1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless decoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "./dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17
18 #include "./common_sse2.h"
19 #include "./lossless.h"
20 #include "./lossless_common.h"
21 #include <assert.h>
22 #include <emmintrin.h>
23
24 //------------------------------------------------------------------------------
25 // Predictor Transform
26
ClampedAddSubtractFull(uint32_t c0,uint32_t c1,uint32_t c2)27 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
28 uint32_t c2) {
29 const __m128i zero = _mm_setzero_si128();
30 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
31 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
32 const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
33 const __m128i V1 = _mm_add_epi16(C0, C1);
34 const __m128i V2 = _mm_sub_epi16(V1, C2);
35 const __m128i b = _mm_packus_epi16(V2, V2);
36 const uint32_t output = _mm_cvtsi128_si32(b);
37 return output;
38 }
39
ClampedAddSubtractHalf(uint32_t c0,uint32_t c1,uint32_t c2)40 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
41 uint32_t c2) {
42 const __m128i zero = _mm_setzero_si128();
43 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
44 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
45 const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
46 const __m128i avg = _mm_add_epi16(C1, C0);
47 const __m128i A0 = _mm_srli_epi16(avg, 1);
48 const __m128i A1 = _mm_sub_epi16(A0, B0);
49 const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
50 const __m128i A2 = _mm_sub_epi16(A1, BgtA);
51 const __m128i A3 = _mm_srai_epi16(A2, 1);
52 const __m128i A4 = _mm_add_epi16(A0, A3);
53 const __m128i A5 = _mm_packus_epi16(A4, A4);
54 const uint32_t output = _mm_cvtsi128_si32(A5);
55 return output;
56 }
57
Select(uint32_t a,uint32_t b,uint32_t c)58 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
59 int pa_minus_pb;
60 const __m128i zero = _mm_setzero_si128();
61 const __m128i A0 = _mm_cvtsi32_si128(a);
62 const __m128i B0 = _mm_cvtsi32_si128(b);
63 const __m128i C0 = _mm_cvtsi32_si128(c);
64 const __m128i AC0 = _mm_subs_epu8(A0, C0);
65 const __m128i CA0 = _mm_subs_epu8(C0, A0);
66 const __m128i BC0 = _mm_subs_epu8(B0, C0);
67 const __m128i CB0 = _mm_subs_epu8(C0, B0);
68 const __m128i AC = _mm_or_si128(AC0, CA0);
69 const __m128i BC = _mm_or_si128(BC0, CB0);
70 const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c|
71 const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c|
72 const __m128i diff = _mm_sub_epi16(pb, pa);
73 {
74 int16_t out[8];
75 _mm_storeu_si128((__m128i*)out, diff);
76 pa_minus_pb = out[0] + out[1] + out[2] + out[3];
77 }
78 return (pa_minus_pb <= 0) ? a : b;
79 }
80
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)81 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
82 const __m128i* const a1,
83 __m128i* const avg) {
84 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
85 const __m128i ones = _mm_set1_epi8(1);
86 const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
87 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
88 *avg = _mm_sub_epi8(avg1, one);
89 }
90
Average2_uint32(const uint32_t a0,const uint32_t a1,__m128i * const avg)91 static WEBP_INLINE void Average2_uint32(const uint32_t a0, const uint32_t a1,
92 __m128i* const avg) {
93 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
94 const __m128i ones = _mm_set1_epi8(1);
95 const __m128i A0 = _mm_cvtsi32_si128(a0);
96 const __m128i A1 = _mm_cvtsi32_si128(a1);
97 const __m128i avg1 = _mm_avg_epu8(A0, A1);
98 const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
99 *avg = _mm_sub_epi8(avg1, one);
100 }
101
Average2_uint32_16(uint32_t a0,uint32_t a1)102 static WEBP_INLINE __m128i Average2_uint32_16(uint32_t a0, uint32_t a1) {
103 const __m128i zero = _mm_setzero_si128();
104 const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero);
105 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
106 const __m128i sum = _mm_add_epi16(A1, A0);
107 return _mm_srli_epi16(sum, 1);
108 }
109
Average2(uint32_t a0,uint32_t a1)110 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
111 __m128i output;
112 Average2_uint32(a0, a1, &output);
113 return _mm_cvtsi128_si32(output);
114 }
115
Average3(uint32_t a0,uint32_t a1,uint32_t a2)116 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
117 const __m128i zero = _mm_setzero_si128();
