1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "ppc-instr-info"
44 
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48 
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52 
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55 
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59 
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63 
64 // Pin the vtable to this file.
anchor()65 void PPCInstrInfo::anchor() {}
66 
PPCInstrInfo(PPCSubtarget & STI)67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70 
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84 
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87 
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95 
96   // FIXME: Leaving this as-is until we have POWER9 scheduling info
97   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
98     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
99 
100   // Most subtargets use a PPC970 recognizer.
101   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
102       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
103     assert(DAG->TII && "No InstrInfo?");
104 
105     return new PPCHazardRecognizer970(*DAG);
106   }
107 
108   return new ScoreboardHazardRecognizer(II, DAG);
109 }
110 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
112                                        const MachineInstr &MI,
113                                        unsigned *PredCost) const {
114   if (!ItinData || UseOldLatencyCalc)
115     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
116 
117   // The default implementation of getInstrLatency calls getStageLatency, but
118   // getStageLatency does not do the right thing for us. While we have
119   // itinerary, most cores are fully pipelined, and so the itineraries only
120   // express the first part of the pipeline, not every stage. Instead, we need
121   // to use the listed output operand cycle number (using operand 0 here, which
122   // is an output).
123 
124   unsigned Latency = 1;
125   unsigned DefClass = MI.getDesc().getSchedClass();
126   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
127     const MachineOperand &MO = MI.getOperand(i);
128     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
129       continue;
130 
131     int Cycle = ItinData->getOperandCycle(DefClass, i);
132     if (Cycle < 0)
133       continue;
134 
135     Latency = std::max(Latency, (unsigned) Cycle);
136   }
137 
138   return Latency;
139 }
140 
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
142                                     const MachineInstr &DefMI, unsigned DefIdx,
143                                     const MachineInstr &UseMI,
144                                     unsigned UseIdx) const {
145   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
146                                                    UseMI, UseIdx);
147 
148   if (!DefMI.getParent())
149     return Latency;
150 
151   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
152   unsigned Reg = DefMO.getReg();
153 
154   bool IsRegCR;
155   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
156     const MachineRegisterInfo *MRI =
157         &DefMI.getParent()->getParent()->getRegInfo();
158     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
159               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
160   } else {
161     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
162               PPC::CRBITRCRegClass.contains(Reg);
163   }
164 
165   if (UseMI.isBranch() && IsRegCR) {
166     if (Latency < 0)
167       Latency = getInstrLatency(ItinData, DefMI);
168 
169     // On some cores, there is an additional delay between writing to a condition
170     // register, and using it from a branch.
171     unsigned Directive = Subtarget.getDarwinDirective();
172     switch (Directive) {
173     default: break;
174     case PPC::DIR_7400:
175     case PPC::DIR_750:
176     case PPC::DIR_970:
177     case PPC::DIR_E5500:
178     case PPC::DIR_PWR4:
179     case PPC::DIR_PWR5:
180     case PPC::DIR_PWR5X:
181     case PPC::DIR_PWR6:
182     case PPC::DIR_PWR6X:
183     case PPC::DIR_PWR7:
184     case PPC::DIR_PWR8:
185     // FIXME: Is this needed for POWER9?
186       Latency += 2;
187       break;
188     }
189   }
190 
191   return Latency;
192 }
193 
194 // This function does not list all associative and commutative operations, but
195 // only those worth feeding through the machine combiner in an attempt to
196 // reduce the critical path. Mostly, this means floating-point operations,
197 // because they have high latencies (compared to other operations, such and
198 // and/or, which are also associative and commutative, but have low latencies).
isAssociativeAndCommutative(const MachineInstr & Inst) const199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
200   switch (Inst.getOpcode()) {
201   // FP Add:
202   case PPC::FADD:
203   case PPC::FADDS:
204   // FP Multiply:
205   case PPC::FMUL:
206   case PPC::FMULS:
207   // Altivec Add:
208   case PPC::VADDFP:
209   // VSX Add:
210   case PPC::XSADDDP:
211   case PPC::XVADDDP:
212   case PPC::XVADDSP:
213   case PPC::XSADDSP:
214   // VSX Multiply:
215   case PPC::XSMULDP:
216   case PPC::XVMULDP:
217   case PPC::XVMULSP:
218   case PPC::XSMULSP:
219   // QPX Add:
220   case PPC::QVFADD:
221   case PPC::QVFADDS:
222   case PPC::QVFADDSs:
223   // QPX Multiply:
224   case PPC::QVFMUL:
225   case PPC::QVFMULS:
226   case PPC::QVFMULSs:
227     return true;
228   default:
229     return false;
230   }
231 }
232 
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const233 bool PPCInstrInfo::getMachineCombinerPatterns(
234     MachineInstr &Root,
235     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
236   // Using the machine combiner in this way is potentially expensive, so
237   // restrict to when aggressive optimizations are desired.
238   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
239     return false;
240 
241   // FP reassociation is only legal when we don't need strict IEEE semantics.
242   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
243     return false;
244 
245   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
246 }
247 
248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
250                                          unsigned &SrcReg, unsigned &DstReg,
251                                          unsigned &SubIdx) const {
252   switch (MI.getOpcode()) {
253   default: return false;
254   case PPC::EXTSW:
255   case PPC::EXTSW_32_64:
256     SrcReg = MI.getOperand(1).getReg();
257     DstReg = MI.getOperand(0).getReg();
258     SubIdx = PPC::sub_32;
259     return true;
260   }
261 }
262 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
264                                            int &FrameIndex) const {
265   // Note: This list must be kept consistent with LoadRegFromStackSlot.
266   switch (MI.getOpcode()) {
267   default: break;
268   case PPC::LD:
269   case PPC::LWZ:
270   case PPC::LFS:
271   case PPC::LFD:
272   case PPC::RESTORE_CR:
273   case PPC::RESTORE_CRBIT:
274   case PPC::LVX:
275   case PPC::LXVD2X:
276   case PPC::QVLFDX:
277   case PPC::QVLFSXs:
278   case PPC::QVLFDXb:
279   case PPC::RESTORE_VRSAVE:
280     // Check for the operands added by addFrameReference (the immediate is the
281     // offset which defaults to 0).
282     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
283         MI.getOperand(2).isFI()) {
284       FrameIndex = MI.getOperand(2).getIndex();
285       return MI.getOperand(0).getReg();
286     }
287     break;
288   }
289   return 0;
290 }
291 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
293                                           int &FrameIndex) const {
294   // Note: This list must be kept consistent with StoreRegToStackSlot.
295   switch (MI.getOpcode()) {
296   default: break;
297   case PPC::STD:
298   case PPC::STW:
299   case PPC::STFS:
300   case PPC::STFD:
301   case PPC::SPILL_CR:
302   case PPC::SPILL_CRBIT:
303   case PPC::STVX:
304   case PPC::STXVD2X:
305   case PPC::QVSTFDX:
306   case PPC::QVSTFSXs:
307   case PPC::QVSTFDXb:
308   case PPC::SPILL_VRSAVE:
309     // Check for the operands added by addFrameReference (the immediate is the
310     // offset which defaults to 0).
