1 /** @file
2   This is a variation on dtoa.c that converts arbitary binary
3   floating-point formats to and from decimal notation.  It uses
4   double-precision arithmetic internally, so there are still
5   various #ifdefs that adapt the calculations to the native
6   IEEE double-precision arithmetic.
7 
8   Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR>
9   This program and the accompanying materials are licensed and made available under
10   the terms and conditions of the BSD License that accompanies this distribution.
11   The full text of the license may be found at
12   http://opensource.org/licenses/bsd-license.
13 
14   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
15   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
16 
17   *****************************************************************
18 
19   The author of this software is David M. Gay.
20 
21   Copyright (C) 1998-2000 by Lucent Technologies
22   All Rights Reserved
23 
24   Permission to use, copy, modify, and distribute this software and
25   its documentation for any purpose and without fee is hereby
26   granted, provided that the above copyright notice appear in all
27   copies and that both that the copyright notice and this
28   permission notice and warranty disclaimer appear in supporting
29   documentation, and that the name of Lucent or any of its entities
30   not be used in advertising or publicity pertaining to
31   distribution of the software without specific, written prior
32   permission.
33 
34   LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
35   INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
36   IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
37   SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
38   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
39   IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
40   ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
41   THIS SOFTWARE.
42 
43   Please send bug reports to David M. Gay (dmg at acm dot org,
44   with " at " changed at "@" and " dot " changed to ".").
45 
46   *****************************************************************
47 
48   NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp
49 **/
50 
51 /* On a machine with IEEE extended-precision registers, it is
52  * necessary to specify double-precision (53-bit) rounding precision
53  * before invoking strtod or dtoa.  If the machine uses (the equivalent
54  * of) Intel 80x87 arithmetic, the call
55  *  _control87(PC_53, MCW_PC);
56  * does this with many compilers.  Whether this or another call is
57  * appropriate depends on the compiler; for this to work, it may be
58  * necessary to #include "float.h" or another system-dependent header
59  * file.
60  */
61 
62 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
63  *
64  * This strtod returns a nearest machine number to the input decimal
65  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
66  * broken by the IEEE round-even rule.  Otherwise ties are broken by
67  * biased rounding (add half and chop).
68  *
69  * Inspired loosely by William D. Clinger's paper "How to Read Floating
70  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
71  *
72  * Modifications:
73  *
74  *  1. We only require IEEE, IBM, or VAX double-precision
75  *    arithmetic (not IEEE double-extended).
76  *  2. We get by with floating-point arithmetic in a case that
77  *    Clinger missed -- when we're computing d * 10^n
78  *    for a small integer d and the integer n is not too
79  *    much larger than 22 (the maximum integer k for which
80  *    we can represent 10^k exactly), we may be able to
81  *    compute (d*10^k) * 10^(e-k) with just one roundoff.
82  *  3. Rather than a bit-at-a-time adjustment of the binary
83  *    result in the hard case, we use floating-point
84  *    arithmetic to determine the adjustment to within
85  *    one bit; only in really hard cases do we need to
86  *    compute a second residual.
87  *  4. Because of 3., we don't need a large table of powers of 10
88  *    for ten-to-e (just some small tables, e.g. of 10^k
89  *    for 0 <= k <= 22).
90  */
91 
92 /*
93  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
94  *  significant byte has the lowest address.
95  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
96  *  significant byte has the lowest address.
97  * #define Long int on machines with 32-bit ints and 64-bit longs.
98  * #define Sudden_Underflow for IEEE-format machines without gradual
99  *  underflow (i.e., that flush to zero on underflow).
100  * #define No_leftright to omit left-right logic in fast floating-point
101  *  computation of dtoa.
102  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
103  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
104  *  that use extended-precision instructions to compute rounded
105  *  products and quotients) with IBM.
106  * #define ROUND_BIASED for IEEE-format with biased rounding.
107  * #define Inaccurate_Divide for IEEE-format with correctly rounded
108  *  products but inaccurate quotients, e.g., for Intel i860.