118 const __m128i avg1 = Average2_uint32_16(a0, a2);
119 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
120 const __m128i sum = _mm_add_epi16(avg1, A1);
121 const __m128i avg2 = _mm_srli_epi16(sum, 1);
122 const __m128i A2 = _mm_packus_epi16(avg2, avg2);
123 const uint32_t output = _mm_cvtsi128_si32(A2);
124 return output;
125 }
126
Average4(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)127 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
128 uint32_t a2, uint32_t a3) {
129 const __m128i avg1 = Average2_uint32_16(a0, a1);
130 const __m128i avg2 = Average2_uint32_16(a2, a3);
131 const __m128i sum = _mm_add_epi16(avg2, avg1);
132 const __m128i avg3 = _mm_srli_epi16(sum, 1);
133 const __m128i A0 = _mm_packus_epi16(avg3, avg3);
134 const uint32_t output = _mm_cvtsi128_si32(A0);
135 return output;
136 }
137
Predictor5_SSE2(uint32_t left,const uint32_t * const top)138 static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) {
139 const uint32_t pred = Average3(left, top[0], top[1]);
140 return pred;
141 }
Predictor6_SSE2(uint32_t left,const uint32_t * const top)142 static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) {
143 const uint32_t pred = Average2(left, top[-1]);
144 return pred;
145 }
Predictor7_SSE2(uint32_t left,const uint32_t * const top)146 static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) {
147 const uint32_t pred = Average2(left, top[0]);
148 return pred;
149 }
Predictor8_SSE2(uint32_t left,const uint32_t * const top)150 static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) {
151 const uint32_t pred = Average2(top[-1], top[0]);
152 (void)left;
153 return pred;
154 }
Predictor9_SSE2(uint32_t left,const uint32_t * const top)155 static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) {
156 const uint32_t pred = Average2(top[0], top[1]);
157 (void)left;
158 return pred;
159 }
Predictor10_SSE2(uint32_t left,const uint32_t * const top)160 static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) {
161 const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
162 return pred;
163 }
Predictor11_SSE2(uint32_t left,const uint32_t * const top)164 static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) {
165 const uint32_t pred = Select(top[0], left, top[-1]);
166 return pred;
167 }
Predictor12_SSE2(uint32_t left,const uint32_t * const top)168 static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) {
169 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
170 return pred;
171 }
Predictor13_SSE2(uint32_t left,const uint32_t * const top)172 static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) {
173 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
174 return pred;
175 }
176
177 // Batch versions of those functions.
178
179 // Predictor0: ARGB_BLACK.
PredictorAdd0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)180 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
181 int num_pixels, uint32_t* out) {
182 int i;
183 const __m128i black = _mm_set1_epi32(ARGB_BLACK);
184 for (i = 0; i + 4 <= num_pixels; i += 4) {
185 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
186 const __m128i res = _mm_add_epi8(src, black);
187 _mm_storeu_si128((__m128i*)&out[i], res);
188 }
189 if (i != num_pixels) {
190 VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
191 }
192 }
193
194 // Predictor1: left.
PredictorAdd1_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)195 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
196 int num_pixels, uint32_t* out) {
197 int i;
198 __m128i prev = _mm_set1_epi32(out[-1]);
199 for (i = 0; i + 4 <= num_pixels; i += 4) {
200 // a | b | c | d
201 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
202 // 0 | a | b | c
203 const __m128i shift0 = _mm_slli_si128(src, 4);
204 // a | a + b | b + c | c + d
205 const __m128i sum0 = _mm_add_epi8(src, shift0);
206 // 0 | 0 | a | a + b
207 const __m128i shift1 = _mm_slli_si128(sum0, 8);
208 // a | a + b | a + b + c | a + b + c + d
209 const __m128i sum1 = _mm_add_epi8(sum0, shift1);
210 const __m128i res = _mm_add_epi8(sum1, prev);
211 _mm_storeu_si128((__m128i*)&out[i], res);
212 // replicate prev output on the four lanes
213 prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
214 }
215 if (i != num_pixels) {
216 VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
217 }
218 }
219
220 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
221 // per 8 bit channel.