311     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
312         MI.getOperand(2).isFI()) {
313       FrameIndex = MI.getOperand(2).getIndex();
314       return MI.getOperand(0).getReg();
315     }
316     break;
317   }
318   return 0;
319 }
320 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
322                                                    unsigned OpIdx1,
323                                                    unsigned OpIdx2) const {
324   MachineFunction &MF = *MI.getParent()->getParent();
325 
326   // Normal instructions can be commuted the obvious way.
327   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331   // changing the relative order of the mask operands might change what happens
332   // to the high-bits of the mask (and, thus, the result).
333 
334   // Cannot commute if it has a non-zero rotate count.
335   if (MI.getOperand(3).getImm() != 0)
336     return nullptr;
337 
338   // If we have a zero rotate count, we have:
339   //   M = mask(MB,ME)
340   //   Op0 = (Op1 & ~M) | (Op2 & M)
341   // Change this to:
342   //   M = mask((ME+1)&31, (MB-1)&31)
343   //   Op0 = (Op2 & ~M) | (Op1 & M)
344 
345   // Swap op1/op2
346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348   unsigned Reg0 = MI.getOperand(0).getReg();
349   unsigned Reg1 = MI.getOperand(1).getReg();
350   unsigned Reg2 = MI.getOperand(2).getReg();
351   unsigned SubReg1 = MI.getOperand(1).getSubReg();
352   unsigned SubReg2 = MI.getOperand(2).getSubReg();
353   bool Reg1IsKill = MI.getOperand(1).isKill();
354   bool Reg2IsKill = MI.getOperand(2).isKill();
355   bool ChangeReg0 = false;
356   // If machine instrs are no longer in two-address forms, update
357   // destination register as well.
358   if (Reg0 == Reg1) {
359     // Must be two address instruction!
360     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361            "Expecting a two-address instruction!");
362     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363     Reg2IsKill = false;
364     ChangeReg0 = true;
365   }
366 
367   // Masks.
368   unsigned MB = MI.getOperand(4).getImm();
369   unsigned ME = MI.getOperand(5).getImm();
370 
371   // We can't commute a trivial mask (there is no way to represent an all-zero
372   // mask).
373   if (MB == 0 && ME == 31)
374     return nullptr;
375 
376   if (NewMI) {
377     // Create a new instruction.
378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
379     bool Reg0IsDead = MI.getOperand(0).isDead();
380     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
381         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382         .addReg(Reg2, getKillRegState(Reg2IsKill))
383         .addReg(Reg1, getKillRegState(Reg1IsKill))
384         .addImm((ME + 1) & 31)
385         .addImm((MB - 1) & 31);
386   }
387 
388   if (ChangeReg0) {
389     MI.getOperand(0).setReg(Reg2);
390     MI.getOperand(0).setSubReg(SubReg2);
391   }
392   MI.getOperand(2).setReg(Reg1);
393   MI.getOperand(1).setReg(Reg2);
394   MI.getOperand(2).setSubReg(SubReg1);
395   MI.getOperand(1).setSubReg(SubReg2);
396   MI.getOperand(2).setIsKill(Reg1IsKill);
397   MI.getOperand(1).setIsKill(Reg2IsKill);
398 
399   // Swap the mask around.
400   MI.getOperand(4).setImm((ME + 1) & 31);
401   MI.getOperand(5).setImm((MB - 1) & 31);
402   return &MI;
403 }
404 
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
406                                          unsigned &SrcOpIdx2) const {
407   // For VSX A-Type FMA instructions, it is the first two operands that can be
408   // commuted, however, because the non-encoded tied input operand is listed
409   // first, the operands to swap are actually the second and third.
410 
411   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
412   if (AltOpc == -1)
413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414 
415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416   // and SrcOpIdx2.
417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419 
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421                               MachineBasicBlock::iterator MI) const {
422   // This function is used for scheduling, and the nop wanted here is the type
423   // that terminates dispatch groups on the POWER cores.
424   unsigned Directive = Subtarget.getDarwinDirective();
425   unsigned Opcode;
426   switch (Directive) {
427   default:            Opcode = PPC::NOP; break;
428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431   // FIXME: Update when POWER9 scheduling model is ready.
432   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
433   }
434 
435   DebugLoc DL;
436   BuildMI(MBB, MI, DL, get(Opcode));
437 }
438 
439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst) const440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
441   NopInst.setOpcode(PPC::NOP);
442 }
443 
444 // Branch analysis.
445 // Note: If the condition register is set to CTR or CTR8 then this is a
446 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
448                                  MachineBasicBlock *&TBB,
449                                  MachineBasicBlock *&FBB,
450                                  SmallVectorImpl<MachineOperand> &Cond,
451                                  bool AllowModify) const {
452   bool isPPC64 = Subtarget.isPPC64();
453 
454   // If the block has no terminators, it just falls into the block after it.
455   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456   if (I == MBB.end())
457     return false;
458 
459   if (!isUnpredicatedTerminator(*I))
460     return false;
461 
462   // Get the last instruction in the block.
463   MachineInstr *LastInst = I;
464 
465   // If there is only one terminator instruction, process it.
466   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
467     if (LastInst->getOpcode() == PPC::B) {
468       if (!LastInst->getOperand(0).isMBB())
469         return true;
470       TBB = LastInst->getOperand(0).getMBB();
471       return false;
472     } else if (LastInst->getOpcode() == PPC::BCC) {
473       if (!LastInst->getOperand(2).isMBB())
474         return true;
475       // Block ends with fall-through condbranch.
476       TBB = LastInst->getOperand(2).getMBB();
477       Cond.push_back(LastInst->getOperand(0));
478       Cond.push_back(LastInst->getOperand(1));
479       return false;
480     } else if (LastInst->getOpcode() == PPC::BC) {
481       if (!LastInst->getOperand(1).isMBB())
482         return true;
483       // Block ends with fall-through condbranch.
484       TBB = LastInst->getOperand(1).getMBB();
485       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
486       Cond.push_back(LastInst->getOperand(0));
487       return false;
488     } else if (LastInst->getOpcode() == PPC::BCn) {
489       if (!LastInst->getOperand(1).isMBB())
490         return true;
491       // Block ends with fall-through condbranch.
492       TBB = LastInst->getOperand(1).getMBB();
493       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
494       Cond.push_back(LastInst->getOperand(0));
495       return false;
496     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
497                LastInst->getOpcode() == PPC::BDNZ) {
498       if (!LastInst->getOperand(0).isMBB())
499         return true;
500       if (DisableCTRLoopAnal)
501         return true;
502       TBB = LastInst->getOperand(0).getMBB();
503       Cond.push_back(MachineOperand::CreateImm(1));
504       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
505                                                true));
506       return false;
507     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
508                LastInst->getOpcode() == PPC::BDZ) {
509       if (!LastInst->getOperand(0).isMBB())
510         return true;
511       if (DisableCTRLoopAnal)
512         return true;
513       TBB = LastInst->getOperand(0).getMBB();
514       Cond.push_back(MachineOperand::CreateImm(0));
515       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
516                                                true));
517       return false;
518     }
519 
520     // Otherwise, don't know what this is.
