1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "../webp/config.h"
14 #endif
15 
16 #include <math.h>
17 
18 #include "./backward_references_enc.h"
19 #include "./histogram_enc.h"
20 #include "../dsp/lossless.h"
21 #include "../dsp/lossless_common.h"
22 #include "../utils/utils.h"
23 
24 #define MAX_COST 1.e38
25 
26 // Number of partitions for the three dominant (literal, red and blue) symbol
27 // costs.
28 #define NUM_PARTITIONS 4
29 // The size of the bin-hash corresponding to the three dominant costs.
30 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
31 // Maximum number of histograms allowed in greedy combining algorithm.
32 #define MAX_HISTO_GREEDY 100
33 
HistogramClear(VP8LHistogram * const p)34 static void HistogramClear(VP8LHistogram* const p) {
35   uint32_t* const literal = p->literal_;
36   const int cache_bits = p->palette_code_bits_;
37   const int histo_size = VP8LGetHistogramSize(cache_bits);
38   memset(p, 0, histo_size);
39   p->palette_code_bits_ = cache_bits;
40   p->literal_ = literal;
41 }
42 
43 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)44 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
45   VP8LHistogram* const tmp = *A;
46   *A = *B;
47   *B = tmp;
48 }
49 
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)50 static void HistogramCopy(const VP8LHistogram* const src,
51                           VP8LHistogram* const dst) {
52   uint32_t* const dst_literal = dst->literal_;
53   const int dst_cache_bits = dst->palette_code_bits_;
54   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
55   assert(src->palette_code_bits_ == dst_cache_bits);
56   memcpy(dst, src, histo_size);
57   dst->literal_ = dst_literal;
58 }
59 
VP8LGetHistogramSize(int cache_bits)60 int VP8LGetHistogramSize(int cache_bits) {
61   const int literal_size = VP8LHistogramNumCodes(cache_bits);
62   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
63   assert(total_size <= (size_t)0x7fffffff);
64   return (int)total_size;
65 }
66 
VP8LFreeHistogram(VP8LHistogram * const histo)67 void VP8LFreeHistogram(VP8LHistogram* const histo) {
68   WebPSafeFree(histo);
69 }
70 
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)71 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
72   WebPSafeFree(histo);
73 }
74 
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)75 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
76                             VP8LHistogram* const histo) {
77   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
78   while (VP8LRefsCursorOk(&c)) {
79     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
80     VP8LRefsCursorNext(&c);
81   }
82 }
83 
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)84 void VP8LHistogramCreate(VP8LHistogram* const p,
85                          const VP8LBackwardRefs* const refs,
86                          int palette_code_bits) {
87   if (palette_code_bits >= 0) {
88     p->palette_code_bits_ = palette_code_bits;
89   }
90   HistogramClear(p);
91   VP8LHistogramStoreRefs(refs, p);
92 }
93 
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)94 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
95   p->palette_code_bits_ = palette_code_bits;
96   HistogramClear(p);
97 }
98 
VP8LAllocateHistogram(int cache_bits)99 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
100   VP8LHistogram* histo = NULL;
101   const int total_size = VP8LGetHistogramSize(cache_bits);
102   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
103   if (memory == NULL) return NULL;
104   histo = (VP8LHistogram*)memory;
105   // literal_ won't necessary be aligned.
106   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
107   VP8LHistogramInit(histo, cache_bits);
108   return histo;
109 }
110 
VP8LAllocateHistogramSet(int size,int cache_bits)111 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
112   int i;
113   VP8LHistogramSet* set;
114   const int histo_size = VP8LGetHistogramSize(cache_bits);
115   const size_t total_size =
116       sizeof(*set) + size * (sizeof(*set->histograms) +
117       histo_size + WEBP_ALIGN_CST);
118   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
119   if (memory == NULL) return NULL;
120 
121   set = (VP8LHistogramSet*)memory;
122   memory += sizeof(*set);
123   set->histograms = (VP8LHistogram**)memory;
124   memory += size * sizeof(*set->histograms);
125   set->max_size = size;
126   set->size = size;
127   for (i = 0; i < size; ++i) {
128     memory = (uint8_t*)WEBP_ALIGN(memory);
129     set->histograms[i] = (VP8LHistogram*)memory;
130     // literal_ won't necessary be aligned.
