1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 
13 #include <assert.h>
14 #include <math.h>
15 
16 #include "./backward_references_enc.h"
17 #include "./histogram_enc.h"
18 #include "../dsp/lossless.h"
19 #include "../dsp/lossless_common.h"
20 #include "../dsp/dsp.h"
21 #include "../utils/color_cache_utils.h"
22 #include "../utils/utils.h"
23 
24 #define VALUES_IN_BYTE 256
25 
26 #define MIN_BLOCK_SIZE 256  // minimum block size for backward references
27 
28 #define MAX_ENTROPY    (1e30f)
29 
30 // 1M window (4M bytes) minus 120 special codes for short distances.
31 #define WINDOW_SIZE_BITS 20
32 #define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
33 
34 // Minimum number of pixels for which it is cheaper to encode a
35 // distance + length instead of each pixel as a literal.
36 #define MIN_LENGTH 4
37 // If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it
38 // is used in VP8LHashChain.
39 #define MAX_LENGTH_BITS 12
40 // We want the max value to be attainable and stored in MAX_LENGTH_BITS bits.
41 #define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1)
42 #if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32
43 #error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32"
44 #endif
45 
46 // -----------------------------------------------------------------------------
47 
48 static const uint8_t plane_to_code_lut[128] = {
49  96,   73,  55,  39,  23,  13,   5,  1,  255, 255, 255, 255, 255, 255, 255, 255,
50  101,  78,  58,  42,  26,  16,   8,  2,    0,   3,  9,   17,  27,  43,  59,  79,
51  102,  86,  62,  46,  32,  20,  10,  6,    4,   7,  11,  21,  33,  47,  63,  87,
52  105,  90,  70,  52,  37,  28,  18,  14,  12,  15,  19,  29,  38,  53,  71,  91,
53  110,  99,  82,  66,  48,  35,  30,  24,  22,  25,  31,  36,  49,  67,  83, 100,
54  115, 108,  94,  76,  64,  50,  44,  40,  34,  41,  45,  51,  65,  77,  95, 109,
55  118, 113, 103,  92,  80,  68,  60,  56,  54,  57,  61,  69,  81,  93, 104, 114,
56  119, 116, 111, 106,  97,  88,  84,  74,  72,  75,  85,  89,  98, 107, 112, 117
57 };
58 
DistanceToPlaneCode(int xsize,int dist)59 static int DistanceToPlaneCode(int xsize, int dist) {
60   const int yoffset = dist / xsize;
61   const int xoffset = dist - yoffset * xsize;
62   if (xoffset <= 8 && yoffset < 8) {
63     return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
64   } else if (xoffset > xsize - 8 && yoffset < 7) {
65     return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
66   }
67   return dist + 120;
68 }
69 
70 // Returns the exact index where array1 and array2 are different. For an index
71 // inferior or equal to best_len_match, the return value just has to be strictly
72 // inferior to best_len_match. The current behavior is to return 0 if this index
73 // is best_len_match, and the index itself otherwise.
74 // If no two elements are the same, it returns max_limit.
FindMatchLength(const uint32_t * const array1,const uint32_t * const array2,int best_len_match,int max_limit)75 static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
76                                        const uint32_t* const array2,
77                                        int best_len_match, int max_limit) {
78   // Before 'expensive' linear match, check if the two arrays match at the
79   // current best length index.
80   if (array1[best_len_match] != array2[best_len_match]) return 0;
81 
82   return VP8LVectorMismatch(array1, array2, max_limit);
83 }
84 
85 // -----------------------------------------------------------------------------
86 //  VP8LBackwardRefs
87 
88 struct PixOrCopyBlock {
89   PixOrCopyBlock* next_;   // next block (or NULL)
90   PixOrCopy* start_;       // data start
91   int size_;               // currently used size
92 };
93 
ClearBackwardRefs(VP8LBackwardRefs * const refs)94 static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
95   assert(refs != NULL);
96   if (refs->tail_ != NULL) {
97     *refs->tail_ = refs->free_blocks_;  // recycle all blocks at once
98   }
99   refs->free_blocks_ = refs->refs_;
100   refs->tail_ = &refs->refs_;
101   refs->last_block_ = NULL;
102   refs->refs_ = NULL;
103 }
104 
VP8LBackwardRefsClear(VP8LBackwardRefs * const refs)105 void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
106   assert(refs != NULL);
107   ClearBackwardRefs(refs);
108   while (refs->free_blocks_ != NULL) {
109     PixOrCopyBlock* const next = refs->free_blocks_->next_;
110     WebPSafeFree(refs->free_blocks_);
111     refs->free_blocks_ = next;
112   }
113 }
114 
VP8LBackwardRefsInit(VP8LBackwardRefs * const refs,int block_size)115 void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
116   assert(refs != NULL);
117   memset(refs, 0, sizeof(*refs));
118   refs->tail_ = &refs->refs_;
119   refs->block_size_ =
120       (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
121 }
122 
VP8LRefsCursorInit(const VP8LBackwardRefs * const refs)123 VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
124   VP8LRefsCursor c;
125   c.cur_block_ = refs->refs_;
126   if (refs->refs_ != NULL) {
127     c.cur_pos = c.cur_block_->start_;
128     c.last_pos_ = c.cur_pos + c.cur_block_->size_;
129   } else {
130     c.cur_pos = NULL;
131     c.last_pos_ = NULL;
132   }
133   return c;
134 }
135 
VP8LRefsCursorNextBlock(VP8LRefsCursor * const c)136 void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
137   PixOrCopyBlock* const b = c->cur_block_->next_;
138   c->cur_pos = (b == NULL) ? NULL : b->start_;
139   c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
140   c->cur_block_ = b;
141 }
142 
143 // Create a new block, either from the free list or allocated
BackwardRefsNewBlock(VP8LBackwardRefs * const refs)144 static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
145   PixOrCopyBlock* b = refs->free_blocks_;
146   if (b == NULL) {   // allocate new memory chunk
147     const size_t total_size =
148         sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
149     b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
150     if (b == NULL) {
151       refs->error_ |= 1;
152       return NULL;
153     }
154     b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b));  // not always aligned
155   } else {  // recycle from free-list
156     refs->free_blocks_ = b->next_;
157   }
158   *refs->tail_ = b;
159   refs->tail_ = &b->next_;
160   refs->last_block_ = b;
161   b->next_ = NULL;
162   b->size_ = 0;
163   return b;
164 }
165 
BackwardRefsCursorAdd(VP8LBackwardRefs * const refs,const PixOrCopy v)166 static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
167                                               const PixOrCopy v) {
168   PixOrCopyBlock* b = refs->last_block_;
169   if (b == NULL || b->size_ == refs->block_size_) {
170     b = BackwardRefsNewBlock(refs);
171     if (b == NULL) return;   // refs->error_ is set
172   }
173   b->start_[b->size_++] = v;
174 }
175 
VP8LBackwardRefsCopy(const VP8LBackwardRefs * const src,VP8LBackwardRefs * const dst)176 int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
177                          VP8LBackwardRefs* const dst) {
178   const PixOrCopyBlock* b = src->refs_;
179   ClearBackwardRefs(dst);
180   assert(src->block_size_ == dst->block_size_);
181   while (b != NULL) {
182     PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
183     if (new_b == NULL) return 0;   // dst->error_ is set
184     memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
185     new_b->size_ = b->size_;
186     b = b->next_;
187   }
188   return 1;
189 }
190 
191 // -----------------------------------------------------------------------------
192 // Hash chains
193 
VP8LHashChainInit(VP8LHashChain * const p,int size)194 int VP8LHashChainInit(VP8LHashChain* const p, int size) {
195   assert(p->size_ == 0);
196   assert(p->offset_length_ == NULL);
197   assert(size > 0);
198   p->offset_length_ =
199       (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
200   if (p->offset_length_ == NULL) return 0;
201   p->size_ = size;
202 
203   return 1;
204 }
205 
VP8LHashChainClear(VP8LHashChain * const p)206 void VP8LHashChainClear(VP8LHashChain* const p) {
207   assert(p != NULL);
208   WebPSafeFree(p->offset_length_);
209 
210   p->size_ = 0;
211   p->offset_length_ = NULL;
212 }
213 
214 // -----------------------------------------------------------------------------
215 
216 #define HASH_MULTIPLIER_HI (0xc6a4a793ULL)
217 #define HASH_MULTIPLIER_LO (0x5bd1e996ULL)
218 
GetPixPairHash64(const uint32_t * const argb)219 static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
220   uint32_t key;
221   key  = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu;
222   key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu;
223   key = key >> (32 - HASH_BITS);
224   return key;
225 }
226 
227 // Returns the maximum number of hash chain lookups to do for a
228 // given compression quality. Return value in range [8, 86].
