1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/enums.h"
22 #include "class_linker-inl.h"
23 #include "mirror/class-inl.h"
24 #include "mirror/dex_cache.h"
25 #include "scoped_thread_state_change-inl.h"
26
27 namespace art {
28
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)29 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
30 Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
31 REQUIRES_SHARED(Locks::mutator_lock_) {
32 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
33 return hint_dex_cache.Get();
34 } else {
35 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
36 }
37 }
38
GetRootHandle(VariableSizedHandleScope * handles,ClassLinker::ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)39 static inline ReferenceTypeInfo::TypeHandle GetRootHandle(VariableSizedHandleScope* handles,
40 ClassLinker::ClassRoot class_root,
41 ReferenceTypeInfo::TypeHandle* cache) {
42 if (!ReferenceTypeInfo::IsValidHandle(*cache)) {
43 // Mutator lock is required for NewHandle.
44 ClassLinker* linker = Runtime::Current()->GetClassLinker();
45 ScopedObjectAccess soa(Thread::Current());
46 *cache = handles->NewHandle(linker->GetClassRoot(class_root));
47 }
48 return *cache;
49 }
50
GetObjectClassHandle()51 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetObjectClassHandle() {
52 return GetRootHandle(handles_, ClassLinker::kJavaLangObject, &object_class_handle_);
53 }
54
GetClassClassHandle()55 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetClassClassHandle() {
56 return GetRootHandle(handles_, ClassLinker::kJavaLangClass, &class_class_handle_);
57 }
58
GetStringClassHandle()59 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetStringClassHandle() {
60 return GetRootHandle(handles_, ClassLinker::kJavaLangString, &string_class_handle_);
61 }
62
GetThrowableClassHandle()63 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetThrowableClassHandle() {
64 return GetRootHandle(handles_, ClassLinker::kJavaLangThrowable, &throwable_class_handle_);
65 }
66
67 class ReferenceTypePropagation::RTPVisitor : public HGraphDelegateVisitor {
68 public:
RTPVisitor(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,HandleCache * handle_cache,ArenaVector<HInstruction * > * worklist,bool is_first_run)69 RTPVisitor(HGraph* graph,
70 Handle<mirror::ClassLoader> class_loader,
71 Handle<mirror::DexCache> hint_dex_cache,
72 HandleCache* handle_cache,
73 ArenaVector<HInstruction*>* worklist,
74 bool is_first_run)
75 : HGraphDelegateVisitor(graph),
76 class_loader_(class_loader),
77 hint_dex_cache_(hint_dex_cache),
78 handle_cache_(handle_cache),
79 worklist_(worklist),
80 is_first_run_(is_first_run) {}
81
82 void VisitDeoptimize(HDeoptimize* deopt) OVERRIDE;
83 void VisitNewInstance(HNewInstance* new_instance) OVERRIDE;
84 void VisitLoadClass(HLoadClass* load_class) OVERRIDE;
85 void VisitClinitCheck(HClinitCheck* clinit_check) OVERRIDE;
86 void VisitLoadString(HLoadString* instr) OVERRIDE;
87 void VisitLoadException(HLoadException* instr) OVERRIDE;
88 void VisitNewArray(HNewArray* instr) OVERRIDE;
89 void VisitParameterValue(HParameterValue* instr) OVERRIDE;
90 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
91 void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
92 REQUIRES_SHARED(Locks::mutator_lock_);
93 void VisitInstanceFieldGet(HInstanceFieldGet* instr) OVERRIDE;
94 void VisitStaticFieldGet(HStaticFieldGet* instr) OVERRIDE;
95 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) OVERRIDE;
96 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) OVERRIDE;
97 void VisitInvoke(HInvoke* instr) OVERRIDE;
98 void VisitArrayGet(HArrayGet* instr) OVERRIDE;
99 void VisitCheckCast(HCheckCast* instr) OVERRIDE;
100 void VisitBoundType(HBoundType* instr) OVERRIDE;
101 void VisitNullCheck(HNullCheck* instr) OVERRIDE;
102 void UpdateReferenceTypeInfo(HInstruction* instr,
103 dex::TypeIndex type_idx,
104 const DexFile& dex_file,
105 bool is_exact);
106
107 private:
108 Handle<mirror::ClassLoader> class_loader_;
109 Handle<mirror::DexCache> hint_dex_cache_;
110 HandleCache* handle_cache_;
111 ArenaVector<HInstruction*>* worklist_;
112 const bool is_first_run_;
113 };
114
ReferenceTypePropagation(HGraph * graph,Handle<mirror::ClassLoader> class_loader,Handle<mirror::DexCache> hint_dex_cache,VariableSizedHandleScope * handles,bool is_first_run,const char * name)115 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
116 Handle<mirror::ClassLoader> class_loader,
117 Handle<mirror::DexCache> hint_dex_cache,
118 VariableSizedHandleScope* handles,
119 bool is_first_run,
120 const char* name)
121 : HOptimization(graph, name),
122 class_loader_(class_loader),
123 hint_dex_cache_(hint_dex_cache),
124 handle_cache_(handles),
125 worklist_(graph->GetArena()->Adapter(kArenaAllocReferenceTypePropagation)),
126 is_first_run_(is_first_run) {
127 }
128
ValidateTypes()129 void ReferenceTypePropagation::ValidateTypes() {
130 // TODO: move this to the graph checker.