109  * #define NO_LONG_LONG on machines that do not have a "long long"
110  *  integer type (of >= 64 bits).  On such machines, you can
111  *  #define Just_16 to store 16 bits per 32-bit Long when doing
112  *  high-precision integer arithmetic.  Whether this speeds things
113  *  up or slows things down depends on the machine and the number
114  *  being converted.  If long long is available and the name is
115  *  something other than "long long", #define Llong to be the name,
116  *  and if "unsigned Llong" does not work as an unsigned version of
117  *  Llong, #define #ULLong to be the corresponding unsigned type.
118  * #define Bad_float_h if your system lacks a float.h or if it does not
119  *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
120  *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
121  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
122  *  if memory is available and otherwise does something you deem
123  *  appropriate.  If MALLOC is undefined, malloc will be invoked
124  *  directly -- and assumed always to succeed.
125  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
126  *  memory allocations from a private pool of memory when possible.
127  *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
128  *  unless #defined to be a different length.  This default length
129  *  suffices to get rid of MALLOC calls except for unusual cases,
130  *  such as decimal-to-binary conversion of a very long string of
131  *  digits.  When converting IEEE double precision values, the
132  *  longest string gdtoa can return is about 751 bytes long.  For
133  *  conversions by strtod of strings of 800 digits and all gdtoa
134  *  conversions of IEEE doubles in single-threaded executions with
135  *  8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
136  *  4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
137  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
138  *  Infinity and NaN (case insensitively).
139  *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
140  *  strtodg also accepts (case insensitively) strings of the form
141  *  NaN(x), where x is a string of hexadecimal digits and spaces;
142  *  if there is only one string of hexadecimal digits, it is taken
143  *  for the fraction bits of the resulting NaN; if there are two or
144  *  more strings of hexadecimal digits, each string is assigned
145  *  to the next available sequence of 32-bit words of fractions
146  *  bits (starting with the most significant), right-aligned in
147  *  each sequence.
148  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
149  *  multiple threads.  In this case, you must provide (or suitably
150  *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
151  *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
152  *  in pow5mult, ensures lazy evaluation of only one copy of high
153  *  powers of 5; omitting this lock would introduce a small
154  *  probability of wasting memory, but would otherwise be harmless.)
155  *  You must also invoke freedtoa(s) to free the value s returned by
156  *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
157  * #define IMPRECISE_INEXACT if you do not care about the setting of
158  *  the STRTOG_Inexact bits in the special case of doing IEEE double
159  *  precision conversions (which could also be done by the strtog in
160  *  dtoa.c).
161  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
162  *  floating-point constants.
163  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
164  *  strtodg.c).
165  * #define NO_STRING_H to use private versions of memcpy.
166  *  On some K&R systems, it may also be necessary to
167  *  #define DECLARE_SIZE_T in this case.
168  * #define YES_ALIAS to permit aliasing certain double values with
169  *  arrays of ULongs.  This leads to slightly better code with
170  *  some compilers and was always used prior to 19990916, but it
171  *  is not strictly legal and can cause trouble with aggressively
172  *  optimizing compilers (e.g., gcc 2.95.1 under -O2).
173  * #define USE_LOCALE to use the current locale's decimal_point value.