GetMaxItersForQuality(int quality)229 static int GetMaxItersForQuality(int quality) {
230   return 8 + (quality * quality) / 128;
231 }
232 
GetWindowSizeForHashChain(int quality,int xsize)233 static int GetWindowSizeForHashChain(int quality, int xsize) {
234   const int max_window_size = (quality > 75) ? WINDOW_SIZE
235                             : (quality > 50) ? (xsize << 8)
236                             : (quality > 25) ? (xsize << 6)
237                             : (xsize << 4);
238   assert(xsize > 0);
239   return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
240 }
241 
MaxFindCopyLength(int len)242 static WEBP_INLINE int MaxFindCopyLength(int len) {
243   return (len < MAX_LENGTH) ? len : MAX_LENGTH;
244 }
245 
VP8LHashChainFill(VP8LHashChain * const p,int quality,const uint32_t * const argb,int xsize,int ysize,int low_effort)246 int VP8LHashChainFill(VP8LHashChain* const p, int quality,
247                       const uint32_t* const argb, int xsize, int ysize,
248                       int low_effort) {
249   const int size = xsize * ysize;
250   const int iter_max = GetMaxItersForQuality(quality);
251   const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
252   int pos;
253   int argb_comp;
254   uint32_t base_position;
255   int32_t* hash_to_first_index;
256   // Temporarily use the p->offset_length_ as a hash chain.
257   int32_t* chain = (int32_t*)p->offset_length_;
258   assert(size > 0);
259   assert(p->size_ != 0);
260   assert(p->offset_length_ != NULL);
261 
262   if (size <= 2) {
263     p->offset_length_[0] = p->offset_length_[size - 1] = 0;
264     return 1;
265   }
266 
267   hash_to_first_index =
268       (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
269   if (hash_to_first_index == NULL) return 0;
270 
271   // Set the int32_t array to -1.
272   memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
273   // Fill the chain linking pixels with the same hash.
274   argb_comp = (argb[0] == argb[1]);
275   for (pos = 0; pos < size - 2;) {
276     uint32_t hash_code;
277     const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
278     if (argb_comp && argb_comp_next) {
279       // Consecutive pixels with the same color will share the same hash.
280       // We therefore use a different hash: the color and its repetition
281       // length.
282       uint32_t tmp[2];
283       uint32_t len = 1;
284       tmp[0] = argb[pos];
285       // Figure out how far the pixels are the same.
286       // The last pixel has a different 64 bit hash, as its next pixel does
287       // not have the same color, so we just need to get to the last pixel equal
288       // to its follower.
289       while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
290         ++len;
291       }
292       if (len > MAX_LENGTH) {
293         // Skip the pixels that match for distance=1 and length>MAX_LENGTH
294         // because they are linked to their predecessor and we automatically
295         // check that in the main for loop below. Skipping means setting no
296         // predecessor in the chain, hence -1.
297         memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
298         pos += len - MAX_LENGTH;
299         len = MAX_LENGTH;
300       }
301       // Process the rest of the hash chain.
302       while (len) {
303         tmp[1] = len--;
304         hash_code = GetPixPairHash64(tmp);
305         chain[pos] = hash_to_first_index[hash_code];
306         hash_to_first_index[hash_code] = pos++;
307       }
308       argb_comp = 0;
309     } else {
310       // Just move one pixel forward.
311       hash_code = GetPixPairHash64(argb + pos);
312       chain[pos] = hash_to_first_index[hash_code];
313       hash_to_first_index[hash_code] = pos++;
314       argb_comp = argb_comp_next;
315     }
316   }
317   // Process the penultimate pixel.
318   chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
319 
320   WebPSafeFree(hash_to_first_index);
321 
322   // Find the best match interval at each pixel, defined by an offset to the
323   // pixel and a length. The right-most pixel cannot match anything to the right
324   // (hence a best length of 0) and the left-most pixel nothing to the left
325   // (hence an offset of 0).
326   assert(size > 2);
327   p->offset_length_[0] = p->offset_length_[size - 1] = 0;
328   for (base_position = size - 2; base_position > 0;) {
329     const int max_len = MaxFindCopyLength(size - 1 - base_position);
330     const uint32_t* const argb_start = argb + base_position;
331     int iter = iter_max;
332     int best_length = 0;
333     uint32_t best_distance = 0;
334     uint32_t best_argb;
335     const int min_pos =
336         (base_position > window_size) ? base_position - window_size : 0;
337     const int length_max = (max_len < 256) ? max_len : 256;
338     uint32_t max_base_position;
339 
340     pos = chain[base_position];
341     if (!low_effort) {
342       int curr_length;
343       // Heuristic: use the comparison with the above line as an initialization.
344       if (base_position >= (uint32_t)xsize) {
345         curr_length = FindMatchLength(argb_start - xsize, argb_start,
346                                       best_length, max_len);
347         if (curr_length > best_length) {
348           best_length = curr_length;
349           best_distance = xsize;
350         }
351         --iter;
352       }
353       // Heuristic: compare to the previous pixel.
354       curr_length =
355           FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
356       if (curr_length > best_length) {
357         best_length = curr_length;
358         best_distance = 1;
359       }
360       --iter;
361       // Skip the for loop if we already have the maximum.
362       if (best_length == MAX_LENGTH) pos = min_pos - 1;
363     }
364     best_argb = argb_start[best_length];
365 
366     for (; pos >= min_pos && --iter; pos = chain[pos]) {
367       int curr_length;
368       assert(base_position > (uint32_t)pos);
369 
370       if (argb[pos + best_length] != best_argb) continue;
371 
372       curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
373       if (best_length < curr_length) {
374         best_length = curr_length;
375         best_distance = base_position - pos;
376         best_argb = argb_start[best_length];
377         // Stop if we have reached a good enough length.
378         if (best_length >= length_max) break;
379       }
380     }
381     // We have the best match but in case the two intervals continue matching
382     // to the left, we have the best matches for the left-extended pixels.
383     max_base_position = base_position;
384     while (1) {
385       assert(best_length <= MAX_LENGTH);
386       assert(best_distance <= WINDOW_SIZE);
387       p->offset_length_[base_position] =
388           (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
389       --base_position;
390       // Stop if we don't have a match or if we are out of bounds.
391       if (best_distance == 0 || base_position == 0) break;
392       // Stop if we cannot extend the matching intervals to the left.
393       if (base_position < best_distance ||
394           argb[base_position - best_distance] != argb[base_position]) {
395         break;
396       }
397       // Stop if we are matching at its limit because there could be a closer
398       // matching interval with the same maximum length. Then again, if the
399       // matching interval is as close as possible (best_distance == 1), we will
400       // never find anything better so let's continue.
401       if (best_length == MAX_LENGTH && best_distance != 1 &&
402           base_position + MAX_LENGTH < max_base_position) {
403         break;
404       }
405       if (best_length < MAX_LENGTH) {
406         ++best_length;
407         max_base_position = base_position;
408       }
409     }
410   }
411   return 1;
412 }
413 
HashChainFindOffset(const VP8LHashChain * const p,const int base_position)414 static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p,
415                                            const int base_position) {
416   return p->offset_length_[base_position] >> MAX_LENGTH_BITS;
417 }
418 
HashChainFindLength(const VP8LHashChain * const p,const int base_position)419 static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p,
420                                            const int base_position) {
421   return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1);
422 }
423 
HashChainFindCopy(const VP8LHashChain * const p,int base_position,int * const offset_ptr,int * const length_ptr)424 static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p,
425                                           int base_position,
426                                           int* const offset_ptr,
427                                           int* const length_ptr) {
428   *offset_ptr = HashChainFindOffset(p, base_position);
429   *length_ptr = HashChainFindLength(p, base_position);
430 }
431 
AddSingleLiteral(uint32_t pixel,int use_color_cache,VP8LColorCache * const hashers,VP8LBackwardRefs * const refs)432 static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
433                                          VP8LColorCache* const hashers,
434                                          VP8LBackwardRefs* const refs) {
435   PixOrCopy v;
436   if (use_color_cache) {
437     const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
438     if (VP8LColorCacheLookup(hashers, key) == pixel) {
439       v = PixOrCopyCreateCacheIdx(key);
440     } else {
441       v = PixOrCopyCreateLiteral(pixel);
442       VP8LColorCacheSet(hashers, key, pixel);
443     }
444   } else {
445     v = PixOrCopyCreateLiteral(pixel);
446   }
447   BackwardRefsCursorAdd(refs, v);
448 }
449 
BackwardReferencesRle(int xsize,int ysize,const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)450 static int BackwardReferencesRle(int xsize, int ysize,
451                                  const uint32_t* const argb,
452                                  int cache_bits, VP8LBackwardRefs* const refs) {
453   const int pix_count = xsize * ysize;
454   int i, k;
455   const int use_color_cache = (cache_bits > 0);
456   VP8LColorCache hashers;
457 
458   if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
459     return 0;
460   }
461   ClearBackwardRefs(refs);
462   // Add first pixel as literal.