521     return true;
522   }
523 
524   // Get the instruction before it if it's a terminator.
525   MachineInstr *SecondLastInst = I;
526 
527   // If there are three terminators, we don't know what sort of block this is.
528   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
529     return true;
530 
531   // If the block ends with PPC::B and PPC:BCC, handle it.
532   if (SecondLastInst->getOpcode() == PPC::BCC &&
533       LastInst->getOpcode() == PPC::B) {
534     if (!SecondLastInst->getOperand(2).isMBB() ||
535         !LastInst->getOperand(0).isMBB())
536       return true;
537     TBB =  SecondLastInst->getOperand(2).getMBB();
538     Cond.push_back(SecondLastInst->getOperand(0));
539     Cond.push_back(SecondLastInst->getOperand(1));
540     FBB = LastInst->getOperand(0).getMBB();
541     return false;
542   } else if (SecondLastInst->getOpcode() == PPC::BC &&
543       LastInst->getOpcode() == PPC::B) {
544     if (!SecondLastInst->getOperand(1).isMBB() ||
545         !LastInst->getOperand(0).isMBB())
546       return true;
547     TBB =  SecondLastInst->getOperand(1).getMBB();
548     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
549     Cond.push_back(SecondLastInst->getOperand(0));
550     FBB = LastInst->getOperand(0).getMBB();
551     return false;
552   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
553       LastInst->getOpcode() == PPC::B) {
554     if (!SecondLastInst->getOperand(1).isMBB() ||
555         !LastInst->getOperand(0).isMBB())
556       return true;
557     TBB =  SecondLastInst->getOperand(1).getMBB();
558     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
559     Cond.push_back(SecondLastInst->getOperand(0));
560     FBB = LastInst->getOperand(0).getMBB();
561     return false;
562   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
563               SecondLastInst->getOpcode() == PPC::BDNZ) &&
564       LastInst->getOpcode() == PPC::B) {
565     if (!SecondLastInst->getOperand(0).isMBB() ||
566         !LastInst->getOperand(0).isMBB())
567       return true;
568     if (DisableCTRLoopAnal)
569       return true;
570     TBB = SecondLastInst->getOperand(0).getMBB();
571     Cond.push_back(MachineOperand::CreateImm(1));
572     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
573                                              true));
574     FBB = LastInst->getOperand(0).getMBB();
575     return false;
576   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
577               SecondLastInst->getOpcode() == PPC::BDZ) &&
578       LastInst->getOpcode() == PPC::B) {
579     if (!SecondLastInst->getOperand(0).isMBB() ||
580         !LastInst->getOperand(0).isMBB())
581       return true;
582     if (DisableCTRLoopAnal)
583       return true;
584     TBB = SecondLastInst->getOperand(0).getMBB();
585     Cond.push_back(MachineOperand::CreateImm(0));
586     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
587                                              true));
588     FBB = LastInst->getOperand(0).getMBB();
589     return false;
590   }
591 
592   // If the block ends with two PPC:Bs, handle it.  The second one is not
593   // executed, so remove it.
594   if (SecondLastInst->getOpcode() == PPC::B &&
595       LastInst->getOpcode() == PPC::B) {
596     if (!SecondLastInst->getOperand(0).isMBB())
597       return true;
598     TBB = SecondLastInst->getOperand(0).getMBB();
599     I = LastInst;
600     if (AllowModify)
601       I->eraseFromParent();
602     return false;
603   }
604 
605   // Otherwise, can't handle this.
606   return true;
607 }
608 
RemoveBranch(MachineBasicBlock & MBB) const609 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
610   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
611   if (I == MBB.end())
612     return 0;
613 
614   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
615       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
616       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
617       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
618     return 0;
619 
620   // Remove the branch.
621   I->eraseFromParent();
622 
623   I = MBB.end();
624 
625   if (I == MBB.begin()) return 1;
626   --I;
627   if (I->getOpcode() != PPC::BCC &&
628       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
629       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
630       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
631     return 1;
632 
633   // Remove the branch.
634   I->eraseFromParent();
635   return 2;
636 }
637 
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const638 unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
639                                     MachineBasicBlock *TBB,
640                                     MachineBasicBlock *FBB,
641                                     ArrayRef<MachineOperand> Cond,
642                                     const DebugLoc &DL) const {
643   // Shouldn't be a fall through.
644   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
645   assert((Cond.size() == 2 || Cond.size() == 0) &&
646          "PPC branch conditions have two components!");
647 
648   bool isPPC64 = Subtarget.isPPC64();
649 
650   // One-way branch.
651   if (!FBB) {
652     if (Cond.empty())   // Unconditional branch
653       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
654     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
655       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
656                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
657                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
658     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
659       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
660     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
661       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
662     else                // Conditional branch
663       BuildMI(&MBB, DL, get(PPC::BCC))
664         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
665     return 1;
666   }
667 
668   // Two-way Conditional Branch.
669   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
670     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
671                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
672                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
673   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
674     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
675   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
676     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
677   else
678     BuildMI(&MBB, DL, get(PPC::BCC))
679       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
680   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
681   return 2;
682 }
683 
684 // Select analysis.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const685 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
686                 ArrayRef<MachineOperand> Cond,
687                 unsigned TrueReg, unsigned FalseReg,
688                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
689   if (!Subtarget.hasISEL())
690     return false;
691 
692   if (Cond.size() != 2)
693     return false;
694 
695   // If this is really a bdnz-like condition, then it cannot be turned into a
696   // select.
697   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
698     return false;
699 
700   // Check register classes.
701   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
702   const TargetRegisterClass *RC =
703     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
704   if (!RC)
705     return false;
706 
707   // isel is for regular integer GPRs only.
708   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
709       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
710       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
711       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
712     return false;
713 
714   // FIXME: These numbers are for the A2, how well they work for other cores is
715   // an open question. On the A2, the isel instruction has a 2-cycle latency
716   // but single-cycle throughput. These numbers are used in combination with
717   // the MispredictPenalty setting from the active SchedMachineModel.
718   CondCycles = 1;
719   TrueCycles = 1;
720   FalseCycles = 1;
721 
722   return true;
723 }
724 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & dl,unsigned DestReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg) const725 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
726                                 MachineBasicBlock::iterator MI,
727                                 const DebugLoc &dl, unsigned DestReg,
728                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
729                                 unsigned FalseReg) const {
730   assert(Cond.size() == 2 &&
731          "PPC branch conditions have two components!");
732 
733   assert(Subtarget.hasISEL() &&
734          "Cannot insert select on target without ISEL support");
735 
736   // Get the register classes.