131 if (kIsDebugBuild) {
132 ScopedObjectAccess soa(Thread::Current());
133 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
134 for (HInstructionIterator iti(block->GetInstructions()); !iti.Done(); iti.Advance()) {
135 HInstruction* instr = iti.Current();
136 if (instr->GetType() == Primitive::kPrimNot) {
137 DCHECK(instr->GetReferenceTypeInfo().IsValid())
138 << "Invalid RTI for instruction: " << instr->DebugName();
139 if (instr->IsBoundType()) {
140 DCHECK(instr->AsBoundType()->GetUpperBound().IsValid());
141 } else if (instr->IsLoadClass()) {
142 HLoadClass* cls = instr->AsLoadClass();
143 DCHECK(cls->GetReferenceTypeInfo().IsExact());
144 DCHECK(!cls->GetLoadedClassRTI().IsValid() || cls->GetLoadedClassRTI().IsExact());
145 } else if (instr->IsNullCheck()) {
146 DCHECK(instr->GetReferenceTypeInfo().IsEqual(instr->InputAt(0)->GetReferenceTypeInfo()))
147 << "NullCheck " << instr->GetReferenceTypeInfo()
148 << "Input(0) " << instr->InputAt(0)->GetReferenceTypeInfo();
149 }
150 }
151 }
152 }
153 }
154 }
155
Visit(HInstruction * instruction)156 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
157 RTPVisitor visitor(graph_,
158 class_loader_,
159 hint_dex_cache_,
160 &handle_cache_,
161 &worklist_,
162 is_first_run_);
163 instruction->Accept(&visitor);
164 }
165
166 // Check if we should create a bound type for the given object at the specified
167 // position. Because of inlining and the fact we run RTP more than once and we
168 // might have a HBoundType already. If we do, we should not create a new one.
169 // In this case we also assert that there are no other uses of the object (except
170 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)171 static bool ShouldCreateBoundType(HInstruction* position,
172 HInstruction* obj,
173 ReferenceTypeInfo upper_bound,
174 HInstruction* dominator_instr,
175 HBasicBlock* dominator_block)
176 REQUIRES_SHARED(Locks::mutator_lock_) {
177 // If the position where we should insert the bound type is not already a
178 // a bound type then we need to create one.
179 if (position == nullptr || !position->IsBoundType()) {
180 return true;
181 }
182
183 HBoundType* existing_bound_type = position->AsBoundType();
184 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
185 if (kIsDebugBuild) {
186 // Check that the existing HBoundType dominates all the uses.
187 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
188 HInstruction* user = use.GetUser();
189 if (dominator_instr != nullptr) {
190 DCHECK(!dominator_instr->StrictlyDominates(user)
191 || user == existing_bound_type
192 || existing_bound_type->StrictlyDominates(user));
193 } else if (dominator_block != nullptr) {
194 DCHECK(!dominator_block->Dominates(user->GetBlock())
195 || user == existing_bound_type
196 || existing_bound_type->StrictlyDominates(user));
197 }
198 }
199 }
200 } else {
201 // TODO: if the current bound type is a refinement we could update the
202 // existing_bound_type with the a new upper limit. However, we also need to
203 // update its users and have access to the work list.
204 }
205 return false;
206 }
207
208 // Helper method to bound the type of `receiver` for all instructions dominated
209 // by `start_block`, or `start_instruction` if `start_block` is null. The new
210 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)211 static void BoundTypeIn(HInstruction* receiver,
212 HBasicBlock* start_block,
213 HInstruction* start_instruction,
214 const ReferenceTypeInfo& class_rti) {
215 // We only need to bound the type if we have uses in the relevant block.
216 // So start with null and create the HBoundType lazily, only if it's needed.