131     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
132     VP8LHistogramInit(set->histograms[i], cache_bits);
133     memory += histo_size;
134   }
135   return set;
136 }
137 
138 // -----------------------------------------------------------------------------
139 
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v)140 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
141                                      const PixOrCopy* const v) {
142   if (PixOrCopyIsLiteral(v)) {
143     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
144     ++histo->red_[PixOrCopyLiteral(v, 2)];
145     ++histo->literal_[PixOrCopyLiteral(v, 1)];
146     ++histo->blue_[PixOrCopyLiteral(v, 0)];
147   } else if (PixOrCopyIsCacheIdx(v)) {
148     const int literal_ix =
149         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
150     ++histo->literal_[literal_ix];
151   } else {
152     int code, extra_bits;
153     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
154     ++histo->literal_[NUM_LITERAL_CODES + code];
155     VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
156     ++histo->distance_[code];
157   }
158 }
159 
160 // -----------------------------------------------------------------------------
161 // Entropy-related functions.
162 
BitsEntropyRefine(const VP8LBitEntropy * entropy)163 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
164   double mix;
165   if (entropy->nonzeros < 5) {
166     if (entropy->nonzeros <= 1) {
167       return 0;
168     }
169     // Two symbols, they will be 0 and 1 in a Huffman code.
170     // Let's mix in a bit of entropy to favor good clustering when
171     // distributions of these are combined.
172     if (entropy->nonzeros == 2) {
173       return 0.99 * entropy->sum + 0.01 * entropy->entropy;
174     }
175     // No matter what the entropy says, we cannot be better than min_limit
176     // with Huffman coding. I am mixing a bit of entropy into the
177     // min_limit since it produces much better (~0.5 %) compression results
178     // perhaps because of better entropy clustering.
179     if (entropy->nonzeros == 3) {
180       mix = 0.95;
181     } else {
182       mix = 0.7;  // nonzeros == 4.
183     }
184   } else {
185     mix = 0.627;
186   }
187 
188   {
189     double min_limit = 2 * entropy->sum - entropy->max_val;
190     min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
191     return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
192   }
193 }
194 
VP8LBitsEntropy(const uint32_t * const array,int n,uint32_t * const trivial_symbol)195 double VP8LBitsEntropy(const uint32_t* const array, int n,
196                        uint32_t* const trivial_symbol) {
197   VP8LBitEntropy entropy;
198   VP8LBitsEntropyUnrefined(array, n, &entropy);
199   if (trivial_symbol != NULL) {
200     *trivial_symbol =
201         (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
202   }
203 
204   return BitsEntropyRefine(&entropy);
205 }
206 
InitialHuffmanCost(void)207 static double InitialHuffmanCost(void) {
208   // Small bias because Huffman code length is typically not stored in
209   // full length.
210   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
211   static const double kSmallBias = 9.1;
212   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
213 }
214 
215 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)216 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
217   // The constants in this function are experimental and got rounded from
218   // their original values in 1/8 when switched to 1/1024.
219   double retval = InitialHuffmanCost();
220   // Second coefficient: Many zeros in the histogram are covered efficiently
221   // by a run-length encode. Originally 2/8.
222   retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
223   // Second coefficient: Constant values are encoded less efficiently, but still
224   // RLE'ed. Originally 6/8.
225   retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
226   // 0s are usually encoded more efficiently than non-0s.
227   // Originally 15/8.
228   retval += 1.796875 * stats->streaks[0][0];
229   // Originally 26/8.
230   retval += 3.28125 * stats->streaks[1][0];
231   return retval;
232 }
233 
234 // Get the symbol entropy for the distribution 'population'.
235 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym)236 static double PopulationCost(const uint32_t* const population, int length,
237                              uint32_t* const trivial_sym) {
238   VP8LBitEntropy bit_entropy;
239   VP8LStreaks stats;
240   VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
241   if (trivial_sym != NULL) {
242     *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
243                                                : VP8L_NON_TRIVIAL_SYM;
244   }
245 
246   return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
247 }
248 
249 // trivial_at_end is 1 if the two histograms only have one element that is
250 // non-zero: both the zero-th one, or both the last one.
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length,int trivial_at_end)251 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
252                                              const uint32_t* const Y,
253                                              int length, int trivial_at_end) {
254   VP8LStreaks stats;
255   if (trivial_at_end) {
256     // This configuration is due to palettization that transforms an indexed
257     // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
258     // BitsEntropyRefine is 0 for histograms with only one non-zero value.