737   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
738   const TargetRegisterClass *RC =
739     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
740   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
741 
742   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
743                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
744   assert((Is64Bit ||
745           PPC::GPRCRegClass.hasSubClassEq(RC) ||
746           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
747          "isel is for regular integer GPRs only");
748 
749   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
750   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
751 
752   unsigned SubIdx = 0;
753   bool SwapOps = false;
754   switch (SelectPred) {
755   case PPC::PRED_EQ:
756   case PPC::PRED_EQ_MINUS:
757   case PPC::PRED_EQ_PLUS:
758       SubIdx = PPC::sub_eq; SwapOps = false; break;
759   case PPC::PRED_NE:
760   case PPC::PRED_NE_MINUS:
761   case PPC::PRED_NE_PLUS:
762       SubIdx = PPC::sub_eq; SwapOps = true; break;
763   case PPC::PRED_LT:
764   case PPC::PRED_LT_MINUS:
765   case PPC::PRED_LT_PLUS:
766       SubIdx = PPC::sub_lt; SwapOps = false; break;
767   case PPC::PRED_GE:
768   case PPC::PRED_GE_MINUS:
769   case PPC::PRED_GE_PLUS:
770       SubIdx = PPC::sub_lt; SwapOps = true; break;
771   case PPC::PRED_GT:
772   case PPC::PRED_GT_MINUS:
773   case PPC::PRED_GT_PLUS:
774       SubIdx = PPC::sub_gt; SwapOps = false; break;
775   case PPC::PRED_LE:
776   case PPC::PRED_LE_MINUS:
777   case PPC::PRED_LE_PLUS:
778       SubIdx = PPC::sub_gt; SwapOps = true; break;
779   case PPC::PRED_UN:
780   case PPC::PRED_UN_MINUS:
781   case PPC::PRED_UN_PLUS:
782       SubIdx = PPC::sub_un; SwapOps = false; break;
783   case PPC::PRED_NU:
784   case PPC::PRED_NU_MINUS:
785   case PPC::PRED_NU_PLUS:
786       SubIdx = PPC::sub_un; SwapOps = true; break;
787   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
788   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
789   }
790 
791   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
792            SecondReg = SwapOps ? TrueReg  : FalseReg;
793 
794   // The first input register of isel cannot be r0. If it is a member
795   // of a register class that can be r0, then copy it first (the
796   // register allocator should eliminate the copy).
797   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
798       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
799     const TargetRegisterClass *FirstRC =
800       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
801         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
802     unsigned OldFirstReg = FirstReg;
803     FirstReg = MRI.createVirtualRegister(FirstRC);
804     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
805       .addReg(OldFirstReg);
806   }
807 
808   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
809     .addReg(FirstReg).addReg(SecondReg)
810     .addReg(Cond[1].getReg(), 0, SubIdx);
811 }
812 
getCRBitValue(unsigned CRBit)813 static unsigned getCRBitValue(unsigned CRBit) {
814   unsigned Ret = 4;
815   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
816       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
817       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
818       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
819     Ret = 3;
820   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
821       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
822       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
823       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
824     Ret = 2;
825   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
826       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
827       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
828       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
829     Ret = 1;
830   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
831       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
832       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
833       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
834     Ret = 0;
835 
836   assert(Ret != 4 && "Invalid CR bit register");
837   return Ret;
838 }
839 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const840 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
841                                MachineBasicBlock::iterator I,
842                                const DebugLoc &DL, unsigned DestReg,
843                                unsigned SrcReg, bool KillSrc) const {
844   // We can end up with self copies and similar things as a result of VSX copy
845   // legalization. Promote them here.
846   const TargetRegisterInfo *TRI = &getRegisterInfo();
847   if (PPC::F8RCRegClass.contains(DestReg) &&
848       PPC::VSRCRegClass.contains(SrcReg)) {
849     unsigned SuperReg =
850       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
851 
852     if (VSXSelfCopyCrash && SrcReg == SuperReg)
853       llvm_unreachable("nop VSX copy");
854 
855     DestReg = SuperReg;
856   } else if (PPC::VRRCRegClass.contains(DestReg) &&
857              PPC::VSRCRegClass.contains(SrcReg)) {
858     unsigned SuperReg =
859       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
860 
861     if (VSXSelfCopyCrash && SrcReg == SuperReg)
862       llvm_unreachable("nop VSX copy");
863 
864     DestReg = SuperReg;
865   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
866              PPC::VSRCRegClass.contains(DestReg)) {
867     unsigned SuperReg =
868       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
869 
870     if (VSXSelfCopyCrash && DestReg == SuperReg)
871       llvm_unreachable("nop VSX copy");
872 
873     SrcReg = SuperReg;
874   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
875              PPC::VSRCRegClass.contains(DestReg)) {
876     unsigned SuperReg =
877       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
878 
879     if (VSXSelfCopyCrash && DestReg == SuperReg)
880       llvm_unreachable("nop VSX copy");
881 
882     SrcReg = SuperReg;
883   }
884 
885   // Different class register copy
886   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
887       PPC::GPRCRegClass.contains(DestReg)) {
888     unsigned CRReg = getCRFromCRBit(SrcReg);
889     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
890     getKillRegState(KillSrc);
891     // Rotate the CR bit in the CR fields to be the least significant bit and
892     // then mask with 0x1 (MB = ME = 31).
893     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
894        .addReg(DestReg, RegState::Kill)
895        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
896        .addImm(31)
897        .addImm(31);
898     return;
899   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
900       PPC::G8RCRegClass.contains(DestReg)) {
901     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
902     getKillRegState(KillSrc);
903     return;
904   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
905       PPC::GPRCRegClass.contains(DestReg)) {
906     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
907     getKillRegState(KillSrc);
908     return;
909    }
910 
911   unsigned Opc;
912   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
913     Opc = PPC::OR;
914   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
915     Opc = PPC::OR8;
916   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
917     Opc = PPC::FMR;
918   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
919     Opc = PPC::MCRF;
920   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
921     Opc = PPC::VOR;
922   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
923     // There are two different ways this can be done:
924     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
925     //      issue in VSU pipeline 0.
926     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
927     //      can go to either pipeline.
928     // We'll always use xxlor here, because in practically all cases where
929     // copies are generated, they are close enough to some use that the
930     // lower-latency form is preferable.
931     Opc = PPC::XXLOR;
932   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
933            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
934     Opc = PPC::XXLORf;
935   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
936     Opc = PPC::QVFMR;
937   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
938     Opc = PPC::QVFMRs;
939   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
940     Opc = PPC::QVFMRb;
941   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
942     Opc = PPC::CROR;
943   else
944     llvm_unreachable("Impossible reg-to-reg copy");
945 
946   const MCInstrDesc &MCID = get(Opc);
947   if (MCID.getNumOperands() == 3)
948     BuildMI(MBB, I, DL, MCID, DestReg)
949       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
950   else
951     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
952 }
953 
954 // This function returns true if a CR spill is necessary and false otherwise.
955 bool
StoreRegToStackSlot(MachineFunction & MF,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const956 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
957                                   unsigned SrcReg, bool isKill,
958                                   int FrameIdx,
959                                   const TargetRegisterClass *RC,
960                                   SmallVectorImpl<MachineInstr*> &NewMIs,
961                                   bool &NonRI, bool &SpillsVRS) const{
962   // Note: If additional store instructions are added here,
963   // update isStoreToStackSlot.