463   AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
464   i = 1;
465   while (i < pix_count) {
466     const int max_len = MaxFindCopyLength(pix_count - i);
467     const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
468     const int prev_row_len = (i < xsize) ? 0 :
469         FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
470     if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
471       BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
472       // We don't need to update the color cache here since it is always the
473       // same pixel being copied, and that does not change the color cache
474       // state.
475       i += rle_len;
476     } else if (prev_row_len >= MIN_LENGTH) {
477       BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
478       if (use_color_cache) {
479         for (k = 0; k < prev_row_len; ++k) {
480           VP8LColorCacheInsert(&hashers, argb[i + k]);
481         }
482       }
483       i += prev_row_len;
484     } else {
485       AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
486       i++;
487     }
488   }
489   if (use_color_cache) VP8LColorCacheClear(&hashers);
490   return !refs->error_;
491 }
492 
BackwardReferencesLz77(int xsize,int ysize,const uint32_t * const argb,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)493 static int BackwardReferencesLz77(int xsize, int ysize,
494                                   const uint32_t* const argb, int cache_bits,
495                                   const VP8LHashChain* const hash_chain,
496                                   VP8LBackwardRefs* const refs) {
497   int i;
498   int i_last_check = -1;
499   int ok = 0;
500   int cc_init = 0;
501   const int use_color_cache = (cache_bits > 0);
502   const int pix_count = xsize * ysize;
503   VP8LColorCache hashers;
504 
505   if (use_color_cache) {
506     cc_init = VP8LColorCacheInit(&hashers, cache_bits);
507     if (!cc_init) goto Error;
508   }
509   ClearBackwardRefs(refs);
510   for (i = 0; i < pix_count;) {
511     // Alternative#1: Code the pixels starting at 'i' using backward reference.
512     int offset = 0;
513     int len = 0;
514     int j;
515     HashChainFindCopy(hash_chain, i, &offset, &len);
516     if (len >= MIN_LENGTH) {
517       const int len_ini = len;
518       int max_reach = 0;
519       assert(i + len < pix_count);
520       // Only start from what we have not checked already.
521       i_last_check = (i > i_last_check) ? i : i_last_check;
522       // We know the best match for the current pixel but we try to find the
523       // best matches for the current pixel AND the next one combined.
524       // The naive method would use the intervals:
525       // [i,i+len) + [i+len, length of best match at i+len)
526       // while we check if we can use:
527       // [i,j) (where j<=i+len) + [j, length of best match at j)
528       for (j = i_last_check + 1; j <= i + len_ini; ++j) {
529         const int len_j = HashChainFindLength(hash_chain, j);
530         const int reach =
531             j + (len_j >= MIN_LENGTH ? len_j : 1);  // 1 for single literal.
532         if (reach > max_reach) {
533           len = j - i;
534           max_reach = reach;
535         }
536       }
537     } else {
538       len = 1;
539     }
540     // Go with literal or backward reference.
541     assert(len > 0);
542     if (len == 1) {
543       AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
544     } else {
545       BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
546       if (use_color_cache) {
547         for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
548       }
549     }
550     i += len;
551   }
552 
553   ok = !refs->error_;
554  Error:
555   if (cc_init) VP8LColorCacheClear(&hashers);
556   return ok;
557 }
558 
559 // -----------------------------------------------------------------------------
560 
561 typedef struct {
562   double alpha_[VALUES_IN_BYTE];
563   double red_[VALUES_IN_BYTE];
564   double blue_[VALUES_IN_BYTE];
565   double distance_[NUM_DISTANCE_CODES];
566   double* literal_;
567 } CostModel;
568 
569 static int BackwardReferencesTraceBackwards(
570     int xsize, int ysize, const uint32_t* const argb, int quality,
571     int cache_bits, const VP8LHashChain* const hash_chain,
572     VP8LBackwardRefs* const refs);
573 
ConvertPopulationCountTableToBitEstimates(int num_symbols,const uint32_t population_counts[],double output[])574 static void ConvertPopulationCountTableToBitEstimates(
575     int num_symbols, const uint32_t population_counts[], double output[]) {
576   uint32_t sum = 0;
577   int nonzeros = 0;
578   int i;
579   for (i = 0; i < num_symbols; ++i) {
580     sum += population_counts[i];
581     if (population_counts[i] > 0) {
582       ++nonzeros;
583     }
584   }
585   if (nonzeros <= 1) {
586     memset(output, 0, num_symbols * sizeof(*output));
587   } else {
588     const double logsum = VP8LFastLog2(sum);
589     for (i = 0; i < num_symbols; ++i) {
590       output[i] = logsum - VP8LFastLog2(population_counts[i]);
591     }
592   }
593 }
594 
CostModelBuild(CostModel * const m,int cache_bits,VP8LBackwardRefs * const refs)595 static int CostModelBuild(CostModel* const m, int cache_bits,
596                           VP8LBackwardRefs* const refs) {
597   int ok = 0;
598   VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
599   if (histo == NULL) goto Error;
600 
601   VP8LHistogramCreate(histo, refs, cache_bits);
602 
603   ConvertPopulationCountTableToBitEstimates(
604       VP8LHistogramNumCodes(histo->palette_code_bits_),
605       histo->literal_, m->literal_);
606   ConvertPopulationCountTableToBitEstimates(
607       VALUES_IN_BYTE, histo->red_, m->red_);
608   ConvertPopulationCountTableToBitEstimates(
609       VALUES_IN_BYTE, histo->blue_, m->blue_);
610   ConvertPopulationCountTableToBitEstimates(
611       VALUES_IN_BYTE, histo->alpha_, m->alpha_);
612   ConvertPopulationCountTableToBitEstimates(
613       NUM_DISTANCE_CODES, histo->distance_, m->distance_);
614   ok = 1;
615 
616  Error:
617   VP8LFreeHistogram(histo);
618   return ok;
619 }
620 
GetLiteralCost(const CostModel * const m,uint32_t v)621 static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
622   return m->alpha_[v >> 24] +
623          m->red_[(v >> 16) & 0xff] +
624          m->literal_[(v >> 8) & 0xff] +
625          m->blue_[v & 0xff];
626 }
627 
GetCacheCost(const CostModel * const m,uint32_t idx)628 static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
629   const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
630   return m->literal_[literal_idx];
631 }
632 
GetLengthCost(const CostModel * const m,uint32_t length)633 static WEBP_INLINE double GetLengthCost(const CostModel* const m,
634                                         uint32_t length) {
635   int code, extra_bits;
636   VP8LPrefixEncodeBits(length, &code, &extra_bits);
637   return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
638 }
639 
GetDistanceCost(const CostModel * const m,uint32_t distance)640 static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
641                                           uint32_t distance) {
642   int code, extra_bits;
643   VP8LPrefixEncodeBits(distance, &code, &extra_bits);
644   return m->distance_[code] + extra_bits;
645 }
646 
AddSingleLiteralWithCostModel(const uint32_t * const argb,VP8LColorCache * const hashers,const CostModel * const cost_model,int idx,int use_color_cache,double prev_cost,float * const cost,uint16_t * const dist_array)647 static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
648                                           VP8LColorCache* const hashers,
649                                           const CostModel* const cost_model,
650                                           int idx, int use_color_cache,
651                                           double prev_cost, float* const cost,
652                                           uint16_t* const dist_array) {
653   double cost_val = prev_cost;
654   const uint32_t color = argb[0];
655   const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1;
656   if (ix >= 0) {
657     // use_color_cache is true and hashers contains color
658     const double mul0 = 0.68;
659     cost_val += GetCacheCost(cost_model, ix) * mul0;
660   } else {
661     const double mul1 = 0.82;
662     if (use_color_cache) VP8LColorCacheInsert(hashers, color);
663     cost_val += GetLiteralCost(cost_model, color) * mul1;
664   }
665   if (cost[idx] > cost_val) {
666     cost[idx] = (float)cost_val;
667     dist_array[idx] = 1;  // only one is inserted.
668   }
669 }
670 
671 // -----------------------------------------------------------------------------
672 // CostManager and interval handling
673 
674 // Empirical value to avoid high memory consumption but good for performance.
675 #define COST_CACHE_INTERVAL_SIZE_MAX 100
676 
677 // To perform backward reference every pixel at index index_ is considered and
678 // the cost for the MAX_LENGTH following pixels computed. Those following pixels
679 // at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
680 //     distance_cost_ at index_ + GetLengthCost(cost_model, k)
681 //            (named cost)            (named cached cost)
682 // and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
683 // array of size MAX_LENGTH.
684 // Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
685 // minimal values using intervals, for which lower_ and upper_ bounds are kept.
686 // An interval is defined by the index_ of the pixel that generated it and
687 // is only useful in a range of indices from start_ to end_ (exclusive), i.e.