259     // Only FinalHuffmanCost needs to be evaluated.
260     memset(&stats, 0, sizeof(stats));
261     // Deal with the non-zero value at index 0 or length-1.
262     stats.streaks[1][0] += 1;
263     // Deal with the following/previous zero streak.
264     stats.counts[0] += 1;
265     stats.streaks[0][1] += length - 1;
266     return FinalHuffmanCost(&stats);
267   } else {
268     VP8LBitEntropy bit_entropy;
269     VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
270 
271     return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
272   }
273 }
274 
275 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(const VP8LHistogram * const p)276 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
277   return
278       PopulationCost(
279           p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
280       + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
281       + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
282       + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
283       + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
284       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
285       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
286 }
287 
288 // -----------------------------------------------------------------------------
289 // Various histogram combine/cost-eval functions
290 
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold,double * cost)291 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
292                                        const VP8LHistogram* const b,
293                                        double cost_threshold,
294                                        double* cost) {
295   const int palette_code_bits = a->palette_code_bits_;
296   int trivial_at_end = 0;
297   assert(a->palette_code_bits_ == b->palette_code_bits_);
298   *cost += GetCombinedEntropy(a->literal_, b->literal_,
299                               VP8LHistogramNumCodes(palette_code_bits), 0);
300   *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
301                                  b->literal_ + NUM_LITERAL_CODES,
302                                  NUM_LENGTH_CODES);
303   if (*cost > cost_threshold) return 0;
304 
305   if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
306       a->trivial_symbol_ == b->trivial_symbol_) {
307     // A, R and B are all 0 or 0xff.
308     const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
309     const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
310     const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
311     if ((color_a == 0 || color_a == 0xff) &&
312         (color_r == 0 || color_r == 0xff) &&
313         (color_b == 0 || color_b == 0xff)) {
314       trivial_at_end = 1;
315     }
316   }
317 
318   *cost +=
319       GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
320   if (*cost > cost_threshold) return 0;
321 
322   *cost +=
323       GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
324   if (*cost > cost_threshold) return 0;
325 
326   *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
327                               trivial_at_end);
328   if (*cost > cost_threshold) return 0;
329 
330   *cost +=
331       GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
332   *cost +=
333       VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
334   if (*cost > cost_threshold) return 0;
335 
336   return 1;
337 }
338 
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)339 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
340                                      const VP8LHistogram* const b,
341                                      VP8LHistogram* const out) {
342   VP8LHistogramAdd(a, b, out);
343   out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
344                        ? a->trivial_symbol_
345                        : VP8L_NON_TRIVIAL_SYM;
346 }
347 
348 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
349 // to the threshold value 'cost_threshold'. The score returned is
350 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
351 // Since the previous score passed is 'cost_threshold', we only need to compare
352 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
353 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,double cost_threshold)354 static double HistogramAddEval(const VP8LHistogram* const a,
355                                const VP8LHistogram* const b,
356                                VP8LHistogram* const out,
357                                double cost_threshold) {
358   double cost = 0;
359   const double sum_cost = a->bit_cost_ + b->bit_cost_;
360   cost_threshold += sum_cost;
361 
362   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
363     HistogramAdd(a, b, out);
364     out->bit_cost_ = cost;
365     out->palette_code_bits_ = a->palette_code_bits_;
366   }
367 
368   return cost - sum_cost;
369 }
370 
371 // Same as HistogramAddEval(), except that the resulting histogram
372 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
373 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold)374 static double HistogramAddThresh(const VP8LHistogram* const a,
375                                  const VP8LHistogram* const b,
376                                  double cost_threshold) {
377   double cost = -a->bit_cost_;
378   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
379   return cost;
380 }
381 
382 // -----------------------------------------------------------------------------
383 
384 // The structure to keep track of cost range for the three dominant entropy
385 // symbols.
386 // TODO(skal): Evaluate if float can be used here instead of double for
387 // representing the entropy costs.