174  */
175 
176 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
177 #include  <LibConfig.h>
178 
179 #include <stdint.h>
180 #define Short   int16_t
181 #define UShort uint16_t
182 #define Long    int32_t
183 #define ULong  uint32_t
184 #define LLong   int64_t
185 #define ULLong uint64_t
186 
187 #define INFNAN_CHECK
188 #ifdef _REENTRANT
189 #define MULTIPLE_THREADS
190 #endif
191 #define USE_LOCALE
192 
193 #ifndef GDTOAIMP_H_INCLUDED
194 #define GDTOAIMP_H_INCLUDED
195 #include "gdtoa.h"
196 #include "gd_qnan.h"
197 
198 #ifdef DEBUG
199 #include "stdio.h"
200 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
201 #endif
202 
203 #include "stdlib.h"
204 #include "string.h"
205 
206 #define Char void
207 
208 #ifdef MALLOC
209 extern Char *MALLOC ANSI((size_t));
210 #else
211 #define MALLOC malloc
212 #endif
213 
214 #undef IEEE_Arith
215 #undef Avoid_Underflow
216 #ifdef IEEE_BIG_ENDIAN
217 #define IEEE_Arith
218 #endif
219 #ifdef IEEE_LITTLE_ENDIAN
220 #define IEEE_Arith
221 #endif
222 
223 #include "errno.h"
224 #ifdef Bad_float_h
225 
226 #ifdef IEEE_Arith
227 #define DBL_DIG 15
228 #define DBL_MAX_10_EXP 308
229 #define DBL_MAX_EXP 1024
230 #define FLT_RADIX 2
231 #define DBL_MAX 1.7976931348623157e+308
232 #endif
233 
234 #ifndef LONG_MAX
235 #define LONG_MAX 2147483647
236 #endif
237 
238 #else /* ifndef Bad_float_h */
239 #include "float.h"
240 #endif /* Bad_float_h */
241 
242 #ifdef IEEE_Arith
243 #define Scale_Bit 0x10
244 #define n_bigtens 5
245 #endif
246 
247 #include "math.h"
248 
249 #ifdef __cplusplus
250 extern "C" {
251 #endif
252 
253 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) != 1
254 Exactly one of IEEE_LITTLE_ENDIAN or IEEE_BIG_ENDIAN should be defined.
255 #endif
256 
257 /*  This union assumes that:
258       sizeof(double) == 8
259       sizeof(UINT32) == 4
260 
261     If this is not the case, the type and dimension of the L member will
262     have to be modified.
263 */
264 typedef union { double d; UINT32 L[2]; } U;
265 
266 #ifdef YES_ALIAS
267 #define dval(x) x
268 #ifdef IEEE_LITTLE_ENDIAN
269 #define word0(x) ((ULong *)&x)[1]
270 #define word1(x) ((ULong *)&x)[0]
271 #else
272 #define word0(x) ((ULong *)&x)[0]
273 #define word1(x) ((ULong *)&x)[1]
274 #endif
275 #else /* !YES_ALIAS */
276 #ifdef IEEE_LITTLE_ENDIAN
277 #define word0(x)  ( /* LINTED */ (U*)&x)->L[1]
278 #define word1(x)  ( /* LINTED */ (U*)&x)->L[0]
279 #else
280 #define word0(x)  ( /* LINTED */ (U*)&x)->L[0]
281 #define word1(x)  ( /* LINTED */ (U*)&x)->L[1]
282 #endif
283 #define dval(x)   ( /* LINTED */ (U*)&x)->d
284 #endif /* YES_ALIAS */
285 
286 /* The following definition of Storeinc is appropriate for MIPS processors.
