consecutive application underruns to avoid
3977 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3978 // duration we would end up writing less data than needed by the audio HAL if
3979 // the condition persists.
3980 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3981 sleepTimeShift++;
3982 }
3983 } else {
3984 mSleepTimeUs = mIdleSleepTimeUs;
3985 }
3986 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3987 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3988 // before effects processing or output.
3989 if (mMixerBufferValid) {
3990 memset(mMixerBuffer, 0, mMixerBufferSize);
3991 } else {
3992 memset(mSinkBuffer, 0, mSinkBufferSize);
3993 }
3994 mSleepTimeUs = 0;
3995 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3996 "anticipated start");
3997 }
3998 // TODO add standby time extension fct of effect tail
3999 }
4000
4001 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4002 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4003 Vector< sp<Track> > *tracksToRemove)
4004 {
4005
4006 mixer_state mixerStatus = MIXER_IDLE;
4007 // find out which tracks need to be processed
4008 size_t count = mActiveTracks.size();
4009 size_t mixedTracks = 0;
4010 size_t tracksWithEffect = 0;
4011 // counts only _active_ fast tracks
4012 size_t fastTracks = 0;
4013 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4014
4015 float masterVolume = mMasterVolume;
4016 bool masterMute = mMasterMute;
4017
4018 if (masterMute) {
4019 masterVolume = 0;
4020 }
4021 // Delegate master volume control to effect in output mix effect chain if needed
4022 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4023 if (chain != 0) {
4024 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4025 chain->setVolume_l(&v, &v);
4026 masterVolume = (float)((v + (1 << 23)) >> 24);
4027 chain.clear();
4028 }
4029
4030 // prepare a new state to push
4031 FastMixerStateQueue *sq = NULL;
4032 FastMixerState *state = NULL;
4033 bool didModify = false;
4034 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4035 bool coldIdle = false;
4036 if (mFastMixer != 0) {
4037 sq = mFastMixer->sq();
4038 state = sq->begin();
4039 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4040 }
4041
4042 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4043 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4044
4045 for (size_t i=0 ; i<count ; i++) {
4046 const sp<Track> t = mActiveTracks[i];
4047
4048 // this const just means the local variable doesn't change
4049 Track* const track = t.get();
4050
4051 // process fast tracks
4052 if (track->isFastTrack()) {
4053
4054 // It's theoretically possible (though unlikely) for a fast track to be created
4055 // and then removed within the same normal mix cycle. This is not a problem, as
4056 // the track never becomes active so it's fast mixer slot is never touched.
4057 // The converse, of removing an (active) track and then creating a new track
4058 // at the identical fast mixer slot within the same normal mix cycle,
4059 // is impossible because the slot isn't marked available until the end of each cycle.
4060 int j = track->mFastIndex;
4061 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4062 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4063 FastTrack *fastTrack = &state->mFastTracks[j];
4064
4065 // Determine whether the track is currently in underrun condition,
4066 // and whether it had a recent underrun.
4067 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4068 FastTrackUnderruns underruns = ftDump->mUnderruns;
4069 uint32_t recentFull = (underruns.mBitFields.mFull -
4070 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4071 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4072 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4073 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4074 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4075 uint32_t recentUnderruns = recentPartial + recentEmpty;
4076 track->mObservedUnderruns = underruns;
4077 // don't count underruns that occur while stopping or pausing
4078 // or stopped which can occur when flush() is called while active
4079 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4080 recentUnderruns > 0) {
4081 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4082 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4083 } else {
4084 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4085 }
4086
4087 // This is similar to the state machine for normal tracks,
4088 // with a few modifications for fast tracks.
4089 bool isActive = true;
4090 switch (track->mState) {
4091 case TrackBase::STOPPING_1:
4092 // track stays active in STOPPING_1 state until first underrun
4093 if (recentUnderruns > 0 || track->isTerminated()) {
4094 track->mState = TrackBase::STOPPING_2;
4095 }
4096 break;
4097 case TrackBase::PAUSING:
4098 // ramp down is not yet implemented
4099 track->setPaused();
4100 break;
4101 case TrackBase::RESUMING:
4102 // ramp up is not yet implemented
4103 track->mState = TrackBase::ACTIVE;
4104 break;
4105 case TrackBase::ACTIVE:
4106 if (recentFull > 0 || recentPartial > 0) {
4107 // track has provided at least some frames recently: reset retry count
4108 track->mRetryCount = kMaxTrackRetries;
4109 }
4110 if (recentUnderruns == 0) {
4111 // no recent underruns: stay active
4112 break;
4113 }
4114 // there has recently been an underrun of some kind
4115 if (track->sharedBuffer() == 0) {
4116 // were any of the recent underruns "empty" (no frames available)?
4117 if (recentEmpty == 0) {
4118 // no, then ignore the partial underruns as they are allowed indefinitely
4119 break;
4120 }
4121 // there has recently been an "empty" underrun: decrement the retry counter
4122 if (--(track->mRetryCount) > 0) {
4123 break;
4124 }
4125 // indicate to client process that the track was disabled because of underrun;
4126 // it will then automatically call start() when data is available
4127 track->disable();
4128 // remove from active list, but state remains ACTIVE [confusing but true]
4129 isActive = false;
4130 break;
4131 }
4132 // fall through
4133 case TrackBase::STOPPING_2:
4134 case TrackBase::PAUSED:
4135 case TrackBase::STOPPED:
4136 case TrackBase::FLUSHED: // flush() while active
4137 // Check for presentation complete if track is inactive
4138 // We have consumed all the buffers of this track.
4139 // This would be incomplete if we auto-paused on underrun
4140 {
4141 uint32_t latency = 0;
4142 status_t result = mOutput->stream->getLatency(&latency);
4143 ALOGE_IF(result != OK,
4144 "Error when retrieving output stream latency: %d", result);
4145 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4146 int64_t framesWritten = mBytesWritten / mFrameSize;
4147 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4148 // track stays in active list until presentation is complete
4149 break;
4150 }
4151 }
4152 if (track->isStopping_2()) {
4153 track->mState = TrackBase::STOPPED;
4154 }
4155 if (track->isStopped()) {
4156 // Can't reset directly, as fast mixer is still polling this track
4157 // track->reset();
4158 // So instead mark this track as needing to be reset after push with ack
4159 resetMask |= 1 << i;
4160 }
4161 isActive = false;
4162 break;
4163 case TrackBase::IDLE:
4164 default:
4165 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4166 }
4167
4168 if (isActive) {
4169 // was it previously inactive?
4170 if (!(state->mTrackMask & (1 << j))) {
4171 ExtendedAudioBufferProvider *eabp = track;
4172 VolumeProvider *vp = track;
4173 fastTrack->mBufferProvider = eabp;
4174 fastTrack->mVolumeProvider = vp;
4175 fastTrack->mChannelMask = track->mChannelMask;
4176 fastTrack->mFormat = track->mFormat;
4177 fastTrack->mGeneration++;
4178 state->mTrackMask |= 1 << j;
4179 didModify = true;
4180 // no acknowledgement required for newly active tracks
4181 }
4182 // cache the combined master volume and stream type volume for fast mixer; this
4183 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4184 const float vh = track->getVolumeHandler()->getVolume(
4185 track->mAudioTrackServerProxy->framesReleased()).first;
4186 track->mCachedVolume = masterVolume
4187 * mStreamTypes[track->streamType()].volume
4188 * vh;
4189 ++fastTracks;
4190 } else {
4191 // was it previously active?
4192 if (state->mTrackMask & (1 << j)) {
4193 fastTrack->mBufferProvider = NULL;
4194 fastTrack->mGeneration++;
4195 state->mTrackMask &= ~(1 << j);
4196 didModify = true;
4197 // If any fast tracks were removed, we must wait for acknowledgement
4198 // because we're about to decrement the last sp<> on those tracks.
4199 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4200 } else {
4201 LOG_ALWAYS_FATAL("fast track %d should have been active; "
4202 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4203 j, track->mState, state->mTrackMask, recentUnderruns,
4204 track->sharedBuffer() != 0);
4205 }
4206 tracksToRemove->add(track);
4207 // Avoids a misleading display in dumpsys
4208 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4209 }
4210 continue;
4211 }
4212
4213 { // local variable scope to avoid goto warning
4214
4215 audio_track_cblk_t* cblk = track->cblk();
4216
4217 // The first time a track is added we wait
4218 // for all its buffers to be filled before processing it
4219 int name = track->name();
4220 // make sure that we have enough frames to mix one full buffer.
4221 // enforce this condition only once to enable draining the buffer in case the client
4222 // app does not call stop() and relies on underrun to stop:
4223 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4224 // during last round
4225 size_t desiredFrames;
4226 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4227 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4228
4229 desiredFrames = sourceFramesNeededWithTimestretch(
4230 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4231 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4232 // add frames already consumed but not yet released by the resampler
4233 // because mAudioTrackServerProxy->framesReady() will include these frames
4234 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4235
4236 uint32_t minFrames = 1;
4237 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4238 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4239 minFrames = desiredFrames;
4240 }
4241
4242 size_t framesReady = track->framesReady();
4243 if (ATRACE_ENABLED()) {
4244 // I wish we had formatted trace names
4245 char traceName[16];
4246 strcpy(traceName, "nRdy");
4247 int name = track->name();
4248 if (AudioMixer::TRACK0 <= name &&
4249 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4250 name -= AudioMixer::TRACK0;
4251 traceName[4] = (name / 10) + '0';
4252 traceName[5] = (name % 10) + '0';
4253 } else {
4254 traceName[4] = '?';
4255 traceName[5] = '?';
4256 }
4257 traceName[6] = '\0';
4258 ATRACE_INT(traceName, framesReady);
4259 }
4260 if ((framesReady >= minFrames) && track->isReady() &&
4261 !track->isPaused() && !track->isTerminated())
4262 {
4263 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4264
4265 mixedTracks++;
4266
4267 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4268 // there is an effect chain connected to the track
4269 chain.clear();
4270 if (track->mainBuffer() != mSinkBuffer &&
4271 track->mainBuffer() != mMixerBuffer) {
4272 if (mEffectBufferEnabled) {
4273 mEffectBufferValid = true; // Later can set directly.
4274 }
4275 chain = getEffectChain_l(track->sessionId());
4276 // Delegate volume control to effect in track effect chain if needed
4277 if (chain != 0) {
4278 tracksWithEffect++;
4279 } else {
4280 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4281 "session %d",
4282 name, track->sessionId());
4283 }
4284 }
4285
4286
4287 int param = AudioMixer::VOLUME;
4288 if (track->mFillingUpStatus == Track::FS_FILLED) {
4289 // no ramp for the first volume setting
4290 track->mFillingUpStatus = Track::FS_ACTIVE;
4291 if (track->mState == TrackBase::RESUMING) {
4292 track->mState = TrackBase::ACTIVE;
4293 param = AudioMixer::RAMP_VOLUME;
4294 }
4295 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4296 // FIXME should not make a decision based on mServer
4297 } else if (cblk->mServer != 0) {
4298 // If the track is stopped before the first frame was mixed,
4299 // do not apply ramp
4300 param = AudioMixer::RAMP_VOLUME;
4301 }
4302
4303 // compute volume for this track
4304 uint32_t vl, vr; // in U8.24 integer format
4305 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4306 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4307 vl = vr = 0;
4308 vlf = vrf = vaf = 0.;
4309 if (track->isPausing()) {
4310 track->setPaused();
4311 }
4312 } else {
4313
4314 // read original volumes with volume control
4315 float typeVolume = mStreamTypes[track->streamType()].volume;
4316 float v = masterVolume * typeVolume;
4317 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4318 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4319 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4320 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4321 // track volumes come from shared memory, so can't be trusted and must be clamped
4322 if (vlf > GAIN_FLOAT_UNITY) {
4323 ALOGV("Track left volume out of range: %.3g", vlf);
4324 vlf = GAIN_FLOAT_UNITY;
4325 }
4326 if (vrf > GAIN_FLOAT_UNITY) {
4327 ALOGV("Track right volume out of range: %.3g", vrf);
4328 vrf = GAIN_FLOAT_UNITY;
4329 }
4330 const float vh = track->getVolumeHandler()->getVolume(
4331 track->mAudioTrackServerProxy->framesReleased()).first;
4332 // now apply the master volume and stream type volume and shaper volume
4333 vlf *= v * vh;
4334 vrf *= v * vh;
4335 // assuming master volume and stream type volume each go up to 1.0,
4336 // then derive vl and vr as U8.24 versions for the effect chain
4337 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4338 vl = (uint32_t) (scaleto8_24 * vlf);
4339 vr = (uint32_t) (scaleto8_24 * vrf);
4340 // vl and vr are now in U8.24 format
4341 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4342 // send level comes from shared memory and so may be corrupt
4343 if (sendLevel > MAX_GAIN_INT) {
4344 ALOGV("Track send level out of range: %04X", sendLevel);
4345 sendLevel = MAX_GAIN_INT;
4346 }
4347 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4348 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4349 }
4350
4351 // Delegate volume control to effect in track effect chain if needed
4352 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4353 // Do not ramp volume if volume is controlled by effect
4354 param = AudioMixer::VOLUME;
4355 // Update remaining floating point volume levels
4356 vlf = (float)vl / (1 << 24);
4357 vrf = (float)vr / (1 << 24);
4358 track->mHasVolumeController = true;
4359 } else {
4360 // force no volume ramp when volume controller was just disabled or removed
4361 // from effect chain to avoid volume spike
4362 if (track->mHasVolumeController) {
4363 param = AudioMixer::VOLUME;
4364 }
4365 track->mHasVolumeController = false;
4366 }
4367
4368 // XXX: these things DON'T need to be done each time
4369 mAudioMixer->setBufferProvider(name, track);
4370 mAudioMixer->enable(name);
4371
4372 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4373 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4374 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4375 mAudioMixer->setParameter(
4376 name,
4377 AudioMixer::TRACK,
4378 AudioMixer::FORMAT, (void *)track->format());
4379 mAudioMixer->setParameter(
4380 name,
4381 AudioMixer::TRACK,
4382 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4383 mAudioMixer->setParameter(
4384 name,
4385 AudioMixer::TRACK,
4386 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4387 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4388 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4389 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4390 if (reqSampleRate == 0) {
4391 reqSampleRate = mSampleRate;
4392 } else if (reqSampleRate > maxSampleRate) {
4393 reqSampleRate = maxSampleRate;
4394 }
4395 mAudioMixer->setParameter(
4396 name,
4397 AudioMixer::RESAMPLE,
4398 AudioMixer::SAMPLE_RATE,
4399 (void *)(uintptr_t)reqSampleRate);
4400
4401 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4402 mAudioMixer->setParameter(
4403 name,
4404 AudioMixer::TIMESTRETCH,
4405 AudioMixer::PLAYBACK_RATE,
4406 &playbackRate);
4407
4408 /*
4409 * Select the appropriate output buffer for the track.
4410 *
4411 * Tracks with effects go into their own effects chain buffer
4412 * and from there into either mEffectBuffer or mSinkBuffer.
4413 *
4414 * Other tracks can use mMixerBuffer for higher precision
4415 * channel accumulation. If this buffer is enabled
4416 * (mMixerBufferEnabled true), then selected tracks will accumulate
4417 * into it.
4418 *
4419 */
4420 if (mMixerBufferEnabled
4421 && (track->mainBuffer() == mSinkBuffer
4422 || track->mainBuffer() == mMixerBuffer)) {
4423 mAudioMixer->setParameter(
4424 name,
4425 AudioMixer::TRACK,
4426 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4427 mAudioMixer->setParameter(
4428 name,
4429 AudioMixer::TRACK,
4430 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4431 // TODO: override track->mainBuffer()?
4432 mMixerBufferValid = true;
4433 } else {
4434 mAudioMixer->setParameter(
4435 name,
4436 AudioMixer::TRACK,
4437 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4438 mAudioMixer->setParameter(
4439 name,
4440 AudioMixer::TRACK,
4441 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4442 }
4443 mAudioMixer->setParameter(
4444 name,
4445 AudioMixer::TRACK,
4446 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4447
4448 // reset retry count
4449 track->mRetryCount = kMaxTrackRetries;
4450
4451 // If one track is ready, set the mixer ready if:
4452 // - the mixer was not ready during previous round OR
4453 // - no other track is not ready
4454 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4455 mixerStatus != MIXER_TRACKS_ENABLED) {
4456 mixerStatus = MIXER_TRACKS_READY;
4457 }
4458 } else {
4459 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4460 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4461 track, framesReady, desiredFrames);
4462 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4463 } else {
4464 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4465 }
4466
4467 // clear effect chain input buffer if an active track underruns to avoid sending
4468 // previous audio buffer again to effects
4469 chain = getEffectChain_l(track->sessionId());
4470 if (chain != 0) {
4471 chain->clearInputBuffer();
4472 }
4473
4474 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4475 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4476 track->isStopped() || track->isPaused()) {
4477 // We have consumed all the buffers of this track.
4478 // Remove it from the list of active tracks.
4479 // TODO: use actual buffer filling status instead of latency when available from
4480 // audio HAL
4481 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4482 int64_t framesWritten = mBytesWritten / mFrameSize;
4483 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4484 if (track->isStopped()) {
4485 track->reset();
4486 }
4487 tracksToRemove->add(track);
4488 }
4489 } else {
4490 // No buffers for this track. Give it a few chances to
4491 // fill a buffer, then remove it from active list.