688 // it contains the minimum value for pixels between start_ and end_.
689 // Intervals are stored in a linked list and ordered by start_. When a new
690 // interval has a better minimum, old intervals are split or removed.
691 typedef struct CostInterval CostInterval;
692 struct CostInterval {
693   double lower_;
694   double upper_;
695   int start_;
696   int end_;
697   double distance_cost_;
698   int index_;
699   CostInterval* previous_;
700   CostInterval* next_;
701 };
702 
703 // The GetLengthCost(cost_model, k) part of the costs is also bounded for
704 // efficiency in a set of intervals of a different type.
705 // If those intervals are small enough, they are not used for comparison and
706 // written into the costs right away.
707 typedef struct {
708   double lower_;  // Lower bound of the interval.
709   double upper_;  // Upper bound of the interval.
710   int start_;
711   int end_;       // Exclusive.
712   int do_write_;  // If !=0, the interval is saved to cost instead of being kept
713                   // for comparison.
714 } CostCacheInterval;
715 
716 // This structure is in charge of managing intervals and costs.
717 // It caches the different CostCacheInterval, caches the different
718 // GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose
719 // count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX).
720 #define COST_MANAGER_MAX_FREE_LIST 10
721 typedef struct {
722   CostInterval* head_;
723   int count_;  // The number of stored intervals.
724   CostCacheInterval* cache_intervals_;
725   size_t cache_intervals_size_;
726   double cost_cache_[MAX_LENGTH];  // Contains the GetLengthCost(cost_model, k).
727   double min_cost_cache_;          // The minimum value in cost_cache_[1:].
728   double max_cost_cache_;          // The maximum value in cost_cache_[1:].
729   float* costs_;
730   uint16_t* dist_array_;
731   // Most of the time, we only need few intervals -> use a free-list, to avoid
732   // fragmentation with small allocs in most common cases.
733   CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST];
734   CostInterval* free_intervals_;
735   // These are regularly malloc'd remains. This list can't grow larger than than
736   // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
737   CostInterval* recycled_intervals_;
738   // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
739   // of the intervals that can have impacted the cost at a pixel.
740   int* interval_ends_;
741   int interval_ends_size_;
742 } CostManager;
743 
IsCostCacheIntervalWritable(int start,int end)744 static int IsCostCacheIntervalWritable(int start, int end) {
745   // 100 is the length for which we consider an interval for comparison, and not
746   // for writing.
747   // The first intervals are very small and go in increasing size. This constant
748   // helps merging them into one big interval (up to index 150/200 usually from
749   // which intervals start getting much bigger).
750   // This value is empirical.
751   return (end - start + 1 < 100);
752 }
753 
CostIntervalAddToFreeList(CostManager * const manager,CostInterval * const interval)754 static void CostIntervalAddToFreeList(CostManager* const manager,
755                                       CostInterval* const interval) {
756   interval->next_ = manager->free_intervals_;
757   manager->free_intervals_ = interval;
758 }
759 
CostIntervalIsInFreeList(const CostManager * const manager,const CostInterval * const interval)760 static int CostIntervalIsInFreeList(const CostManager* const manager,
761                                     const CostInterval* const interval) {
762   return (interval >= &manager->intervals_[0] &&
763           interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]);
764 }
765 
CostManagerInitFreeList(CostManager * const manager)766 static void CostManagerInitFreeList(CostManager* const manager) {
767   int i;
768   manager->free_intervals_ = NULL;
769   for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) {
770     CostIntervalAddToFreeList(manager, &manager->intervals_[i]);
771   }
772 }
773 
DeleteIntervalList(CostManager * const manager,const CostInterval * interval)774 static void DeleteIntervalList(CostManager* const manager,
775                                const CostInterval* interval) {
776   while (interval != NULL) {
777     const CostInterval* const next = interval->next_;
778     if (!CostIntervalIsInFreeList(manager, interval)) {
779       WebPSafeFree((void*)interval);
780     }  // else: do nothing
781     interval = next;
782   }
783 }
784 
CostManagerClear(CostManager * const manager)785 static void CostManagerClear(CostManager* const manager) {
786   if (manager == NULL) return;
787 
788   WebPSafeFree(manager->costs_);
789   WebPSafeFree(manager->cache_intervals_);
790   WebPSafeFree(manager->interval_ends_);
791 
792   // Clear the interval lists.
793   DeleteIntervalList(manager, manager->head_);
794   manager->head_ = NULL;
795   DeleteIntervalList(manager, manager->recycled_intervals_);
796   manager->recycled_intervals_ = NULL;
797 
798   // Reset pointers, count_ and cache_intervals_size_.
799   memset(manager, 0, sizeof(*manager));
800   CostManagerInitFreeList(manager);
801 }
802 
CostManagerInit(CostManager * const manager,uint16_t * const dist_array,int pix_count,const CostModel * const cost_model)803 static int CostManagerInit(CostManager* const manager,
804                            uint16_t* const dist_array, int pix_count,
805                            const CostModel* const cost_model) {
806   int i;
807   const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
808   // This constant is tied to the cost_model we use.
809   // Empirically, differences between intervals is usually of more than 1.
810   const double min_cost_diff = 0.1;
811 
812   manager->costs_ = NULL;
813   manager->cache_intervals_ = NULL;
814   manager->interval_ends_ = NULL;
815   manager->head_ = NULL;
816   manager->recycled_intervals_ = NULL;
817   manager->count_ = 0;
818   manager->dist_array_ = dist_array;
819   CostManagerInitFreeList(manager);
820 
821   // Fill in the cost_cache_.
822   manager->cache_intervals_size_ = 1;
823   manager->cost_cache_[0] = 0;
824   for (i = 1; i < cost_cache_size; ++i) {
825     manager->cost_cache_[i] = GetLengthCost(cost_model, i);
826     // Get an approximation of the number of bound intervals.
827     if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) >
828         min_cost_diff) {
829       ++manager->cache_intervals_size_;
830     }
831     // Compute the minimum of cost_cache_.
832     if (i == 1) {
833       manager->min_cost_cache_ = manager->cost_cache_[1];
834       manager->max_cost_cache_ = manager->cost_cache_[1];
835     } else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
836       manager->min_cost_cache_ = manager->cost_cache_[i];
837     } else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
838       manager->max_cost_cache_ = manager->cost_cache_[i];
839     }
840   }
841 
842   // With the current cost models, we have 15 intervals, so we are safe by
843   // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX.
844   if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) {
845     manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX;
846   }
847   manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
848       manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
849   if (manager->cache_intervals_ == NULL) {
850     CostManagerClear(manager);
851     return 0;
852   }
853 
854   // Fill in the cache_intervals_.
855   {
856     double cost_prev = -1e38f;  // unprobably low initial value
857     CostCacheInterval* prev = NULL;
858     CostCacheInterval* cur = manager->cache_intervals_;
859     const CostCacheInterval* const end =
860         manager->cache_intervals_ + manager->cache_intervals_size_;
861 
862     // Consecutive values in cost_cache_ are compared and if a big enough
863     // difference is found, a new interval is created and bounded.
864     for (i = 0; i < cost_cache_size; ++i) {
865       const double cost_val = manager->cost_cache_[i];
866       if (i == 0 ||
867           (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) {
868         if (i > 1) {
869           const int is_writable =
870               IsCostCacheIntervalWritable(cur->start_, cur->end_);
871           // Merge with the previous interval if both are writable.
872           if (is_writable && cur != manager->cache_intervals_ &&
873               prev->do_write_) {
874             // Update the previous interval.
875             prev->end_ = cur->end_;
876             if (cur->lower_ < prev->lower_) {
877               prev->lower_ = cur->lower_;
878             } else if (cur->upper_ > prev->upper_) {
879               prev->upper_ = cur->upper_;
880             }
881           } else {
882             cur->do_write_ = is_writable;
883             prev = cur;
884             ++cur;
885           }
886         }
887         // Initialize an interval.
888         cur->start_ = i;
889         cur->do_write_ = 0;
890         cur->lower_ = cost_val;
891         cur->upper_ = cost_val;
892       } else {
893         // Update the current interval bounds.
894         if (cost_val < cur->lower_) {
895           cur->lower_ = cost_val;
896         } else if (cost_val > cur->upper_) {
897           cur->upper_ = cost_val;
898         }
899       }
900       cur->end_ = i + 1;
901       cost_prev = cost_val;
902     }
903     manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
904   }
905 
906   manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_));
907   if (manager->costs_ == NULL) {
908     CostManagerClear(manager);
909     return 0;
910   }
911   // Set the initial costs_ high for every pixel as we will keep the minimum.
912   for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;
913 
914   // The cost at pixel is influenced by the cost intervals from previous pixels.
915   // Let us take the specific case where the offset is the same (which actually
916   // happens a lot in case of uniform regions).