388 typedef struct {
389   double literal_max_;
390   double literal_min_;
391   double red_max_;
392   double red_min_;
393   double blue_max_;
394   double blue_min_;
395 } DominantCostRange;
396 
DominantCostRangeInit(DominantCostRange * const c)397 static void DominantCostRangeInit(DominantCostRange* const c) {
398   c->literal_max_ = 0.;
399   c->literal_min_ = MAX_COST;
400   c->red_max_ = 0.;
401   c->red_min_ = MAX_COST;
402   c->blue_max_ = 0.;
403   c->blue_min_ = MAX_COST;
404 }
405 
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)406 static void UpdateDominantCostRange(
407     const VP8LHistogram* const h, DominantCostRange* const c) {
408   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
409   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
410   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
411   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
412   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
413   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
414 }
415 
UpdateHistogramCost(VP8LHistogram * const h)416 static void UpdateHistogramCost(VP8LHistogram* const h) {
417   uint32_t alpha_sym, red_sym, blue_sym;
418   const double alpha_cost =
419       PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
420   const double distance_cost =
421       PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
422       VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
423   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
424   h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
425                      VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
426                                    NUM_LENGTH_CODES);
427   h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
428   h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
429   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
430                  alpha_cost + distance_cost;
431   if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
432     h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
433   } else {
434     h->trivial_symbol_ =
435         ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
436   }
437 }
438 
GetBinIdForEntropy(double min,double max,double val)439 static int GetBinIdForEntropy(double min, double max, double val) {
440   const double range = max - min;
441   if (range > 0.) {
442     const double delta = val - min;
443     return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
444   } else {
445     return 0;
446   }
447 }
448 
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c,int low_effort)449 static int GetHistoBinIndex(const VP8LHistogram* const h,
450                             const DominantCostRange* const c, int low_effort) {
451   int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
452                                   h->literal_cost_);
453   assert(bin_id < NUM_PARTITIONS);
454   if (!low_effort) {
455     bin_id = bin_id * NUM_PARTITIONS
456            + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
457     bin_id = bin_id * NUM_PARTITIONS
458            + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
459     assert(bin_id < BIN_SIZE);
460   }
461   return bin_id;
462 }
463 
464 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)465 static void HistogramBuild(
466     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
467     VP8LHistogramSet* const image_histo) {
468   int x = 0, y = 0;
469   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
470   VP8LHistogram** const histograms = image_histo->histograms;
471   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
472   assert(histo_bits > 0);
473   while (VP8LRefsCursorOk(&c)) {
474     const PixOrCopy* const v = c.cur_pos;
475     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
476     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
477     x += PixOrCopyLength(v);
478     while (x >= xsize) {
479       x -= xsize;
480       ++y;
481     }
482     VP8LRefsCursorNext(&c);
483   }
484 }
485 
486 // Copies the histograms and computes its bit_cost.
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo)487 static void HistogramCopyAndAnalyze(
488     VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
489   int i;
490   const int histo_size = orig_histo->size;
491   VP8LHistogram** const orig_histograms = orig_histo->histograms;
492   VP8LHistogram** const histograms = image_histo->histograms;
493   for (i = 0; i < histo_size; ++i) {
494     VP8LHistogram* const histo = orig_histograms[i];
495     UpdateHistogramCost(histo);
496     // Copy histograms from orig_histo[] to image_histo[].
497     HistogramCopy(histo, histograms[i]);
498   }
499 }
500 
501 // Partition histograms to different entropy bins for three dominant (literal,
502 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,uint16_t * const bin_map,int low_effort)503 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
504                                        uint16_t* const bin_map,
505                                        int low_effort) {
506   int i;
507   VP8LHistogram** const histograms = image_histo->histograms;
508   const int histo_size = image_histo->size;
509   DominantCostRange cost_range;
510   DominantCostRangeInit(&cost_range);
511 
512   // Analyze the dominant (literal, red and blue) entropy costs.
513   for (i = 0; i < histo_size; ++i) {
514     UpdateDominantCostRange(histograms[i], &cost_range);
515   }
516 
517   // bin-hash histograms on three of the dominant (literal, red and blue)
518   // symbol costs and store the resulting bin_id for each histogram.
519   for (i = 0; i < histo_size; ++i) {
520     bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
521   }
522 }
523 
524 // Compact image_histo[] by merging some histograms with same bin_id together if
525 // it's advantageous.