964 
965   DebugLoc DL;
966   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
967       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
968     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
969                                        .addReg(SrcReg,
970                                                getKillRegState(isKill)),
971                                        FrameIdx));
972   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
973              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
974     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
975                                        .addReg(SrcReg,
976                                                getKillRegState(isKill)),
977                                        FrameIdx));
978   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
979     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
980                                        .addReg(SrcReg,
981                                                getKillRegState(isKill)),
982                                        FrameIdx));
983   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
984     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
985                                        .addReg(SrcReg,
986                                                getKillRegState(isKill)),
987                                        FrameIdx));
988   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
989     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
990                                        .addReg(SrcReg,
991                                                getKillRegState(isKill)),
992                                        FrameIdx));
993     return true;
994   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
995     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
996                                        .addReg(SrcReg,
997                                                getKillRegState(isKill)),
998                                        FrameIdx));
999     return true;
1000   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
1002                                        .addReg(SrcReg,
1003                                                getKillRegState(isKill)),
1004                                        FrameIdx));
1005     NonRI = true;
1006   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
1008                                        .addReg(SrcReg,
1009                                                getKillRegState(isKill)),
1010                                        FrameIdx));
1011     NonRI = true;
1012   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
1014                                        .addReg(SrcReg,
1015                                                getKillRegState(isKill)),
1016                                        FrameIdx));
1017     NonRI = true;
1018   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
1020                                        .addReg(SrcReg,
1021                                                getKillRegState(isKill)),
1022                                        FrameIdx));
1023     NonRI = true;
1024   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1025     assert(Subtarget.isDarwin() &&
1026            "VRSAVE only needs spill/restore on Darwin");
1027     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1028                                        .addReg(SrcReg,
1029                                                getKillRegState(isKill)),
1030                                        FrameIdx));
1031     SpillsVRS = true;
1032   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1033     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1034                                        .addReg(SrcReg,
1035                                                getKillRegState(isKill)),
1036                                        FrameIdx));
1037     NonRI = true;
1038   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1039     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1040                                        .addReg(SrcReg,
1041                                                getKillRegState(isKill)),
1042                                        FrameIdx));
1043     NonRI = true;
1044   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1045     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1046                                        .addReg(SrcReg,
1047                                                getKillRegState(isKill)),
1048                                        FrameIdx));
1049     NonRI = true;
1050   } else {
1051     llvm_unreachable("Unknown regclass!");
1052   }
1053 
1054   return false;
1055 }
1056 
1057 void
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1058 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1059                                   MachineBasicBlock::iterator MI,
1060                                   unsigned SrcReg, bool isKill, int FrameIdx,
1061                                   const TargetRegisterClass *RC,
1062                                   const TargetRegisterInfo *TRI) const {
1063   MachineFunction &MF = *MBB.getParent();
1064   SmallVector<MachineInstr*, 4> NewMIs;
1065 
1066   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1067   FuncInfo->setHasSpills();
1068 
1069   bool NonRI = false, SpillsVRS = false;
1070   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1071                           NonRI, SpillsVRS))
1072     FuncInfo->setSpillsCR();
1073 
1074   if (SpillsVRS)
1075     FuncInfo->setSpillsVRSAVE();
1076 
1077   if (NonRI)
1078     FuncInfo->setHasNonRISpills();
1079 
1080   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1081     MBB.insert(MI, NewMIs[i]);
1082 
1083   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1084   MachineMemOperand *MMO = MF.getMachineMemOperand(
1085       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1086       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1087       MFI.getObjectAlignment(FrameIdx));
1088   NewMIs.back()->addMemOperand(MF, MMO);
1089 }
1090 
LoadRegFromStackSlot(MachineFunction & MF,const DebugLoc & DL,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const1091 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1092                                         unsigned DestReg, int FrameIdx,
1093                                         const TargetRegisterClass *RC,
1094                                         SmallVectorImpl<MachineInstr *> &NewMIs,
1095                                         bool &NonRI, bool &SpillsVRS) const {
1096   // Note: If additional load instructions are added here,
1097   // update isLoadFromStackSlot.
1098 
1099   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1100       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1101     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1102                                                DestReg), FrameIdx));
1103   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1104              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1105     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1106                                        FrameIdx));
1107   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1108     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1109                                        FrameIdx));
1110   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1111     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1112                                        FrameIdx));
1113   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1114     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1115                                                get(PPC::RESTORE_CR), DestReg),
1116                                        FrameIdx));
1117     return true;
1118   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1119     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1120                                                get(PPC::RESTORE_CRBIT), DestReg),
1121                                        FrameIdx));
1122     return true;
1123   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1124     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1125                                        FrameIdx));
1126     NonRI = true;
1127   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1128     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1129                                        FrameIdx));
1130     NonRI = true;
1131   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1132     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1133                                        FrameIdx));
1134     NonRI = true;
1135   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1136     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1137                                        FrameIdx));
1138     NonRI = true;
1139   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1140     assert(Subtarget.isDarwin() &&
1141            "VRSAVE only needs spill/restore on Darwin");
1142     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1143                                                get(PPC::RESTORE_VRSAVE),
1144                                                DestReg),
1145                                        FrameIdx));
1146     SpillsVRS = true;
1147   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1148     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1149                                        FrameIdx));
1150     NonRI = true;
1151   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1152     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1153                                        FrameIdx));
1154     NonRI = true;
1155   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1156     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1157                                        FrameIdx));
1158     NonRI = true;
1159   } else {
1160     llvm_unreachable("Unknown regclass!");
1161   }
1162 
1163   return false;
1164 }
1165 
1166 void
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1167 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1168                                    MachineBasicBlock::iterator MI,
1169                                    unsigned DestReg, int FrameIdx,
1170                                    const TargetRegisterClass *RC,
1171                                    const TargetRegisterInfo *TRI) const {
1172   MachineFunction &MF = *MBB.getParent();
1173   SmallVector<MachineInstr*, 4> NewMIs;
1174   DebugLoc DL;
1175   if (MI != MBB.end()) DL = MI->getDebugLoc();
1176 
1177   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1178   FuncInfo->setHasSpills();
1179 
1180   bool NonRI = false, SpillsVRS = false;
1181   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1182                            NonRI, SpillsVRS))
1183     FuncInfo->setSpillsCR();
1184 
1185   if (SpillsVRS)
1186     FuncInfo->setSpillsVRSAVE();
1187 
1188   if (NonRI)
1189     FuncInfo->setHasNonRISpills();
1190 
1191   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1192     MBB.insert(MI, NewMIs[i]);
1193 
1194   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1195   MachineMemOperand *MMO = MF.getMachineMemOperand(
1196       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1197       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1198       MFI.getObjectAlignment(FrameIdx));
1199   NewMIs.back()->addMemOperand(MF, MMO);
1200 }
1201 
1202 bool PPCInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1203 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1204   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1205   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1206     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1207   else
1208     // Leave the CR# the same, but invert the condition.
1209     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1210   return false;
1211 }
1212 
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const1213 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1214                                  unsigned Reg, MachineRegisterInfo *MRI) const {
1215   // For some instructions, it is legal to fold ZERO into the RA register field.