217 HBoundType* bound_type = nullptr;
218 DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
219 const HUseList<HInstruction*>& uses = receiver->GetUses();
220 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
221 HInstruction* user = it->GetUser();
222 size_t index = it->GetIndex();
223 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
224 ++it;
225 bool dominates = (start_instruction != nullptr)
226 ? start_instruction->StrictlyDominates(user)
227 : start_block->Dominates(user->GetBlock());
228 if (!dominates) {
229 continue;
230 }
231 if (bound_type == nullptr) {
232 ScopedObjectAccess soa(Thread::Current());
233 HInstruction* insert_point = (start_instruction != nullptr)
234 ? start_instruction->GetNext()
235 : start_block->GetFirstInstruction();
236 if (ShouldCreateBoundType(
237 insert_point, receiver, class_rti, start_instruction, start_block)) {
238 bound_type = new (receiver->GetBlock()->GetGraph()->GetArena()) HBoundType(receiver);
239 bound_type->SetUpperBound(class_rti, /* bound_can_be_null */ false);
240 start_block->InsertInstructionBefore(bound_type, insert_point);
241 // To comply with the RTP algorithm, don't type the bound type just yet, it will
242 // be handled in RTPVisitor::VisitBoundType.
243 } else {
244 // We already have a bound type on the position we would need to insert
245 // the new one. The existing bound type should dominate all the users
246 // (dchecked) so there's no need to continue.
247 break;
248 }
249 }
250 user->ReplaceInput(bound_type, index);
251 }
252 // If the receiver is a null check, also bound the type of the actual
253 // receiver.
254 if (receiver->IsNullCheck()) {
255 BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
256 }
257 }
258
259 // Recognize the patterns:
260 // if (obj.shadow$_klass_ == Foo.class) ...
261 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)262 static void BoundTypeForClassCheck(HInstruction* check) {
263 if (!check->IsIf() && !check->IsDeoptimize()) {
264 return;
265 }
266 HInstruction* compare = check->InputAt(0);
267 if (!compare->IsEqual() && !compare->IsNotEqual()) {
268 return;
269 }
270 HInstruction* input_one = compare->InputAt(0);
271 HInstruction* input_two = compare->InputAt(1);
272 HLoadClass* load_class = input_one->IsLoadClass()
273 ? input_one->AsLoadClass()
274 : input_two->AsLoadClass();
275 if (load_class == nullptr) {
276 return;
277 }
278
279 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
280 if (!class_rti.IsValid()) {
281 // We have loaded an unresolved class. Don't bother bounding the type.
282 return;
283 }
284
285 HInstanceFieldGet* field_get = (load_class == input_one)
286 ? input_two->AsInstanceFieldGet()
287 : input_one->AsInstanceFieldGet();
288 if (field_get == nullptr) {
289 return;
290 }
291 HInstruction* receiver = field_get->InputAt(0);
292 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
293 if (receiver_type.IsExact()) {
294 // If we already know the receiver type, don't bother updating its users.
295 return;
296 }
297
298 {
299 ScopedObjectAccess soa(Thread::Current());
300 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
301 ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
302 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
303 if (field_get->GetFieldInfo().GetField() != field) {
304 return;
305 }
306 }
307
308 if (check->IsIf()) {
309 HBasicBlock* trueBlock = compare->IsEqual()
310 ? check->AsIf()->IfTrueSuccessor()
311 : check->AsIf()->IfFalseSuccessor();
312 BoundTypeIn(receiver, trueBlock, /* start_instruction */ nullptr, class_rti);
313 } else {
314 DCHECK(check->IsDeoptimize());
315 if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
316 check->SetReferenceTypeInfo(class_rti);
317 }
318 }
319 }
320
Run()321 void ReferenceTypePropagation::Run() {
322 worklist_.reserve(kDefaultWorklistSize);
323
324 // To properly propagate type info we need to visit in the dominator-based order.
325 // Reverse post order guarantees a node's dominators are visited first.
326 // We take advantage of this order in `VisitBasicBlock`.
327 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
328 VisitBasicBlock(block);
329 }
330
331 ProcessWorklist();
332 ValidateTypes();
333 }
334
VisitBasicBlock(HBasicBlock * block)335 void ReferenceTypePropagation::VisitBasicBlock(HBasicBlock* block) {
336 RTPVisitor visitor(graph_,
337 class_loader_,
338 hint_dex_cache_,
339 &handle_cache_,
340 &worklist_,
341 is_first_run_);
342 // Handle Phis first as there might be instructions in the same block who depend on them.
343 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
344 VisitPhi(it.Current()->AsPhi());
345 }
346
347 // Handle instructions. Since RTP may add HBoundType instructions just after the
348 // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
349 for (HInstructionIteratorHandleChanges it(block->GetInstructions()); !it.Done(); it.Advance()) {
350 HInstruction* instr = it.Current();
351 instr->Accept(&visitor);
352 }
353
354 // Add extra nodes to bound types.
