1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE4 version of some encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "./dsp.h"
15
16 #if defined(WEBP_USE_SSE41)
17 #include <smmintrin.h>
18 #include <stdlib.h> // for abs()
19
20 #include "./common_sse2.h"
21 #include "../enc/vp8i_enc.h"
22
23 //------------------------------------------------------------------------------
24 // Compute susceptibility based on DCT-coeff histograms.
25
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)26 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
27 int start_block, int end_block,
28 VP8Histogram* const histo) {
29 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
30 int j;
31 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
32 for (j = start_block; j < end_block; ++j) {
33 int16_t out[16];
34 int k;
35
36 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
37
38 // Convert coefficients to bin (within out[]).
39 {
40 // Load.
41 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
42 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
43 // v = abs(out) >> 3
44 const __m128i abs0 = _mm_abs_epi16(out0);
45 const __m128i abs1 = _mm_abs_epi16(out1);
46 const __m128i v0 = _mm_srai_epi16(abs0, 3);
47 const __m128i v1 = _mm_srai_epi16(abs1, 3);
48 // bin = min(v, MAX_COEFF_THRESH)
49 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
50 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
51 // Store.
52 _mm_storeu_si128((__m128i*)&out[0], bin0);
53 _mm_storeu_si128((__m128i*)&out[8], bin1);
54 }
55
56 // Convert coefficients to bin.
57 for (k = 0; k < 16; ++k) {
58 ++distribution[out[k]];
59 }
60 }
61 VP8SetHistogramData(distribution, histo);
62 }
63
64 //------------------------------------------------------------------------------
65 // Texture distortion
66 //
67 // We try to match the spectral content (weighted) between source and
68 // reconstructed samples.
69
70 // Hadamard transform
71 // Returns the weighted sum of the absolute value of transformed coefficients.
72 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)73 static int TTransform(const uint8_t* inA, const uint8_t* inB,
74 const uint16_t* const w) {
75 int32_t sum[4];
76 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
77
78 // Load and combine inputs.
79 {
80 const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
81 const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
82 const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
83 // In SSE4.1, with gcc 4.8 at least (maybe other versions),
84 // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
85 // of inA and inB, _mm_loadl_epi64 is still used not to have an out of
86 // bound read.
87 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
88 const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
89 const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
90 const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
91 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
92
93 // Combine inA and inB (we'll do two transforms in parallel).
94 const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
95 const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
96 const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
97 const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
98 tmp_0 = _mm_cvtepu8_epi16(inAB_0);
99 tmp_1 = _mm_cvtepu8_epi16(inAB_1);
100 tmp_2 = _mm_cvtepu8_epi16(inAB_2);
101 tmp_3 = _mm_cvtepu8_epi16(inAB_3);
102 // a00 a01 a02 a03 b00 b01 b02 b03
103 // a10 a11 a12 a13 b10 b11 b12 b13
104 // a20 a21 a22 a23 b20 b21 b22 b23
105 // a30 a31 a32 a33 b30 b31 b32 b33
106 }
107
108 // Vertical pass first to avoid a transpose (vertical and horizontal passes
109 // are commutative because w/kWeightY is symmetric) and subsequent transpose.
110 {
111 // Calculate a and b (two 4x4 at once).
112 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
113 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
114 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
115 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
116 const __m128i b0 = _mm_add_epi16(a0, a1);
117 const __m128i b1 = _mm_add_epi16(a3, a2);
118 const __m128i b2 = _mm_sub_epi16(a3, a2);
119 const __m128i b3 = _mm_sub_epi16(a0, a1);
120 // a00 a01 a02 a03 b00 b01 b02 b03
121 // a10 a11 a12 a13 b10 b11 b12 b13
122 // a20 a21 a22 a23 b20 b21 b22 b23
123 // a30 a31 a32 a33 b30 b31 b32 b33
124
125 // Transpose the two 4x4.
126 VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
127 }
128
129 // Horizontal pass and difference of weighted sums.
130 {
131 // Load all inputs.
132 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
133 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
134
135 // Calculate a and b (two 4x4 at once).
136 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
137 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
138 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
139 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
140 const __m128i b0 = _mm_add_epi16(a0, a1);
141 const __m128i b1 = _mm_add_epi16(a3, a2);
142 const __m128i b2 = _mm_sub_epi16(a3, a2);
143 const __m128i b3 = _mm_sub_epi16(a0, a1);
144
145 // Separate the transforms of inA and inB.
146 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
147 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
148 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
149 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
150
151 A_b0 = _mm_abs_epi16(A_b0);
152 A_b2 = _mm_abs_epi16(A_b2);
153 B_b0 = _mm_abs_epi16(B_b0);
154 B_b2 = _mm_abs_epi16(B_b2);
155
156 // weighted sums
157 A_b0 = _mm_madd_epi16(A_b0, w_0);
158 A_b2 = _mm_madd_epi16(A_b2, w_8);
159 B_b0 = _mm_madd_epi16(B_b0, w_0);
160 B_b2 = _mm_madd_epi16(B_b2, w_8);
161 A_b0 = _mm_add_epi32(A_b0, A_b2);
162 B_b0 = _mm_add_epi32(B_b0, B_b2);
163
164 // difference of weighted sums
165 A_b2 = _mm_sub_epi32(A_b0, B_b0);
166 _mm_storeu_si128((__m128i*)&sum[0], A_b2);
167 }
168 return sum[0] + sum[1] + sum[2] + sum[3];
169 }
170
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)171 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
172 const uint16_t* const w) {
173 const int diff_sum = TTransform(a, b, w);
174 return abs(diff_sum) >> 5;
175 }
176
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)177 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
178 const uint16_t* const w) {
179 int D = 0;
180 int x, y;
181 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
182 for (x = 0; x < 16; x += 4) {
183 D += Disto4x4(a + x + y, b + x + y, w);
184 }
185 }
186 return D;
187 }
188
189 //------------------------------------------------------------------------------
190 // Quantization
191 //
192
193 // Generates a pshufb constant for shuffling 16b words.