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,VP8LHistogram * cur_combo,const uint16_t * const bin_map,int bin_map_size,int num_bins,double combine_cost_factor,int low_effort)526 static VP8LHistogram* HistogramCombineEntropyBin(
527     VP8LHistogramSet* const image_histo,
528     VP8LHistogram* cur_combo,
529     const uint16_t* const bin_map, int bin_map_size, int num_bins,
530     double combine_cost_factor, int low_effort) {
531   VP8LHistogram** const histograms = image_histo->histograms;
532   int idx;
533   // Work in-place: processed histograms are put at the beginning of
534   // image_histo[]. At the end, we just have to truncate the array.
535   int size = 0;
536   struct {
537     int16_t first;    // position of the histogram that accumulates all
538                       // histograms with the same bin_id
539     uint16_t num_combine_failures;   // number of combine failures per bin_id
540   } bin_info[BIN_SIZE];
541 
542   assert(num_bins <= BIN_SIZE);
543   for (idx = 0; idx < num_bins; ++idx) {
544     bin_info[idx].first = -1;
545     bin_info[idx].num_combine_failures = 0;
546   }
547 
548   for (idx = 0; idx < bin_map_size; ++idx) {
549     const int bin_id = bin_map[idx];
550     const int first = bin_info[bin_id].first;
551     assert(size <= idx);
552     if (first == -1) {
553       // just move histogram #idx to its final position
554       histograms[size] = histograms[idx];
555       bin_info[bin_id].first = size++;
556     } else if (low_effort) {
557       HistogramAdd(histograms[idx], histograms[first], histograms[first]);
558     } else {
559       // try to merge #idx into #first (both share the same bin_id)
560       const double bit_cost = histograms[idx]->bit_cost_;
561       const double bit_cost_thresh = -bit_cost * combine_cost_factor;
562       const double curr_cost_diff =
563           HistogramAddEval(histograms[first], histograms[idx],
564                            cur_combo, bit_cost_thresh);
565       if (curr_cost_diff < bit_cost_thresh) {
566         // Try to merge two histograms only if the combo is a trivial one or
567         // the two candidate histograms are already non-trivial.
568         // For some images, 'try_combine' turns out to be false for a lot of
569         // histogram pairs. In that case, we fallback to combining
570         // histograms as usual to avoid increasing the header size.
571         const int try_combine =
572             (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
573             ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
574              (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
575         const int max_combine_failures = 32;
576         if (try_combine ||
577             bin_info[bin_id].num_combine_failures >= max_combine_failures) {
578           // move the (better) merged histogram to its final slot
579           HistogramSwap(&cur_combo, &histograms[first]);
580         } else {
581           histograms[size++] = histograms[idx];
582           ++bin_info[bin_id].num_combine_failures;
583         }
584       } else {
585         histograms[size++] = histograms[idx];
586       }
587     }
588   }
589   image_histo->size = size;
590   if (low_effort) {
591     // for low_effort case, update the final cost when everything is merged
592     for (idx = 0; idx < size; ++idx) {
593       UpdateHistogramCost(histograms[idx]);
594     }
595   }
596   return cur_combo;
597 }
598 
MyRand(uint32_t * const seed)599 static uint32_t MyRand(uint32_t* const seed) {
600   *seed = (*seed * 16807ull) & 0xffffffffu;
601   if (*seed == 0) {
602     *seed = 1;
603   }
604   return *seed;
605 }
606 
607 // -----------------------------------------------------------------------------
608 // Histogram pairs priority queue
609 
610 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
611 typedef struct {
612   int idx1;
613   int idx2;
614   double cost_diff;
615   double cost_combo;
616 } HistogramPair;
617 
618 typedef struct {
619   HistogramPair* queue;
620   int size;
621   int max_size;
622 } HistoQueue;
623 
HistoQueueInit(HistoQueue * const histo_queue,const int max_index)624 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
625   histo_queue->size = 0;
626   // max_index^2 for the queue size is safe. If you look at
627   // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
628   // data to the queue, you insert at most:
629   // - max_index*(max_index-1)/2 (the first two for loops)
630   // - max_index - 1 in the last for loop at the first iteration of the while
631   //   loop, max_index - 2 at the second iteration ... therefore
632   //   max_index*(max_index-1)/2 overall too
633   histo_queue->max_size = max_index * max_index;
634   // We allocate max_size + 1 because the last element at index "size" is
635   // used as temporary data (and it could be up to max_size).