355 BoundTypeForIfNotNull(block);
356 BoundTypeForIfInstanceOf(block);
357 BoundTypeForClassCheck(block->GetLastInstruction());
358 }
359
BoundTypeForIfNotNull(HBasicBlock * block)360 void ReferenceTypePropagation::BoundTypeForIfNotNull(HBasicBlock* block) {
361 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
362 if (ifInstruction == nullptr) {
363 return;
364 }
365 HInstruction* ifInput = ifInstruction->InputAt(0);
366 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
367 return;
368 }
369 HInstruction* input0 = ifInput->InputAt(0);
370 HInstruction* input1 = ifInput->InputAt(1);
371 HInstruction* obj = nullptr;
372
373 if (input1->IsNullConstant()) {
374 obj = input0;
375 } else if (input0->IsNullConstant()) {
376 obj = input1;
377 } else {
378 return;
379 }
380
381 if (!obj->CanBeNull() || obj->IsNullConstant()) {
382 // Null check is dead code and will be removed by DCE.
383 return;
384 }
385 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
386
387 // We only need to bound the type if we have uses in the relevant block.
388 // So start with null and create the HBoundType lazily, only if it's needed.
389 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
390 ? ifInstruction->IfTrueSuccessor()
391 : ifInstruction->IfFalseSuccessor();
392
393 ReferenceTypeInfo object_rti = ReferenceTypeInfo::Create(
394 handle_cache_.GetObjectClassHandle(), /* is_exact */ false);
395
396 BoundTypeIn(obj, notNullBlock, /* start_instruction */ nullptr, object_rti);
397 }
398
399 // Returns true if one of the patterns below has been recognized. If so, the
400 // InstanceOf instruction together with the true branch of `ifInstruction` will
401 // be returned using the out parameters.
402 // Recognized patterns:
403 // (1) patterns equivalent to `if (obj instanceof X)`
404 // (a) InstanceOf -> Equal to 1 -> If
405 // (b) InstanceOf -> NotEqual to 0 -> If
406 // (c) InstanceOf -> If
407 // (2) patterns equivalent to `if (!(obj instanceof X))`
408 // (a) InstanceOf -> Equal to 0 -> If
409 // (b) InstanceOf -> NotEqual to 1 -> If
410 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)411 static bool MatchIfInstanceOf(HIf* ifInstruction,
412 /* out */ HInstanceOf** instanceOf,
413 /* out */ HBasicBlock** trueBranch) {
414 HInstruction* input = ifInstruction->InputAt(0);
415
416 if (input->IsEqual()) {
417 HInstruction* rhs = input->AsEqual()->GetConstantRight();
418 if (rhs != nullptr) {
419 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
420 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
421 if (rhs->AsIntConstant()->IsTrue()) {
422 // Case (1a)
423 *trueBranch = ifInstruction->IfTrueSuccessor();
424 } else {
425 // Case (2a)
426 DCHECK(rhs->AsIntConstant()->IsFalse()) << rhs->AsIntConstant()->GetValue();
427 *trueBranch = ifInstruction->IfFalseSuccessor();
428 }
429 *instanceOf = lhs->AsInstanceOf();
430 return true;
431 }
432 }
433 } else if (input->IsNotEqual()) {
434 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
435 if (rhs != nullptr) {
436 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
437 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
438 if (rhs->AsIntConstant()->IsFalse()) {
439 // Case (1b)
440 *trueBranch = ifInstruction->IfTrueSuccessor();
441 } else {
442 // Case (2b)
443 DCHECK(rhs->AsIntConstant()->IsTrue()) << rhs->AsIntConstant()->GetValue();
444 *trueBranch = ifInstruction->IfFalseSuccessor();
445 }
446 *instanceOf = lhs->AsInstanceOf();
447 return true;
448 }
449 }
450 } else if (input->IsInstanceOf()) {
451 // Case (1c)
452 *instanceOf = input->AsInstanceOf();
453 *trueBranch = ifInstruction->IfTrueSuccessor();
454 return true;
455 } else if (input->IsBooleanNot()) {
456 HInstruction* not_input = input->InputAt(0);
457 if (not_input->IsInstanceOf()) {
458 // Case (2c)
459 *instanceOf = not_input->AsInstanceOf();
460 *trueBranch = ifInstruction->IfFalseSuccessor();
461 return true;
462 }
463 }
464
465 return false;
466 }
467
468 // Detects if `block` is the True block for the pattern
469 // `if (x instanceof ClassX) { }`
470 // If that's the case insert an HBoundType instruction to bound the type of `x`
471 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)472 void ReferenceTypePropagation::BoundTypeForIfInstanceOf(HBasicBlock* block) {
473 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
474 if (ifInstruction == nullptr) {
475 return;
476 }
477
478 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
479 HInstanceOf* instanceOf = nullptr;
480 HBasicBlock* instanceOfTrueBlock = nullptr;
481 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
482 return;
483 }
484
485 HLoadClass* load_class = instanceOf->InputAt(1)->AsLoadClass();
486 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
487 if (!class_rti.IsValid()) {
488 // He have loaded an unresolved class. Don't bother bounding the type.