917   // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
918   // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
919   // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
920   // and so on.
921   // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
922   // the value of j such that pixel i + j cannot influence any of those pixels?
923   // This value is such that:
924   //               max of cost_cache_ < j*offset cost + min of cost_cache_
925   // (pixel i + j 's cost cannot beat the worst cost given by pixel i).
926   // This value will be used to optimize the cost computation in
927   // BackwardReferencesHashChainDistanceOnly.
928   {
929     // The offset cost is computed in GetDistanceCost and has a minimum value of
930     // the minimum in cost_model->distance_. The case where the offset cost is 0
931     // will be dealt with differently later so we are only interested in the
932     // minimum non-zero offset cost.
933     double offset_cost_min = 0.;
934     int size;
935     for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
936       if (cost_model->distance_[i] != 0) {
937         if (offset_cost_min == 0.) {
938           offset_cost_min = cost_model->distance_[i];
939         } else if (cost_model->distance_[i] < offset_cost_min) {
940           offset_cost_min = cost_model->distance_[i];
941         }
942       }
943     }
944     // In case all the cost_model->distance_ is 0, the next non-zero cost we
945     // can have is from the extra bit in GetDistanceCost, hence 1.
946     if (offset_cost_min < 1.) offset_cost_min = 1.;
947 
948     size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
949                          offset_cost_min);
950     // Empirically, we usually end up with a value below 100.
951     if (size > MAX_LENGTH) size = MAX_LENGTH;
952 
953     manager->interval_ends_ =
954         (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
955     if (manager->interval_ends_ == NULL) {
956       CostManagerClear(manager);
957       return 0;
958     }
959     manager->interval_ends_size_ = size;
960   }
961 
962   return 1;
963 }
964 
965 // Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it
966 // is smaller than the previously computed value.
UpdateCost(CostManager * const manager,int i,int index,double distance_cost)967 static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
968                                    double distance_cost) {
969   int k = i - index;
970   double cost_tmp;
971   assert(k >= 0 && k < MAX_LENGTH);
972   cost_tmp = distance_cost + manager->cost_cache_[k];
973 
974   if (manager->costs_[i] > cost_tmp) {
975     manager->costs_[i] = (float)cost_tmp;
976     manager->dist_array_[i] = k + 1;
977   }
978 }
979 
980 // Given the distance_cost for pixel 'index', update the cost for all the pixels
981 // between 'start' and 'end' excluded.
UpdateCostPerInterval(CostManager * const manager,int start,int end,int index,double distance_cost)982 static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
983                                               int start, int end, int index,
984                                               double distance_cost) {
985   int i;
986   for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost);
987 }
988 
989 // Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
ConnectIntervals(CostManager * const manager,CostInterval * const prev,CostInterval * const next)990 static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
991                                          CostInterval* const prev,
992                                          CostInterval* const next) {
993   if (prev != NULL) {
994     prev->next_ = next;
995   } else {
996     manager->head_ = next;
997   }
998 
999   if (next != NULL) next->previous_ = prev;
1000 }
1001 
1002 // Pop an interval in the manager.
PopInterval(CostManager * const manager,CostInterval * const interval)1003 static WEBP_INLINE void PopInterval(CostManager* const manager,
1004                                     CostInterval* const interval) {
1005   CostInterval* const next = interval->next_;
1006 
1007   if (interval == NULL) return;
1008 
1009   ConnectIntervals(manager, interval->previous_, next);
1010   if (CostIntervalIsInFreeList(manager, interval)) {
1011     CostIntervalAddToFreeList(manager, interval);
1012   } else {  // recycle regularly malloc'd intervals too
1013     interval->next_ = manager->recycled_intervals_;
1014     manager->recycled_intervals_ = interval;
1015   }
1016   --manager->count_;
1017   assert(manager->count_ >= 0);
1018 }
1019 
1020 // Update the cost at index i by going over all the stored intervals that
1021 // overlap with i.
UpdateCostPerIndex(CostManager * const manager,int i)1022 static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) {
1023   CostInterval* current = manager->head_;
1024 
1025   while (current != NULL && current->start_ <= i) {
1026     if (current->end_ <= i) {
1027       // We have an outdated interval, remove it.
1028       CostInterval* next = current->next_;
1029       PopInterval(manager, current);
1030       current = next;
1031     } else {
1032       UpdateCost(manager, i, current->index_, current->distance_cost_);
1033       current = current->next_;
1034     }
1035   }
1036 }
1037 
1038 // Given a current orphan interval and its previous interval, before
1039 // it was orphaned (which can be NULL), set it at the right place in the list
1040 // of intervals using the start_ ordering and the previous interval as a hint.
PositionOrphanInterval(CostManager * const manager,CostInterval * const current,CostInterval * previous)1041 static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
1042                                                CostInterval* const current,
1043                                                CostInterval* previous) {
1044   assert(current != NULL);
1045 
1046   if (previous == NULL) previous = manager->head_;
1047   while (previous != NULL && current->start_ < previous->start_) {
1048     previous = previous->previous_;
1049   }
1050   while (previous != NULL && previous->next_ != NULL &&
1051          previous->next_->start_ < current->start_) {
1052     previous = previous->next_;
1053   }
1054 
1055   if (previous != NULL) {
1056     ConnectIntervals(manager, current, previous->next_);
1057   } else {
1058     ConnectIntervals(manager, current, manager->head_);
1059   }
1060   ConnectIntervals(manager, previous, current);
1061 }
1062 
1063 // Insert an interval in the list contained in the manager by starting at
1064 // interval_in as a hint. The intervals are sorted by start_ value.
InsertInterval(CostManager * const manager,CostInterval * const interval_in,double distance_cost,double lower,double upper,int index,int start,int end)1065 static WEBP_INLINE void InsertInterval(CostManager* const manager,
1066                                        CostInterval* const interval_in,
1067                                        double distance_cost, double lower,
1068                                        double upper, int index, int start,
1069                                        int end) {
1070   CostInterval* interval_new;
1071 
1072   if (IsCostCacheIntervalWritable(start, end) ||
1073       manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
1074     // Write down the interval if it is too small.
1075     UpdateCostPerInterval(manager, start, end, index, distance_cost);
1076     return;
1077   }
1078   if (manager->free_intervals_ != NULL) {
1079     interval_new = manager->free_intervals_;
1080     manager->free_intervals_ = interval_new->next_;
1081   } else if (manager->recycled_intervals_ != NULL) {
1082     interval_new = manager->recycled_intervals_;
1083     manager->recycled_intervals_ = interval_new->next_;
1084   } else {   // malloc for good
1085     interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
1086     if (interval_new == NULL) {
1087       // Write down the interval if we cannot create it.
1088       UpdateCostPerInterval(manager, start, end, index, distance_cost);
1089       return;
1090     }
1091   }
1092 
1093   interval_new->distance_cost_ = distance_cost;
1094   interval_new->lower_ = lower;
1095   interval_new->upper_ = upper;
1096   interval_new->index_ = index;
1097   interval_new->start_ = start;
1098   interval_new->end_ = end;
1099   PositionOrphanInterval(manager, interval_new, interval_in);
1100 
1101   ++manager->count_;
1102 }
1103 
1104 // When an interval has its start_ or end_ modified, it needs to be
1105 // repositioned in the linked list.
RepositionInterval(CostManager * const manager,CostInterval * const interval)1106 static WEBP_INLINE void RepositionInterval(CostManager* const manager,
1107                                            CostInterval* const interval) {
1108   if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
1109     // Maybe interval has been resized and is small enough to be removed.
1110     UpdateCostPerInterval(manager, interval->start_, interval->end_,
1111                           interval->index_, interval->distance_cost_);
1112     PopInterval(manager, interval);
1113     return;
1114   }
1115 
1116   // Early exit if interval is at the right spot.
1117   if ((interval->previous_ == NULL ||
1118        interval->previous_->start_ <= interval->start_) &&
1119       (interval->next_ == NULL ||
1120        interval->start_ <= interval->next_->start_)) {
1121     return;
1122   }
1123 
1124   ConnectIntervals(manager, interval->previous_, interval->next_);
1125   PositionOrphanInterval(manager, interval, interval->previous_);
1126 }
1127 
1128 // Given a new cost interval defined by its start at index, its last value and
1129 // distance_cost, add its contributions to the previous intervals and costs.
1130 // If handling the interval or one of its subintervals becomes to heavy, its
1131 // contribution is added to the costs right away.
PushInterval(CostManager * const manager,double distance_cost,int index,int last)1132 static WEBP_INLINE void PushInterval(CostManager* const manager,
1133                                      double distance_cost, int index,
1134                                      int last) {
1135   size_t i;
1136   CostInterval* interval = manager->head_;
1137   CostInterval* interval_next;
1138   const CostCacheInterval* const cost_cache_intervals =
1139       manager->cache_intervals_;
1140 
1141   for (i = 0; i < manager->cache_intervals_size_ &&
1142               cost_cache_intervals[i].start_ < last;
1143        ++i) {
1144     // Define the intersection of the ith interval with the new one.