636   histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
637       histo_queue->max_size + 1, sizeof(*histo_queue->queue));
638   return histo_queue->queue != NULL;
639 }
640 
HistoQueueClear(HistoQueue * const histo_queue)641 static void HistoQueueClear(HistoQueue* const histo_queue) {
642   assert(histo_queue != NULL);
643   WebPSafeFree(histo_queue->queue);
644 }
645 
SwapHistogramPairs(HistogramPair * p1,HistogramPair * p2)646 static void SwapHistogramPairs(HistogramPair *p1,
647                                HistogramPair *p2) {
648   const HistogramPair tmp = *p1;
649   *p1 = *p2;
650   *p2 = tmp;
651 }
652 
653 // Given a valid priority queue in range [0, queue_size) this function checks
654 // whether histo_queue[queue_size] should be accepted and swaps it with the
655 // front if it is smaller. Otherwise, it leaves it as is.
UpdateQueueFront(HistoQueue * const histo_queue)656 static void UpdateQueueFront(HistoQueue* const histo_queue) {
657   if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
658 
659   if (histo_queue->queue[histo_queue->size].cost_diff <
660       histo_queue->queue[0].cost_diff) {
661     SwapHistogramPairs(histo_queue->queue,
662                        histo_queue->queue + histo_queue->size);
663   }
664   ++histo_queue->size;
665 
666   // We cannot add more elements than the capacity.
667   // The allocation adds an extra element to the official capacity so that
668   // histo_queue->queue[histo_queue->max_size] is read/written within bound.
669   assert(histo_queue->size <= histo_queue->max_size);
670 }
671 
672 // -----------------------------------------------------------------------------
673 
PreparePair(VP8LHistogram ** histograms,int idx1,int idx2,HistogramPair * const pair)674 static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
675                         HistogramPair* const pair) {
676   VP8LHistogram* h1;
677   VP8LHistogram* h2;
678   double sum_cost;
679 
680   if (idx1 > idx2) {
681     const int tmp = idx2;
682     idx2 = idx1;
683     idx1 = tmp;
684   }
685   pair->idx1 = idx1;
686   pair->idx2 = idx2;
687   h1 = histograms[idx1];
688   h2 = histograms[idx2];
689   sum_cost = h1->bit_cost_ + h2->bit_cost_;
690   pair->cost_combo = 0.;
691   GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo);
692   pair->cost_diff = pair->cost_combo - sum_cost;
693 }
694 
695 // Combines histograms by continuously choosing the one with the highest cost
696 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo)697 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
698   int ok = 0;
699   int image_histo_size = image_histo->size;
700   int i, j;
701   VP8LHistogram** const histograms = image_histo->histograms;
702   // Indexes of remaining histograms.
703   int* const clusters =
704       (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
705   // Priority queue of histogram pairs.
706   HistoQueue histo_queue;
707 
708   if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
709     goto End;
710   }
711 
712   for (i = 0; i < image_histo_size; ++i) {
713     // Initialize clusters indexes.
714     clusters[i] = i;
715     for (j = i + 1; j < image_histo_size; ++j) {
716       // Initialize positions array.
717       PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]);
718       UpdateQueueFront(&histo_queue);
719     }
720   }
721 
722   while (image_histo_size > 1 && histo_queue.size > 0) {
723     HistogramPair* copy_to;
724     const int idx1 = histo_queue.queue[0].idx1;
725     const int idx2 = histo_queue.queue[0].idx2;
726     HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
727     histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
728     // Remove merged histogram.
729     for (i = 0; i + 1 < image_histo_size; ++i) {
730       if (clusters[i] >= idx2) {
731         clusters[i] = clusters[i + 1];
732       }
733     }
734     --image_histo_size;
735 
736     // Remove pairs intersecting the just combined best pair. This will
737     // therefore pop the head of the queue.
738     copy_to = histo_queue.queue;
739     for (i = 0; i < histo_queue.size; ++i) {
740       HistogramPair* const p = histo_queue.queue + i;
741       if (p->idx1 == idx1 || p->idx2 == idx1 ||
742           p->idx1 == idx2 || p->idx2 == idx2) {
743         // Do not copy the invalid pair.
744         continue;
745       }
746       if (p->cost_diff < histo_queue.queue[0].cost_diff) {
747         // Replace the top of the queue if we found better.
748         SwapHistogramPairs(histo_queue.queue, p);
749       }
750       SwapHistogramPairs(copy_to, p);
751       ++copy_to;
752     }
753     histo_queue.size = (int)(copy_to - histo_queue.queue);
754 
755     // Push new pairs formed with combined histogram to the queue.