489 return;
490 }
491
492 HInstruction* obj = instanceOf->InputAt(0);
493 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
494 // This method is being called while doing a fixed-point calculation
495 // over phis. Non-phis instruction whose type is already known do
496 // not need to be bound to another type.
497 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
498 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
499 // input.
500 return;
501 }
502
503 {
504 ScopedObjectAccess soa(Thread::Current());
505 if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
506 class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact */ false);
507 }
508 }
509 BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction */ nullptr, class_rti);
510 }
511
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)512 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
513 ObjPtr<mirror::Class> klass,
514 bool is_exact) {
515 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
516 // Calls to String.<init> are replaced with a StringFactory.
517 if (kIsDebugBuild) {
518 HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
519 ClassLinker* cl = Runtime::Current()->GetClassLinker();
520 Thread* self = Thread::Current();
521 StackHandleScope<2> hs(self);
522 const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
523 Handle<mirror::DexCache> dex_cache(
524 hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
525 // Use a null loader. We should probably use the compiling method's class loader,
526 // but then we would need to pass it to RTPVisitor just for this debug check. Since
527 // the method is from the String class, the null loader is good enough.
528 Handle<mirror::ClassLoader> loader;
529 ArtMethod* method = cl->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
530 dex_file, invoke->GetDexMethodIndex(), dex_cache, loader, nullptr, kDirect);
531 DCHECK(method != nullptr);
532 mirror::Class* declaring_class = method->GetDeclaringClass();
533 DCHECK(declaring_class != nullptr);
534 DCHECK(declaring_class->IsStringClass())
535 << "Expected String class: " << declaring_class->PrettyDescriptor();
536 DCHECK(method->IsConstructor())
537 << "Expected String.<init>: " << method->PrettyMethod();
538 }
539 instr->SetReferenceTypeInfo(
540 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact */ true));
541 } else if (IsAdmissible(klass.Ptr())) {
542 ReferenceTypeInfo::TypeHandle handle = handle_cache_->NewHandle(klass);
543 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
544 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
545 } else {
546 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
547 }
548 }
549
VisitDeoptimize(HDeoptimize * instr)550 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
551 BoundTypeForClassCheck(instr);
552 }
553
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)554 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
555 dex::TypeIndex type_idx,
556 const DexFile& dex_file,
557 bool is_exact) {
558 DCHECK_EQ(instr->GetType(), Primitive::kPrimNot);
559
560 ScopedObjectAccess soa(Thread::Current());
561 ObjPtr<mirror::DexCache> dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
562 ObjPtr<mirror::Class> klass =
563 ClassLinker::LookupResolvedType(type_idx, dex_cache, class_loader_.Get());
564 SetClassAsTypeInfo(instr, klass, is_exact);
565 }
566
VisitNewInstance(HNewInstance * instr)567 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
568 ScopedObjectAccess soa(Thread::Current());
569 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact */ true);
570 }
571
VisitNewArray(HNewArray * instr)572 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
573 ScopedObjectAccess soa(Thread::Current());
574 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact */ true);
575 }
576
VisitParameterValue(HParameterValue * instr)577 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
578 // We check if the existing type is valid: the inliner may have set it.
579 if (instr->GetType() == Primitive::kPrimNot && !instr->GetReferenceTypeInfo().IsValid()) {
580 UpdateReferenceTypeInfo(instr,
581 instr->GetTypeIndex(),
582 instr->GetDexFile(),
583 /* is_exact */ false);
584 }
585 }
586
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)587 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
588 const FieldInfo& info) {
589 if (instr->GetType() != Primitive::kPrimNot) {
590 return;
591 }
592
593 ScopedObjectAccess soa(Thread::Current());
594 ObjPtr<mirror::Class> klass;
595
596 // The field is unknown only during tests.