4492 if (--(track->mRetryCount) <= 0) {
4493 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4494 tracksToRemove->add(track);
4495 // indicate to client process that the track was disabled because of underrun;
4496 // it will then automatically call start() when data is available
4497 track->disable();
4498 // If one track is not ready, mark the mixer also not ready if:
4499 // - the mixer was ready during previous round OR
4500 // - no other track is ready
4501 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4502 mixerStatus != MIXER_TRACKS_READY) {
4503 mixerStatus = MIXER_TRACKS_ENABLED;
4504 }
4505 }
4506 mAudioMixer->disable(name);
4507 }
4508
4509 } // local variable scope to avoid goto warning
4510
4511 }
4512
4513 // Push the new FastMixer state if necessary
4514 bool pauseAudioWatchdog = false;
4515 if (didModify) {
4516 state->mFastTracksGen++;
4517 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4518 if (kUseFastMixer == FastMixer_Dynamic &&
4519 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4520 state->mCommand = FastMixerState::COLD_IDLE;
4521 state->mColdFutexAddr = &mFastMixerFutex;
4522 state->mColdGen++;
4523 mFastMixerFutex = 0;
4524 if (kUseFastMixer == FastMixer_Dynamic) {
4525 mNormalSink = mOutputSink;
4526 }
4527 // If we go into cold idle, need to wait for acknowledgement
4528 // so that fast mixer stops doing I/O.
4529 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4530 pauseAudioWatchdog = true;
4531 }
4532 }
4533 if (sq != NULL) {
4534 sq->end(didModify);
4535 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
4536 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
4537 // when bringing the output sink into standby.)
4538 //
4539 // We will get the latest FastMixer state when we come out of COLD_IDLE.
4540 //
4541 // This occurs with BT suspend when we idle the FastMixer with
4542 // active tracks, which may be added or removed.
4543 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
4544 }
4545 #ifdef AUDIO_WATCHDOG
4546 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4547 mAudioWatchdog->pause();
4548 }
4549 #endif
4550
4551 // Now perform the deferred reset on fast tracks that have stopped
4552 while (resetMask != 0) {
4553 size_t i = __builtin_ctz(resetMask);
4554 ALOG_ASSERT(i < count);
4555 resetMask &= ~(1 << i);
4556 sp<Track> track = mActiveTracks[i];
4557 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4558 track->reset();
4559 }
4560
4561 // remove all the tracks that need to be...
4562 removeTracks_l(*tracksToRemove);
4563
4564 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4565 mEffectBufferValid = true;
4566 }
4567
4568 if (mEffectBufferValid) {
4569 // as long as there are effects we should clear the effects buffer, to avoid
4570 // passing a non-clean buffer to the effect chain
4571 memset(mEffectBuffer, 0, mEffectBufferSize);
4572 }
4573 // sink or mix buffer must be cleared if all tracks are connected to an
4574 // effect chain as in this case the mixer will not write to the sink or mix buffer
4575 // and track effects will accumulate into it
4576 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4577 (mixedTracks == 0 && fastTracks > 0))) {
4578 // FIXME as a performance optimization, should remember previous zero status
4579 if (mMixerBufferValid) {
4580 memset(mMixerBuffer, 0, mMixerBufferSize);
4581 // TODO: In testing, mSinkBuffer below need not be cleared because
4582 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4583 // after mixing.
4584 //
4585 // To enforce this guarantee:
4586 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4587 // (mixedTracks == 0 && fastTracks > 0))
4588 // must imply MIXER_TRACKS_READY.
4589 // Later, we may clear buffers regardless, and skip much of this logic.
4590 }
4591 // FIXME as a performance optimization, should remember previous zero status
4592 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4593 }
4594
4595 // if any fast tracks, then status is ready
4596 mMixerStatusIgnoringFastTracks = mixerStatus;
4597 if (fastTracks > 0) {
4598 mixerStatus = MIXER_TRACKS_READY;
4599 }
4600 return mixerStatus;
4601 }
4602
4603 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid)4604 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid)
4605 {
4606 uint32_t trackCount = 0;
4607 for (size_t i = 0; i < mTracks.size() ; i++) {
4608 if (mTracks[i]->uid() == uid) {
4609 trackCount++;
4610 }
4611 }
4612 return trackCount;
4613 }
4614
4615 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid)4616 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4617 audio_format_t format, audio_session_t sessionId, uid_t uid)
4618 {
4619 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
4620 return -1;
4621 }
4622 return mAudioMixer->getTrackName(channelMask, format, sessionId);
4623 }
4624
4625 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4626 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4627 {
4628 ALOGV("remove track (%d) and delete from mixer", name);
4629 mAudioMixer->deleteTrackName(name);
4630 }
4631
4632 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4633 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4634 status_t& status)
4635 {
4636 bool reconfig = false;
4637 bool a2dpDeviceChanged = false;
4638
4639 status = NO_ERROR;
4640
4641 AutoPark<FastMixer> park(mFastMixer);
4642
4643 AudioParameter param = AudioParameter(keyValuePair);
4644 int value;
4645 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4646 reconfig = true;
4647 }
4648 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4649 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4650 status = BAD_VALUE;
4651 } else {
4652 // no need to save value, since it's constant
4653 reconfig = true;
4654 }
4655 }
4656 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4657 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4658 status = BAD_VALUE;
4659 } else {
4660 // no need to save value, since it's constant
4661 reconfig = true;
4662 }
4663 }
4664 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4665 // do not accept frame count changes if tracks are open as the track buffer
4666 // size depends on frame count and correct behavior would not be guaranteed
4667 // if frame count is changed after track creation
4668 if (!mTracks.isEmpty()) {
4669 status = INVALID_OPERATION;
4670 } else {
4671 reconfig = true;
4672 }
4673 }
4674 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4675 #ifdef ADD_BATTERY_DATA
4676 // when changing the audio output device, call addBatteryData to notify
4677 // the change
4678 if (mOutDevice != value) {
4679 uint32_t params = 0;
4680 // check whether speaker is on
4681 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4682 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4683 }
4684
4685 audio_devices_t deviceWithoutSpeaker
4686 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4687 // check if any other device (except speaker) is on
4688 if (value & deviceWithoutSpeaker) {
4689 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4690 }
4691
4692 if (params != 0) {
4693 addBatteryData(params);
4694 }
4695 }
4696 #endif
4697
4698 // forward device change to effects that have requested to be
4699 // aware of attached audio device.
4700 if (value != AUDIO_DEVICE_NONE) {
4701 a2dpDeviceChanged =
4702 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4703 mOutDevice = value;
4704 for (size_t i = 0; i < mEffectChains.size(); i++) {
4705 mEffectChains[i]->setDevice_l(mOutDevice);
4706 }
4707 }
4708 }
4709
4710 if (status == NO_ERROR) {
4711 status = mOutput->stream->setParameters(keyValuePair);
4712 if (!mStandby && status == INVALID_OPERATION) {
4713 mOutput->standby();
4714 mStandby = true;
4715 mBytesWritten = 0;
4716 status = mOutput->stream->setParameters(keyValuePair);
4717 }
4718 if (status == NO_ERROR && reconfig) {
4719 readOutputParameters_l();
4720 delete mAudioMixer;
4721 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4722 for (size_t i = 0; i < mTracks.size() ; i++) {
4723 int name = getTrackName_l(mTracks[i]->mChannelMask,
4724 mTracks[i]->mFormat, mTracks[i]->mSessionId, mTracks[i]->uid());
4725 if (name < 0) {
4726 break;
4727 }
4728 mTracks[i]->mName = name;
4729 }
4730 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4731 }
4732 }
4733
4734 return reconfig || a2dpDeviceChanged;
4735 }
4736
4737
dumpInternals(int fd,const Vector<String16> & args)4738 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4739 {
4740 PlaybackThread::dumpInternals(fd, args);
4741 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4742 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4743 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
4744
4745 if (hasFastMixer()) {
4746 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
4747
4748 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4749 // while we are dumping it. It may be inconsistent, but it won't mutate!
4750 // This is a large object so we place it on the heap.
4751 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4752 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4753 copy->dump(fd);
4754 delete copy;
4755
4756 #ifdef STATE_QUEUE_DUMP
4757 // Similar for state queue
4758 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4759 observerCopy.dump(fd);
4760 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4761 mutatorCopy.dump(fd);
4762 #endif
4763
4764 #ifdef AUDIO_WATCHDOG
4765 if (mAudioWatchdog != 0) {
4766 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4767 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4768 wdCopy.dump(fd);
4769 }
4770 #endif
4771
4772 } else {
4773 dprintf(fd, " No FastMixer\n");
4774 }
4775
4776 #ifdef TEE_SINK
4777 // Write the tee output to a .wav file
4778 dumpTee(fd, mTeeSource, mId);
4779 #endif
4780
4781 }
4782
idleSleepTimeUs() const4783 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4784 {
4785 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4786 }
4787
suspendSleepTimeUs() const4788 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4789 {
4790 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4791 }
4792
cacheParameters_l()4793 void AudioFlinger::MixerThread::cacheParameters_l()
4794 {
4795 PlaybackThread::cacheParameters_l();
4796
4797 // FIXME: Relaxed timing because of a certain device that can't meet latency
4798 // Should be reduced to 2x after the vendor fixes the driver issue
4799 // increase threshold again due to low power audio mode. The way this warning
4800 // threshold is calculated and its usefulness should be reconsidered anyway.
4801 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4802 }
4803
4804 // ----------------------------------------------------------------------------
4805
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4806 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4807 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4808 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4809 // mLeftVolFloat, mRightVolFloat
4810 {
4811 }
4812
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4813 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4814 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4815 ThreadBase::type_t type, bool systemReady)
4816 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4817 // mLeftVolFloat, mRightVolFloat
4818 , mVolumeShaperActive(false)
4819 {
4820 }
4821
~DirectOutputThread()4822 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4823 {
4824 }
4825
processVolume_l(Track * track,bool lastTrack)4826 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4827 {
4828 float left, right;
4829
4830 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4831 left = right = 0;
4832 } else {
4833 float typeVolume = mStreamTypes[track->streamType()].volume;
4834 float v = mMasterVolume * typeVolume;
4835 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4836
4837 // Get volumeshaper scaling
4838 std::pair<float /* volume */, bool /* active */>
4839 vh = track->getVolumeHandler()->getVolume(
4840 track->mAudioTrackServerProxy->framesReleased());
4841 v *= vh.first;
4842 mVolumeShaperActive = vh.second;
4843
4844 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4845 left = float_from_gain(gain_minifloat_unpack_left(vlr));
4846 if (left > GAIN_FLOAT_UNITY) {
4847 left = GAIN_FLOAT_UNITY;
4848 }
4849 left *= v;
4850 right = float_from_gain(gain_minifloat_unpack_right(vlr));
4851 if (right > GAIN_FLOAT_UNITY) {
4852 right = GAIN_FLOAT_UNITY;
4853 }
4854 right *= v;
4855 }
4856
4857 if (lastTrack) {
4858 if (left != mLeftVolFloat || right != mRightVolFloat) {
4859 mLeftVolFloat = left;
4860 mRightVolFloat = right;
4861
4862 // Convert volumes from float to 8.24
4863 uint32_t vl = (uint32_t)(left * (1 << 24));
4864 uint32_t vr = (uint32_t)(right * (1 << 24));
4865
4866 // Delegate volume control to effect in track effect chain if needed
4867 // only one effect chain can be present on DirectOutputThread, so if
4868 // there is one, the track is connected to it
4869 if (!mEffectChains.isEmpty()) {
4870 mEffectChains[0]->setVolume_l(&vl, &vr);
4871 left = (float)vl / (1 << 24);
4872 right = (float)vr / (1 << 24);
4873 }
4874 status_t result = mOutput->stream->setVolume(left, right);
4875 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4876 }
4877 }
4878 }
4879
onAddNewTrack_l()4880 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4881 {
4882 sp<Track> previousTrack = mPreviousTrack.promote();
4883 sp<Track> latestTrack = mActiveTracks.getLatest();
4884
4885 if (previousTrack != 0 && latestTrack != 0) {
4886 if (mType == DIRECT) {
4887 if (previousTrack.get() != latestTrack.get()) {
4888 mFlushPending = true;
4889 }
4890 } else /* mType == OFFLOAD */ {
4891 if (previousTrack->sessionId() != latestTrack->sessionId()) {
4892 mFlushPending = true;
4893 }
4894 }
4895 }
4896 PlaybackThread::onAddNewTrack_l();
4897 }
4898
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4899 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4900 Vector< sp<Track> > *tracksToRemove
4901 )
4902 {
4903 size_t count = mActiveTracks.size();
4904 mixer_state mixerStatus = MIXER_IDLE;
4905 bool doHwPause = false;
4906 bool doHwResume = false;
4907
4908 // find out which tracks need to be processed
4909 for (const sp<Track> &t : mActiveTracks) {
4910 if (t->isInvalid()) {
4911 ALOGW("An invalidated track shouldn't be in active list");
4912 tracksToRemove->add(t);
4913 continue;
4914 }
4915
4916 Track* const track = t.get();
4917 #ifdef VERY_VERY_VERBOSE_LOGGING
4918 audio_track_cblk_t* cblk = track->cblk();
4919 #endif
4920 // Only consider last track started for volume and mixer state control.
4921 // In theory an older track could underrun and restart after the new one starts
4922 // but as we only care about the transition phase between two tracks on a
4923 // direct output, it is not a problem to ignore the underrun case.
4924 sp<Track> l = mActiveTracks.getLatest();
4925 bool last = l.get() == track;
4926
4927 if (track->isPausing()) {
4928 track->setPaused();
4929 if (mHwSupportsPause && last && !mHwPaused) {
4930 doHwPause = true;
4931 mHwPaused = true;
4932 }
4933 tracksToRemove->add(track);
4934 } else if (track->isFlushPending()) {
4935 track->flushAck();
4936 if (last) {
4937 mFlushPending = true;
4938 }
4939 } else if (track->isResumePending()) {
4940 track->resumeAck();
4941 if (last) {
4942 mLeftVolFloat = mRightVolFloat = -1.0;
4943 if (mHwPaused) {
4944 doHwResume = true;
4945 mHwPaused = false;
4946 }
4947 }
4948 }
4949
4950 // The first time a track is added we wait
4951 // for all its buffers to be filled before processing it.
4952 // Allow draining the buffer in case the client
4953 // app does not call stop() and relies on underrun to stop:
4954 // hence the test on (track->mRetryCount > 1).
4955 // If retryCount<=1 then track is about to underrun and be removed.
4956 // Do not use a high threshold for compressed audio.
4957 uint32_t minFrames;
4958 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4959 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4960 minFrames = mNormalFrameCount;
4961 } else {
4962 minFrames = 1;
4963 }
4964
4965 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4966 !track->isStopping_2() && !track->isStopped())
4967 {
4968 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4969
4970 if (track->mFillingUpStatus == Track::FS_FILLED) {
4971 track->mFillingUpStatus = Track::FS_ACTIVE;
4972 if (last) {
4973 // make sure processVolume_l() will apply new volume even if 0
4974 mLeftVolFloat = mRightVolFloat = -1.0;
4975 }
4976 if (!mHwSupportsPause) {
4977 track->resumeAck();
4978 }
4979 }
4980
4981 // compute volume for this track
4982 processVolume_l(track, last);
4983 if (last) {
4984 sp<Track> previousTrack = mPreviousTrack.promote();
4985 if (previousTrack != 0) {
4986 if (track != previousTrack.get()) {
4987 // Flush any data still being written from last track
4988 mBytesRemaining = 0;
4989 // Invalidate previous track to force a seek when resuming.
4990 previousTrack->invalidate();
4991 }
4992 }
4993 mPreviousTrack = track;
4994
4995 // reset retry count
4996 track->mRetryCount = kMaxTrackRetriesDirect;
4997 mActiveTrack = t;
4998 mixerStatus = MIXER_TRACKS_READY;
4999 if (mHwPaused) {
5000 doHwResume = true;
5001 mHwPaused = false;
5002 }
5003 }
5004 } else {
5005 // clear effect chain input buffer if the last active track started underruns
5006 // to avoid sending previous audio buffer again to effects
5007 if (!mEffectChains.isEmpty() && last) {
5008 mEffectChains[0]->clearInputBuffer();
5009 }
5010 if (track->isStopping_1()) {
5011 track->mState = TrackBase::STOPPING_2;
5012 if (last && mHwPaused) {
5013 doHwResume = true;
5014 mHwPaused = false;
5015 }
5016 }
5017 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5018 track->isStopping_2() || track->isPaused()) {
5019 // We have consumed all the buffers of this track.
5020 // Remove it from the list of active tracks.
5021 size_t audioHALFrames;
5022 if (audio_has_proportional_frames(mFormat)) {
5023 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5024 } else {
5025 audioHALFrames = 0;
5026 }
5027
5028 int64_t framesWritten = mBytesWritten / mFrameSize;
5029 if (mStandby || !last ||
5030 track->presentationComplete(framesWritten, audioHALFrames)) {
5031 if (track->isStopping_2()) {
5032 track->mState = TrackBase::STOPPED;
5033 }
5034 if (track->isStopped()) {
5035 track->reset();
5036 }
5037 tracksToRemove->add(track);
5038 }
5039 } else {
5040 // No buffers for this track. Give it a few chances to
5041 // fill a buffer, then remove it from active list.