194 #define PSHUFB_CST(A,B,C,D,E,F,G,H) \
195 _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
196 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
197 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
198 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
199
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)200 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
201 const uint16_t* const sharpen,
202 const VP8Matrix* const mtx) {
203 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
204 const __m128i zero = _mm_setzero_si128();
205 __m128i out0, out8;
206 __m128i packed_out;
207
208 // Load all inputs.
209 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
210 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
211 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
212 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
213 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
214 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
215
216 // coeff = abs(in)
217 __m128i coeff0 = _mm_abs_epi16(in0);
218 __m128i coeff8 = _mm_abs_epi16(in8);
219
220 // coeff = abs(in) + sharpen
221 if (sharpen != NULL) {
222 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
223 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
224 coeff0 = _mm_add_epi16(coeff0, sharpen0);
225 coeff8 = _mm_add_epi16(coeff8, sharpen8);
226 }
227
228 // out = (coeff * iQ + B) >> QFIX
229 {
230 // doing calculations with 32b precision (QFIX=17)
231 // out = (coeff * iQ)
232 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
233 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
234 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
235 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
236 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
237 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
238 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
239 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
240 // out = (coeff * iQ + B)
241 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
242 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
243 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
244 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
245 out_00 = _mm_add_epi32(out_00, bias_00);
246 out_04 = _mm_add_epi32(out_04, bias_04);
247 out_08 = _mm_add_epi32(out_08, bias_08);
248 out_12 = _mm_add_epi32(out_12, bias_12);
249 // out = QUANTDIV(coeff, iQ, B, QFIX)
250 out_00 = _mm_srai_epi32(out_00, QFIX);
251 out_04 = _mm_srai_epi32(out_04, QFIX);
252 out_08 = _mm_srai_epi32(out_08, QFIX);
253 out_12 = _mm_srai_epi32(out_12, QFIX);
254
255 // pack result as 16b
256 out0 = _mm_packs_epi32(out_00, out_04);
257 out8 = _mm_packs_epi32(out_08, out_12);
258
259 // if (coeff > 2047) coeff = 2047
260 out0 = _mm_min_epi16(out0, max_coeff_2047);
261 out8 = _mm_min_epi16(out8, max_coeff_2047);
262 }
263
264 // put sign back
265 out0 = _mm_sign_epi16(out0, in0);
266 out8 = _mm_sign_epi16(out8, in8);
267
268 // in = out * Q
269 in0 = _mm_mullo_epi16(out0, q0);
270 in8 = _mm_mullo_epi16(out8, q8);
271
272 _mm_storeu_si128((__m128i*)&in[0], in0);
273 _mm_storeu_si128((__m128i*)&in[8], in8);
274
275 // zigzag the output before storing it. The re-ordering is:
276 // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
277 // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
278 // There's only two misplaced entries ([8] and [7]) that are crossing the
279 // reg's boundaries.
280 // We use pshufb instead of pshuflo/pshufhi.
281 {
282 const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
283 const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
284 const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
285 const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7
286 const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
287 const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
288 const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
289 const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8
290 const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
291 const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
292 _mm_storeu_si128((__m128i*)&out[0], out_z0);
293 _mm_storeu_si128((__m128i*)&out[8], out_z8);
294 packed_out = _mm_packs_epi16(out_z0, out_z8);
295 }
296
297 // detect if all 'out' values are zeroes or not
298 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
299 }
300
301 #undef PSHUFB_CST
302
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)303 static int QuantizeBlock(int16_t in[16], int16_t out[16],
304 const VP8Matrix* const mtx) {
305 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
306 }
307
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)308 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
309 const VP8Matrix* const mtx) {
310 return DoQuantizeBlock(in, out, NULL, mtx);
311 }
312
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)313 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
314 const VP8Matrix* const mtx) {
315 int nz;
316 const uint16_t* const sharpen = &mtx->sharpen_[0];
317 nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
318 nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
319 return nz;
320 }
321
322 //------------------------------------------------------------------------------
323 // Entry point
324
325 extern void VP8EncDspInitSSE41(void);
VP8EncDspInitSSE41(void)326 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
327 VP8CollectHistogram = CollectHistogram;
328 VP8EncQuantizeBlock = QuantizeBlock;
329 VP8EncQuantize2Blocks = Quantize2Blocks;
330 VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
331 VP8TDisto4x4 = Disto4x4;
332 VP8TDisto16x16 = Disto16x16;
333 }
334
335 #else // !WEBP_USE_SSE41
336
337 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
338
339 #endif // WEBP_USE_SSE41
340