287  * An alternative that might be better on some machines is
288  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
289  */
290 #if defined(IEEE_LITTLE_ENDIAN)
291 #define Storeinc(a,b,c) \
292  (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
293   ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
294   a++)
295 #else
296 #define Storeinc(a,b,c) \
297  (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
298   ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
299   a++)
300 #endif
301 
302 /* #define P DBL_MANT_DIG */
303 /* Ten_pmax = floor(P*log(2)/log(5)) */
304 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
305 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
306 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
307 
308 #ifdef IEEE_Arith
309 #define Exp_shift  20
310 #define Exp_shift1 20
311 #define Exp_msk1    0x100000
312 #define Exp_msk11   0x100000
313 #define Exp_mask  0x7ff00000
314 #define P 53
315 #define Bias 1023
316 #define Emin (-1022)
317 #define Exp_1  0x3ff00000
318 #define Exp_11 0x3ff00000
319 #define Ebits 11
320 #define Frac_mask  0xfffffU
321 #define Frac_mask1 0xfffffU
322 #define Ten_pmax 22
323 #define Bletch 0x10
324 #define Bndry_mask  0xfffffU
325 #define Bndry_mask1 0xfffffU
326 #define LSB 1
327 #define Sign_bit 0x80000000
328 #define Log2P 1
329 #define Tiny0 0
330 #define Tiny1 1
331 #define Quick_max 14
332 #define Int_max 14
333 
334 #ifndef Flt_Rounds
335 #ifdef FLT_ROUNDS
336 #define Flt_Rounds FLT_ROUNDS
337 #else
338 #define Flt_Rounds 1
339 #endif
340 #endif /*Flt_Rounds*/
341 
342 #else /* ifndef IEEE_Arith */
343 #undef  Sudden_Underflow
344 #define Sudden_Underflow
345 #ifdef IBM
346 #undef Flt_Rounds
347 #define Flt_Rounds 0
348 #define Exp_shift  24
349 #define Exp_shift1 24
350 #define Exp_msk1   0x1000000
351 #define Exp_msk11  0x1000000
352 #define Exp_mask  0x7f000000
353 #define P 14
354 #define Bias 65
355 #define Exp_1  0x41000000
356 #define Exp_11 0x41000000
357 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
358 #define Frac_mask  0xffffff
359 #define Frac_mask1 0xffffff
360 #define Bletch 4
361 #define Ten_pmax 22
362 #define Bndry_mask  0xefffff
363 #define Bndry_mask1 0xffffff
364 #define LSB 1
365 #define Sign_bit 0x80000000
366 #define Log2P 4
367 #define Tiny0 0x100000
368 #define Tiny1 0
369 #define Quick_max 14
370 #define Int_max 15
371 #else /* VAX */
372 #undef Flt_Rounds
373 #define Flt_Rounds 1
374 #define Exp_shift  23
375 #define Exp_shift1 7
376 #define Exp_msk1    0x80
377 #define Exp_msk11   0x800000
378 #define Exp_mask  0x7f80
379 #define P 56
380 #define Bias 129
381 #define Exp_1  0x40800000
382 #define Exp_11 0x4080
383 #define Ebits 8
384 #define Frac_mask  0x7fffff
385 #define Frac_mask1 0xffff007f
386 #define Ten_pmax 24
387 #define Bletch 2
388 #define Bndry_mask  0xffff007f
389 #define Bndry_mask1 0xffff007f
390 #define LSB 0x10000
391 #define Sign_bit 0x8000
392 #define Log2P 1
393 #define Tiny0 0x80
394 #define Tiny1 0
395 #define Quick_max 15
396 #define Int_max 15
397 #endif /* IBM, VAX */
398 #endif /* IEEE_Arith */
399 
400 #ifndef IEEE_Arith
401 #define ROUND_BIASED
402 #endif
403 
404 #ifdef RND_PRODQUOT
405 #define rounded_product(a,b) a = rnd_prod(a, b)
406 #define rounded_quotient(a,b) a = rnd_quot(a, b)
407 extern double rnd_prod(double, double), rnd_quot(double, double);
408 #else
409 #define rounded_product(a,b) a *= b
410 #define rounded_quotient(a,b) a /= b
411 #endif
412 
413 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
414 #define Big1 0xffffffffU
415 
416 #undef  Pack_16
417 #ifndef Pack_32
418 #define Pack_32
419 #endif
420 
421 #ifdef NO_LONG_LONG
422 #undef ULLong
423 #ifdef Just_16
424 #undef Pack_32
425 #define Pack_16
426 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
427  * This makes some inner loops simpler and sometimes saves work
428  * during multiplications, but it often seems to make things slightly
429  * slower.  Hence the default is now to store 32 bits per Long.