5042 // Only consider last track started for mixer state control
5043 if (--(track->mRetryCount) <= 0) {
5044 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
5045 tracksToRemove->add(track);
5046 // indicate to client process that the track was disabled because of underrun;
5047 // it will then automatically call start() when data is available
5048 track->disable();
5049 } else if (last) {
5050 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5051 "minFrames = %u, mFormat = %#x",
5052 track->framesReady(), minFrames, mFormat);
5053 mixerStatus = MIXER_TRACKS_ENABLED;
5054 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5055 doHwPause = true;
5056 mHwPaused = true;
5057 }
5058 }
5059 }
5060 }
5061 }
5062
5063 // if an active track did not command a flush, check for pending flush on stopped tracks
5064 if (!mFlushPending) {
5065 for (size_t i = 0; i < mTracks.size(); i++) {
5066 if (mTracks[i]->isFlushPending()) {
5067 mTracks[i]->flushAck();
5068 mFlushPending = true;
5069 }
5070 }
5071 }
5072
5073 // make sure the pause/flush/resume sequence is executed in the right order.
5074 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5075 // before flush and then resume HW. This can happen in case of pause/flush/resume
5076 // if resume is received before pause is executed.
5077 if (mHwSupportsPause && !mStandby &&
5078 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5079 status_t result = mOutput->stream->pause();
5080 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5081 }
5082 if (mFlushPending) {
5083 flushHw_l();
5084 }
5085 if (mHwSupportsPause && !mStandby && doHwResume) {
5086 status_t result = mOutput->stream->resume();
5087 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5088 }
5089 // remove all the tracks that need to be...
5090 removeTracks_l(*tracksToRemove);
5091
5092 return mixerStatus;
5093 }
5094
threadLoop_mix()5095 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5096 {
5097 size_t frameCount = mFrameCount;
5098 int8_t *curBuf = (int8_t *)mSinkBuffer;
5099 // output audio to hardware
5100 while (frameCount) {
5101 AudioBufferProvider::Buffer buffer;
5102 buffer.frameCount = frameCount;
5103 status_t status = mActiveTrack->getNextBuffer(&buffer);
5104 if (status != NO_ERROR || buffer.raw == NULL) {
5105 // no need to pad with 0 for compressed audio
5106 if (audio_has_proportional_frames(mFormat)) {
5107 memset(curBuf, 0, frameCount * mFrameSize);
5108 }
5109 break;
5110 }
5111 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5112 frameCount -= buffer.frameCount;
5113 curBuf += buffer.frameCount * mFrameSize;
5114 mActiveTrack->releaseBuffer(&buffer);
5115 }
5116 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5117 mSleepTimeUs = 0;
5118 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5119 mActiveTrack.clear();
5120 }
5121
threadLoop_sleepTime()5122 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5123 {
5124 // do not write to HAL when paused
5125 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5126 mSleepTimeUs = mIdleSleepTimeUs;
5127 return;
5128 }
5129 if (mSleepTimeUs == 0) {
5130 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5131 mSleepTimeUs = mActiveSleepTimeUs;
5132 } else {
5133 mSleepTimeUs = mIdleSleepTimeUs;
5134 }
5135 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5136 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5137 mSleepTimeUs = 0;
5138 }
5139 }
5140
threadLoop_exit()5141 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5142 {
5143 {
5144 Mutex::Autolock _l(mLock);
5145 for (size_t i = 0; i < mTracks.size(); i++) {
5146 if (mTracks[i]->isFlushPending()) {
5147 mTracks[i]->flushAck();
5148 mFlushPending = true;
5149 }
5150 }
5151 if (mFlushPending) {
5152 flushHw_l();
5153 }
5154 }
5155 PlaybackThread::threadLoop_exit();
5156 }
5157
5158 // must be called with thread mutex locked
shouldStandby_l()5159 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5160 {
5161 bool trackPaused = false;
5162 bool trackStopped = false;
5163
5164 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5165 return !mStandby;
5166 }
5167
5168 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5169 // after a timeout and we will enter standby then.
5170 if (mTracks.size() > 0) {
5171 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5172 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5173 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5174 }
5175
5176 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5177 }
5178
5179 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,audio_session_t sessionId __unused,uid_t uid)5180 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5181 audio_format_t format __unused, audio_session_t sessionId __unused, uid_t uid)
5182 {
5183 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
5184 return -1;
5185 }
5186 return 0;
5187 }
5188
5189 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)5190 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5191 {
5192 }
5193
5194 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5195 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5196 status_t& status)
5197 {
5198 bool reconfig = false;
5199 bool a2dpDeviceChanged = false;
5200
5201 status = NO_ERROR;
5202
5203 AudioParameter param = AudioParameter(keyValuePair);
5204 int value;
5205 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5206 // forward device change to effects that have requested to be
5207 // aware of attached audio device.
5208 if (value != AUDIO_DEVICE_NONE) {
5209 a2dpDeviceChanged =
5210 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5211 mOutDevice = value;
5212 for (size_t i = 0; i < mEffectChains.size(); i++) {
5213 mEffectChains[i]->setDevice_l(mOutDevice);
5214 }
5215 }
5216 }
5217 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5218 // do not accept frame count changes if tracks are open as the track buffer
5219 // size depends on frame count and correct behavior would not be garantied
5220 // if frame count is changed after track creation
5221 if (!mTracks.isEmpty()) {
5222 status = INVALID_OPERATION;
5223 } else {
5224 reconfig = true;
5225 }
5226 }
5227 if (status == NO_ERROR) {
5228 status = mOutput->stream->setParameters(keyValuePair);
5229 if (!mStandby && status == INVALID_OPERATION) {
5230 mOutput->standby();
5231 mStandby = true;
5232 mBytesWritten = 0;
5233 status = mOutput->stream->setParameters(keyValuePair);
5234 }
5235 if (status == NO_ERROR && reconfig) {
5236 readOutputParameters_l();
5237 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5238 }
5239 }
5240
5241 return reconfig || a2dpDeviceChanged;
5242 }
5243
activeSleepTimeUs() const5244 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5245 {
5246 uint32_t time;
5247 if (audio_has_proportional_frames(mFormat)) {
5248 time = PlaybackThread::activeSleepTimeUs();
5249 } else {
5250 time = kDirectMinSleepTimeUs;
5251 }
5252 return time;
5253 }
5254
idleSleepTimeUs() const5255 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5256 {
5257 uint32_t time;
5258 if (audio_has_proportional_frames(mFormat)) {
5259 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5260 } else {
5261 time = kDirectMinSleepTimeUs;
5262 }
5263 return time;
5264 }
5265
suspendSleepTimeUs() const5266 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5267 {
5268 uint32_t time;
5269 if (audio_has_proportional_frames(mFormat)) {
5270 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5271 } else {
5272 time = kDirectMinSleepTimeUs;
5273 }
5274 return time;
5275 }
5276
cacheParameters_l()5277 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5278 {
5279 PlaybackThread::cacheParameters_l();
5280
5281 // use shorter standby delay as on normal output to release
5282 // hardware resources as soon as possible
5283 // no delay on outputs with HW A/V sync
5284 if (usesHwAvSync()) {
5285 mStandbyDelayNs = 0;
5286 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5287 mStandbyDelayNs = kOffloadStandbyDelayNs;
5288 } else {
5289 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5290 }
5291 }
5292
flushHw_l()5293 void AudioFlinger::DirectOutputThread::flushHw_l()
5294 {
5295 mOutput->flush();
5296 mHwPaused = false;
5297 mFlushPending = false;
5298 }
5299
computeWaitTimeNs_l() const5300 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
5301 // If a VolumeShaper is active, we must wake up periodically to update volume.
5302 const int64_t NS_PER_MS = 1000000;
5303 return mVolumeShaperActive ?
5304 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
5305 }
5306
5307 // ----------------------------------------------------------------------------
5308
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5309 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5310 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5311 : Thread(false /*canCallJava*/),
5312 mPlaybackThread(playbackThread),
5313 mWriteAckSequence(0),
5314 mDrainSequence(0),
5315 mAsyncError(false)
5316 {
5317 }
5318
~AsyncCallbackThread()5319 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5320 {
5321 }
5322
onFirstRef()5323 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5324 {
5325 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5326 }
5327
threadLoop()5328 bool AudioFlinger::AsyncCallbackThread::threadLoop()
5329 {
5330 while (!exitPending()) {
5331 uint32_t writeAckSequence;
5332 uint32_t drainSequence;
5333 bool asyncError;
5334
5335 {
5336 Mutex::Autolock _l(mLock);
5337 while (!((mWriteAckSequence & 1) ||
5338 (mDrainSequence & 1) ||
5339 mAsyncError ||
5340 exitPending())) {
5341 mWaitWorkCV.wait(mLock);
5342 }
5343
5344 if (exitPending()) {
5345 break;
5346 }
5347 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5348 mWriteAckSequence, mDrainSequence);
5349 writeAckSequence = mWriteAckSequence;
5350 mWriteAckSequence &= ~1;
5351 drainSequence = mDrainSequence;
5352 mDrainSequence &= ~1;
5353 asyncError = mAsyncError;
5354 mAsyncError = false;
5355 }
5356 {
5357 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5358 if (playbackThread != 0) {
5359 if (writeAckSequence & 1) {
5360 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5361 }
5362 if (drainSequence & 1) {
5363 playbackThread->resetDraining(drainSequence >> 1);
5364 }
5365 if (asyncError) {
5366 playbackThread->onAsyncError();
5367 }
5368 }
5369 }
5370 }
5371 return false;
5372 }
5373
exit()5374 void AudioFlinger::AsyncCallbackThread::exit()
5375 {
5376 ALOGV("AsyncCallbackThread::exit");
5377 Mutex::Autolock _l(mLock);
5378 requestExit();
5379 mWaitWorkCV.broadcast();
5380 }
5381
setWriteBlocked(uint32_t sequence)5382 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5383 {
5384 Mutex::Autolock _l(mLock);
5385 // bit 0 is cleared
5386 mWriteAckSequence = sequence << 1;
5387 }
5388
resetWriteBlocked()5389 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5390 {
5391 Mutex::Autolock _l(mLock);
5392 // ignore unexpected callbacks
5393 if (mWriteAckSequence & 2) {
5394 mWriteAckSequence |= 1;
5395 mWaitWorkCV.signal();
5396 }
5397 }
5398
setDraining(uint32_t sequence)5399 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5400 {
5401 Mutex::Autolock _l(mLock);
5402 // bit 0 is cleared
5403 mDrainSequence = sequence << 1;
5404 }
5405
resetDraining()5406 void AudioFlinger::AsyncCallbackThread::resetDraining()
5407 {
5408 Mutex::Autolock _l(mLock);
5409 // ignore unexpected callbacks
5410 if (mDrainSequence & 2) {
5411 mDrainSequence |= 1;
5412 mWaitWorkCV.signal();
5413 }
5414 }
5415
setAsyncError()5416 void AudioFlinger::AsyncCallbackThread::setAsyncError()
5417 {
5418 Mutex::Autolock _l(mLock);
5419 mAsyncError = true;
5420 mWaitWorkCV.signal();
5421 }
5422
5423
5424 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5425 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5426 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5427 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5428 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5429 mOffloadUnderrunPosition(~0LL)
5430 {
5431 //FIXME: mStandby should be set to true by ThreadBase constructor
5432 mStandby = true;
5433 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5434 }
5435
threadLoop_exit()5436 void AudioFlinger::OffloadThread::threadLoop_exit()
5437 {
5438 if (mFlushPending || mHwPaused) {
5439 // If a flush is pending or track was paused, just discard buffered data
5440 flushHw_l();
5441 } else {
5442 mMixerStatus = MIXER_DRAIN_ALL;
5443 threadLoop_drain();
5444 }
5445 if (mUseAsyncWrite) {
5446 ALOG_ASSERT(mCallbackThread != 0);
5447 mCallbackThread->exit();
5448 }
5449 PlaybackThread::threadLoop_exit();
5450 }
5451
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5452 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5453 Vector< sp<Track> > *tracksToRemove
5454 )
5455 {
5456 size_t count = mActiveTracks.size();
5457
5458 mixer_state mixerStatus = MIXER_IDLE;
5459 bool doHwPause = false;
5460 bool doHwResume = false;
5461
5462 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5463
5464 // find out which tracks need to be processed
5465 for (const sp<Track> &t : mActiveTracks) {
5466 Track* const track = t.get();
5467 #ifdef VERY_VERY_VERBOSE_LOGGING
5468 audio_track_cblk_t* cblk = track->cblk();
5469 #endif
5470 // Only consider last track started for volume and mixer state control.
5471 // In theory an older track could underrun and restart after the new one starts
5472 // but as we only care about the transition phase between two tracks on a
5473 // direct output, it is not a problem to ignore the underrun case.
5474 sp<Track> l = mActiveTracks.getLatest();
5475 bool last = l.get() == track;
5476
5477 if (track->isInvalid()) {
5478 ALOGW("An invalidated track shouldn't be in active list");
5479 tracksToRemove->add(track);
5480 continue;
5481 }
5482
5483 if (track->mState == TrackBase::IDLE) {
5484 ALOGW("An idle track shouldn't be in active list");
5485 continue;
5486 }
5487
5488 if (track->isPausing()) {
5489 track->setPaused();
5490 if (last) {
5491 if (mHwSupportsPause && !mHwPaused) {
5492 doHwPause = true;
5493 mHwPaused = true;
5494 }
5495 // If we were part way through writing the mixbuffer to
5496 // the HAL we must save this until we resume
5497 // BUG - this will be wrong if a different track is made active,
5498 // in that case we want to discard the pending data in the
5499 // mixbuffer and tell the client to present it again when the
5500 // track is resumed
5501 mPausedWriteLength = mCurrentWriteLength;
5502 mPausedBytesRemaining = mBytesRemaining;
5503 mBytesRemaining = 0; // stop writing
5504 }
5505 tracksToRemove->add(track);
5506 } else if (track->isFlushPending()) {
5507 if (track->isStopping_1()) {
5508 track->mRetryCount = kMaxTrackStopRetriesOffload;
5509 } else {
5510 track->mRetryCount = kMaxTrackRetriesOffload;
5511 }
5512 track->flushAck();
5513 if (last) {
5514 mFlushPending = true;
5515 }
5516 } else if (track->isResumePending()){
5517 track->resumeAck();
5518 if (last) {
5519 if (mPausedBytesRemaining) {
5520 // Need to continue write that was interrupted
5521 mCurrentWriteLength = mPausedWriteLength;
5522 mBytesRemaining = mPausedBytesRemaining;
5523 mPausedBytesRemaining = 0;
5524 }
5525 if (mHwPaused) {
5526 doHwResume = true;
5527 mHwPaused = false;
5528 // threadLoop_mix() will handle the case that we need to
5529 // resume an interrupted write
5530 }
5531 // enable write to audio HAL
5532 mSleepTimeUs = 0;
5533
5534 mLeftVolFloat = mRightVolFloat = -1.0;
5535
5536 // Do not handle new data in this iteration even if track->framesReady()
5537 mixerStatus = MIXER_TRACKS_ENABLED;
5538 }
5539 } else if (track->framesReady() && track->isReady() &&
5540 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5541 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5542 if (track->mFillingUpStatus == Track::FS_FILLED) {
5543 track->mFillingUpStatus = Track::FS_ACTIVE;
5544 if (last) {
5545 // make sure processVolume_l() will apply new volume even if 0
5546 mLeftVolFloat = mRightVolFloat = -1.0;
5547 }
5548 }
5549
5550 if (last) {
5551 sp<Track> previousTrack = mPreviousTrack.promote();
5552 if (previousTrack != 0) {
5553 if (track != previousTrack.get()) {
5554 // Flush any data still being written from last track
5555 mBytesRemaining = 0;
5556 if (mPausedBytesRemaining) {
5557 // Last track was paused so we also need to flush saved
5558 // mixbuffer state and invalidate track so that it will
5559 // re-submit that unwritten data when it is next resumed
5560 mPausedBytesRemaining = 0;
5561 // Invalidate is a bit drastic - would be more efficient
5562 // to have a flag to tell client that some of the
5563 // previously written data was lost
5564 previousTrack->invalidate();
5565 }
5566 // flush data already sent to the DSP if changing audio session as audio
5567 // comes from a different source. Also invalidate previous track to force a
5568 // seek when resuming.
5569 if (previousTrack->sessionId() != track->sessionId()) {
5570 previousTrack->invalidate();
5571 }
5572 }
5573 }
5574 mPreviousTrack = track;
5575 // reset retry count
5576 if (track->isStopping_1()) {
5577 track->mRetryCount = kMaxTrackStopRetriesOffload;
5578 } else {
5579 track->mRetryCount = kMaxTrackRetriesOffload;
5580 }
5581 mActiveTrack = t;
5582 mixerStatus = MIXER_TRACKS_READY;
5583 }
5584 } else {
5585 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5586 if (track->isStopping_1()) {
5587 if (--(track->mRetryCount) <= 0) {
5588 // Hardware buffer can hold a large amount of audio so we must
5589 // wait for all current track's data to drain before we say
5590 // that the track is stopped.
5591 if (mBytesRemaining == 0) {
5592 // Only start draining when all data in mixbuffer
5593 // has been written
5594 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5595 track->mState = TrackBase::STOPPING_2; // so presentation completes after
5596 // drain do not drain if no data was ever sent to HAL (mStandby == true)
5597 if (last && !mStandby) {
5598 // do not modify drain sequence if we are already draining. This happens
5599 // when resuming from pause after drain.