1145     int start = index + cost_cache_intervals[i].start_;
1146     const int end = index + (cost_cache_intervals[i].end_ > last
1147                                  ? last
1148                                  : cost_cache_intervals[i].end_);
1149     const double lower_in = cost_cache_intervals[i].lower_;
1150     const double upper_in = cost_cache_intervals[i].upper_;
1151     const double lower_full_in = distance_cost + lower_in;
1152     const double upper_full_in = distance_cost + upper_in;
1153 
1154     if (cost_cache_intervals[i].do_write_) {
1155       UpdateCostPerInterval(manager, start, end, index, distance_cost);
1156       continue;
1157     }
1158 
1159     for (; interval != NULL && interval->start_ < end && start < end;
1160          interval = interval_next) {
1161       const double lower_full_interval =
1162           interval->distance_cost_ + interval->lower_;
1163       const double upper_full_interval =
1164           interval->distance_cost_ + interval->upper_;
1165 
1166       interval_next = interval->next_;
1167 
1168       // Make sure we have some overlap
1169       if (start >= interval->end_) continue;
1170 
1171       if (lower_full_in >= upper_full_interval) {
1172         // When intervals are represented, the lower, the better.
1173         // [**********************************************************]
1174         // start                                                    end
1175         //                   [----------------------------------]
1176         //                   interval->start_       interval->end_
1177         // If we are worse than what we already have, add whatever we have so
1178         // far up to interval.
1179         const int start_new = interval->end_;
1180         InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
1181                        index, start, interval->start_);
1182         start = start_new;
1183         continue;
1184       }
1185 
1186       // We know the two intervals intersect.
1187       if (upper_full_in >= lower_full_interval) {
1188         // There is no clear cut on which is best, so let's keep both.
1189         // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********]
1190         // start     interval->start_     interval->end_         end
1191         // OR
1192         // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------]
1193         // start     interval->start_     end          interval->end_
1194         const int end_new = (interval->end_ <= end) ? interval->end_ : end;
1195         InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
1196                        index, start, end_new);
1197         start = end_new;
1198       } else if (start <= interval->start_ && interval->end_ <= end) {
1199         //                   [----------------------------------]
1200         //                   interval->start_       interval->end_
1201         // [**************************************************************]
1202         // start                                                        end
1203         // We can safely remove the old interval as it is fully included.
1204         PopInterval(manager, interval);
1205       } else {
1206         if (interval->start_ <= start && end <= interval->end_) {
1207           // [--------------------------------------------------------------]
1208           // interval->start_                                  interval->end_
1209           //                     [*****************************]
1210           //                     start                       end
1211           // We have to split the old interval as it fully contains the new one.
1212           const int end_original = interval->end_;
1213           interval->end_ = start;
1214           InsertInterval(manager, interval, interval->distance_cost_,
1215                          interval->lower_, interval->upper_, interval->index_,
1216                          end, end_original);
1217         } else if (interval->start_ < start) {
1218           // [------------------------------------]
1219           // interval->start_        interval->end_
1220           //                     [*****************************]
1221           //                     start                       end
1222           interval->end_ = start;
1223         } else {
1224           //              [------------------------------------]
1225           //              interval->start_        interval->end_
1226           // [*****************************]
1227           // start                       end
1228           interval->start_ = end;
1229         }
1230 
1231         // The interval has been modified, we need to reposition it or write it.
1232         RepositionInterval(manager, interval);
1233       }
1234     }
1235     // Insert the remaining interval from start to end.
1236     InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index,
1237                    start, end);
1238   }
1239 }
1240 
BackwardReferencesHashChainDistanceOnly(int xsize,int ysize,const uint32_t * const argb,int quality,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,uint16_t * const dist_array)1241 static int BackwardReferencesHashChainDistanceOnly(
1242     int xsize, int ysize, const uint32_t* const argb, int quality,
1243     int cache_bits, const VP8LHashChain* const hash_chain,
1244     VP8LBackwardRefs* const refs, uint16_t* const dist_array) {
1245   int i;
1246   int ok = 0;
1247   int cc_init = 0;
1248   const int pix_count = xsize * ysize;
1249   const int use_color_cache = (cache_bits > 0);
1250   const size_t literal_array_size = sizeof(double) *
1251       (NUM_LITERAL_CODES + NUM_LENGTH_CODES +
1252        ((cache_bits > 0) ? (1 << cache_bits) : 0));
1253   const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
1254   CostModel* const cost_model =
1255       (CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
1256   VP8LColorCache hashers;
1257   const int skip_length = 32 + quality;
1258   const int skip_min_distance_code = 2;
1259   CostManager* cost_manager =
1260       (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));
1261 
1262   if (cost_model == NULL || cost_manager == NULL) goto Error;
1263 
1264   cost_model->literal_ = (double*)(cost_model + 1);
1265   if (use_color_cache) {
1266     cc_init = VP8LColorCacheInit(&hashers, cache_bits);
1267     if (!cc_init) goto Error;
1268   }
1269 
1270   if (!CostModelBuild(cost_model, cache_bits, refs)) {
1271     goto Error;
1272   }
1273 
1274   if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) {
1275     goto Error;
1276   }
1277 
1278   // We loop one pixel at a time, but store all currently best points to
1279   // non-processed locations from this point.
1280   dist_array[0] = 0;
1281   // Add first pixel as literal.
1282   AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
1283                                 use_color_cache, 0.0, cost_manager->costs_,
1284                                 dist_array);
1285 
1286   for (i = 1; i < pix_count - 1; ++i) {
1287     int offset = 0, len = 0;
1288     double prev_cost = cost_manager->costs_[i - 1];
1289     HashChainFindCopy(hash_chain, i, &offset, &len);
1290     if (len >= 2) {
1291       // If we are dealing with a non-literal.
1292       const int code = DistanceToPlaneCode(xsize, offset);
1293       const double offset_cost = GetDistanceCost(cost_model, code);
1294       const int first_i = i;
1295       int j_max = 0, interval_ends_index = 0;
1296       const int is_offset_zero = (offset_cost == 0.);
1297 
1298       if (!is_offset_zero) {
1299         j_max = (int)ceil(
1300             (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
1301             offset_cost);
1302         if (j_max < 1) {
1303           j_max = 1;
1304         } else if (j_max > cost_manager->interval_ends_size_ - 1) {
1305           // This could only happen in the case of MAX_LENGTH.
1306           j_max = cost_manager->interval_ends_size_ - 1;
1307         }
1308       }  // else j_max is unused anyway.
1309 
1310       // Instead of considering all contributions from a pixel i by calling:
1311       //         PushInterval(cost_manager, prev_cost + offset_cost, i, len);
1312       // we optimize these contributions in case offset_cost stays the same for
1313       // consecutive pixels. This describes a set of pixels similar to a
1314       // previous set (e.g. constant color regions).
1315       for (; i < pix_count - 1; ++i) {
1316         int offset_next, len_next;
1317         prev_cost = cost_manager->costs_[i - 1];
1318 
1319         if (is_offset_zero) {
1320           // No optimization can be made so we just push all of the
1321           // contributions from i.
1322           PushInterval(cost_manager, prev_cost, i, len);
1323         } else {
1324           // j_max is chosen as the smallest j such that:
1325           //       max of cost_cache_ < j*offset cost + min of cost_cache_
1326           // Therefore, the pixel influenced by i-j_max, cannot be influenced
1327           // by i. Only the costs after the end of what i contributed need to be
1328           // updated. cost_manager->interval_ends_ is a circular buffer that
1329           // stores those ends.
1330           const double distance_cost = prev_cost + offset_cost;
1331           int j = cost_manager->interval_ends_[interval_ends_index];
1332           if (i - first_i <= j_max ||
1333               !IsCostCacheIntervalWritable(j, i + len)) {
1334             PushInterval(cost_manager, distance_cost, i, len);
1335           } else {
1336             for (; j < i + len; ++j) {
1337               UpdateCost(cost_manager, j, i, distance_cost);
1338             }
1339           }
1340           // Store the new end in the circular buffer.
1341           assert(interval_ends_index < cost_manager->interval_ends_size_);
1342           cost_manager->interval_ends_[interval_ends_index] = i + len;
1343           if (++interval_ends_index > j_max) interval_ends_index = 0;
1344         }
1345 
1346         // Check whether i is the last pixel to consider, as it is handled
1347         // differently.
1348         if (i + 1 >= pix_count - 1) break;
1349         HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
1350         if (offset_next != offset) break;
1351         len = len_next;
1352         UpdateCostPerIndex(cost_manager, i);
1353         AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
1354                                       use_color_cache, prev_cost,
1355                                       cost_manager->costs_, dist_array);
1356       }
1357       // Submit the last pixel.