430  */
431 #endif
432 #else /* long long available */
433 #ifndef Llong
434 #define Llong long long
435 #endif
436 #ifndef ULLong
437 #define ULLong unsigned Llong
438 #endif
439 #endif /* NO_LONG_LONG */
440 
441 #ifdef Pack_32
442 #define ULbits 32
443 #define kshift 5
444 #define kmask 31
445 #define ALL_ON 0xffffffff
446 #else
447 #define ULbits 16
448 #define kshift 4
449 #define kmask 15
450 #define ALL_ON 0xffff
451 #endif
452 
453 #ifndef MULTIPLE_THREADS
454 #define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
455 #define FREE_DTOA_LOCK(n) /*nothing*/
456 #else
457 #include "reentrant.h"
458 
459 extern mutex_t __gdtoa_locks[2];
460 
461 #define ACQUIRE_DTOA_LOCK(n)  \
462   do {              \
463     if (__isthreaded)       \
464       mutex_lock(&__gdtoa_locks[n]);    \
465   } while (/* CONSTCOND */ 0)
466 #define FREE_DTOA_LOCK(n) \
467   do {              \
468     if (__isthreaded)       \
469       mutex_unlock(&__gdtoa_locks[n]);  \
470   } while (/* CONSTCOND */ 0)
471 #endif
472 
473 #define Kmax (sizeof(size_t) << 3)
474 
475  struct
476 Bigint {
477   struct Bigint *next;
478   int k, maxwds, sign, wds;
479   ULong x[1];
480   };
481 
482  typedef struct Bigint Bigint;
483 
484 #ifdef NO_STRING_H
485 #ifdef DECLARE_SIZE_T
486 typedef unsigned int size_t;
487 #endif
488 extern void memcpy_D2A ANSI((void*, const void*, size_t));
489 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
490 #else /* !NO_STRING_H */
491 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
492 #endif /* NO_STRING_H */
493 
494 #define Balloc        __Balloc_D2A
495 #define Bfree         __Bfree_D2A
496 #define ULtoQ         __ULtoQ_D2A
497 #define ULtof         __ULtof_D2A
498 #define ULtod         __ULtod_D2A
499 #define ULtodd        __ULtodd_D2A
500 #define ULtox         __ULtox_D2A
501 #define ULtoxL        __ULtoxL_D2A
502 #define any_on        __any_on_D2A
503 #define b2d           __b2d_D2A
504 #define bigtens       __bigtens_D2A
505 #define cmp           __cmp_D2A
506 #define copybits      __copybits_D2A
507 #define d2b           __d2b_D2A
508 #define decrement     __decrement_D2A
509 #define diff          __diff_D2A
510 #define dtoa_result   __dtoa_result_D2A
511 #define g__fmt        __g__fmt_D2A
512 #define gethex        __gethex_D2A
513 #define hexdig        __hexdig_D2A
514 #define hexdig_init_D2A __hexdig_init_D2A
515 #define hexnan        __hexnan_D2A
516 #define hi0bits       __hi0bits_D2A
517 #define hi0bits_D2A   __hi0bits_D2A
518 #define i2b           __i2b_D2A
519 #define increment     __increment_D2A
520 #define lo0bits       __lo0bits_D2A
521 #define lshift        __lshift_D2A
522 #define match         __match_D2A
523 #define mult          __mult_D2A
524 #define multadd       __multadd_D2A
525 #define nrv_alloc     __nrv_alloc_D2A
526 #define pow5mult      __pow5mult_D2A
527 #define quorem        __quorem_D2A
528 #define ratio         __ratio_D2A
529 #define rshift        __rshift_D2A
530 #define rv_alloc      __rv_alloc_D2A
531 #define s2b           __s2b_D2A
532 #define set_ones      __set_ones_D2A
533 #define strcp         __strcp_D2A
534 #define strcp_D2A     __strcp_D2A
535 #define strtoIg       __strtoIg_D2A
536 #define sum           __sum_D2A
537 #define tens          __tens_D2A
538 #define tinytens      __tinytens_D2A
539 #define tinytens      __tinytens_D2A
540 #define trailz        __trailz_D2A
541 #define ulp           __ulp_D2A
542 
543 extern char          *dtoa_result;