5600 if ((mDrainSequence & 1) == 0) {
5601 mSleepTimeUs = 0;
5602 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5603 mixerStatus = MIXER_DRAIN_TRACK;
5604 mDrainSequence += 2;
5605 }
5606 if (mHwPaused) {
5607 // It is possible to move from PAUSED to STOPPING_1 without
5608 // a resume so we must ensure hardware is running
5609 doHwResume = true;
5610 mHwPaused = false;
5611 }
5612 }
5613 }
5614 } else if (last) {
5615 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5616 mixerStatus = MIXER_TRACKS_ENABLED;
5617 }
5618 } else if (track->isStopping_2()) {
5619 // Drain has completed or we are in standby, signal presentation complete
5620 if (!(mDrainSequence & 1) || !last || mStandby) {
5621 track->mState = TrackBase::STOPPED;
5622 uint32_t latency = 0;
5623 status_t result = mOutput->stream->getLatency(&latency);
5624 ALOGE_IF(result != OK,
5625 "Error when retrieving output stream latency: %d", result);
5626 size_t audioHALFrames = (latency * mSampleRate) / 1000;
5627 int64_t framesWritten =
5628 mBytesWritten / mOutput->getFrameSize();
5629 track->presentationComplete(framesWritten, audioHALFrames);
5630 track->reset();
5631 tracksToRemove->add(track);
5632 }
5633 } else {
5634 // No buffers for this track. Give it a few chances to
5635 // fill a buffer, then remove it from active list.
5636 if (--(track->mRetryCount) <= 0) {
5637 bool running = false;
5638 uint64_t position = 0;
5639 struct timespec unused;
5640 // The running check restarts the retry counter at least once.
5641 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
5642 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5643 running = true;
5644 mOffloadUnderrunPosition = position;
5645 }
5646 if (ret == NO_ERROR) {
5647 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5648 (long long)position, (long long)mOffloadUnderrunPosition);
5649 }
5650 if (running) { // still running, give us more time.
5651 track->mRetryCount = kMaxTrackRetriesOffload;
5652 } else {
5653 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5654 track->name());
5655 tracksToRemove->add(track);
5656 // tell client process that the track was disabled because of underrun;
5657 // it will then automatically call start() when data is available
5658 track->disable();
5659 }
5660 } else if (last){
5661 mixerStatus = MIXER_TRACKS_ENABLED;
5662 }
5663 }
5664 }
5665 // compute volume for this track
5666 processVolume_l(track, last);
5667 }
5668
5669 // make sure the pause/flush/resume sequence is executed in the right order.
5670 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5671 // before flush and then resume HW. This can happen in case of pause/flush/resume
5672 // if resume is received before pause is executed.
5673 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5674 status_t result = mOutput->stream->pause();
5675 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5676 }
5677 if (mFlushPending) {
5678 flushHw_l();
5679 }
5680 if (!mStandby && doHwResume) {
5681 status_t result = mOutput->stream->resume();
5682 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5683 }
5684
5685 // remove all the tracks that need to be...
5686 removeTracks_l(*tracksToRemove);
5687
5688 return mixerStatus;
5689 }
5690
5691 // must be called with thread mutex locked
waitingAsyncCallback_l()5692 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5693 {
5694 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5695 mWriteAckSequence, mDrainSequence);
5696 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5697 return true;
5698 }
5699 return false;
5700 }
5701
waitingAsyncCallback()5702 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5703 {
5704 Mutex::Autolock _l(mLock);
5705 return waitingAsyncCallback_l();
5706 }
5707
flushHw_l()5708 void AudioFlinger::OffloadThread::flushHw_l()
5709 {
5710 DirectOutputThread::flushHw_l();
5711 // Flush anything still waiting in the mixbuffer
5712 mCurrentWriteLength = 0;
5713 mBytesRemaining = 0;
5714 mPausedWriteLength = 0;
5715 mPausedBytesRemaining = 0;
5716 // reset bytes written count to reflect that DSP buffers are empty after flush.
5717 mBytesWritten = 0;
5718 mOffloadUnderrunPosition = ~0LL;
5719
5720 if (mUseAsyncWrite) {
5721 // discard any pending drain or write ack by incrementing sequence
5722 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5723 mDrainSequence = (mDrainSequence + 2) & ~1;
5724 ALOG_ASSERT(mCallbackThread != 0);
5725 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5726 mCallbackThread->setDraining(mDrainSequence);
5727 }
5728 }
5729
invalidateTracks(audio_stream_type_t streamType)5730 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5731 {
5732 Mutex::Autolock _l(mLock);
5733 if (PlaybackThread::invalidateTracks_l(streamType)) {
5734 mFlushPending = true;
5735 }
5736 }
5737
5738 // ----------------------------------------------------------------------------
5739
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5740 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5741 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5742 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5743 systemReady, DUPLICATING),
5744 mWaitTimeMs(UINT_MAX)
5745 {
5746 addOutputTrack(mainThread);
5747 }
5748
~DuplicatingThread()5749 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5750 {
5751 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5752 mOutputTracks[i]->destroy();
5753 }
5754 }
5755
threadLoop_mix()5756 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5757 {
5758 // mix buffers...
5759 if (outputsReady(outputTracks)) {
5760 mAudioMixer->process();
5761 } else {
5762 if (mMixerBufferValid) {
5763 memset(mMixerBuffer, 0, mMixerBufferSize);
5764 } else {
5765 memset(mSinkBuffer, 0, mSinkBufferSize);
5766 }
5767 }
5768 mSleepTimeUs = 0;
5769 writeFrames = mNormalFrameCount;
5770 mCurrentWriteLength = mSinkBufferSize;
5771 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5772 }
5773
threadLoop_sleepTime()5774 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5775 {
5776 if (mSleepTimeUs == 0) {
5777 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5778 mSleepTimeUs = mActiveSleepTimeUs;
5779 } else {
5780 mSleepTimeUs = mIdleSleepTimeUs;
5781 }
5782 } else if (mBytesWritten != 0) {
5783 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5784 writeFrames = mNormalFrameCount;
5785 memset(mSinkBuffer, 0, mSinkBufferSize);
5786 } else {
5787 // flush remaining overflow buffers in output tracks
5788 writeFrames = 0;
5789 }
5790 mSleepTimeUs = 0;
5791 }
5792 }
5793
threadLoop_write()5794 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5795 {
5796 for (size_t i = 0; i < outputTracks.size(); i++) {
5797 outputTracks[i]->write(mSinkBuffer, writeFrames);
5798 }
5799 mStandby = false;
5800 return (ssize_t)mSinkBufferSize;
5801 }
5802
threadLoop_standby()5803 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5804 {
5805 // DuplicatingThread implements standby by stopping all tracks
5806 for (size_t i = 0; i < outputTracks.size(); i++) {
5807 outputTracks[i]->stop();
5808 }
5809 }
5810
saveOutputTracks()5811 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5812 {
5813 outputTracks = mOutputTracks;
5814 }
5815
clearOutputTracks()5816 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5817 {
5818 outputTracks.clear();
5819 }
5820
addOutputTrack(MixerThread * thread)5821 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5822 {
5823 Mutex::Autolock _l(mLock);
5824 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5825 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5826 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5827 const size_t frameCount =
5828 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5829 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5830 // from different OutputTracks and their associated MixerThreads (e.g. one may
5831 // nearly empty and the other may be dropping data).
5832
5833 sp<OutputTrack> outputTrack = new OutputTrack(thread,
5834 this,
5835 mSampleRate,
5836 mFormat,
5837 mChannelMask,
5838 frameCount,
5839 IPCThreadState::self()->getCallingUid());
5840 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5841 if (status != NO_ERROR) {
5842 ALOGE("addOutputTrack() initCheck failed %d", status);
5843 return;
5844 }
5845 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5846 mOutputTracks.add(outputTrack);
5847 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5848 updateWaitTime_l();
5849 }
5850
removeOutputTrack(MixerThread * thread)5851 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5852 {
5853 Mutex::Autolock _l(mLock);
5854 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5855 if (mOutputTracks[i]->thread() == thread) {
5856 mOutputTracks[i]->destroy();
5857 mOutputTracks.removeAt(i);
5858 updateWaitTime_l();
5859 if (thread->getOutput() == mOutput) {
5860 mOutput = NULL;
5861 }
5862 return;
5863 }
5864 }
5865 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5866 }
5867
5868 // caller must hold mLock
updateWaitTime_l()5869 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5870 {
5871 mWaitTimeMs = UINT_MAX;
5872 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5873 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5874 if (strong != 0) {
5875 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5876 if (waitTimeMs < mWaitTimeMs) {
5877 mWaitTimeMs = waitTimeMs;
5878 }
5879 }
5880 }
5881 }
5882
5883
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5884 bool AudioFlinger::DuplicatingThread::outputsReady(
5885 const SortedVector< sp<OutputTrack> > &outputTracks)
5886 {
5887 for (size_t i = 0; i < outputTracks.size(); i++) {
5888 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5889 if (thread == 0) {
5890 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5891 outputTracks[i].get());
5892 return false;
5893 }
5894 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5895 // see note at standby() declaration
5896 if (playbackThread->standby() && !playbackThread->isSuspended()) {
5897 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5898 thread.get());
5899 return false;
5900 }
5901 }
5902 return true;
5903 }
5904
activeSleepTimeUs() const5905 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5906 {
5907 return (mWaitTimeMs * 1000) / 2;
5908 }
5909
cacheParameters_l()5910 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5911 {
5912 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5913 updateWaitTime_l();
5914
5915 MixerThread::cacheParameters_l();
5916 }
5917
5918
5919 // ----------------------------------------------------------------------------
5920 // Record
5921 // ----------------------------------------------------------------------------
5922
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5923 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5924 AudioStreamIn *input,
5925 audio_io_handle_t id,
5926 audio_devices_t outDevice,
5927 audio_devices_t inDevice,
5928 bool systemReady
5929 #ifdef TEE_SINK
5930 , const sp<NBAIO_Sink>& teeSink
5931 #endif
5932 ) :
5933 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5934 mInput(input), mRsmpInBuffer(NULL),
5935 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
5936 mRsmpInRear(0)
5937 #ifdef TEE_SINK
5938 , mTeeSink(teeSink)
5939 #endif
5940 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5941 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5942 // mFastCapture below
5943 , mFastCaptureFutex(0)
5944 // mInputSource
5945 // mPipeSink
5946 // mPipeSource
5947 , mPipeFramesP2(0)
5948 // mPipeMemory
5949 // mFastCaptureNBLogWriter
5950 , mFastTrackAvail(false)
5951 {
5952 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5953 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5954
5955 readInputParameters_l();
5956
5957 // create an NBAIO source for the HAL input stream, and negotiate
5958 mInputSource = new AudioStreamInSource(input->stream);
5959 size_t numCounterOffers = 0;
5960 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5961 #if !LOG_NDEBUG
5962 ssize_t index =
5963 #else
5964 (void)
5965 #endif
5966 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5967 ALOG_ASSERT(index == 0);
5968
5969 // initialize fast capture depending on configuration
5970 bool initFastCapture;
5971 switch (kUseFastCapture) {
5972 case FastCapture_Never:
5973 initFastCapture = false;
5974 break;
5975 case FastCapture_Always:
5976 initFastCapture = true;
5977 break;
5978 case FastCapture_Static:
5979 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5980 break;
5981 // case FastCapture_Dynamic:
5982 }
5983
5984 if (initFastCapture) {
5985 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5986 NBAIO_Format format = mInputSource->format();
5987 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
5988 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
5989 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5990 void *pipeBuffer;
5991 const sp<MemoryDealer> roHeap(readOnlyHeap());
5992 sp<IMemory> pipeMemory;
5993 if ((roHeap == 0) ||
5994 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5995 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5996 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5997 goto failed;
5998 }
5999 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6000 memset(pipeBuffer, 0, pipeSize);
6001 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6002 const NBAIO_Format offers[1] = {format};
6003 size_t numCounterOffers = 0;
6004 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6005 ALOG_ASSERT(index == 0);
6006 mPipeSink = pipe;
6007 PipeReader *pipeReader = new PipeReader(*pipe);
6008 numCounterOffers = 0;
6009 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6010 ALOG_ASSERT(index == 0);
6011 mPipeSource = pipeReader;
6012 mPipeFramesP2 = pipeFramesP2;
6013 mPipeMemory = pipeMemory;
6014
6015 // create fast capture
6016 mFastCapture = new FastCapture();
6017 FastCaptureStateQueue *sq = mFastCapture->sq();
6018 #ifdef STATE_QUEUE_DUMP
6019 // FIXME
6020 #endif
6021 FastCaptureState *state = sq->begin();
6022 state->mCblk = NULL;
6023 state->mInputSource = mInputSource.get();
6024 state->mInputSourceGen++;
6025 state->mPipeSink = pipe;
6026 state->mPipeSinkGen++;
6027 state->mFrameCount = mFrameCount;
6028 state->mCommand = FastCaptureState::COLD_IDLE;
6029 // already done in constructor initialization list
6030 //mFastCaptureFutex = 0;
6031 state->mColdFutexAddr = &mFastCaptureFutex;
6032 state->mColdGen++;
6033 state->mDumpState = &mFastCaptureDumpState;
6034 #ifdef TEE_SINK
6035 // FIXME
6036 #endif
6037 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6038 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6039 sq->end();
6040 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6041
6042 // start the fast capture
6043 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6044 pid_t tid = mFastCapture->getTid();
6045 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture, false);
6046 stream()->setHalThreadPriority(kPriorityFastCapture);
6047 #ifdef AUDIO_WATCHDOG
6048 // FIXME
6049 #endif
6050
6051 mFastTrackAvail = true;
6052 }
6053 failed: ;
6054
6055 // FIXME mNormalSource
6056 }
6057
~RecordThread()6058 AudioFlinger::RecordThread::~RecordThread()
6059 {
6060 if (mFastCapture != 0) {
6061 FastCaptureStateQueue *sq = mFastCapture->sq();
6062 FastCaptureState *state = sq->begin();
6063 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6064 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6065 if (old == -1) {
6066 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6067 }
6068 }
6069 state->mCommand = FastCaptureState::EXIT;
6070 sq->end();
6071 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6072 mFastCapture->join();
6073 mFastCapture.clear();
6074 }
6075 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6076 mAudioFlinger->unregisterWriter(mNBLogWriter);
6077 free(mRsmpInBuffer);
6078 }
6079
onFirstRef()6080 void AudioFlinger::RecordThread::onFirstRef()
6081 {
6082 run(mThreadName, PRIORITY_URGENT_AUDIO);
6083 }
6084
preExit()6085 void AudioFlinger::RecordThread::preExit()
6086 {
6087 ALOGV(" preExit()");
6088 Mutex::Autolock _l(mLock);
6089 for (size_t i = 0; i < mTracks.size(); i++) {
6090 sp<RecordTrack> track = mTracks[i];
6091 track->invalidate();
6092 }
6093 mActiveTracks.clear();
6094 mStartStopCond.broadcast();
6095 }
6096
threadLoop()6097 bool AudioFlinger::RecordThread::threadLoop()
6098 {
6099 nsecs_t lastWarning = 0;
6100
6101 inputStandBy();
6102
6103 reacquire_wakelock:
6104 sp<RecordTrack> activeTrack;
6105 {
6106 Mutex::Autolock _l(mLock);
6107 acquireWakeLock_l();
6108 }
6109
6110 // used to request a deferred sleep, to be executed later while mutex is unlocked
6111 uint32_t sleepUs = 0;
6112
6113 // loop while there is work to do
6114 for (;;) {
6115 Vector< sp<EffectChain> > effectChains;
6116
6117 // activeTracks accumulates a copy of a subset of mActiveTracks
6118 Vector< sp<RecordTrack> > activeTracks;
6119
6120 // reference to the (first and only) active fast track
6121 sp<RecordTrack> fastTrack;
6122
6123 // reference to a fast track which is about to be removed
6124 sp<RecordTrack> fastTrackToRemove;
6125
6126 { // scope for mLock
6127 Mutex::Autolock _l(mLock);
6128
6129 processConfigEvents_l();
6130
6131 // check exitPending here because checkForNewParameters_l() and
6132 // checkForNewParameters_l() can temporarily release mLock
6133 if (exitPending()) {
6134 break;
6135 }
6136
6137 // sleep with mutex unlocked
6138 if (sleepUs > 0) {
6139 ATRACE_BEGIN("sleepC");
6140 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6141 ATRACE_END();
6142 sleepUs = 0;
6143 continue;
6144 }
6145
6146 // if no active track(s), then standby and release wakelock
6147 size_t size = mActiveTracks.size();
6148 if (size == 0) {
6149 standbyIfNotAlreadyInStandby();
6150 // exitPending() can't become true here
6151 releaseWakeLock_l();
6152 ALOGV("RecordThread: loop stopping");
6153 // go to sleep
6154 mWaitWorkCV.wait(mLock);
6155 ALOGV("RecordThread: loop starting");
6156 goto reacquire_wakelock;
6157 }
6158
6159 bool doBroadcast = false;
6160 bool allStopped = true;
6161 for (size_t i = 0; i < size; ) {
6162
6163 activeTrack = mActiveTracks[i];
6164 if (activeTrack->isTerminated()) {
6165 if (activeTrack->isFastTrack()) {
6166 ALOG_ASSERT(fastTrackToRemove == 0);
6167 fastTrackToRemove = activeTrack;
6168 }
6169 removeTrack_l(activeTrack);
6170 mActiveTracks.remove(activeTrack);
6171 size--;
6172 continue;
6173 }
6174
6175 TrackBase::track_state activeTrackState = activeTrack->mState;
6176 switch (activeTrackState) {
6177
6178 case TrackBase::PAUSING:
6179 mActiveTracks.remove(activeTrack);
6180 doBroadcast = true;
6181 size--;
6182 continue;
6183
6184 case TrackBase::STARTING_1:
6185 sleepUs = 10000;
6186 i++;
6187 allStopped = false;
6188 continue;
6189
6190 case TrackBase::STARTING_2:
6191 doBroadcast = true;
6192 mStandby = false;
6193 activeTrack->mState = TrackBase::ACTIVE;
6194 allStopped = false;
6195 break;
6196
6197 case TrackBase::ACTIVE:
6198 allStopped = false;
6199 break;
6200
6201 case TrackBase::IDLE:
6202 i++;
6203 continue;
6204
6205 default:
6206 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6207 }
6208
6209 activeTracks.add(activeTrack);
6210 i++;
6211
6212 if (activeTrack->isFastTrack()) {
6213 ALOG_ASSERT(!mFastTrackAvail);
6214 ALOG_ASSERT(fastTrack == 0);
6215 fastTrack = activeTrack;
6216 }
6217 }
6218
6219 mActiveTracks.updatePowerState(this);
6220
6221 if (allStopped) {
6222 standbyIfNotAlreadyInStandby();
6223 }
6224 if (doBroadcast) {
6225 mStartStopCond.broadcast();
6226 }
6227
6228 // sleep if there are no active tracks to process
6229 if (activeTracks.size() == 0) {
6230 if (sleepUs == 0) {
6231 sleepUs = kRecordThreadSleepUs;
6232 }
6233 continue;
6234 }
6235 sleepUs = 0;
6236
6237 lockEffectChains_l(effectChains);
6238 }
6239
6240 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6241
6242 size_t size = effectChains.size();
6243 for (size_t i = 0; i < size; i++) {
6244 // thread mutex is not locked, but effect chain is locked
6245 effectChains[i]->process_l();
6246 }
6247
6248 // Push a new fast capture state if fast capture is not already running, or cblk change
6249 if (mFastCapture != 0) {
6250 FastCaptureStateQueue *sq = mFastCapture->sq();
6251 FastCaptureState *state = sq->begin();
6252 bool didModify = false;
6253 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6254 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6255 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6256 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6257 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6258 if (old == -1) {
6259 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6260 }
6261 }
6262 state->mCommand = FastCaptureState::READ_WRITE;
6263 #if 0 // FIXME
6264 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6265 FastThreadDumpState::kSamplingNforLowRamDevice :
6266 FastThreadDumpState::kSamplingN);
6267 #endif
6268 didModify = true;
6269 }
6270 audio_track_cblk_t *cblkOld = state->mCblk;
6271 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6272 if (cblkNew != cblkOld) {
6273 state->mCblk = cblkNew;
6274 // block until acked if removing a fast track
6275 if (cblkOld != NULL) {
6276 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6277 }
6278 didModify = true;
6279 }
6280 sq->end(didModify);
6281 if (didModify) {
6282 sq->push(block);
6283 #if 0
6284 if (kUseFastCapture == FastCapture_Dynamic) {
6285 mNormalSource = mPipeSource;
6286 }
6287 #endif
6288 }
6289 }
6290
6291 // now run the fast track destructor with thread mutex unlocked
6292 fastTrackToRemove.clear();
6293
6294 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6295 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6296 // slow, then this RecordThread will overrun by not calling HAL read often enough.