1358       UpdateCostPerIndex(cost_manager, i + 1);
1359 
1360       // This if is for speedup only. It roughly doubles the speed, and
1361       // makes compression worse by .1 %.
1362       if (len >= skip_length && code <= skip_min_distance_code) {
1363         // Long copy for short distances, let's skip the middle
1364         // lookups for better copies.
1365         // 1) insert the hashes.
1366         if (use_color_cache) {
1367           int k;
1368           for (k = 0; k < len; ++k) {
1369             VP8LColorCacheInsert(&hashers, argb[i + k]);
1370           }
1371         }
1372         // 2) jump.
1373         {
1374           const int i_next = i + len - 1;  // for loop does ++i, thus -1 here.
1375           for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
1376           i = i_next;
1377         }
1378         goto next_symbol;
1379       }
1380       if (len > 2) {
1381         // Also try the smallest interval possible (size 2).
1382         double cost_total =
1383             prev_cost + offset_cost + GetLengthCost(cost_model, 1);
1384         if (cost_manager->costs_[i + 1] > cost_total) {
1385           cost_manager->costs_[i + 1] = (float)cost_total;
1386           dist_array[i + 1] = 2;
1387         }
1388       }
1389     } else {
1390       // The pixel is added as a single literal so just update the costs.
1391       UpdateCostPerIndex(cost_manager, i + 1);
1392     }
1393 
1394     AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
1395                                   use_color_cache, prev_cost,
1396                                   cost_manager->costs_, dist_array);
1397 
1398  next_symbol: ;
1399   }
1400   // Handle the last pixel.
1401   if (i == (pix_count - 1)) {
1402     AddSingleLiteralWithCostModel(
1403         argb + i, &hashers, cost_model, i, use_color_cache,
1404         cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array);
1405   }
1406 
1407   ok = !refs->error_;
1408  Error:
1409   if (cc_init) VP8LColorCacheClear(&hashers);
1410   CostManagerClear(cost_manager);
1411   WebPSafeFree(cost_model);
1412   WebPSafeFree(cost_manager);
1413   return ok;
1414 }
1415 
1416 // We pack the path at the end of *dist_array and return
1417 // a pointer to this part of the array. Example:
1418 // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
TraceBackwards(uint16_t * const dist_array,int dist_array_size,uint16_t ** const chosen_path,int * const chosen_path_size)1419 static void TraceBackwards(uint16_t* const dist_array,
1420                            int dist_array_size,
1421                            uint16_t** const chosen_path,
1422                            int* const chosen_path_size) {
1423   uint16_t* path = dist_array + dist_array_size;
1424   uint16_t* cur = dist_array + dist_array_size - 1;
1425   while (cur >= dist_array) {
1426     const int k = *cur;
1427     --path;
1428     *path = k;
1429     cur -= k;
1430   }
1431   *chosen_path = path;
1432   *chosen_path_size = (int)(dist_array + dist_array_size - path);
1433 }
1434 
BackwardReferencesHashChainFollowChosenPath(const uint32_t * const argb,int cache_bits,const uint16_t * const chosen_path,int chosen_path_size,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)1435 static int BackwardReferencesHashChainFollowChosenPath(
1436     const uint32_t* const argb, int cache_bits,
1437     const uint16_t* const chosen_path, int chosen_path_size,
1438     const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
1439   const int use_color_cache = (cache_bits > 0);
1440   int ix;
1441   int i = 0;
1442   int ok = 0;
1443   int cc_init = 0;
1444   VP8LColorCache hashers;
1445 
1446   if (use_color_cache) {
1447     cc_init = VP8LColorCacheInit(&hashers, cache_bits);
1448     if (!cc_init) goto Error;
1449   }
1450 
1451   ClearBackwardRefs(refs);
1452   for (ix = 0; ix < chosen_path_size; ++ix) {
1453     const int len = chosen_path[ix];
1454     if (len != 1) {
1455       int k;
1456       const int offset = HashChainFindOffset(hash_chain, i);
1457       BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
1458       if (use_color_cache) {
1459         for (k = 0; k < len; ++k) {
1460           VP8LColorCacheInsert(&hashers, argb[i + k]);
1461         }
1462       }
1463       i += len;
1464     } else {
1465       PixOrCopy v;
1466       const int idx =
1467           use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1;
1468       if (idx >= 0) {
1469         // use_color_cache is true and hashers contains argb[i]
1470         // push pixel as a color cache index
1471         v = PixOrCopyCreateCacheIdx(idx);
1472       } else {
1473         if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
1474         v = PixOrCopyCreateLiteral(argb[i]);
1475       }
1476       BackwardRefsCursorAdd(refs, v);
1477       ++i;
1478     }
1479   }
1480   ok = !refs->error_;
1481  Error:
1482   if (cc_init) VP8LColorCacheClear(&hashers);
1483   return ok;
1484 }
1485 
1486 // Returns 1 on success.
BackwardReferencesTraceBackwards(int xsize,int ysize,const uint32_t * const argb,int quality,int cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs)1487 static int BackwardReferencesTraceBackwards(
1488     int xsize, int ysize, const uint32_t* const argb, int quality,
1489     int cache_bits, const VP8LHashChain* const hash_chain,
1490     VP8LBackwardRefs* const refs) {
1491   int ok = 0;
1492   const int dist_array_size = xsize * ysize;
1493   uint16_t* chosen_path = NULL;
1494   int chosen_path_size = 0;
1495   uint16_t* dist_array =
1496       (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));
1497 
1498   if (dist_array == NULL) goto Error;
1499 
1500   if (!BackwardReferencesHashChainDistanceOnly(
1501       xsize, ysize, argb, quality, cache_bits, hash_chain,
1502       refs, dist_array)) {
1503     goto Error;
1504   }
1505   TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
1506   if (!BackwardReferencesHashChainFollowChosenPath(
1507           argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) {
1508     goto Error;
1509   }
1510   ok = 1;
1511  Error:
1512   WebPSafeFree(dist_array);
1513   return ok;
1514 }
1515 
BackwardReferences2DLocality(int xsize,const VP8LBackwardRefs * const refs)1516 static void BackwardReferences2DLocality(int xsize,
1517                                          const VP8LBackwardRefs* const refs) {
1518   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
1519   while (VP8LRefsCursorOk(&c)) {
1520     if (PixOrCopyIsCopy(c.cur_pos)) {
1521       const int dist = c.cur_pos->argb_or_distance;
1522       const int transformed_dist = DistanceToPlaneCode(xsize, dist);
1523       c.cur_pos->argb_or_distance = transformed_dist;
1524     }
1525     VP8LRefsCursorNext(&c);
1526   }
1527 }
1528 
1529 // Computes the entropies for a color cache size (in bits) between 0 (unused)
1530 // and cache_bits_max (inclusive).
1531 // Returns 1 on success, 0 in case of allocation error.
ComputeCacheEntropies(const uint32_t * argb,const VP8LBackwardRefs * const refs,int cache_bits_max,double entropies[])1532 static int ComputeCacheEntropies(const uint32_t* argb,
1533                                  const VP8LBackwardRefs* const refs,
1534                                  int cache_bits_max, double entropies[]) {
1535   int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
1536   VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
1537   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
1538   VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
1539   int ok = 0;
1540   int i;
1541 
1542   for (i = 0; i <= cache_bits_max; ++i) {
1543     histos[i] = VP8LAllocateHistogram(i);
1544     if (histos[i] == NULL) goto Error;
1545     if (i == 0) continue;
1546     cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
1547     if (!cc_init[i]) goto Error;
1548   }
1549 
1550   assert(cache_bits_max >= 0);
1551   // Do not use the color cache for cache_bits=0.
1552   while (VP8LRefsCursorOk(&c)) {
1553     VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos);
1554     VP8LRefsCursorNext(&c);
1555   }
1556   if (cache_bits_max > 0) {
1557     c = VP8LRefsCursorInit(refs);
1558     while (VP8LRefsCursorOk(&c)) {
1559       const PixOrCopy* const v = c.cur_pos;
1560       if (PixOrCopyIsLiteral(v)) {
1561         const uint32_t pix = *argb++;
1562         // The keys of the caches can be derived from the longest one.
1563         int key = HashPix(pix, 32 - cache_bits_max);
1564         for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
1565           if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
1566             ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
1567           } else {
1568             VP8LColorCacheSet(&hashers[i], key, pix);
1569             ++histos[i]->blue_[pix & 0xff];
1570             ++histos[i]->literal_[(pix >> 8) & 0xff];
1571             ++histos[i]->red_[(pix >> 16) & 0xff];
1572             ++histos[i]->alpha_[pix >> 24];
1573           }
1574         }
1575       } else {
1576         // Update the histograms for distance/length.