597 if (info.GetField() != nullptr) {
598 klass = info.GetField()->GetType<false>();
599 }
600
601 SetClassAsTypeInfo(instr, klass, /* is_exact */ false);
602 }
603
VisitInstanceFieldGet(HInstanceFieldGet * instr)604 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
605 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
606 }
607
VisitStaticFieldGet(HStaticFieldGet * instr)608 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
609 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
610 }
611
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)612 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
613 HUnresolvedInstanceFieldGet* instr) {
614 // TODO: Use descriptor to get the actual type.
615 if (instr->GetFieldType() == Primitive::kPrimNot) {
616 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
617 }
618 }
619
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)620 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
621 HUnresolvedStaticFieldGet* instr) {
622 // TODO: Use descriptor to get the actual type.
623 if (instr->GetFieldType() == Primitive::kPrimNot) {
624 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
625 }
626 }
627
VisitLoadClass(HLoadClass * instr)628 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
629 ScopedObjectAccess soa(Thread::Current());
630 Handle<mirror::Class> resolved_class = instr->GetClass();
631 if (IsAdmissible(resolved_class.Get())) {
632 instr->SetLoadedClassRTI(ReferenceTypeInfo::Create(
633 resolved_class, /* is_exact */ true));
634 }
635 instr->SetReferenceTypeInfo(
636 ReferenceTypeInfo::Create(handle_cache_->GetClassClassHandle(), /* is_exact */ true));
637 }
638
VisitClinitCheck(HClinitCheck * instr)639 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
640 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
641 }
642
VisitLoadString(HLoadString * instr)643 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
644 instr->SetReferenceTypeInfo(
645 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact */ true));
646 }
647
VisitLoadException(HLoadException * instr)648 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
649 DCHECK(instr->GetBlock()->IsCatchBlock());
650 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
651
652 if (catch_info->IsCatchAllTypeIndex()) {
653 instr->SetReferenceTypeInfo(
654 ReferenceTypeInfo::Create(handle_cache_->GetThrowableClassHandle(), /* is_exact */ false));
655 } else {
656 UpdateReferenceTypeInfo(instr,
657 catch_info->GetCatchTypeIndex(),
658 catch_info->GetCatchDexFile(),
659 /* is_exact */ false);
660 }
661 }
662
VisitNullCheck(HNullCheck * instr)663 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
664 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
665 if (parent_rti.IsValid()) {
666 instr->SetReferenceTypeInfo(parent_rti);
667 }
668 }
669
VisitBoundType(HBoundType * instr)670 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
671 ReferenceTypeInfo class_rti = instr->GetUpperBound();
672 if (class_rti.IsValid()) {
673 ScopedObjectAccess soa(Thread::Current());
674 // Narrow the type as much as possible.
675 HInstruction* obj = instr->InputAt(0);
676 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
677 if (class_rti.IsExact()) {
678 instr->SetReferenceTypeInfo(class_rti);
679 } else if (obj_rti.IsValid()) {
680 if (class_rti.IsSupertypeOf(obj_rti)) {
681 // Object type is more specific.
682 instr->SetReferenceTypeInfo(obj_rti);
683 } else {
684 // Upper bound is more specific, or unrelated to the object's type.
685 // Note that the object might then be exact, and we know the code dominated by this
686 // bound type is dead. To not confuse potential other optimizations, we mark
687 // the bound as non-exact.
688 instr->SetReferenceTypeInfo(
689 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact */ false));
690 }
691 } else {
692 // Object not typed yet. Leave BoundType untyped for now rather than
693 // assign the type conservatively.
694 }
695 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
696 } else {
697 // The owner of the BoundType was already visited. If the class is unresolved,
698 // the BoundType should have been removed from the data flow and this method
699 // should remove it from the graph.
700 DCHECK(!instr->HasUses());
701 instr->GetBlock()->RemoveInstruction(instr);
702 }
703 }
704
VisitCheckCast(HCheckCast * check_cast)705 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
706 HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
707 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
708 HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
709 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
710 // The next instruction is not an uninitialized BoundType. This must be
711 // an RTP pass after SsaBuilder and we do not need to do anything.
712 return;
713 }
714 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
715
716 if (class_rti.IsValid()) {
717 DCHECK(is_first_run_);
718 ScopedObjectAccess soa(Thread::Current());
719 // This is the first run of RTP and class is resolved.
720 bool is_exact = class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes();
721 bound_type->SetUpperBound(ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), is_exact),
722 /* CheckCast succeeds for nulls. */ true);
723 } else {
724 // This is the first run of RTP and class is unresolved. Remove the binding.
725 // The instruction itself is removed in VisitBoundType so as to not
726 // invalidate HInstructionIterator.