222 #define GENERATE_PREDICTOR_1(X, IN) \
223 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
224 int num_pixels, uint32_t* out) { \
225 int i; \
226 for (i = 0; i + 4 <= num_pixels; i += 4) { \
227 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
228 const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
229 const __m128i res = _mm_add_epi8(src, other); \
230 _mm_storeu_si128((__m128i*)&out[i], res); \
231 } \
232 if (i != num_pixels) { \
233 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
234 } \
235 }
236
237 // Predictor2: Top.
238 GENERATE_PREDICTOR_1(2, upper[i])
239 // Predictor3: Top-right.
240 GENERATE_PREDICTOR_1(3, upper[i + 1])
241 // Predictor4: Top-left.
242 GENERATE_PREDICTOR_1(4, upper[i - 1])
243 #undef GENERATE_PREDICTOR_1
244
245 // Due to averages with integers, values cannot be accumulated in parallel for
246 // predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2,PredictorAdd5_SSE2)247 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
248 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
249 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
250
251 #define GENERATE_PREDICTOR_2(X, IN) \
252 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
253 int num_pixels, uint32_t* out) { \
254 int i; \
255 for (i = 0; i + 4 <= num_pixels; i += 4) { \
256 const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
257 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
258 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
259 __m128i avg, res; \
260 Average2_m128i(&T, &Tother, &avg); \
261 res = _mm_add_epi8(avg, src); \
262 _mm_storeu_si128((__m128i*)&out[i], res); \
263 } \
264 if (i != num_pixels) { \
265 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
266 } \
267 }
268 // Predictor8: average TL T.
269 GENERATE_PREDICTOR_2(8, upper[i - 1])
270 // Predictor9: average T TR.
271 GENERATE_PREDICTOR_2(9, upper[i + 1])
272 #undef GENERATE_PREDICTOR_2
273
274 // Predictor10: average of (average of (L,TL), average of (T, TR)).
275 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
276 int num_pixels, uint32_t* out) {
277 int i, j;
278 __m128i L = _mm_cvtsi32_si128(out[-1]);
279 for (i = 0; i + 4 <= num_pixels; i += 4) {
280 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
281 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
282 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
283 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
284 __m128i avgTTR;
285 Average2_m128i(&T, &TR, &avgTTR);
286 for (j = 0; j < 4; ++j) {
287 __m128i avgLTL, avg;
288 Average2_m128i(&L, &TL, &avgLTL);
289 Average2_m128i(&avgTTR, &avgLTL, &avg);
290 L = _mm_add_epi8(avg, src);
291 out[i + j] = _mm_cvtsi128_si32(L);
292 // Rotate the pre-computed values for the next iteration.
293 avgTTR = _mm_srli_si128(avgTTR, 4);
294 TL = _mm_srli_si128(TL, 4);
295 src = _mm_srli_si128(src, 4);
296 }
297 }
298 if (i != num_pixels) {
299 VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
300 }
301 }
302
303 // Predictor11: select.
GetSumAbsDiff32(const __m128i * const A,const __m128i * const B,__m128i * const out)304 static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B,
305 __m128i* const out) {
306 // We can unpack with any value on the upper 32 bits, provided it's the same
307 // on both operands (to that their sum of abs diff is zero). Here we use *A.
308 const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
309 const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
310 const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
311 const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
312 const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
313 const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
314 *out = _mm_packs_epi32(s_lo, s_hi);
315 }
316
PredictorAdd11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)317 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
318 int num_pixels, uint32_t* out) {
319 int i, j;
320 __m128i L = _mm_cvtsi32_si128(out[-1]);
321 for (i = 0; i + 4 <= num_pixels; i += 4) {
322 __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
323 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
324 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
325 __m128i pa;
326 GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL|
327 for (j = 0; j < 4; ++j) {
328 const __m128i L_lo = _mm_unpacklo_epi32(L, L);
329 const __m128i TL_lo = _mm_unpacklo_epi32(TL, L);
330 const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); // pb = sum |L-TL|
331 const __m128i mask = _mm_cmpgt_epi32(pb, pa);
332 const __m128i A = _mm_and_si128(mask, L);
333 const __m128i B = _mm_andnot_si128(mask, T);
334 const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
335 L = _mm_add_epi8(src, pred);
336 out[i + j] = _mm_cvtsi128_si32(L);
337 // Shift the pre-computed value for the next iteration.