6297 // If destination is non-contiguous, first read past the nominal end of buffer, then
6298 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
6299
6300 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6301 ssize_t framesRead;
6302
6303 // If an NBAIO source is present, use it to read the normal capture's data
6304 if (mPipeSource != 0) {
6305 size_t framesToRead = mBufferSize / mFrameSize;
6306 framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
6307 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6308 framesToRead);
6309 // since pipe is non-blocking, simulate blocking input by waiting for 1/2 of
6310 // buffer size or at least for 20ms.
6311 size_t sleepFrames = max(
6312 min(mPipeFramesP2, mRsmpInFramesP2) / 2, FMS_20 * mSampleRate / 1000);
6313 if (framesRead <= (ssize_t) sleepFrames) {
6314 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
6315 }
6316 if (framesRead < 0) {
6317 status_t status = (status_t) framesRead;
6318 switch (status) {
6319 case OVERRUN:
6320 ALOGW("overrun on read from pipe");
6321 framesRead = 0;
6322 break;
6323 case NEGOTIATE:
6324 ALOGE("re-negotiation is needed");
6325 framesRead = -1; // Will cause an attempt to recover.
6326 break;
6327 default:
6328 ALOGE("unknown error %d on read from pipe", status);
6329 break;
6330 }
6331 }
6332 // otherwise use the HAL / AudioStreamIn directly
6333 } else {
6334 ATRACE_BEGIN("read");
6335 size_t bytesRead;
6336 status_t result = mInput->stream->read(
6337 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
6338 ATRACE_END();
6339 if (result < 0) {
6340 framesRead = result;
6341 } else {
6342 framesRead = bytesRead / mFrameSize;
6343 }
6344 }
6345
6346 // Update server timestamp with server stats
6347 // systemTime() is optional if the hardware supports timestamps.
6348 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6349 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6350
6351 // Update server timestamp with kernel stats
6352 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6353 int64_t position, time;
6354 int ret = mInput->stream->getCapturePosition(&position, &time);
6355 if (ret == NO_ERROR) {
6356 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6357 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6358 // Note: In general record buffers should tend to be empty in
6359 // a properly running pipeline.
6360 //
6361 // Also, it is not advantageous to call get_presentation_position during the read
6362 // as the read obtains a lock, preventing the timestamp call from executing.
6363 }
6364 }
6365 // Use this to track timestamp information
6366 // ALOGD("%s", mTimestamp.toString().c_str());
6367
6368 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6369 ALOGE("read failed: framesRead=%zd", framesRead);
6370 // Force input into standby so that it tries to recover at next read attempt
6371 inputStandBy();
6372 sleepUs = kRecordThreadSleepUs;
6373 }
6374 if (framesRead <= 0) {
6375 goto unlock;
6376 }
6377 ALOG_ASSERT(framesRead > 0);
6378
6379 if (mTeeSink != 0) {
6380 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6381 }
6382 // If destination is non-contiguous, we now correct for reading past end of buffer.
6383 {
6384 size_t part1 = mRsmpInFramesP2 - rear;
6385 if ((size_t) framesRead > part1) {
6386 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6387 (framesRead - part1) * mFrameSize);
6388 }
6389 }
6390 rear = mRsmpInRear += framesRead;
6391
6392 size = activeTracks.size();
6393 // loop over each active track
6394 for (size_t i = 0; i < size; i++) {
6395 activeTrack = activeTracks[i];
6396
6397 // skip fast tracks, as those are handled directly by FastCapture
6398 if (activeTrack->isFastTrack()) {
6399 continue;
6400 }
6401
6402 // TODO: This code probably should be moved to RecordTrack.
6403 // TODO: Update the activeTrack buffer converter in case of reconfigure.
6404
6405 enum {
6406 OVERRUN_UNKNOWN,
6407 OVERRUN_TRUE,
6408 OVERRUN_FALSE
6409 } overrun = OVERRUN_UNKNOWN;
6410
6411 // loop over getNextBuffer to handle circular sink
6412 for (;;) {
6413
6414 activeTrack->mSink.frameCount = ~0;
6415 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6416 size_t framesOut = activeTrack->mSink.frameCount;
6417 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6418
6419 // check available frames and handle overrun conditions
6420 // if the record track isn't draining fast enough.
6421 bool hasOverrun;
6422 size_t framesIn;
6423 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6424 if (hasOverrun) {
6425 overrun = OVERRUN_TRUE;
6426 }
6427 if (framesOut == 0 || framesIn == 0) {
6428 break;
6429 }
6430
6431 // Don't allow framesOut to be larger than what is possible with resampling
6432 // from framesIn.
6433 // This isn't strictly necessary but helps limit buffer resizing in
6434 // RecordBufferConverter. TODO: remove when no longer needed.
6435 framesOut = min(framesOut,
6436 destinationFramesPossible(
6437 framesIn, mSampleRate, activeTrack->mSampleRate));
6438 // process frames from the RecordThread buffer provider to the RecordTrack buffer
6439 framesOut = activeTrack->mRecordBufferConverter->convert(
6440 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6441
6442 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6443 overrun = OVERRUN_FALSE;
6444 }
6445
6446 if (activeTrack->mFramesToDrop == 0) {
6447 if (framesOut > 0) {
6448 activeTrack->mSink.frameCount = framesOut;
6449 activeTrack->releaseBuffer(&activeTrack->mSink);
6450 }
6451 } else {
6452 // FIXME could do a partial drop of framesOut
6453 if (activeTrack->mFramesToDrop > 0) {
6454 activeTrack->mFramesToDrop -= framesOut;
6455 if (activeTrack->mFramesToDrop <= 0) {
6456 activeTrack->clearSyncStartEvent();
6457 }
6458 } else {
6459 activeTrack->mFramesToDrop += framesOut;
6460 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6461 activeTrack->mSyncStartEvent->isCancelled()) {
6462 ALOGW("Synced record %s, session %d, trigger session %d",
6463 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6464 activeTrack->sessionId(),
6465 (activeTrack->mSyncStartEvent != 0) ?
6466 activeTrack->mSyncStartEvent->triggerSession() :
6467 AUDIO_SESSION_NONE);
6468 activeTrack->clearSyncStartEvent();
6469 }
6470 }
6471 }
6472
6473 if (framesOut == 0) {
6474 break;
6475 }
6476 }
6477
6478 switch (overrun) {
6479 case OVERRUN_TRUE:
6480 // client isn't retrieving buffers fast enough
6481 if (!activeTrack->setOverflow()) {
6482 nsecs_t now = systemTime();
6483 // FIXME should lastWarning per track?
6484 if ((now - lastWarning) > kWarningThrottleNs) {
6485 ALOGW("RecordThread: buffer overflow");
6486 lastWarning = now;
6487 }
6488 }
6489 break;
6490 case OVERRUN_FALSE:
6491 activeTrack->clearOverflow();
6492 break;
6493 case OVERRUN_UNKNOWN:
6494 break;
6495 }
6496
6497 // update frame information and push timestamp out
6498 activeTrack->updateTrackFrameInfo(
6499 activeTrack->mServerProxy->framesReleased(),
6500 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6501 mSampleRate, mTimestamp);
6502 }
6503
6504 unlock:
6505 // enable changes in effect chain
6506 unlockEffectChains(effectChains);
6507 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6508 }
6509
6510 standbyIfNotAlreadyInStandby();
6511
6512 {
6513 Mutex::Autolock _l(mLock);
6514 for (size_t i = 0; i < mTracks.size(); i++) {
6515 sp<RecordTrack> track = mTracks[i];
6516 track->invalidate();
6517 }
6518 mActiveTracks.clear();
6519 mStartStopCond.broadcast();
6520 }
6521
6522 releaseWakeLock();
6523
6524 ALOGV("RecordThread %p exiting", this);
6525 return false;
6526 }
6527
standbyIfNotAlreadyInStandby()6528 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6529 {
6530 if (!mStandby) {
6531 inputStandBy();
6532 mStandby = true;
6533 }
6534 }
6535
inputStandBy()6536 void AudioFlinger::RecordThread::inputStandBy()
6537 {
6538 // Idle the fast capture if it's currently running
6539 if (mFastCapture != 0) {
6540 FastCaptureStateQueue *sq = mFastCapture->sq();
6541 FastCaptureState *state = sq->begin();
6542 if (!(state->mCommand & FastCaptureState::IDLE)) {
6543 state->mCommand = FastCaptureState::COLD_IDLE;
6544 state->mColdFutexAddr = &mFastCaptureFutex;
6545 state->mColdGen++;
6546 mFastCaptureFutex = 0;
6547 sq->end();
6548 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6549 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6550 #if 0
6551 if (kUseFastCapture == FastCapture_Dynamic) {
6552 // FIXME
6553 }
6554 #endif
6555 #ifdef AUDIO_WATCHDOG
6556 // FIXME
6557 #endif
6558 } else {
6559 sq->end(false /*didModify*/);
6560 }
6561 }
6562 status_t result = mInput->stream->standby();
6563 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
6564
6565 // If going into standby, flush the pipe source.
6566 if (mPipeSource.get() != nullptr) {
6567 const ssize_t flushed = mPipeSource->flush();
6568 if (flushed > 0) {
6569 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
6570 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
6571 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6572 }
6573 }
6574 }
6575
6576 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * notificationFrames,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId)6577 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6578 const sp<AudioFlinger::Client>& client,
6579 uint32_t sampleRate,
6580 audio_format_t format,
6581 audio_channel_mask_t channelMask,
6582 size_t *pFrameCount,
6583 audio_session_t sessionId,
6584 size_t *notificationFrames,
6585 uid_t uid,
6586 audio_input_flags_t *flags,
6587 pid_t tid,
6588 status_t *status,
6589 audio_port_handle_t portId)
6590 {
6591 size_t frameCount = *pFrameCount;
6592 sp<RecordTrack> track;
6593 status_t lStatus;
6594 audio_input_flags_t inputFlags = mInput->flags;
6595
6596 // special case for FAST flag considered OK if fast capture is present
6597 if (hasFastCapture()) {
6598 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6599 }
6600
6601 // Check if requested flags are compatible with output stream flags
6602 if ((*flags & inputFlags) != *flags) {
6603 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6604 " input flags (%08x)",
6605 *flags, inputFlags);
6606 *flags = (audio_input_flags_t)(*flags & inputFlags);
6607 }
6608
6609 // client expresses a preference for FAST, but we get the final say
6610 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6611 if (
6612 // we formerly checked for a callback handler (non-0 tid),
6613 // but that is no longer required for TRANSFER_OBTAIN mode
6614 //
6615 // frame count is not specified, or is exactly the pipe depth
6616 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6617 // PCM data
6618 audio_is_linear_pcm(format) &&
6619 // hardware format
6620 (format == mFormat) &&
6621 // hardware channel mask
6622 (channelMask == mChannelMask) &&
6623 // hardware sample rate
6624 (sampleRate == mSampleRate) &&
6625 // record thread has an associated fast capture
6626 hasFastCapture() &&
6627 // there are sufficient fast track slots available
6628 mFastTrackAvail
6629 ) {
6630 // check compatibility with audio effects.
6631 Mutex::Autolock _l(mLock);
6632 // Do not accept FAST flag if the session has software effects
6633 sp<EffectChain> chain = getEffectChain_l(sessionId);
6634 if (chain != 0) {
6635 audio_input_flags_t old = *flags;
6636 chain->checkInputFlagCompatibility(flags);
6637 if (old != *flags) {
6638 ALOGV("AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
6639 (int)old, (int)*flags);
6640 }
6641 }
6642 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6643 "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6644 frameCount, mFrameCount);
6645 } else {
6646 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6647 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6648 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6649 frameCount, mFrameCount, mPipeFramesP2,
6650 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6651 hasFastCapture(), tid, mFastTrackAvail);
6652 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6653 }
6654 }
6655
6656 // compute track buffer size in frames, and suggest the notification frame count
6657 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6658 // fast track: frame count is exactly the pipe depth
6659 frameCount = mPipeFramesP2;
6660 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6661 *notificationFrames = mFrameCount;
6662 } else {
6663 // not fast track: max notification period is resampled equivalent of one HAL buffer time
6664 // or 20 ms if there is a fast capture
6665 // TODO This could be a roundupRatio inline, and const
6666 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6667 * sampleRate + mSampleRate - 1) / mSampleRate;
6668 // minimum number of notification periods is at least kMinNotifications,
6669 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6670 static const size_t kMinNotifications = 3;
6671 static const uint32_t kMinMs = 30;
6672 // TODO This could be a roundupRatio inline
6673 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6674 // TODO This could be a roundupRatio inline
6675 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6676 maxNotificationFrames;
6677 const size_t minFrameCount = maxNotificationFrames *
6678 max(kMinNotifications, minNotificationsByMs);
6679 frameCount = max(frameCount, minFrameCount);
6680 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6681 *notificationFrames = maxNotificationFrames;
6682 }
6683 }
6684 *pFrameCount = frameCount;
6685
6686 lStatus = initCheck();
6687 if (lStatus != NO_ERROR) {
6688 ALOGE("createRecordTrack_l() audio driver not initialized");
6689 goto Exit;
6690 }
6691
6692 { // scope for mLock
6693 Mutex::Autolock _l(mLock);
6694
6695 track = new RecordTrack(this, client, sampleRate,
6696 format, channelMask, frameCount, NULL, sessionId, uid,
6697 *flags, TrackBase::TYPE_DEFAULT, portId);
6698
6699 lStatus = track->initCheck();
6700 if (lStatus != NO_ERROR) {
6701 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6702 // track must be cleared from the caller as the caller has the AF lock
6703 goto Exit;
6704 }
6705 mTracks.add(track);
6706
6707 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6708 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6709 mAudioFlinger->btNrecIsOff();
6710 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6711 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6712
6713 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6714 pid_t callingPid = IPCThreadState::self()->getCallingPid();
6715 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6716 // so ask activity manager to do this on our behalf
6717 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true);
6718 }
6719 }
6720
6721 lStatus = NO_ERROR;
6722
6723 Exit:
6724 *status = lStatus;
6725 return track;
6726 }
6727
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)6728 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6729 AudioSystem::sync_event_t event,
6730 audio_session_t triggerSession)
6731 {
6732 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6733 sp<ThreadBase> strongMe = this;
6734 status_t status = NO_ERROR;
6735
6736 if (event == AudioSystem::SYNC_EVENT_NONE) {
6737 recordTrack->clearSyncStartEvent();
6738 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6739 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6740 triggerSession,
6741 recordTrack->sessionId(),
6742 syncStartEventCallback,
6743 recordTrack);
6744 // Sync event can be cancelled by the trigger session if the track is not in a
6745 // compatible state in which case we start record immediately
6746 if (recordTrack->mSyncStartEvent->isCancelled()) {
6747 recordTrack->clearSyncStartEvent();
6748 } else {
6749 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6750 recordTrack->mFramesToDrop = -
6751 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6752 }
6753 }
6754
6755 {
6756 // This section is a rendezvous between binder thread executing start() and RecordThread
6757 AutoMutex lock(mLock);
6758 if (mActiveTracks.indexOf(recordTrack) >= 0) {
6759 if (recordTrack->mState == TrackBase::PAUSING) {
6760 ALOGV("active record track PAUSING -> ACTIVE");
6761 recordTrack->mState = TrackBase::ACTIVE;
6762 } else {
6763 ALOGV("active record track state %d", recordTrack->mState);
6764 }
6765 return status;
6766 }
6767
6768 // TODO consider other ways of handling this, such as changing the state to :STARTING and
6769 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6770 // or using a separate command thread
6771 recordTrack->mState = TrackBase::STARTING_1;
6772 mActiveTracks.add(recordTrack);
6773 status_t status = NO_ERROR;
6774 if (recordTrack->isExternalTrack()) {
6775 mLock.unlock();
6776 status = AudioSystem::startInput(mId, recordTrack->sessionId());
6777 mLock.lock();
6778 // FIXME should verify that recordTrack is still in mActiveTracks
6779 if (status != NO_ERROR) {
6780 mActiveTracks.remove(recordTrack);
6781 recordTrack->clearSyncStartEvent();
6782 ALOGV("RecordThread::start error %d", status);
6783 return status;
6784 }
6785 }
6786 // Catch up with current buffer indices if thread is already running.