727 bound_type->ReplaceWith(bound_type->InputAt(0));
728 }
729 }
730
VisitPhi(HPhi * phi)731 void ReferenceTypePropagation::VisitPhi(HPhi* phi) {
732 if (phi->IsDead() || phi->GetType() != Primitive::kPrimNot) {
733 return;
734 }
735
736 if (phi->GetBlock()->IsLoopHeader()) {
737 // Set the initial type for the phi. Use the non back edge input for reaching
738 // a fixed point faster.
739 HInstruction* first_input = phi->InputAt(0);
740 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
741 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
742 phi->SetCanBeNull(first_input->CanBeNull());
743 phi->SetReferenceTypeInfo(first_input_rti);
744 }
745 AddToWorklist(phi);
746 } else {
747 // Eagerly compute the type of the phi, for quicker convergence. Note
748 // that we don't need to add users to the worklist because we are
749 // doing a reverse post-order visit, therefore either the phi users are
750 // non-loop phi and will be visited later in the visit, or are loop-phis,
751 // and they are already in the work list.
752 UpdateNullability(phi);
753 UpdateReferenceTypeInfo(phi);
754 }
755 }
756
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b)757 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
758 const ReferenceTypeInfo& b) {
759 if (!b.IsValid()) {
760 return a;
761 }
762 if (!a.IsValid()) {
763 return b;
764 }
765
766 bool is_exact = a.IsExact() && b.IsExact();
767 ReferenceTypeInfo::TypeHandle result_type_handle;
768 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
769 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
770 bool a_is_interface = a_type_handle->IsInterface();
771 bool b_is_interface = b_type_handle->IsInterface();
772
773 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
774 result_type_handle = a_type_handle;
775 } else if (a.IsSupertypeOf(b)) {
776 result_type_handle = a_type_handle;
777 is_exact = false;
778 } else if (b.IsSupertypeOf(a)) {
779 result_type_handle = b_type_handle;
780 is_exact = false;
781 } else if (!a_is_interface && !b_is_interface) {
782 result_type_handle =
783 handle_cache_.NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
784 is_exact = false;
785 } else {
786 // This can happen if:
787 // - both types are interfaces. TODO(calin): implement
788 // - one is an interface, the other a class, and the type does not implement the interface
789 // e.g:
790 // void foo(Interface i, boolean cond) {
791 // Object o = cond ? i : new Object();
792 // }
793 result_type_handle = handle_cache_.GetObjectClassHandle();
794 is_exact = false;
795 }
796
797 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
798 }
799
UpdateArrayGet(HArrayGet * instr,HandleCache * handle_cache)800 void ReferenceTypePropagation::UpdateArrayGet(HArrayGet* instr, HandleCache* handle_cache) {
801 DCHECK_EQ(Primitive::kPrimNot, instr->GetType());
802
803 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
804 if (!parent_rti.IsValid()) {
805 return;
806 }
807
808 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
809 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
810 ReferenceTypeInfo::TypeHandle component_handle =
811 handle_cache->NewHandle(handle->GetComponentType());
812 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
813 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
814 } else {
815 // We don't know what the parent actually is, so we fallback to object.
816 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
817 }
818 }
819
UpdateReferenceTypeInfo(HInstruction * instr)820 bool ReferenceTypePropagation::UpdateReferenceTypeInfo(HInstruction* instr) {
821 ScopedObjectAccess soa(Thread::Current());
822
823 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
824 if (instr->IsBoundType()) {
825 UpdateBoundType(instr->AsBoundType());
826 } else if (instr->IsPhi()) {
827 UpdatePhi(instr->AsPhi());
828 } else if (instr->IsNullCheck()) {
829 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
830 if (parent_rti.IsValid()) {
831 instr->SetReferenceTypeInfo(parent_rti);
832 }
833 } else if (instr->IsArrayGet()) {
834 // TODO: consider if it's worth "looking back" and binding the input object
835 // to an array type.
836 UpdateArrayGet(instr->AsArrayGet(), &handle_cache_);
837 } else {
838 LOG(FATAL) << "Invalid instruction (should not get here)";
839 }
840
841 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
842 }
843
VisitInvoke(HInvoke * instr)844 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
845 if (instr->GetType() != Primitive::kPrimNot) {
846 return;
847 }
848
849 ScopedObjectAccess soa(Thread::Current());
850 ArtMethod* method = instr->GetResolvedMethod();
851 mirror::Class* klass = (method == nullptr) ? nullptr : method->GetReturnType(/* resolve */ false);
852 SetClassAsTypeInfo(instr, klass, /* is_exact */ false);
853 }
854
VisitArrayGet(HArrayGet * instr)855 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
856 if (instr->GetType() != Primitive::kPrimNot) {
857 return;
858 }
859
860 ScopedObjectAccess soa(Thread::Current());
861 UpdateArrayGet(instr, handle_cache_);
862 if (!instr->GetReferenceTypeInfo().IsValid()) {
863 worklist_->push_back(instr);
864 }
865 }
866
UpdateBoundType(HBoundType * instr)867 void ReferenceTypePropagation::UpdateBoundType(HBoundType* instr) {
868 ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
869 if (!input_rti.IsValid()) {
870 return; // No new info yet.