1577         int len = PixOrCopyLength(v);
1578         int code_dist, code_len, extra_bits;
1579         uint32_t argb_prev = *argb ^ 0xffffffffu;
1580         VP8LPrefixEncodeBits(len, &code_len, &extra_bits);
1581         VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits);
1582         for (i = 1; i <= cache_bits_max; ++i) {
1583           ++histos[i]->literal_[NUM_LITERAL_CODES + code_len];
1584           ++histos[i]->distance_[code_dist];
1585         }
1586         // Update the colors caches.
1587         do {
1588           if (*argb != argb_prev) {
1589             // Efficiency: insert only if the color changes.
1590             int key = HashPix(*argb, 32 - cache_bits_max);
1591             for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
1592               hashers[i].colors_[key] = *argb;
1593             }
1594             argb_prev = *argb;
1595           }
1596           argb++;
1597         } while (--len != 0);
1598       }
1599       VP8LRefsCursorNext(&c);
1600     }
1601   }
1602   for (i = 0; i <= cache_bits_max; ++i) {
1603     entropies[i] = VP8LHistogramEstimateBits(histos[i]);
1604   }
1605   ok = 1;
1606 Error:
1607   for (i = 0; i <= cache_bits_max; ++i) {
1608     if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
1609     VP8LFreeHistogram(histos[i]);
1610   }
1611   return ok;
1612 }
1613 
1614 // Evaluate optimal cache bits for the local color cache.
1615 // The input *best_cache_bits sets the maximum cache bits to use (passing 0
1616 // implies disabling the local color cache). The local color cache is also
1617 // disabled for the lower (<= 25) quality.
1618 // Returns 0 in case of memory error.
CalculateBestCacheSize(const uint32_t * const argb,int xsize,int ysize,int quality,const VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs,int * const lz77_computed,int * const best_cache_bits)1619 static int CalculateBestCacheSize(const uint32_t* const argb,
1620                                   int xsize, int ysize, int quality,
1621                                   const VP8LHashChain* const hash_chain,
1622                                   VP8LBackwardRefs* const refs,
1623                                   int* const lz77_computed,
1624                                   int* const best_cache_bits) {
1625   int i;
1626   int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits;
1627   double entropy_min = MAX_ENTROPY;
1628   double entropies[MAX_COLOR_CACHE_BITS + 1];
1629 
1630   assert(cache_bits_high <= MAX_COLOR_CACHE_BITS);
1631 
1632   *lz77_computed = 0;
1633   if (cache_bits_high == 0) {
1634     *best_cache_bits = 0;
1635     // Local color cache is disabled.
1636     return 1;
1637   }
1638   // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache
1639   // is not that different in practice.
1640   if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) {
1641     return 0;
1642   }
1643   // Find the cache_bits giving the lowest entropy. The search is done in a
1644   // brute-force way as the function (entropy w.r.t cache_bits) can be
1645   // anything in practice.
1646   if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) {
1647     return 0;
1648   }
1649   for (i = 0; i <= cache_bits_high; ++i) {
1650     if (i == 0 || entropies[i] < entropy_min) {
1651       entropy_min = entropies[i];
1652       *best_cache_bits = i;
1653     }
1654   }
1655   return 1;
1656 }
1657 
1658 // Update (in-place) backward references for specified cache_bits.
BackwardRefsWithLocalCache(const uint32_t * const argb,int cache_bits,VP8LBackwardRefs * const refs)1659 static int BackwardRefsWithLocalCache(const uint32_t* const argb,
1660                                       int cache_bits,
1661                                       VP8LBackwardRefs* const refs) {
1662   int pixel_index = 0;
1663   VP8LColorCache hashers;
1664   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
1665   if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
1666 
1667   while (VP8LRefsCursorOk(&c)) {
1668     PixOrCopy* const v = c.cur_pos;
1669     if (PixOrCopyIsLiteral(v)) {
1670       const uint32_t argb_literal = v->argb_or_distance;
1671       const int ix = VP8LColorCacheContains(&hashers, argb_literal);
1672       if (ix >= 0) {
1673         // hashers contains argb_literal
1674         *v = PixOrCopyCreateCacheIdx(ix);
1675       } else {
1676         VP8LColorCacheInsert(&hashers, argb_literal);
1677       }
1678       ++pixel_index;
1679     } else {
1680       // refs was created without local cache, so it can not have cache indexes.
1681       int k;
1682       assert(PixOrCopyIsCopy(v));
1683       for (k = 0; k < v->len; ++k) {
1684         VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
1685       }
1686     }
1687     VP8LRefsCursorNext(&c);
1688   }
1689   VP8LColorCacheClear(&hashers);
1690   return 1;
1691 }
1692 
GetBackwardReferencesLowEffort(int width,int height,const uint32_t * const argb,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[2])1693 static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
1694     int width, int height, const uint32_t* const argb,
1695     int* const cache_bits, const VP8LHashChain* const hash_chain,
1696     VP8LBackwardRefs refs_array[2]) {
1697   VP8LBackwardRefs* refs_lz77 = &refs_array[0];
1698   *cache_bits = 0;
1699   if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
1700     return NULL;
1701   }
1702   BackwardReferences2DLocality(width, refs_lz77);
1703   return refs_lz77;
1704 }
1705 
GetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[2])1706 static VP8LBackwardRefs* GetBackwardReferences(
1707     int width, int height, const uint32_t* const argb, int quality,
1708     int* const cache_bits, const VP8LHashChain* const hash_chain,
1709     VP8LBackwardRefs refs_array[2]) {
1710   int lz77_is_useful;
1711   int lz77_computed;
1712   double bit_cost_lz77, bit_cost_rle;
1713   VP8LBackwardRefs* best = NULL;
1714   VP8LBackwardRefs* refs_lz77 = &refs_array[0];
1715   VP8LBackwardRefs* refs_rle = &refs_array[1];
1716   VP8LHistogram* histo = NULL;
1717 
1718   if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain,
1719                               refs_lz77, &lz77_computed, cache_bits)) {
1720     goto Error;
1721   }
1722 
1723   if (lz77_computed) {
1724     // Transform refs_lz77 for the optimized cache_bits.
1725     if (*cache_bits > 0) {
1726       if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) {
1727         goto Error;
1728       }
1729     }
1730   } else {
1731     if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain,
1732                                 refs_lz77)) {
1733       goto Error;
1734     }
1735   }
1736 
1737   if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) {
1738     goto Error;
1739   }
1740 
1741   histo = VP8LAllocateHistogram(*cache_bits);
1742   if (histo == NULL) goto Error;
1743 
1744   {
1745     // Evaluate LZ77 coding.
1746     VP8LHistogramCreate(histo, refs_lz77, *cache_bits);
1747     bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
1748     // Evaluate RLE coding.
1749     VP8LHistogramCreate(histo, refs_rle, *cache_bits);
1750     bit_cost_rle = VP8LHistogramEstimateBits(histo);
1751     // Decide if LZ77 is useful.
1752     lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
1753   }
1754 
1755   // Choose appropriate backward reference.
1756   if (lz77_is_useful) {
1757     // TraceBackwards is costly. Don't execute it at lower quality.
1758     const int try_lz77_trace_backwards = (quality >= 25);
1759     best = refs_lz77;   // default guess: lz77 is better
1760     if (try_lz77_trace_backwards) {
1761       VP8LBackwardRefs* const refs_trace = refs_rle;
1762       if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) {
1763         best = NULL;
1764         goto Error;
1765       }
1766       if (BackwardReferencesTraceBackwards(width, height, argb, quality,
1767                                            *cache_bits, hash_chain,
1768                                            refs_trace)) {
1769         double bit_cost_trace;
1770         // Evaluate LZ77 coding.
1771         VP8LHistogramCreate(histo, refs_trace, *cache_bits);
1772         bit_cost_trace = VP8LHistogramEstimateBits(histo);
1773         if (bit_cost_trace < bit_cost_lz77) {
1774           best = refs_trace;
1775         }
1776       }
1777     }
1778   } else {
1779     best = refs_rle;
1780   }
1781 
1782   BackwardReferences2DLocality(width, best);
1783 
1784  Error:
1785   VP8LFreeHistogram(histo);
1786   return best;
1787 }
1788 
VP8LGetBackwardReferences(int width,int height,const uint32_t * const argb,int quality,int low_effort,int * const cache_bits,const VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[2])1789 VP8LBackwardRefs* VP8LGetBackwardReferences(
1790     int width, int height, const uint32_t* const argb, int quality,
1791     int low_effort, int* const cache_bits,
1792     const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) {
1793   if (low_effort) {
1794     return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
1795                                           hash_chain, refs_array);
1796   } else {
1797     return GetBackwardReferences(width, height, argb, quality, cache_bits,
1798                                  hash_chain, refs_array);
1799   }
1800 }
1801