338 T = _mm_srli_si128(T, 4);
339 TL = _mm_srli_si128(TL, 4);
340 src = _mm_srli_si128(src, 4);
341 pa = _mm_srli_si128(pa, 4);
342 }
343 }
344 if (i != num_pixels) {
345 VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
346 }
347 }
348
349 // Predictor12: ClampedAddSubtractFull.
350 #define DO_PRED12(DIFF, LANE, OUT) \
351 do { \
352 const __m128i all = _mm_add_epi16(L, (DIFF)); \
353 const __m128i alls = _mm_packus_epi16(all, all); \
354 const __m128i res = _mm_add_epi8(src, alls); \
355 out[i + (OUT)] = _mm_cvtsi128_si32(res); \
356 L = _mm_unpacklo_epi8(res, zero); \
357 /* Shift the pre-computed value for the next iteration.*/ \
358 if (LANE == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
359 src = _mm_srli_si128(src, 4); \
360 } while (0)
361
PredictorAdd12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)362 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
363 int num_pixels, uint32_t* out) {
364 int i;
365 const __m128i zero = _mm_setzero_si128();
366 const __m128i L8 = _mm_cvtsi32_si128(out[-1]);
367 __m128i L = _mm_unpacklo_epi8(L8, zero);
368 for (i = 0; i + 4 <= num_pixels; i += 4) {
369 // Load 4 pixels at a time.
370 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
371 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
372 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
373 const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
374 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
375 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
376 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
377 __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
378 __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
379 DO_PRED12(diff_lo, 0, 0);
380 DO_PRED12(diff_lo, 1, 1);
381 DO_PRED12(diff_hi, 0, 2);
382 DO_PRED12(diff_hi, 1, 3);
383 }
384 if (i != num_pixels) {
385 VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
386 }
387 }
388 #undef DO_PRED12
389
390 // Due to averages with integers, values cannot be accumulated in parallel for
391 // predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2,PredictorAdd13_SSE2)392 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
393
394 //------------------------------------------------------------------------------
395 // Subtract-Green Transform
396
397 static void AddGreenToBlueAndRed(const uint32_t* const src, int num_pixels,
398 uint32_t* dst) {
399 int i;
400 for (i = 0; i + 4 <= num_pixels; i += 4) {
401 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
402 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
403 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
404 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
405 const __m128i out = _mm_add_epi8(in, C);
406 _mm_storeu_si128((__m128i*)&dst[i], out);
407 }
408 // fallthrough and finish off with plain-C
409 if (i != num_pixels) {
410 VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
411 }
412 }
413
414 //------------------------------------------------------------------------------
415 // Color Transform
416
TransformColorInverse(const VP8LMultipliers * const m,const uint32_t * const src,int num_pixels,uint32_t * dst)417 static void TransformColorInverse(const VP8LMultipliers* const m,
418 const uint32_t* const src, int num_pixels,
419 uint32_t* dst) {
420 // sign-extended multiplying constants, pre-shifted by 5.
421 #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
422 const __m128i mults_rb = _mm_set_epi16(
423 CST(green_to_red_), CST(green_to_blue_),
424 CST(green_to_red_), CST(green_to_blue_),
425 CST(green_to_red_), CST(green_to_blue_),
426 CST(green_to_red_), CST(green_to_blue_));
427 const __m128i mults_b2 = _mm_set_epi16(
428 CST(red_to_blue_), 0, CST(red_to_blue_), 0,
429 CST(red_to_blue_), 0, CST(red_to_blue_), 0);
430 #undef CST
431 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
432 int i;
433 for (i = 0; i + 4 <= num_pixels; i += 4) {
434 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
435 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
436 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
437 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
438 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
439 const __m128i E = _mm_add_epi8(in, D); // x r' x b'
440 const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0
441 const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0
442 const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0
443 const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
444 const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
445 const __m128i out = _mm_or_si128(J, A);
446 _mm_storeu_si128((__m128i*)&dst[i], out);
447 }
448 // Fall-back to C-version for left-overs.