871 }
872
873 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
874 if (upper_bound_rti.IsExact()) {
875 instr->SetReferenceTypeInfo(upper_bound_rti);
876 } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
877 // input is more specific.
878 instr->SetReferenceTypeInfo(input_rti);
879 } else {
880 // upper_bound is more specific or unrelated.
881 // Note that the object might then be exact, and we know the code dominated by this
882 // bound type is dead. To not confuse potential other optimizations, we mark
883 // the bound as non-exact.
884 instr->SetReferenceTypeInfo(
885 ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact */ false));
886 }
887 }
888
889 // NullConstant inputs are ignored during merging as they do not provide any useful information.
890 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)891 void ReferenceTypePropagation::UpdatePhi(HPhi* instr) {
892 DCHECK(instr->IsLive());
893
894 HInputsRef inputs = instr->GetInputs();
895 size_t first_input_index_not_null = 0;
896 while (first_input_index_not_null < inputs.size() &&
897 inputs[first_input_index_not_null]->IsNullConstant()) {
898 first_input_index_not_null++;
899 }
900 if (first_input_index_not_null == inputs.size()) {
901 // All inputs are NullConstants, set the type to object.
902 // This may happen in the presence of inlining.
903 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
904 return;
905 }
906
907 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
908
909 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
910 // Early return if we are Object and inexact.
911 instr->SetReferenceTypeInfo(new_rti);
912 return;
913 }
914
915 for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
916 if (inputs[i]->IsNullConstant()) {
917 continue;
918 }
919 new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo());
920 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
921 if (!new_rti.IsExact()) {
922 break;
923 } else {
924 continue;
925 }
926 }
927 }
928
929 if (new_rti.IsValid()) {
930 instr->SetReferenceTypeInfo(new_rti);
931 }
932 }
933
934 // Re-computes and updates the nullability of the instruction. Returns whether or
935 // not the nullability was changed.
UpdateNullability(HInstruction * instr)936 bool ReferenceTypePropagation::UpdateNullability(HInstruction* instr) {
937 DCHECK((instr->IsPhi() && instr->AsPhi()->IsLive())
938 || instr->IsBoundType()
939 || instr->IsNullCheck()
940 || instr->IsArrayGet());
941
942 if (!instr->IsPhi() && !instr->IsBoundType()) {
943 return false;
944 }
945
946 bool existing_can_be_null = instr->CanBeNull();
947 if (instr->IsPhi()) {
948 HPhi* phi = instr->AsPhi();
949 bool new_can_be_null = false;
950 for (HInstruction* input : phi->GetInputs()) {
951 if (input->CanBeNull()) {
952 new_can_be_null = true;
953 break;
954 }
955 }
956 phi->SetCanBeNull(new_can_be_null);
957 } else if (instr->IsBoundType()) {
958 HBoundType* bound_type = instr->AsBoundType();
959 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
960 }
961 return existing_can_be_null != instr->CanBeNull();
962 }
963
ProcessWorklist()964 void ReferenceTypePropagation::ProcessWorklist() {
965 while (!worklist_.empty()) {
966 HInstruction* instruction = worklist_.back();
967 worklist_.pop_back();
968 bool updated_nullability = UpdateNullability(instruction);
969 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
970 if (updated_nullability || updated_reference_type) {
971 AddDependentInstructionsToWorklist(instruction);
972 }
973 }
974 }
975
AddToWorklist(HInstruction * instruction)976 void ReferenceTypePropagation::AddToWorklist(HInstruction* instruction) {
977 DCHECK_EQ(instruction->GetType(), Primitive::kPrimNot)
978 << instruction->DebugName() << ":" << instruction->GetType();
979 worklist_.push_back(instruction);
980 }
981
AddDependentInstructionsToWorklist(HInstruction * instruction)982 void ReferenceTypePropagation::AddDependentInstructionsToWorklist(HInstruction* instruction) {
983 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
984 HInstruction* user = use.GetUser();
985 if ((user->IsPhi() && user->AsPhi()->IsLive())
986 || user->IsBoundType()
987 || user->IsNullCheck()
988 || (user->IsArrayGet() && (user->GetType() == Primitive::kPrimNot))) {
989 AddToWorklist(user);
990 }
991 }
992 }
993
994 } // namespace art
995