756     for (i = 0; i < image_histo_size; ++i) {
757       if (clusters[i] != idx1) {
758         PreparePair(histograms, idx1, clusters[i],
759                     &histo_queue.queue[histo_queue.size]);
760         UpdateQueueFront(&histo_queue);
761       }
762     }
763   }
764   // Move remaining histograms to the beginning of the array.
765   for (i = 0; i < image_histo_size; ++i) {
766     if (i != clusters[i]) {  // swap the two histograms
767       HistogramSwap(&histograms[i], &histograms[clusters[i]]);
768     }
769   }
770 
771   image_histo->size = image_histo_size;
772   ok = 1;
773 
774  End:
775   WebPSafeFree(clusters);
776   HistoQueueClear(&histo_queue);
777   return ok;
778 }
779 
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,VP8LHistogram * tmp_histo,VP8LHistogram * best_combo,int quality,int min_cluster_size)780 static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
781                                        VP8LHistogram* tmp_histo,
782                                        VP8LHistogram* best_combo,
783                                        int quality, int min_cluster_size) {
784   int iter;
785   uint32_t seed = 0;
786   int tries_with_no_success = 0;
787   int image_histo_size = image_histo->size;
788   const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
789   const int outer_iters = image_histo_size * iter_mult;
790   const int num_pairs = image_histo_size / 2;
791   const int num_tries_no_success = outer_iters / 2;
792   int idx2_max = image_histo_size - 1;
793   int do_brute_dorce = 0;
794   VP8LHistogram** const histograms = image_histo->histograms;
795 
796   // Collapse similar histograms in 'image_histo'.
797   ++min_cluster_size;
798   for (iter = 0;
799        iter < outer_iters && image_histo_size >= min_cluster_size;
800        ++iter) {
801     double best_cost_diff = 0.;
802     int best_idx1 = -1, best_idx2 = 1;
803     int j;
804     int num_tries =
805         (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
806     // Use a brute force approach if:
807     // - stochastic has not worked for a while and
808     // - if the number of iterations for brute force is less than the number of
809     // iterations if we never find a match ever again stochastically (hence
810     // num_tries times the number of remaining outer iterations).
811     do_brute_dorce =
812         (tries_with_no_success > 10) &&
813         (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter));
814     if (do_brute_dorce) num_tries = idx2_max;
815 
816     seed += iter;
817     for (j = 0; j < num_tries; ++j) {
818       double curr_cost_diff;
819       // Choose two histograms at random and try to combine them.
820       uint32_t idx1, idx2;
821       if (do_brute_dorce) {
822         // Use a brute force approach.
823         idx1 = (uint32_t)j;
824         idx2 = (uint32_t)idx2_max;
825       } else {
826         const uint32_t tmp = (j & 7) + 1;
827         const uint32_t diff =
828             (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
829         idx1 = MyRand(&seed) % image_histo_size;
830         idx2 = (idx1 + diff + 1) % image_histo_size;
831         if (idx1 == idx2) {
832           continue;
833         }
834       }
835 
836       // Calculate cost reduction on combining.
837       curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
838                                         tmp_histo, best_cost_diff);
839       if (curr_cost_diff < best_cost_diff) {  // found a better pair?
840         HistogramSwap(&best_combo, &tmp_histo);
841         best_cost_diff = curr_cost_diff;
842         best_idx1 = idx1;
843         best_idx2 = idx2;
844       }
845     }
846     if (do_brute_dorce) --idx2_max;
847 
848     if (best_idx1 >= 0) {
849       HistogramSwap(&best_combo, &histograms[best_idx1]);
850       // swap best_idx2 slot with last one (which is now unused)
851       --image_histo_size;
852       if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1;
853       if (best_idx2 != image_histo_size) {
854         HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
855         histograms[image_histo_size] = NULL;
856       }
857       tries_with_no_success = 0;
858     }
859     if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) {
860       break;
861     }
862   }
863   image_histo->size = image_histo_size;
864 }
865 
866 // -----------------------------------------------------------------------------
867 // Histogram refinement
868 
869 // Find the best 'out' histogram for each of the 'in' histograms.