449 if (i != num_pixels) {
450 VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
451 }
452 }
453
454 //------------------------------------------------------------------------------
455 // Color-space conversion functions
456
ConvertBGRAToRGB(const uint32_t * src,int num_pixels,uint8_t * dst)457 static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels,
458 uint8_t* dst) {
459 const __m128i* in = (const __m128i*)src;
460 __m128i* out = (__m128i*)dst;
461
462 while (num_pixels >= 32) {
463 // Load the BGRA buffers.
464 __m128i in0 = _mm_loadu_si128(in + 0);
465 __m128i in1 = _mm_loadu_si128(in + 1);
466 __m128i in2 = _mm_loadu_si128(in + 2);
467 __m128i in3 = _mm_loadu_si128(in + 3);
468 __m128i in4 = _mm_loadu_si128(in + 4);
469 __m128i in5 = _mm_loadu_si128(in + 5);
470 __m128i in6 = _mm_loadu_si128(in + 6);
471 __m128i in7 = _mm_loadu_si128(in + 7);
472 VP8L32bToPlanar(&in0, &in1, &in2, &in3);
473 VP8L32bToPlanar(&in4, &in5, &in6, &in7);
474 // At this points, in1/in5 contains red only, in2/in6 green only ...
475 // Pack the colors in 24b RGB.
476 VP8PlanarTo24b(&in1, &in5, &in2, &in6, &in3, &in7);
477 _mm_storeu_si128(out + 0, in1);
478 _mm_storeu_si128(out + 1, in5);
479 _mm_storeu_si128(out + 2, in2);
480 _mm_storeu_si128(out + 3, in6);
481 _mm_storeu_si128(out + 4, in3);
482 _mm_storeu_si128(out + 5, in7);
483 in += 8;
484 out += 6;
485 num_pixels -= 32;
486 }
487 // left-overs
488 if (num_pixels > 0) {
489 VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
490 }
491 }
492
ConvertBGRAToRGBA(const uint32_t * src,int num_pixels,uint8_t * dst)493 static void ConvertBGRAToRGBA(const uint32_t* src,
494 int num_pixels, uint8_t* dst) {
495 const __m128i* in = (const __m128i*)src;
496 __m128i* out = (__m128i*)dst;
497 while (num_pixels >= 8) {
498 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
499 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
500 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
501 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
502 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
503 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
504 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
505 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
506 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
507 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
508 const __m128i rg0 = _mm_unpacklo_epi8(rb0, ga0); // r0g0r1g1 ... r6g6r7g7
509 const __m128i ba0 = _mm_unpackhi_epi8(rb0, ga0); // b0a0b1a1 ... b6a6b7a7
510 const __m128i rgba0 = _mm_unpacklo_epi16(rg0, ba0); // rgba0|rgba1...
511 const __m128i rgba4 = _mm_unpackhi_epi16(rg0, ba0); // rgba4|rgba5...