6787 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
6788 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6789 // see previously buffered data before it called start(), but with greater risk of overrun.
6790
6791 recordTrack->mResamplerBufferProvider->reset();
6792 // clear any converter state as new data will be discontinuous
6793 recordTrack->mRecordBufferConverter->reset();
6794 recordTrack->mState = TrackBase::STARTING_2;
6795 // signal thread to start
6796 mWaitWorkCV.broadcast();
6797 if (mActiveTracks.indexOf(recordTrack) < 0) {
6798 ALOGV("Record failed to start");
6799 status = BAD_VALUE;
6800 goto startError;
6801 }
6802 return status;
6803 }
6804
6805 startError:
6806 if (recordTrack->isExternalTrack()) {
6807 AudioSystem::stopInput(mId, recordTrack->sessionId());
6808 }
6809 recordTrack->clearSyncStartEvent();
6810 // FIXME I wonder why we do not reset the state here?
6811 return status;
6812 }
6813
syncStartEventCallback(const wp<SyncEvent> & event)6814 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6815 {
6816 sp<SyncEvent> strongEvent = event.promote();
6817
6818 if (strongEvent != 0) {
6819 sp<RefBase> ptr = strongEvent->cookie().promote();
6820 if (ptr != 0) {
6821 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6822 recordTrack->handleSyncStartEvent(strongEvent);
6823 }
6824 }
6825 }
6826
stop(RecordThread::RecordTrack * recordTrack)6827 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6828 ALOGV("RecordThread::stop");
6829 AutoMutex _l(mLock);
6830 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
6831 return false;
6832 }
6833 // note that threadLoop may still be processing the track at this point [without lock]
6834 recordTrack->mState = TrackBase::PAUSING;
6835 // signal thread to stop
6836 mWaitWorkCV.broadcast();
6837 // do not wait for mStartStopCond if exiting
6838 if (exitPending()) {
6839 return true;
6840 }
6841 // FIXME incorrect usage of wait: no explicit predicate or loop
6842 mStartStopCond.wait(mLock);
6843 // if we have been restarted, recordTrack is in mActiveTracks here
6844 if (exitPending() || mActiveTracks.indexOf(recordTrack) < 0) {
6845 ALOGV("Record stopped OK");
6846 return true;
6847 }
6848 return false;
6849 }
6850
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6851 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6852 {
6853 return false;
6854 }
6855
setSyncEvent(const sp<SyncEvent> & event __unused)6856 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6857 {
6858 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
6859 if (!isValidSyncEvent(event)) {
6860 return BAD_VALUE;
6861 }
6862
6863 audio_session_t eventSession = event->triggerSession();
6864 status_t ret = NAME_NOT_FOUND;
6865
6866 Mutex::Autolock _l(mLock);
6867
6868 for (size_t i = 0; i < mTracks.size(); i++) {
6869 sp<RecordTrack> track = mTracks[i];
6870 if (eventSession == track->sessionId()) {
6871 (void) track->setSyncEvent(event);
6872 ret = NO_ERROR;
6873 }
6874 }
6875 return ret;
6876 #else
6877 return BAD_VALUE;
6878 #endif
6879 }
6880
6881 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6882 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6883 {
6884 track->terminate();
6885 track->mState = TrackBase::STOPPED;
6886 // active tracks are removed by threadLoop()
6887 if (mActiveTracks.indexOf(track) < 0) {
6888 removeTrack_l(track);
6889 }
6890 }
6891
removeTrack_l(const sp<RecordTrack> & track)6892 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6893 {
6894 mTracks.remove(track);
6895 // need anything related to effects here?
6896 if (track->isFastTrack()) {
6897 ALOG_ASSERT(!mFastTrackAvail);
6898 mFastTrackAvail = true;
6899 }
6900 }
6901
dump(int fd,const Vector<String16> & args)6902 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6903 {
6904 dumpInternals(fd, args);
6905 dumpTracks(fd, args);
6906 dumpEffectChains(fd, args);
6907 }
6908
dumpInternals(int fd,const Vector<String16> & args)6909 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6910 {
6911 dumpBase(fd, args);
6912
6913 AudioStreamIn *input = mInput;
6914 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
6915 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
6916 input, flags, inputFlagsToString(flags).c_str());
6917 if (mActiveTracks.size() == 0) {
6918 dprintf(fd, " No active record clients\n");
6919 }
6920 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6921 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6922
6923 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6924 // while we are dumping it. It may be inconsistent, but it won't mutate!
6925 // This is a large object so we place it on the heap.
6926 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6927 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6928 copy->dump(fd);
6929 delete copy;
6930 }
6931
dumpTracks(int fd,const Vector<String16> & args __unused)6932 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6933 {
6934 const size_t SIZE = 256;
6935 char buffer[SIZE];
6936 String8 result;
6937
6938 size_t numtracks = mTracks.size();
6939 size_t numactive = mActiveTracks.size();
6940 size_t numactiveseen = 0;
6941 dprintf(fd, " %zu Tracks", numtracks);
6942 if (numtracks) {
6943 dprintf(fd, " of which %zu are active\n", numactive);
6944 RecordTrack::appendDumpHeader(result);
6945 for (size_t i = 0; i < numtracks ; ++i) {
6946 sp<RecordTrack> track = mTracks[i];
6947 if (track != 0) {
6948 bool active = mActiveTracks.indexOf(track) >= 0;
6949 if (active) {
6950 numactiveseen++;
6951 }
6952 track->dump(buffer, SIZE, active);
6953 result.append(buffer);
6954 }
6955 }
6956 } else {
6957 dprintf(fd, "\n");
6958 }
6959
6960 if (numactiveseen != numactive) {
6961 snprintf(buffer, SIZE, " The following tracks are in the active list but"
6962 " not in the track list\n");
6963 result.append(buffer);
6964 RecordTrack::appendDumpHeader(result);
6965 for (size_t i = 0; i < numactive; ++i) {
6966 sp<RecordTrack> track = mActiveTracks[i];
6967 if (mTracks.indexOf(track) < 0) {
6968 track->dump(buffer, SIZE, true);
6969 result.append(buffer);
6970 }
6971 }
6972
6973 }
6974 write(fd, result.string(), result.size());
6975 }
6976
6977
reset()6978 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6979 {
6980 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6981 RecordThread *recordThread = (RecordThread *) threadBase.get();
6982 mRsmpInFront = recordThread->mRsmpInRear;
6983 mRsmpInUnrel = 0;
6984 }
6985
sync(size_t * framesAvailable,bool * hasOverrun)6986 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6987 size_t *framesAvailable, bool *hasOverrun)
6988 {
6989 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6990 RecordThread *recordThread = (RecordThread *) threadBase.get();
6991 const int32_t rear = recordThread->mRsmpInRear;
6992 const int32_t front = mRsmpInFront;
6993 const ssize_t filled = rear - front;
6994
6995 size_t framesIn;
6996 bool overrun = false;
6997 if (filled < 0) {
6998 // should not happen, but treat like a massive overrun and re-sync
6999 framesIn = 0;
7000 mRsmpInFront = rear;
7001 overrun = true;
7002 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
7003 framesIn = (size_t) filled;
7004 } else {
7005 // client is not keeping up with server, but give it latest data
7006 framesIn = recordThread->mRsmpInFrames;
7007 mRsmpInFront = /* front = */ rear - framesIn;
7008 overrun = true;
7009 }
7010 if (framesAvailable != NULL) {
7011 *framesAvailable = framesIn;
7012 }
7013 if (hasOverrun != NULL) {
7014 *hasOverrun = overrun;
7015 }
7016 }
7017
7018 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)7019 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
7020 AudioBufferProvider::Buffer* buffer)
7021 {
7022 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7023 if (threadBase == 0) {
7024 buffer->frameCount = 0;
7025 buffer->raw = NULL;
7026 return NOT_ENOUGH_DATA;
7027 }
7028 RecordThread *recordThread = (RecordThread *) threadBase.get();
7029 int32_t rear = recordThread->mRsmpInRear;
7030 int32_t front = mRsmpInFront;
7031 ssize_t filled = rear - front;
7032 // FIXME should not be P2 (don't want to increase latency)
7033 // FIXME if client not keeping up, discard
7034 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
7035 // 'filled' may be non-contiguous, so return only the first contiguous chunk
7036 front &= recordThread->mRsmpInFramesP2 - 1;
7037 size_t part1 = recordThread->mRsmpInFramesP2 - front;
7038 if (part1 > (size_t) filled) {
7039 part1 = filled;
7040 }
7041 size_t ask = buffer->frameCount;
7042 ALOG_ASSERT(ask > 0);
7043 if (part1 > ask) {
7044 part1 = ask;
7045 }
7046 if (part1 == 0) {
7047 // out of data is fine since the resampler will return a short-count.
7048 buffer->raw = NULL;
7049 buffer->frameCount = 0;
7050 mRsmpInUnrel = 0;
7051 return NOT_ENOUGH_DATA;
7052 }
7053
7054 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
7055 buffer->frameCount = part1;
7056 mRsmpInUnrel = part1;
7057 return NO_ERROR;
7058 }
7059
7060 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)7061 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
7062 AudioBufferProvider::Buffer* buffer)
7063 {
7064 size_t stepCount = buffer->frameCount;
7065 if (stepCount == 0) {
7066 return;
7067 }
7068 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
7069 mRsmpInUnrel -= stepCount;
7070 mRsmpInFront += stepCount;
7071 buffer->raw = NULL;
7072 buffer->frameCount = 0;
7073 }
7074
7075
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7076 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7077 status_t& status)
7078 {
7079 bool reconfig = false;
7080
7081 status = NO_ERROR;
7082
7083 audio_format_t reqFormat = mFormat;
7084 uint32_t samplingRate = mSampleRate;
7085 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7086 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7087
7088 AudioParameter param = AudioParameter(keyValuePair);
7089 int value;
7090
7091 // scope for AutoPark extends to end of method
7092 AutoPark<FastCapture> park(mFastCapture);
7093
7094 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7095 // channel count change can be requested. Do we mandate the first client defines the
7096 // HAL sampling rate and channel count or do we allow changes on the fly?
7097 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7098 samplingRate = value;
7099 reconfig = true;
7100 }
7101 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7102 if (!audio_is_linear_pcm((audio_format_t) value)) {
7103 status = BAD_VALUE;
7104 } else {
7105 reqFormat = (audio_format_t) value;
7106 reconfig = true;
7107 }
7108 }
7109 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7110 audio_channel_mask_t mask = (audio_channel_mask_t) value;
7111 if (!audio_is_input_channel(mask) ||
7112 audio_channel_count_from_in_mask(mask) > FCC_8) {
7113 status = BAD_VALUE;
7114 } else {
7115 channelMask = mask;
7116 reconfig = true;
7117 }
7118 }
7119 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7120 // do not accept frame count changes if tracks are open as the track buffer
7121 // size depends on frame count and correct behavior would not be guaranteed
7122 // if frame count is changed after track creation
7123 if (mActiveTracks.size() > 0) {
7124 status = INVALID_OPERATION;
7125 } else {
7126 reconfig = true;
7127 }
7128 }
7129 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7130 // forward device change to effects that have requested to be
7131 // aware of attached audio device.
7132 for (size_t i = 0; i < mEffectChains.size(); i++) {
7133 mEffectChains[i]->setDevice_l(value);
7134 }
7135
7136 // store input device and output device but do not forward output device to audio HAL.
7137 // Note that status is ignored by the caller for output device
7138 // (see AudioFlinger::setParameters()
7139 if (audio_is_output_devices(value)) {
7140 mOutDevice = value;
7141 status = BAD_VALUE;
7142 } else {
7143 mInDevice = value;
7144 if (value != AUDIO_DEVICE_NONE) {
7145 mPrevInDevice = value;
7146 }
7147 // disable AEC and NS if the device is a BT SCO headset supporting those
7148 // pre processings
7149 if (mTracks.size() > 0) {
7150 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7151 mAudioFlinger->btNrecIsOff();
7152 for (size_t i = 0; i < mTracks.size(); i++) {
7153 sp<RecordTrack> track = mTracks[i];
7154 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7155 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7156 }
7157 }
7158 }
7159 }
7160 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7161 mAudioSource != (audio_source_t)value) {
7162 // forward device change to effects that have requested to be
7163 // aware of attached audio device.
7164 for (size_t i = 0; i < mEffectChains.size(); i++) {
7165 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7166 }
7167 mAudioSource = (audio_source_t)value;
7168 }
7169
7170 if (status == NO_ERROR) {
7171 status = mInput->stream->setParameters(keyValuePair);
7172 if (status == INVALID_OPERATION) {
7173 inputStandBy();
7174 status = mInput->stream->setParameters(keyValuePair);
7175 }
7176 if (reconfig) {
7177 if (status == BAD_VALUE) {
7178 uint32_t sRate;
7179 audio_channel_mask_t channelMask;
7180 audio_format_t format;
7181 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
7182 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
7183 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
7184 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
7185 status = NO_ERROR;
7186 }
7187 }
7188 if (status == NO_ERROR) {
7189 readInputParameters_l();
7190 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7191 }
7192 }
7193 }
7194
7195 return reconfig;
7196 }
7197
getParameters(const String8 & keys)7198 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7199 {
7200 Mutex::Autolock _l(mLock);
7201 if (initCheck() == NO_ERROR) {
7202 String8 out_s8;
7203 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
7204 return out_s8;
7205 }
7206 }
7207 return String8();
7208 }
7209
ioConfigChanged(audio_io_config_event event,pid_t pid)7210 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7211 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7212
7213 desc->mIoHandle = mId;
7214
7215 switch (event) {
7216 case AUDIO_INPUT_OPENED:
7217 case AUDIO_INPUT_CONFIG_CHANGED:
7218 desc->mPatch = mPatch;
7219 desc->mChannelMask = mChannelMask;
7220 desc->mSamplingRate = mSampleRate;
7221 desc->mFormat = mFormat;
7222 desc->mFrameCount = mFrameCount;
7223 desc->mFrameCountHAL = mFrameCount;
7224 desc->mLatency = 0;
7225 break;
7226
7227 case AUDIO_INPUT_CLOSED:
7228 default:
7229 break;
7230 }
7231 mAudioFlinger->ioConfigChanged(event, desc, pid);
7232 }
7233
readInputParameters_l()7234 void AudioFlinger::RecordThread::readInputParameters_l()
7235 {
7236 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7237 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7238 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7239 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d", mChannelCount, FCC_8);
7240 mFormat = mHALFormat;
7241 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7242 result = mInput->stream->getFrameSize(&mFrameSize);
7243 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7244 result = mInput->stream->getBufferSize(&mBufferSize);
7245 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7246 mFrameCount = mBufferSize / mFrameSize;
7247 // This is the formula for calculating the temporary buffer size.
7248 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7249 // 1 full output buffer, regardless of the alignment of the available input.
7250 // The value is somewhat arbitrary, and could probably be even larger.
7251 // A larger value should allow more old data to be read after a track calls start(),
7252 // without increasing latency.
7253 //
7254 // Note this is independent of the maximum downsampling ratio permitted for capture.
7255 mRsmpInFrames = mFrameCount * 7;
7256 mRsmpInFramesP2 = roundup(mRsmpInFrames);
7257 free(mRsmpInBuffer);
7258 mRsmpInBuffer = NULL;
7259
7260 // TODO optimize audio capture buffer sizes ...
7261 // Here we calculate the size of the sliding buffer used as a source
7262 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7263 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
7264 // be better to have it derived from the pipe depth in the long term.
7265 // The current value is higher than necessary. However it should not add to latency.
7266
7267 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7268 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
7269 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
7270 // if posix_memalign fails, will segv here.