1216   // A zero immediate should always be loaded with a single li.
1217   unsigned DefOpc = DefMI.getOpcode();
1218   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1219     return false;
1220   if (!DefMI.getOperand(1).isImm())
1221     return false;
1222   if (DefMI.getOperand(1).getImm() != 0)
1223     return false;
1224 
1225   // Note that we cannot here invert the arguments of an isel in order to fold
1226   // a ZERO into what is presented as the second argument. All we have here
1227   // is the condition bit, and that might come from a CR-logical bit operation.
1228 
1229   const MCInstrDesc &UseMCID = UseMI.getDesc();
1230 
1231   // Only fold into real machine instructions.
1232   if (UseMCID.isPseudo())
1233     return false;
1234 
1235   unsigned UseIdx;
1236   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1237     if (UseMI.getOperand(UseIdx).isReg() &&
1238         UseMI.getOperand(UseIdx).getReg() == Reg)
1239       break;
1240 
1241   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1242   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1243 
1244   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1245 
1246   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1247   // register (which might also be specified as a pointer class kind).
1248   if (UseInfo->isLookupPtrRegClass()) {
1249     if (UseInfo->RegClass /* Kind */ != 1)
1250       return false;
1251   } else {
1252     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1253         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1254       return false;
1255   }
1256 
1257   // Make sure this is not tied to an output register (or otherwise
1258   // constrained). This is true for ST?UX registers, for example, which
1259   // are tied to their output registers.
1260   if (UseInfo->Constraints != 0)
1261     return false;
1262 
1263   unsigned ZeroReg;
1264   if (UseInfo->isLookupPtrRegClass()) {
1265     bool isPPC64 = Subtarget.isPPC64();
1266     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1267   } else {
1268     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1269               PPC::ZERO8 : PPC::ZERO;
1270   }
1271 
1272   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1273   UseMI.getOperand(UseIdx).setReg(ZeroReg);
1274 
1275   if (DeleteDef)
1276     DefMI.eraseFromParent();
1277 
1278   return true;
1279 }
1280 
MBBDefinesCTR(MachineBasicBlock & MBB)1281 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1282   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1283        I != IE; ++I)
1284     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1285       return true;
1286   return false;
1287 }
1288 
1289 // We should make sure that, if we're going to predicate both sides of a
1290 // condition (a diamond), that both sides don't define the counter register. We
1291 // can predicate counter-decrement-based branches, but while that predicates
1292 // the branching, it does not predicate the counter decrement. If we tried to
1293 // merge the triangle into one predicated block, we'd decrement the counter
1294 // twice.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumT,unsigned ExtraT,MachineBasicBlock & FMBB,unsigned NumF,unsigned ExtraF,BranchProbability Probability) const1295 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1296                      unsigned NumT, unsigned ExtraT,
1297                      MachineBasicBlock &FMBB,
1298                      unsigned NumF, unsigned ExtraF,
1299                      BranchProbability Probability) const {
1300   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1301 }
1302 
1303 
isPredicated(const MachineInstr & MI) const1304 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1305   // The predicated branches are identified by their type, not really by the
1306   // explicit presence of a predicate. Furthermore, some of them can be
1307   // predicated more than once. Because if conversion won't try to predicate
1308   // any instruction which already claims to be predicated (by returning true
1309   // here), always return false. In doing so, we let isPredicable() be the
1310   // final word on whether not the instruction can be (further) predicated.
1311 
1312   return false;
1313 }
1314 
isUnpredicatedTerminator(const MachineInstr & MI) const1315 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1316   if (!MI.isTerminator())
1317     return false;
1318 
1319   // Conditional branch is a special case.
1320   if (MI.isBranch() && !MI.isBarrier())
1321     return true;
1322 
1323   return !isPredicated(MI);
1324 }
1325 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const1326 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1327                                         ArrayRef<MachineOperand> Pred) const {
1328   unsigned OpC = MI.getOpcode();
1329   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1330     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1331       bool isPPC64 = Subtarget.isPPC64();
1332       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1333                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1334     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1335       MI.setDesc(get(PPC::BCLR));
1336       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1337           .addReg(Pred[1].getReg());
1338     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1339       MI.setDesc(get(PPC::BCLRn));
1340       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1341           .addReg(Pred[1].getReg());
1342     } else {
1343       MI.setDesc(get(PPC::BCCLR));
1344       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1345           .addImm(Pred[0].getImm())
1346           .addReg(Pred[1].getReg());
1347     }
1348 
1349     return true;
1350   } else if (OpC == PPC::B) {
1351     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1352       bool isPPC64 = Subtarget.isPPC64();
1353       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1354                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1355     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1356       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1357       MI.RemoveOperand(0);
1358 
1359       MI.setDesc(get(PPC::BC));
1360       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1361           .addReg(Pred[1].getReg())
1362           .addMBB(MBB);
1363     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1364       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1365       MI.RemoveOperand(0);
1366 
1367       MI.setDesc(get(PPC::BCn));
1368       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1369           .addReg(Pred[1].getReg())
1370           .addMBB(MBB);
1371     } else {
1372       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1373       MI.RemoveOperand(0);
1374 
1375       MI.setDesc(get(PPC::BCC));
1376       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1377           .addImm(Pred[0].getImm())
1378           .addReg(Pred[1].getReg())
1379           .addMBB(MBB);
1380     }
1381 
1382     return true;
1383   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1384              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1385     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1386       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1387 
1388     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1389     bool isPPC64 = Subtarget.isPPC64();
1390 
1391     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1392       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1393                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1394       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1395           .addReg(Pred[1].getReg());
1396       return true;
1397     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1398       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1399                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1400       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1401           .addReg(Pred[1].getReg());
1402       return true;
1403     }
1404 
1405     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1406                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1407     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1408         .addImm(Pred[0].getImm())
1409         .addReg(Pred[1].getReg());
1410     return true;
1411   }
1412 
1413   return false;
1414 }
1415 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1416 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1417                                      ArrayRef<MachineOperand> Pred2) const {
1418   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1419   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1420 
1421   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1422     return false;
1423   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1424     return false;
1425 
1426   // P1 can only subsume P2 if they test the same condition register.
1427   if (Pred1[1].getReg() != Pred2[1].getReg())
1428     return false;
1429 
1430   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1431   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1432 
1433   if (P1 == P2)
1434     return true;
1435 
1436   // Does P1 subsume P2, e.g. GE subsumes GT.
1437   if (P1 == PPC::PRED_LE &&
1438       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1439     return true;
1440   if (P1 == PPC::PRED_GE &&
1441       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1442     return true;
1443 
1444   return false;
1445 }
1446 
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const1447 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1448                                     std::vector<MachineOperand> &Pred) const {
1449   // Note: At the present time, the contents of Pred from this function is
1450   // unused by IfConversion. This implementation follows ARM by pushing the
1451   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1452   // predicate, instructions defining CTR or CTR8 are also included as
1453   // predicate-defining instructions.