870 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,const VP8LHistogramSet * const out,uint16_t * const symbols)871 static void HistogramRemap(const VP8LHistogramSet* const in,
872                            const VP8LHistogramSet* const out,
873                            uint16_t* const symbols) {
874   int i;
875   VP8LHistogram** const in_histo = in->histograms;
876   VP8LHistogram** const out_histo = out->histograms;
877   const int in_size = in->size;
878   const int out_size = out->size;
879   if (out_size > 1) {
880     for (i = 0; i < in_size; ++i) {
881       int best_out = 0;
882       double best_bits = MAX_COST;
883       int k;
884       for (k = 0; k < out_size; ++k) {
885         const double cur_bits =
886             HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
887         if (k == 0 || cur_bits < best_bits) {
888           best_bits = cur_bits;
889           best_out = k;
890         }
891       }
892       symbols[i] = best_out;
893     }
894   } else {
895     assert(out_size == 1);
896     for (i = 0; i < in_size; ++i) {
897       symbols[i] = 0;
898     }
899   }
900 
901   // Recompute each out based on raw and symbols.
902   for (i = 0; i < out_size; ++i) {
903     HistogramClear(out_histo[i]);
904   }
905 
906   for (i = 0; i < in_size; ++i) {
907     const int idx = symbols[i];
908     HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
909   }
910 }
911 
GetCombineCostFactor(int histo_size,int quality)912 static double GetCombineCostFactor(int histo_size, int quality) {
913   double combine_cost_factor = 0.16;
914   if (quality < 90) {
915     if (histo_size > 256) combine_cost_factor /= 2.;
916     if (histo_size > 512) combine_cost_factor /= 2.;
917     if (histo_size > 1024) combine_cost_factor /= 2.;
918     if (quality <= 50) combine_cost_factor /= 2.;
919   }
920   return combine_cost_factor;
921 }
922 
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histo_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogramSet * const tmp_histos,uint16_t * const histogram_symbols)923 int VP8LGetHistoImageSymbols(int xsize, int ysize,
924                              const VP8LBackwardRefs* const refs,
925                              int quality, int low_effort,
926                              int histo_bits, int cache_bits,
927                              VP8LHistogramSet* const image_histo,
928                              VP8LHistogramSet* const tmp_histos,
929                              uint16_t* const histogram_symbols) {
930   int ok = 0;
931   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
932   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
933   const int image_histo_raw_size = histo_xsize * histo_ysize;
934   VP8LHistogramSet* const orig_histo =
935       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
936   VP8LHistogram* cur_combo;
937   // Don't attempt linear bin-partition heuristic for
938   // histograms of small sizes (as bin_map will be very sparse) and
939   // maximum quality q==100 (to preserve the compression gains at that level).
940   const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
941   const int entropy_combine =
942       (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
943 
944   if (orig_histo == NULL) goto Error;
945 
946   // Construct the histograms from backward references.
947   HistogramBuild(xsize, histo_bits, refs, orig_histo);
948   // Copies the histograms and computes its bit_cost.
949   HistogramCopyAndAnalyze(orig_histo, image_histo);
950 
951   cur_combo = tmp_histos->histograms[1];  // pick up working slot
952   if (entropy_combine) {
953     const int bin_map_size = orig_histo->size;
954     // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
955     uint16_t* const bin_map = histogram_symbols;
956     const double combine_cost_factor =
957         GetCombineCostFactor(image_histo_raw_size, quality);
958 
959     HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
960     // Collapse histograms with similar entropy.
961     cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo,
962                                            bin_map, bin_map_size,
963                                            entropy_combine_num_bins,
964                                            combine_cost_factor, low_effort);
965   }
966 
967   // Don't combine the histograms using stochastic and greedy heuristics for
968   // low-effort compression mode.
969   if (!low_effort || !entropy_combine) {
970     const float x = quality / 100.f;
971     // cubic ramp between 1 and MAX_HISTO_GREEDY:
972     const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
973     HistogramCombineStochastic(image_histo, tmp_histos->histograms[0],
974                                cur_combo, quality, threshold_size);
975     if ((image_histo->size <= threshold_size) &&
976         !HistogramCombineGreedy(image_histo)) {
977       goto Error;
978     }
979   }
980 
981   // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
982   // Find the optimal map from original histograms to the final ones.
983   HistogramRemap(orig_histo, image_histo, histogram_symbols);
984 
985   ok = 1;
986 
987  Error:
988   VP8LFreeHistogramSet(orig_histo);
989   return ok;
990 }
991