7271 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
7272
7273 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7274 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7275 }
7276
getInputFramesLost()7277 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7278 {
7279 Mutex::Autolock _l(mLock);
7280 uint32_t result;
7281 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
7282 return result;
7283 }
7284 return 0;
7285 }
7286
7287 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const7288 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7289 {
7290 uint32_t result = 0;
7291 if (getEffectChain_l(sessionId) != 0) {
7292 result = EFFECT_SESSION;
7293 }
7294
7295 for (size_t i = 0; i < mTracks.size(); ++i) {
7296 if (sessionId == mTracks[i]->sessionId()) {
7297 result |= TRACK_SESSION;
7298 if (mTracks[i]->isFastTrack()) {
7299 result |= FAST_SESSION;
7300 }
7301 break;
7302 }
7303 }
7304
7305 return result;
7306 }
7307
sessionIds() const7308 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7309 {
7310 KeyedVector<audio_session_t, bool> ids;
7311 Mutex::Autolock _l(mLock);
7312 for (size_t j = 0; j < mTracks.size(); ++j) {
7313 sp<RecordThread::RecordTrack> track = mTracks[j];
7314 audio_session_t sessionId = track->sessionId();
7315 if (ids.indexOfKey(sessionId) < 0) {
7316 ids.add(sessionId, true);
7317 }
7318 }
7319 return ids;
7320 }
7321
clearInput()7322 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7323 {
7324 Mutex::Autolock _l(mLock);
7325 AudioStreamIn *input = mInput;
7326 mInput = NULL;
7327 return input;
7328 }
7329
7330 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const7331 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
7332 {
7333 if (mInput == NULL) {
7334 return NULL;
7335 }
7336 return mInput->stream;
7337 }
7338
addEffectChain_l(const sp<EffectChain> & chain)7339 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7340 {
7341 // only one chain per input thread
7342 if (mEffectChains.size() != 0) {
7343 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7344 return INVALID_OPERATION;
7345 }
7346 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7347 chain->setThread(this);
7348 chain->setInBuffer(NULL);
7349 chain->setOutBuffer(NULL);
7350
7351 checkSuspendOnAddEffectChain_l(chain);
7352
7353 // make sure enabled pre processing effects state is communicated to the HAL as we
7354 // just moved them to a new input stream.
7355 chain->syncHalEffectsState();
7356
7357 mEffectChains.add(chain);
7358
7359 return NO_ERROR;
7360 }
7361
removeEffectChain_l(const sp<EffectChain> & chain)7362 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7363 {
7364 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7365 ALOGW_IF(mEffectChains.size() != 1,
7366 "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7367 chain.get(), mEffectChains.size(), this);
7368 if (mEffectChains.size() == 1) {
7369 mEffectChains.removeAt(0);
7370 }
7371 return 0;
7372 }
7373
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7374 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7375 audio_patch_handle_t *handle)
7376 {
7377 status_t status = NO_ERROR;
7378
7379 // store new device and send to effects
7380 mInDevice = patch->sources[0].ext.device.type;
7381 mPatch = *patch;
7382 for (size_t i = 0; i < mEffectChains.size(); i++) {
7383 mEffectChains[i]->setDevice_l(mInDevice);
7384 }
7385
7386 // disable AEC and NS if the device is a BT SCO headset supporting those
7387 // pre processings
7388 if (mTracks.size() > 0) {
7389 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7390 mAudioFlinger->btNrecIsOff();
7391 for (size_t i = 0; i < mTracks.size(); i++) {
7392 sp<RecordTrack> track = mTracks[i];
7393 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7394 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7395 }
7396 }
7397
7398 // store new source and send to effects
7399 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7400 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7401 for (size_t i = 0; i < mEffectChains.size(); i++) {
7402 mEffectChains[i]->setAudioSource_l(mAudioSource);
7403 }
7404 }
7405
7406 if (mInput->audioHwDev->supportsAudioPatches()) {
7407 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7408 status = hwDevice->createAudioPatch(patch->num_sources,
7409 patch->sources,
7410 patch->num_sinks,
7411 patch->sinks,
7412 handle);
7413 } else {
7414 char *address;
7415 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7416 address = audio_device_address_to_parameter(
7417 patch->sources[0].ext.device.type,
7418 patch->sources[0].ext.device.address);
7419 } else {
7420 address = (char *)calloc(1, 1);
7421 }
7422 AudioParameter param = AudioParameter(String8(address));
7423 free(address);
7424 param.addInt(String8(AudioParameter::keyRouting),
7425 (int)patch->sources[0].ext.device.type);
7426 param.addInt(String8(AudioParameter::keyInputSource),
7427 (int)patch->sinks[0].ext.mix.usecase.source);
7428 status = mInput->stream->setParameters(param.toString());
7429 *handle = AUDIO_PATCH_HANDLE_NONE;
7430 }
7431
7432 if (mInDevice != mPrevInDevice) {
7433 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7434 mPrevInDevice = mInDevice;
7435 }
7436
7437 return status;
7438 }
7439
releaseAudioPatch_l(const audio_patch_handle_t handle)7440 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7441 {
7442 status_t status = NO_ERROR;
7443
7444 mInDevice = AUDIO_DEVICE_NONE;
7445
7446 if (mInput->audioHwDev->supportsAudioPatches()) {
7447 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7448 status = hwDevice->releaseAudioPatch(handle);
7449 } else {
7450 AudioParameter param;
7451 param.addInt(String8(AudioParameter::keyRouting), 0);
7452 status = mInput->stream->setParameters(param.toString());
7453 }
7454 return status;
7455 }
7456
addPatchRecord(const sp<PatchRecord> & record)7457 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7458 {
7459 Mutex::Autolock _l(mLock);
7460 mTracks.add(record);
7461 }
7462
deletePatchRecord(const sp<PatchRecord> & record)7463 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7464 {
7465 Mutex::Autolock _l(mLock);
7466 destroyTrack_l(record);
7467 }
7468
getAudioPortConfig(struct audio_port_config * config)7469 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7470 {
7471 ThreadBase::getAudioPortConfig(config);
7472 config->role = AUDIO_PORT_ROLE_SINK;
7473 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7474 config->ext.mix.usecase.source = mAudioSource;
7475 }
7476
7477 // ----------------------------------------------------------------------------
7478 // Mmap
7479 // ----------------------------------------------------------------------------
7480
MmapThreadHandle(const sp<MmapThread> & thread)7481 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
7482 : mThread(thread)
7483 {
7484 }
7485
~MmapThreadHandle()7486 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
7487 {
7488 MmapThread *thread = mThread.get();
7489 // clear our strong reference before disconnecting the thread: the last strong reference
7490 // will be removed when closeInput/closeOutput is executed upon call from audio policy manager
7491 // and the thread removed from mMMapThreads list causing the thread destruction.
7492 mThread.clear();
7493 if (thread != nullptr) {
7494 thread->disconnect();
7495 }
7496 }
7497
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7498 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
7499 struct audio_mmap_buffer_info *info)
7500 {
7501 if (mThread == 0) {
7502 return NO_INIT;
7503 }
7504 return mThread->createMmapBuffer(minSizeFrames, info);
7505 }
7506
getMmapPosition(struct audio_mmap_position * position)7507 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
7508 {
7509 if (mThread == 0) {
7510 return NO_INIT;
7511 }
7512 return mThread->getMmapPosition(position);
7513 }
7514
start(const MmapStreamInterface::Client & client,audio_port_handle_t * handle)7515 status_t AudioFlinger::MmapThreadHandle::start(const MmapStreamInterface::Client& client,
7516 audio_port_handle_t *handle)
7517
7518 {
7519 if (mThread == 0) {
7520 return NO_INIT;
7521 }
7522 return mThread->start(client, handle);
7523 }
7524
stop(audio_port_handle_t handle)7525 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
7526 {
7527 if (mThread == 0) {
7528 return NO_INIT;
7529 }
7530 return mThread->stop(handle);
7531 }
7532
standby()7533 status_t AudioFlinger::MmapThreadHandle::standby()
7534 {
7535 if (mThread == 0) {
7536 return NO_INIT;
7537 }
7538 return mThread->standby();
7539 }
7540
7541
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)7542 AudioFlinger::MmapThread::MmapThread(
7543 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
7544 AudioHwDevice *hwDev, sp<StreamHalInterface> stream,
7545 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
7546 : ThreadBase(audioFlinger, id, outDevice, inDevice, MMAP, systemReady),
7547 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev)
7548 {
7549 mStandby = true;
7550 readHalParameters_l();
7551 }
7552
~MmapThread()7553 AudioFlinger::MmapThread::~MmapThread()
7554 {
7555 releaseWakeLock_l();
7556 }
7557
onFirstRef()7558 void AudioFlinger::MmapThread::onFirstRef()
7559 {
7560 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
7561 }
7562
disconnect()7563 void AudioFlinger::MmapThread::disconnect()
7564 {
7565 for (const sp<MmapTrack> &t : mActiveTracks) {
7566 stop(t->portId());
7567 }
7568 // this will cause the destruction of this thread.
7569 if (isOutput()) {
7570 AudioSystem::releaseOutput(mId, streamType(), mSessionId);
7571 } else {
7572 AudioSystem::releaseInput(mId, mSessionId);
7573 }
7574 }
7575
7576
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t portId)7577 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
7578 audio_stream_type_t streamType __unused,
7579 audio_session_t sessionId,
7580 const sp<MmapStreamCallback>& callback,
7581 audio_port_handle_t portId)
7582 {
7583 mAttr = *attr;
7584 mSessionId = sessionId;
7585 mCallback = callback;
7586 mPortId = portId;
7587 }
7588
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7589 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
7590 struct audio_mmap_buffer_info *info)
7591 {
7592 if (mHalStream == 0) {
7593 return NO_INIT;
7594 }
7595 mStandby = true;
7596 acquireWakeLock();
7597 return mHalStream->createMmapBuffer(minSizeFrames, info);
7598 }
7599
getMmapPosition(struct audio_mmap_position * position)7600 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
7601 {
7602 if (mHalStream == 0) {
7603 return NO_INIT;
7604 }
7605 return mHalStream->getMmapPosition(position);
7606 }
7607
start(const MmapStreamInterface::Client & client,audio_port_handle_t * handle)7608 status_t AudioFlinger::MmapThread::start(const MmapStreamInterface::Client& client,
7609 audio_port_handle_t *handle)
7610 {
7611 ALOGV("%s clientUid %d mStandby %d", __FUNCTION__, client.clientUid, mStandby);
7612 if (mHalStream == 0) {
7613 return NO_INIT;
7614 }
7615
7616 status_t ret;
7617 audio_session_t sessionId;
7618 audio_port_handle_t portId;
7619
7620 if (mActiveTracks.size() == 0) {
7621 // for the first track, reuse portId and session allocated when the stream was opened
7622 ret = mHalStream->start();
7623 if (ret != NO_ERROR) {
7624 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
7625 return ret;
7626 }
7627 portId = mPortId;
7628 sessionId = mSessionId;
7629 mStandby = false;
7630 } else {
7631 // for other tracks than first one, get a new port ID from APM.
7632 sessionId = (audio_session_t)mAudioFlinger->newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
7633 audio_io_handle_t io;
7634 if (isOutput()) {
7635 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
7636 config.sample_rate = mSampleRate;
7637 config.channel_mask = mChannelMask;
7638 config.format = mFormat;
7639 audio_stream_type_t stream = streamType();
7640 audio_output_flags_t flags =
7641 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
7642 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
7643 sessionId,
7644 &stream,
7645 client.clientUid,
7646 &config,
7647 flags,
7648 AUDIO_PORT_HANDLE_NONE,
7649 &portId);
7650 } else {
7651 audio_config_base_t config;
7652 config.sample_rate = mSampleRate;
7653 config.channel_mask = mChannelMask;
7654 config.format = mFormat;
7655 ret = AudioSystem::getInputForAttr(&mAttr, &io,
7656 sessionId,
7657 client.clientPid,
7658 client.clientUid,
7659 &config,
7660 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
7661 AUDIO_PORT_HANDLE_NONE,
7662 &portId);
7663 }
7664 // APM should not chose a different input or output stream for the same set of attributes
7665 // and audo configuration
7666 if (ret != NO_ERROR || io != mId) {
7667 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
7668 __FUNCTION__, ret, io, mId);
7669 return BAD_VALUE;
7670 }
7671 }
7672
7673 if (isOutput()) {
7674 ret = AudioSystem::startOutput(mId, streamType(), sessionId);
7675 } else {
7676 ret = AudioSystem::startInput(mId, sessionId);
7677 }
7678
7679 // abort if start is rejected by audio policy manager
7680 if (ret != NO_ERROR) {
7681 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
7682 if (mActiveTracks.size() != 0) {
7683 if (isOutput()) {
7684 AudioSystem::releaseOutput(mId, streamType(), sessionId);
7685 } else {
7686 AudioSystem::releaseInput(mId, sessionId);
7687 }
7688 } else {
7689 mHalStream->stop();
7690 }
7691 return PERMISSION_DENIED;
7692 }
7693
7694 sp<MmapTrack> track = new MmapTrack(this, mSampleRate, mFormat, mChannelMask, sessionId,
7695 client.clientUid, portId);
7696
7697 mActiveTracks.add(track);
7698 sp<EffectChain> chain = getEffectChain_l(sessionId);
7699 if (chain != 0) {
7700 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
7701 chain->incTrackCnt();
7702 chain->incActiveTrackCnt();
7703 }
7704
7705 *handle = portId;
7706
7707 broadcast_l();
7708
7709 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, portId, mHalStream.get());
7710
7711 return NO_ERROR;
7712 }
7713
stop(audio_port_handle_t handle)7714 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
7715 {
7716 ALOGV("%s handle %d", __FUNCTION__, handle);
7717
7718 if (mHalStream == 0) {
7719 return NO_INIT;
7720 }
7721
7722 sp<MmapTrack> track;
7723 for (const sp<MmapTrack> &t : mActiveTracks) {
7724 if (handle == t->portId()) {
7725 track = t;
7726 break;
7727 }
7728 }
7729 if (track == 0) {
7730 return BAD_VALUE;
7731 }
7732
7733 mActiveTracks.remove(track);
7734
7735 if (isOutput()) {
7736 AudioSystem::stopOutput(mId, streamType(), track->sessionId());
7737 if (mActiveTracks.size() != 0) {
7738 AudioSystem::releaseOutput(mId, streamType(), track->sessionId());
7739 }
7740 } else {
7741 AudioSystem::stopInput(mId, track->sessionId());
7742 if (mActiveTracks.size() != 0) {
7743 AudioSystem::releaseInput(mId, track->sessionId());
7744 }
7745 }
7746
7747 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
7748 if (chain != 0) {
7749 chain->decActiveTrackCnt();
7750 chain->decTrackCnt();
7751 }
7752
7753 broadcast_l();
7754
7755 if (mActiveTracks.size() == 0) {
7756 mHalStream->stop();
7757 }
7758 return NO_ERROR;
7759 }
7760
standby()7761 status_t AudioFlinger::MmapThread::standby()
7762 {
7763 ALOGV("%s", __FUNCTION__);
7764
7765 if (mHalStream == 0) {
7766 return NO_INIT;
7767 }
7768 if (mActiveTracks.size() != 0) {
7769 return INVALID_OPERATION;
7770 }
7771 mHalStream->standby();
7772 mStandby = true;
7773 releaseWakeLock();
7774 return NO_ERROR;
7775 }
7776
7777
readHalParameters_l()7778 void AudioFlinger::MmapThread::readHalParameters_l()
7779 {
7780 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7781 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7782 mFormat = mHALFormat;
7783 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7784 result = mHalStream->getFrameSize(&mFrameSize);
7785 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7786 result = mHalStream->getBufferSize(&mBufferSize);
7787 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7788 mFrameCount = mBufferSize / mFrameSize;
7789 }
7790
threadLoop()7791 bool AudioFlinger::MmapThread::threadLoop()
7792 {
7793 checkSilentMode_l();
7794
7795 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
7796
7797 while (!exitPending())
7798 {
7799 Mutex::Autolock _l(mLock);
7800 Vector< sp<EffectChain> > effectChains;
7801
7802 if (mSignalPending) {
7803 // A signal was raised while we were unlocked
7804 mSignalPending = false;
7805 } else {
7806 if (mConfigEvents.isEmpty()) {
7807 // we're about to wait, flush the binder command buffer
7808 IPCThreadState::self()->flushCommands();
7809
7810 if (exitPending()) {
7811 break;
7812 }
7813
7814 // wait until we have something to do...
7815 ALOGV("%s going to sleep", myName.string());
7816 mWaitWorkCV.wait(mLock);
7817 ALOGV("%s waking up", myName.string());
7818
7819 checkSilentMode_l();
7820
7821 continue;
7822 }
7823 }
7824
7825 processConfigEvents_l();
7826
7827 processVolume_l();
7828
7829 checkInvalidTracks_l();
7830
7831 mActiveTracks.updatePowerState(this);
7832
7833 lockEffectChains_l(effectChains);
7834 for (size_t i = 0; i < effectChains.size(); i ++) {
7835 effectChains[i]->process_l();
7836 }
7837 // enable changes in effect chain
7838 unlockEffectChains(effectChains);
7839 // Effect chains will be actually deleted here if they were removed from
7840 // mEffectChains list during mixing or effects processing
7841 }
7842
7843 threadLoop_exit();
7844
7845 if (!mStandby) {
7846 threadLoop_standby();
7847 mStandby = true;
7848 }
7849
7850 ALOGV("Thread %p type %d exiting", this, mType);
7851 return false;
7852 }
7853
7854 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7855 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
7856 status_t& status)
7857 {
7858 AudioParameter param = AudioParameter(keyValuePair);
7859 int value;
7860 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7861 // forward device change to effects that have requested to be
7862 // aware of attached audio device.