544 extern CONST double   bigtens[], tens[], tinytens[];
545 extern unsigned char  hexdig[];
546 
547 extern Bigint  *Balloc      (int);
548 extern void     Bfree       (Bigint*);
549 extern void     ULtof       (ULong*, ULong*, Long, int);
550 extern void     ULtod       (ULong*, ULong*, Long, int);
551 extern void     ULtodd      (ULong*, ULong*, Long, int);
552 extern void     ULtoQ       (ULong*, ULong*, Long, int);
553 extern void     ULtox       (UShort*, ULong*, Long, int);
554 extern void     ULtoxL      (ULong*, ULong*, Long, int);
555 extern ULong    any_on      (Bigint*, int);
556 extern double   b2d         (Bigint*, int*);
557 extern int      cmp         (Bigint*, Bigint*);
558 extern void     copybits    (ULong*, int, Bigint*);
559 extern Bigint  *d2b         (double, int*, int*);
560 extern int      decrement   (Bigint*);
561 extern Bigint  *diff        (Bigint*, Bigint*);
562 extern char    *dtoa        (double d, int mode, int ndigits,
563                                   int *decpt, int *sign, char **rve);
564 extern char    *g__fmt      (char*, char*, char*, int, ULong);
565 extern int      gethex      (CONST char**, CONST FPI*, Long*, Bigint**, int);
566 extern void     hexdig_init_D2A(Void);
567 extern int      hexnan      (CONST char**, CONST FPI*, ULong*);
568 extern int      hi0bits_D2A (ULong);
569 extern Bigint  *i2b         (int);
570 extern Bigint  *increment   (Bigint*);
571 extern int      lo0bits     (ULong*);
572 extern Bigint  *lshift      (Bigint*, int);
573 extern int      match       (CONST char**, CONST char*);
574 extern Bigint  *mult        (Bigint*, Bigint*);
575 extern Bigint  *multadd     (Bigint*, int, int);
576 extern char    *nrv_alloc   (CONST char*, char **, size_t);
577 extern Bigint  *pow5mult    (Bigint*, int);
578 extern int      quorem      (Bigint*, Bigint*);
579 extern double   ratio       (Bigint*, Bigint*);
580 extern void     rshift      (Bigint*, int);
581 extern char    *rv_alloc    (size_t);
582 extern Bigint  *s2b         (CONST char*, int, int, ULong);
583 extern Bigint  *set_ones    (Bigint*, int);
584 extern char    *strcp       (char*, const char*);
585 extern int      strtoIg     (CONST char*, char**, FPI*, Long*, Bigint**, int*);
586 extern double   strtod      (const char *s00, char **se);
587 extern Bigint  *sum         (Bigint*, Bigint*);
588 extern int      trailz      (CONST Bigint*);
589 extern double   ulp         (double);
590 
591 #ifdef __cplusplus
592 }
593 #endif
594 /*
595  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
596  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
597  * respectively), but now are determined by compiling and running
598  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
599  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
600  * and -DNAN_WORD1=...  values if necessary.  This should still work.
601  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
602  */
603 #ifdef IEEE_Arith
604 #ifdef IEEE_BIG_ENDIAN
605 #define _0 0
606 #define _1 1
607 #ifndef NAN_WORD0
608 #define NAN_WORD0 d_QNAN0
609 #endif
610 #ifndef NAN_WORD1
611 #define NAN_WORD1 d_QNAN1
612 #endif
613 #else
614 #define _0 1
615 #define _1 0
616 #ifndef NAN_WORD0
617 #define NAN_WORD0 d_QNAN1
618 #endif
619 #ifndef NAN_WORD1
620 #define NAN_WORD1 d_QNAN0
621 #endif
622 #endif
623 #else
624 #undef INFNAN_CHECK
625 #endif
626 
627 #undef SI
628 #ifdef Sudden_Underflow
629 #define SI 1
630 #else
631 #define SI 0
632 #endif
633 
634 #endif /* GDTOAIMP_H_INCLUDED */
635