1454 
1455   const TargetRegisterClass *RCs[] =
1456     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1457       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1458 
1459   bool Found = false;
1460   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1461     const MachineOperand &MO = MI.getOperand(i);
1462     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1463       const TargetRegisterClass *RC = RCs[c];
1464       if (MO.isReg()) {
1465         if (MO.isDef() && RC->contains(MO.getReg())) {
1466           Pred.push_back(MO);
1467           Found = true;
1468         }
1469       } else if (MO.isRegMask()) {
1470         for (TargetRegisterClass::iterator I = RC->begin(),
1471              IE = RC->end(); I != IE; ++I)
1472           if (MO.clobbersPhysReg(*I)) {
1473             Pred.push_back(MO);
1474             Found = true;
1475           }
1476       }
1477     }
1478   }
1479 
1480   return Found;
1481 }
1482 
isPredicable(MachineInstr & MI) const1483 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
1484   unsigned OpC = MI.getOpcode();
1485   switch (OpC) {
1486   default:
1487     return false;
1488   case PPC::B:
1489   case PPC::BLR:
1490   case PPC::BLR8:
1491   case PPC::BCTR:
1492   case PPC::BCTR8:
1493   case PPC::BCTRL:
1494   case PPC::BCTRL8:
1495     return true;
1496   }
1497 }
1498 
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1499 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1500                                   unsigned &SrcReg2, int &Mask,
1501                                   int &Value) const {
1502   unsigned Opc = MI.getOpcode();
1503 
1504   switch (Opc) {
1505   default: return false;
1506   case PPC::CMPWI:
1507   case PPC::CMPLWI:
1508   case PPC::CMPDI:
1509   case PPC::CMPLDI:
1510     SrcReg = MI.getOperand(1).getReg();
1511     SrcReg2 = 0;
1512     Value = MI.getOperand(2).getImm();
1513     Mask = 0xFFFF;
1514     return true;
1515   case PPC::CMPW:
1516   case PPC::CMPLW:
1517   case PPC::CMPD:
1518   case PPC::CMPLD:
1519   case PPC::FCMPUS:
1520   case PPC::FCMPUD:
1521     SrcReg = MI.getOperand(1).getReg();
1522     SrcReg2 = MI.getOperand(2).getReg();
1523     return true;
1524   }
1525 }
1526 
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI) const1527 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1528                                         unsigned SrcReg2, int Mask, int Value,
1529                                         const MachineRegisterInfo *MRI) const {
1530   if (DisableCmpOpt)
1531     return false;
1532 
1533   int OpC = CmpInstr.getOpcode();
1534   unsigned CRReg = CmpInstr.getOperand(0).getReg();
1535 
1536   // FP record forms set CR1 based on the execption status bits, not a
1537   // comparison with zero.
1538   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1539     return false;
1540 
1541   // The record forms set the condition register based on a signed comparison
1542   // with zero (so says the ISA manual). This is not as straightforward as it
1543   // seems, however, because this is always a 64-bit comparison on PPC64, even
1544   // for instructions that are 32-bit in nature (like slw for example).
1545   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1546   // for equality checks (as those don't depend on the sign). On PPC64,
1547   // we are restricted to equality for unsigned 64-bit comparisons and for
1548   // signed 32-bit comparisons the applicability is more restricted.
1549   bool isPPC64 = Subtarget.isPPC64();
1550   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1551   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1552   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1553 
1554   // Get the unique definition of SrcReg.
1555   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1556   if (!MI) return false;
1557   int MIOpC = MI->getOpcode();
1558 
1559   bool equalityOnly = false;
1560   bool noSub = false;
1561   if (isPPC64) {
1562     if (is32BitSignedCompare) {
1563       // We can perform this optimization only if MI is sign-extending.
1564       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1565           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1566           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1567           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1568           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1569         noSub = true;
1570       } else
1571         return false;
1572     } else if (is32BitUnsignedCompare) {
1573       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
1574       bool isZeroExtendingRotate  =
1575           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
1576            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
1577           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
1578 
1579       // We can perform this optimization, equality only, if MI is
1580       // zero-extending.
1581       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1582           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1583           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
1584           isZeroExtendingRotate) {
1585         noSub = true;
1586         equalityOnly = true;
1587       } else
1588         return false;
1589     } else
1590       equalityOnly = is64BitUnsignedCompare;
1591   } else
1592     equalityOnly = is32BitUnsignedCompare;
1593 
1594   if (equalityOnly) {
1595     // We need to check the uses of the condition register in order to reject
1596     // non-equality comparisons.
1597     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1598          IE = MRI->use_instr_end(); I != IE; ++I) {
1599       MachineInstr *UseMI = &*I;
1600       if (UseMI->getOpcode() == PPC::BCC) {
1601         unsigned Pred = UseMI->getOperand(0).getImm();
1602         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1603           return false;
1604       } else if (UseMI->getOpcode() == PPC::ISEL ||
1605                  UseMI->getOpcode() == PPC::ISEL8) {
1606         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1607         if (SubIdx != PPC::sub_eq)
1608           return false;
1609       } else
1610         return false;
1611     }
1612   }
1613 
1614   MachineBasicBlock::iterator I = CmpInstr;
1615 
1616   // Scan forward to find the first use of the compare.
1617   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1618        ++I) {
1619     bool FoundUse = false;
1620     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1621          JE = MRI->use_instr_end(); J != JE; ++J)
1622       if (&*J == &*I) {
1623         FoundUse = true;
1624         break;
1625       }
1626 
1627     if (FoundUse)
1628       break;
1629   }
1630 
1631   // There are two possible candidates which can be changed to set CR[01].
1632   // One is MI, the other is a SUB instruction.
1633   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1634   MachineInstr *Sub = nullptr;
1635   if (SrcReg2 != 0)
1636     // MI is not a candidate for CMPrr.
1637     MI = nullptr;
1638   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1639   // same BB as the comparison. This is to allow the check below to avoid calls
1640   // (and other explicit clobbers); instead we should really check for these
1641   // more explicitly (in at least a few predecessors).
1642   else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
1643     // PPC does not have a record-form SUBri.
1644     return false;
1645   }
1646 
1647   // Search for Sub.
1648   const TargetRegisterInfo *TRI = &getRegisterInfo();
1649   --I;
1650 
1651   // Get ready to iterate backward from CmpInstr.
1652   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1653 
1654   for (; I != E && !noSub; --I) {
1655     const MachineInstr &Instr = *I;
1656     unsigned IOpC = Instr.getOpcode();
1657 
1658     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1659                              Instr.readsRegister(PPC::CR0, TRI)))
1660       // This instruction modifies or uses the record condition register after
1661       // the one we want to change. While we could do this transformation, it
1662       // would likely not be profitable. This transformation removes one
1663       // instruction, and so even forcing RA to generate one move probably
1664       // makes it unprofitable.
1665       return false;
1666 
1667     // Check whether CmpInstr can be made redundant by the current instruction.