7863 if (value != AUDIO_DEVICE_NONE) {
7864 mOutDevice = value;
7865 for (size_t i = 0; i < mEffectChains.size(); i++) {
7866 mEffectChains[i]->setDevice_l(mOutDevice);
7867 }
7868 }
7869 }
7870 status = mHalStream->setParameters(keyValuePair);
7871
7872 return false;
7873 }
7874
getParameters(const String8 & keys)7875 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
7876 {
7877 Mutex::Autolock _l(mLock);
7878 String8 out_s8;
7879 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
7880 return out_s8;
7881 }
7882 return String8();
7883 }
7884
ioConfigChanged(audio_io_config_event event,pid_t pid)7885 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7886 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7887
7888 desc->mIoHandle = mId;
7889
7890 switch (event) {
7891 case AUDIO_INPUT_OPENED:
7892 case AUDIO_INPUT_CONFIG_CHANGED:
7893 case AUDIO_OUTPUT_OPENED:
7894 case AUDIO_OUTPUT_CONFIG_CHANGED:
7895 desc->mPatch = mPatch;
7896 desc->mChannelMask = mChannelMask;
7897 desc->mSamplingRate = mSampleRate;
7898 desc->mFormat = mFormat;
7899 desc->mFrameCount = mFrameCount;
7900 desc->mFrameCountHAL = mFrameCount;
7901 desc->mLatency = 0;
7902 break;
7903
7904 case AUDIO_INPUT_CLOSED:
7905 case AUDIO_OUTPUT_CLOSED:
7906 default:
7907 break;
7908 }
7909 mAudioFlinger->ioConfigChanged(event, desc, pid);
7910 }
7911
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7912 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
7913 audio_patch_handle_t *handle)
7914 {
7915 status_t status = NO_ERROR;
7916
7917 // store new device and send to effects
7918 audio_devices_t type = AUDIO_DEVICE_NONE;
7919 audio_port_handle_t deviceId;
7920 if (isOutput()) {
7921 for (unsigned int i = 0; i < patch->num_sinks; i++) {
7922 type |= patch->sinks[i].ext.device.type;
7923 }
7924 deviceId = patch->sinks[0].id;
7925 } else {
7926 type = patch->sources[0].ext.device.type;
7927 deviceId = patch->sources[0].id;
7928 }
7929
7930 for (size_t i = 0; i < mEffectChains.size(); i++) {
7931 mEffectChains[i]->setDevice_l(type);
7932 }
7933
7934 if (isOutput()) {
7935 mOutDevice = type;
7936 } else {
7937 mInDevice = type;
7938 // store new source and send to effects
7939 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7940 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7941 for (size_t i = 0; i < mEffectChains.size(); i++) {
7942 mEffectChains[i]->setAudioSource_l(mAudioSource);
7943 }
7944 }
7945 }
7946
7947 if (mAudioHwDev->supportsAudioPatches()) {
7948 status = mHalDevice->createAudioPatch(patch->num_sources,
7949 patch->sources,
7950 patch->num_sinks,
7951 patch->sinks,
7952 handle);
7953 } else {
7954 char *address;
7955 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
7956 //FIXME: we only support address on first sink with HAL version < 3.0
7957 address = audio_device_address_to_parameter(
7958 patch->sinks[0].ext.device.type,
7959 patch->sinks[0].ext.device.address);
7960 } else {
7961 address = (char *)calloc(1, 1);
7962 }
7963 AudioParameter param = AudioParameter(String8(address));
7964 free(address);
7965 param.addInt(String8(AudioParameter::keyRouting), (int)type);
7966 if (!isOutput()) {
7967 param.addInt(String8(AudioParameter::keyInputSource),
7968 (int)patch->sinks[0].ext.mix.usecase.source);
7969 }
7970 status = mHalStream->setParameters(param.toString());
7971 *handle = AUDIO_PATCH_HANDLE_NONE;
7972 }
7973
7974 if (isOutput() && mPrevOutDevice != mOutDevice) {
7975 mPrevOutDevice = type;
7976 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
7977 sp<MmapStreamCallback> callback = mCallback.promote();
7978 if (callback != 0) {
7979 callback->onRoutingChanged(deviceId);
7980 }
7981 }
7982 if (!isOutput() && mPrevInDevice != mInDevice) {
7983 mPrevInDevice = type;
7984 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7985 sp<MmapStreamCallback> callback = mCallback.promote();
7986 if (callback != 0) {
7987 callback->onRoutingChanged(deviceId);
7988 }
7989 }
7990 return status;
7991 }
7992
releaseAudioPatch_l(const audio_patch_handle_t handle)7993 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7994 {
7995 status_t status = NO_ERROR;
7996
7997 mInDevice = AUDIO_DEVICE_NONE;
7998
7999 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
8000 supportsAudioPatches : false;
8001
8002 if (supportsAudioPatches) {
8003 status = mHalDevice->releaseAudioPatch(handle);
8004 } else {
8005 AudioParameter param;
8006 param.addInt(String8(AudioParameter::keyRouting), 0);
8007 status = mHalStream->setParameters(param.toString());
8008 }
8009 return status;
8010 }
8011
getAudioPortConfig(struct audio_port_config * config)8012 void AudioFlinger::MmapThread::getAudioPortConfig(struct audio_port_config *config)
8013 {
8014 ThreadBase::getAudioPortConfig(config);
8015 if (isOutput()) {
8016 config->role = AUDIO_PORT_ROLE_SOURCE;
8017 config->ext.mix.hw_module = mAudioHwDev->handle();
8018 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
8019 } else {
8020 config->role = AUDIO_PORT_ROLE_SINK;
8021 config->ext.mix.hw_module = mAudioHwDev->handle();
8022 config->ext.mix.usecase.source = mAudioSource;
8023 }
8024 }
8025
addEffectChain_l(const sp<EffectChain> & chain)8026 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
8027 {
8028 audio_session_t session = chain->sessionId();
8029
8030 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
8031 // Attach all tracks with same session ID to this chain.
8032 // indicate all active tracks in the chain
8033 for (const sp<MmapTrack> &track : mActiveTracks) {
8034 if (session == track->sessionId()) {
8035 chain->incTrackCnt();
8036 chain->incActiveTrackCnt();
8037 }
8038 }
8039
8040 chain->setThread(this);
8041 chain->setInBuffer(nullptr);
8042 chain->setOutBuffer(nullptr);
8043 chain->syncHalEffectsState();
8044
8045 mEffectChains.add(chain);
8046 checkSuspendOnAddEffectChain_l(chain);
8047 return NO_ERROR;
8048 }
8049
removeEffectChain_l(const sp<EffectChain> & chain)8050 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
8051 {
8052 audio_session_t session = chain->sessionId();
8053
8054 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
8055
8056 for (size_t i = 0; i < mEffectChains.size(); i++) {
8057 if (chain == mEffectChains[i]) {
8058 mEffectChains.removeAt(i);
8059 // detach all active tracks from the chain
8060 // detach all tracks with same session ID from this chain
8061 for (const sp<MmapTrack> &track : mActiveTracks) {
8062 if (session == track->sessionId()) {
8063 chain->decActiveTrackCnt();
8064 chain->decTrackCnt();
8065 }
8066 }
8067 break;
8068 }
8069 }
8070 return mEffectChains.size();
8071 }
8072
8073 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const8074 uint32_t AudioFlinger::MmapThread::hasAudioSession_l(audio_session_t sessionId) const
8075 {
8076 uint32_t result = 0;
8077 if (getEffectChain_l(sessionId) != 0) {
8078 result = EFFECT_SESSION;
8079 }
8080
8081 for (size_t i = 0; i < mActiveTracks.size(); i++) {
8082 sp<MmapTrack> track = mActiveTracks[i];
8083 if (sessionId == track->sessionId()) {
8084 result |= TRACK_SESSION;
8085 if (track->isFastTrack()) {
8086 result |= FAST_SESSION;
8087 }
8088 break;
8089 }
8090 }
8091
8092 return result;
8093 }
8094
threadLoop_standby()8095 void AudioFlinger::MmapThread::threadLoop_standby()
8096 {
8097 mHalStream->standby();
8098 }
8099
threadLoop_exit()8100 void AudioFlinger::MmapThread::threadLoop_exit()
8101 {
8102 sp<MmapStreamCallback> callback = mCallback.promote();
8103 if (callback != 0) {
8104 callback->onTearDown();
8105 }
8106 }
8107
setSyncEvent(const sp<SyncEvent> & event __unused)8108 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8109 {
8110 return BAD_VALUE;
8111 }
8112
isValidSyncEvent(const sp<SyncEvent> & event __unused) const8113 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
8114 {
8115 return false;
8116 }
8117
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)8118 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
8119 const effect_descriptor_t *desc, audio_session_t sessionId)
8120 {
8121 // No global effect sessions on mmap threads
8122 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
8123 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
8124 desc->name, mThreadName);
8125 return BAD_VALUE;
8126 }
8127
8128 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
8129 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
8130 desc->name);
8131 return BAD_VALUE;
8132 }
8133 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
8134 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
8135 "thread", desc->name);
8136 return BAD_VALUE;
8137 }
8138
8139 // Only allow effects without processing load or latency
8140 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
8141 return BAD_VALUE;
8142 }
8143
8144 return NO_ERROR;
8145
8146 }
8147
checkInvalidTracks_l()8148 void AudioFlinger::MmapThread::checkInvalidTracks_l()
8149 {
8150 for (const sp<MmapTrack> &track : mActiveTracks) {
8151 if (track->isInvalid()) {
8152 sp<MmapStreamCallback> callback = mCallback.promote();
8153 if (callback != 0) {
8154 callback->onTearDown();
8155 }
8156 break;
8157 }
8158 }
8159 }
8160
dump(int fd,const Vector<String16> & args)8161 void AudioFlinger::MmapThread::dump(int fd, const Vector<String16>& args)
8162 {
8163 dumpInternals(fd, args);
8164 dumpTracks(fd, args);
8165 dumpEffectChains(fd, args);
8166 }
8167
dumpInternals(int fd,const Vector<String16> & args)8168 void AudioFlinger::MmapThread::dumpInternals(int fd, const Vector<String16>& args)
8169 {
8170 dumpBase(fd, args);
8171
8172 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
8173 mAttr.content_type, mAttr.usage, mAttr.source);
8174 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
8175 if (mActiveTracks.size() == 0) {
8176 dprintf(fd, " No active clients\n");
8177 }
8178 }
8179
dumpTracks(int fd,const Vector<String16> & args __unused)8180 void AudioFlinger::MmapThread::dumpTracks(int fd, const Vector<String16>& args __unused)
8181 {
8182 const size_t SIZE = 256;
8183 char buffer[SIZE];
8184 String8 result;
8185
8186 size_t numtracks = mActiveTracks.size();
8187 dprintf(fd, " %zu Tracks", numtracks);
8188 if (numtracks) {
8189 MmapTrack::appendDumpHeader(result);
8190 for (size_t i = 0; i < numtracks ; ++i) {
8191 sp<MmapTrack> track = mActiveTracks[i];
8192 track->dump(buffer, SIZE);
8193 result.append(buffer);
8194 }
8195 } else {
8196 dprintf(fd, "\n");
8197 }
8198 write(fd, result.string(), result.size());
8199 }
8200
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8201 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
8202 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8203 AudioHwDevice *hwDev, AudioStreamOut *output,
8204 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8205 : MmapThread(audioFlinger, id, hwDev, output->stream, outDevice, inDevice, systemReady),
8206 mStreamType(AUDIO_STREAM_MUSIC),
8207 mStreamVolume(1.0), mStreamMute(false), mOutput(output)
8208 {
8209 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
8210 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
8211 mMasterVolume = audioFlinger->masterVolume_l();
8212 mMasterMute = audioFlinger->masterMute_l();
8213 if (mAudioHwDev) {
8214 if (mAudioHwDev->canSetMasterVolume()) {
8215 mMasterVolume = 1.0;
8216 }
8217
8218 if (mAudioHwDev->canSetMasterMute()) {
8219 mMasterMute = false;
8220 }
8221 }
8222 }
8223
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t portId)8224 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
8225 audio_stream_type_t streamType,
8226 audio_session_t sessionId,
8227 const sp<MmapStreamCallback>& callback,
8228 audio_port_handle_t portId)
8229 {
8230 MmapThread::configure(attr, streamType, sessionId, callback, portId);
8231 mStreamType = streamType;
8232 }
8233
clearOutput()8234 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
8235 {
8236 Mutex::Autolock _l(mLock);
8237 AudioStreamOut *output = mOutput;
8238 mOutput = NULL;
8239 return output;
8240 }
8241
setMasterVolume(float value)8242 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
8243 {
8244 Mutex::Autolock _l(mLock);
8245 // Don't apply master volume in SW if our HAL can do it for us.
8246 if (mAudioHwDev &&
8247 mAudioHwDev->canSetMasterVolume()) {
8248 mMasterVolume = 1.0;
8249 } else {
8250 mMasterVolume = value;
8251 }
8252 }
8253
setMasterMute(bool muted)8254 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
8255 {
8256 Mutex::Autolock _l(mLock);
8257 // Don't apply master mute in SW if our HAL can do it for us.
8258 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
8259 mMasterMute = false;
8260 } else {
8261 mMasterMute = muted;
8262 }
8263 }
8264
setStreamVolume(audio_stream_type_t stream,float value)8265 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
8266 {
8267 Mutex::Autolock _l(mLock);
8268 if (stream == mStreamType) {
8269 mStreamVolume = value;
8270 broadcast_l();
8271 }
8272 }
8273
streamVolume(audio_stream_type_t stream) const8274 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
8275 {
8276 Mutex::Autolock _l(mLock);
8277 if (stream == mStreamType) {
8278 return mStreamVolume;
8279 }
8280 return 0.0f;
8281 }
8282
setStreamMute(audio_stream_type_t stream,bool muted)8283 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
8284 {
8285 Mutex::Autolock _l(mLock);
8286 if (stream == mStreamType) {
8287 mStreamMute= muted;
8288 broadcast_l();
8289 }
8290 }
8291
invalidateTracks(audio_stream_type_t streamType)8292 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
8293 {
8294 Mutex::Autolock _l(mLock);
8295 if (streamType == mStreamType) {
8296 for (const sp<MmapTrack> &track : mActiveTracks) {
8297 track->invalidate();
8298 }
8299 broadcast_l();
8300 }
8301 }
8302
processVolume_l()8303 void AudioFlinger::MmapPlaybackThread::processVolume_l()
8304 {
8305 float volume;
8306
8307 if (mMasterMute || mStreamMute) {
8308 volume = 0;
8309 } else {
8310 volume = mMasterVolume * mStreamVolume;
8311 }
8312
8313 if (volume != mHalVolFloat) {
8314 mHalVolFloat = volume;
8315
8316 // Convert volumes from float to 8.24
8317 uint32_t vol = (uint32_t)(volume * (1 << 24));
8318
8319 // Delegate volume control to effect in track effect chain if needed
8320 // only one effect chain can be present on DirectOutputThread, so if
8321 // there is one, the track is connected to it
8322 if (!mEffectChains.isEmpty()) {
8323 mEffectChains[0]->setVolume_l(&vol, &vol);
8324 volume = (float)vol / (1 << 24);
8325 }
8326 // Try to use HW volume control and fall back to SW control if not implemented
8327 if (mOutput->stream->setVolume(volume, volume) != NO_ERROR) {
8328 sp<MmapStreamCallback> callback = mCallback.promote();
8329 if (callback != 0) {
8330 int channelCount;
8331 if (isOutput()) {
8332 channelCount = audio_channel_count_from_out_mask(mChannelMask);
8333 } else {
8334 channelCount = audio_channel_count_from_in_mask(mChannelMask);
8335 }
8336 Vector<float> values;
8337 for (int i = 0; i < channelCount; i++) {
8338 values.add(volume);
8339 }
8340 callback->onVolumeChanged(mChannelMask, values);
8341 } else {
8342 ALOGW("Could not set MMAP stream volume: no volume callback!");
8343 }
8344 }
8345 }
8346 }
8347
checkSilentMode_l()8348 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
8349 {
8350 if (!mMasterMute) {
8351 char value[PROPERTY_VALUE_MAX];
8352 if (property_get("ro.audio.silent", value, "0") > 0) {
8353 char *endptr;
8354 unsigned long ul = strtoul(value, &endptr, 0);
8355 if (*endptr == '\0' && ul != 0) {
8356 ALOGD("Silence is golden");
8357 // The setprop command will not allow a property to be changed after
8358 // the first time it is set, so we don't have to worry about un-muting.
8359 setMasterMute_l(true);
8360 }
8361 }
8362 }
8363 }
8364
dumpInternals(int fd,const Vector<String16> & args)8365 void AudioFlinger::MmapPlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
8366 {
8367 MmapThread::dumpInternals(fd, args);
8368
8369 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
8370 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
8371 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
8372 }
8373
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8374 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
8375 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8376 AudioHwDevice *hwDev, AudioStreamIn *input,
8377 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8378 : MmapThread(audioFlinger, id, hwDev, input->stream, outDevice, inDevice, systemReady),
8379 mInput(input)
8380 {
8381 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
8382 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8383 }
8384
clearInput()8385 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
8386 {
8387 Mutex::Autolock _l(mLock);
8388 AudioStreamIn *input = mInput;
8389 mInput = NULL;
8390 return input;
8391 }
8392 } // namespace android
8393