512 _mm_storeu_si128(out++, rgba0);
513 _mm_storeu_si128(out++, rgba4);
514 num_pixels -= 8;
515 }
516 // left-overs
517 if (num_pixels > 0) {
518 VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
519 }
520 }
521
ConvertBGRAToRGBA4444(const uint32_t * src,int num_pixels,uint8_t * dst)522 static void ConvertBGRAToRGBA4444(const uint32_t* src,
523 int num_pixels, uint8_t* dst) {
524 const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
525 const __m128i mask_0xf0 = _mm_set1_epi8(0xf0);
526 const __m128i* in = (const __m128i*)src;
527 __m128i* out = (__m128i*)dst;
528 while (num_pixels >= 8) {
529 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
530 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
531 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
532 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
533 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
534 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
535 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
536 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
537 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
538 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
539 const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7-
540 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7
541 const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7-
542 const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7
543 const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0
544 #ifdef WEBP_SWAP_16BIT_CSP
545 const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7
546 #else
547 const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7
548 #endif
549 _mm_storeu_si128(out++, rgba);
550 num_pixels -= 8;
551 }
552 // left-overs
553 if (num_pixels > 0) {
554 VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
555 }
556 }
557
ConvertBGRAToRGB565(const uint32_t * src,int num_pixels,uint8_t * dst)558 static void ConvertBGRAToRGB565(const uint32_t* src,
559 int num_pixels, uint8_t* dst) {
560 const __m128i mask_0xe0 = _mm_set1_epi8(0xe0);
561 const __m128i mask_0xf8 = _mm_set1_epi8(0xf8);
562 const __m128i mask_0x07 = _mm_set1_epi8(0x07);
563 const __m128i* in = (const __m128i*)src;
564 __m128i* out = (__m128i*)dst;
565 while (num_pixels >= 8) {
566 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
567 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
568 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4...
569 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6...
570 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6...
571 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7...
572 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7
573 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7
574 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7
575 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7
576 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7
577 const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
578 const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b)
579 const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
580 const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b)
581 const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0
582 const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx
583 const __m128i b1 = _mm_srli_epi16(b0, 3);
584 const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx
585 #ifdef WEBP_SWAP_16BIT_CSP
586 const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7
587 #else
588 const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7
589 #endif
590 _mm_storeu_si128(out++, rgba);
591 num_pixels -= 8;
592 }
593 // left-overs
594 if (num_pixels > 0) {
595 VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
596 }
597 }
598
ConvertBGRAToBGR(const uint32_t * src,int num_pixels,uint8_t * dst)599 static void ConvertBGRAToBGR(const uint32_t* src,
600 int num_pixels, uint8_t* dst) {
601 const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
602 const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
603 const __m128i* in = (const __m128i*)src;
604 const uint8_t* const end = dst + num_pixels * 3;
605 // the last storel_epi64 below writes 8 bytes starting at offset 18
606 while (dst + 26 <= end) {
607 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3
608 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7
609 const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0
610 const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0
611 const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0
612 const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0
613 const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00
614 const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00
615 const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00
616 const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00
617 const __m128i c2 = _mm_srli_si128(c0, 8);
618 const __m128i c6 = _mm_srli_si128(c4, 8);
619 _mm_storel_epi64((__m128i*)(dst + 0), c0);
620 _mm_storel_epi64((__m128i*)(dst + 6), c2);
621 _mm_storel_epi64((__m128i*)(dst + 12), c4);
622 _mm_storel_epi64((__m128i*)(dst + 18), c6);
623 dst += 24;
624 num_pixels -= 8;
625 }
626 // left-overs
627 if (num_pixels > 0) {
628 VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
629 }
630 }
631
632 //------------------------------------------------------------------------------
633 // Entry point
634
635 extern void VP8LDspInitSSE2(void);
636
VP8LDspInitSSE2(void)637 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
638 VP8LPredictors[5] = Predictor5_SSE2;
639 VP8LPredictors[6] = Predictor6_SSE2;
640 VP8LPredictors[7] = Predictor7_SSE2;
641 VP8LPredictors[8] = Predictor8_SSE2;
642 VP8LPredictors[9] = Predictor9_SSE2;
643 VP8LPredictors[10] = Predictor10_SSE2;
644 VP8LPredictors[11] = Predictor11_SSE2;
645 VP8LPredictors[12] = Predictor12_SSE2;
646 VP8LPredictors[13] = Predictor13_SSE2;
647
648 VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
649 VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
650 VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
651 VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
652 VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
653 VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
654 VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
655 VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
656 VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
657 VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
658 VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
659 VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
660 VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
661 VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
662
663 VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed;
664 VP8LTransformColorInverse = TransformColorInverse;
665
666 VP8LConvertBGRAToRGB = ConvertBGRAToRGB;
667 VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
668 VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444;
669 VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565;
670 VP8LConvertBGRAToBGR = ConvertBGRAToBGR;
671 }
672
673 #else // !WEBP_USE_SSE2
674
675 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
676
677 #endif // WEBP_USE_SSE2
678