1668     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1669          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1670         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1671         ((Instr.getOperand(1).getReg() == SrcReg &&
1672           Instr.getOperand(2).getReg() == SrcReg2) ||
1673         (Instr.getOperand(1).getReg() == SrcReg2 &&
1674          Instr.getOperand(2).getReg() == SrcReg))) {
1675       Sub = &*I;
1676       break;
1677     }
1678 
1679     if (I == B)
1680       // The 'and' is below the comparison instruction.
1681       return false;
1682   }
1683 
1684   // Return false if no candidates exist.
1685   if (!MI && !Sub)
1686     return false;
1687 
1688   // The single candidate is called MI.
1689   if (!MI) MI = Sub;
1690 
1691   int NewOpC = -1;
1692   MIOpC = MI->getOpcode();
1693   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1694     NewOpC = MIOpC;
1695   else {
1696     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1697     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1698       NewOpC = MIOpC;
1699   }
1700 
1701   // FIXME: On the non-embedded POWER architectures, only some of the record
1702   // forms are fast, and we should use only the fast ones.
1703 
1704   // The defining instruction has a record form (or is already a record
1705   // form). It is possible, however, that we'll need to reverse the condition
1706   // code of the users.
1707   if (NewOpC == -1)
1708     return false;
1709 
1710   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1711   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1712 
1713   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1714   // needs to be updated to be based on SUB.  Push the condition code
1715   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1716   // condition code of these operands will be modified.
1717   bool ShouldSwap = false;
1718   if (Sub) {
1719     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1720       Sub->getOperand(2).getReg() == SrcReg;
1721 
1722     // The operands to subf are the opposite of sub, so only in the fixed-point
1723     // case, invert the order.
1724     ShouldSwap = !ShouldSwap;
1725   }
1726 
1727   if (ShouldSwap)
1728     for (MachineRegisterInfo::use_instr_iterator
1729          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1730          I != IE; ++I) {
1731       MachineInstr *UseMI = &*I;
1732       if (UseMI->getOpcode() == PPC::BCC) {
1733         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1734         assert((!equalityOnly ||
1735                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1736                "Invalid predicate for equality-only optimization");
1737         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1738                                 PPC::getSwappedPredicate(Pred)));
1739       } else if (UseMI->getOpcode() == PPC::ISEL ||
1740                  UseMI->getOpcode() == PPC::ISEL8) {
1741         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1742         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1743                "Invalid CR bit for equality-only optimization");
1744 
1745         if (NewSubReg == PPC::sub_lt)
1746           NewSubReg = PPC::sub_gt;
1747         else if (NewSubReg == PPC::sub_gt)
1748           NewSubReg = PPC::sub_lt;
1749 
1750         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1751                                                  NewSubReg));
1752       } else // We need to abort on a user we don't understand.
1753         return false;
1754     }
1755 
1756   // Create a new virtual register to hold the value of the CR set by the
1757   // record-form instruction. If the instruction was not previously in
1758   // record form, then set the kill flag on the CR.
1759   CmpInstr.eraseFromParent();
1760 
1761   MachineBasicBlock::iterator MII = MI;
1762   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1763           get(TargetOpcode::COPY), CRReg)
1764     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1765 
1766   // Even if CR0 register were dead before, it is alive now since the
1767   // instruction we just built uses it.
1768   MI->clearRegisterDeads(PPC::CR0);
1769 
1770   if (MIOpC != NewOpC) {
1771     // We need to be careful here: we're replacing one instruction with
1772     // another, and we need to make sure that we get all of the right
1773     // implicit uses and defs. On the other hand, the caller may be holding
1774     // an iterator to this instruction, and so we can't delete it (this is
1775     // specifically the case if this is the instruction directly after the
1776     // compare).
1777 
1778     const MCInstrDesc &NewDesc = get(NewOpC);
1779     MI->setDesc(NewDesc);
1780 
1781     if (NewDesc.ImplicitDefs)
1782       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1783            *ImpDefs; ++ImpDefs)
1784         if (!MI->definesRegister(*ImpDefs))
1785           MI->addOperand(*MI->getParent()->getParent(),
1786                          MachineOperand::CreateReg(*ImpDefs, true, true));
1787     if (NewDesc.ImplicitUses)
1788       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1789            *ImpUses; ++ImpUses)
1790         if (!MI->readsRegister(*ImpUses))
1791           MI->addOperand(*MI->getParent()->getParent(),
1792                          MachineOperand::CreateReg(*ImpUses, false, true));
1793   }
1794   assert(MI->definesRegister(PPC::CR0) &&
1795          "Record-form instruction does not define cr0?");
1796 
1797   // Modify the condition code of operands in OperandsToUpdate.
1798   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1799   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1800   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1801     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1802 
1803   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1804     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1805 
1806   return true;
1807 }
1808 
1809 /// GetInstSize - Return the number of bytes of code the specified
1810 /// instruction may be.  This returns the maximum number of bytes.
1811 ///
GetInstSizeInBytes(const MachineInstr & MI) const1812 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
1813   unsigned Opcode = MI.getOpcode();
1814 
1815   if (Opcode == PPC::INLINEASM) {
1816     const MachineFunction *MF = MI.getParent()->getParent();
1817     const char *AsmStr = MI.getOperand(0).getSymbolName();
1818     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1819   } else if (Opcode == TargetOpcode::STACKMAP) {
1820     return MI.getOperand(1).getImm();
1821   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1822     PatchPointOpers Opers(&MI);
1823     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1824   } else {
1825     const MCInstrDesc &Desc = get(Opcode);
1826     return Desc.getSize();
1827   }
1828 }
1829 
1830 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const1831 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1832   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1833   return std::make_pair(TF & Mask, TF & ~Mask);
1834 }
1835 
1836 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const1837 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1838   using namespace PPCII;
1839   static const std::pair<unsigned, const char *> TargetFlags[] = {
1840       {MO_LO, "ppc-lo"},
1841       {MO_HA, "ppc-ha"},
1842       {MO_TPREL_LO, "ppc-tprel-lo"},
1843       {MO_TPREL_HA, "ppc-tprel-ha"},
1844       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1845       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1846       {MO_TOC_LO, "ppc-toc-lo"},
1847       {MO_TLS, "ppc-tls"}};
1848   return makeArrayRef(TargetFlags);
1849 }
1850 
1851 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const1852 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1853   using namespace PPCII;
1854   static const std::pair<unsigned, const char *> TargetFlags[] = {
1855       {MO_PLT, "ppc-plt"},
1856       {MO_PIC_FLAG, "ppc-pic"},
1857       {MO_NLP_FLAG, "ppc-nlp"},
1858       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1859   return makeArrayRef(TargetFlags);
1860 }
1861 
expandPostRAPseudo(MachineInstr & MI) const1862 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1863   switch (MI.getOpcode()) {
1864   case TargetOpcode::LOAD_STACK_GUARD: {
1865     assert(Subtarget.isTargetLinux() &&
1866            "Only Linux target is expected to contain LOAD_STACK_GUARD");
1867     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
1868     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
1869     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
1870     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1871         .addImm(Offset)
1872         .addReg(Reg);
1873     return true;
1874   }
1875   }
1876   return false;
1877 }
1878