1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h>  // for abs()
19 #include <emmintrin.h>
20 
21 #include "./common_sse2.h"
22 #include "../enc/cost_enc.h"
23 #include "../enc/vp8i_enc.h"
24 
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27 
28 // Does one or two inverse transforms.
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)29 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
30                        int do_two) {
31   // This implementation makes use of 16-bit fixed point versions of two
32   // multiply constants:
33   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35   //
36   // To be able to use signed 16-bit integers, we use the following trick to
37   // have constants within range:
38   // - Associated constants are obtained by subtracting the 16-bit fixed point
39   //   version of one:
40   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
41   //      K1 = 85267  =>  k1 =  20091
42   //      K2 = 35468  =>  k2 = -30068
43   // - The multiplication of a variable by a constant become the sum of the
44   //   variable and the multiplication of that variable by the associated
45   //   constant:
46   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47   const __m128i k1 = _mm_set1_epi16(20091);
48   const __m128i k2 = _mm_set1_epi16(-30068);
49   __m128i T0, T1, T2, T3;
50 
51   // Load and concatenate the transform coefficients (we'll do two inverse
52   // transforms in parallel). In the case of only one inverse transform, the
53   // second half of the vectors will just contain random value we'll never
54   // use nor store.
55   __m128i in0, in1, in2, in3;
56   {
57     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
58     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
59     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
60     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
61     // a00 a10 a20 a30   x x x x
62     // a01 a11 a21 a31   x x x x
63     // a02 a12 a22 a32   x x x x
64     // a03 a13 a23 a33   x x x x
65     if (do_two) {
66       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
67       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
68       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
69       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
70       in0 = _mm_unpacklo_epi64(in0, inB0);
71       in1 = _mm_unpacklo_epi64(in1, inB1);
72       in2 = _mm_unpacklo_epi64(in2, inB2);
73       in3 = _mm_unpacklo_epi64(in3, inB3);
74       // a00 a10 a20 a30   b00 b10 b20 b30
75       // a01 a11 a21 a31   b01 b11 b21 b31
76       // a02 a12 a22 a32   b02 b12 b22 b32
77       // a03 a13 a23 a33   b03 b13 b23 b33
78     }
79   }
80 
81   // Vertical pass and subsequent transpose.
82   {
83     // First pass, c and d calculations are longer because of the "trick"
84     // multiplications.
85     const __m128i a = _mm_add_epi16(in0, in2);
86     const __m128i b = _mm_sub_epi16(in0, in2);
87     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
88     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
89     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
90     const __m128i c3 = _mm_sub_epi16(in1, in3);
91     const __m128i c4 = _mm_sub_epi16(c1, c2);
92     const __m128i c = _mm_add_epi16(c3, c4);
93     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
94     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
95     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
96     const __m128i d3 = _mm_add_epi16(in1, in3);
97     const __m128i d4 = _mm_add_epi16(d1, d2);
98     const __m128i d = _mm_add_epi16(d3, d4);
99 
100     // Second pass.
101     const __m128i tmp0 = _mm_add_epi16(a, d);
102     const __m128i tmp1 = _mm_add_epi16(b, c);
103     const __m128i tmp2 = _mm_sub_epi16(b, c);
104     const __m128i tmp3 = _mm_sub_epi16(a, d);
105 
106     // Transpose the two 4x4.
107     VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
108   }
109 
110   // Horizontal pass and subsequent transpose.
111   {
112     // First pass, c and d calculations are longer because of the "trick"
113     // multiplications.
114     const __m128i four = _mm_set1_epi16(4);
115     const __m128i dc = _mm_add_epi16(T0, four);
116     const __m128i a =  _mm_add_epi16(dc, T2);
117     const __m128i b =  _mm_sub_epi16(dc, T2);
118     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
119     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
120     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
121     const __m128i c3 = _mm_sub_epi16(T1, T3);
122     const __m128i c4 = _mm_sub_epi16(c1, c2);
123     const __m128i c = _mm_add_epi16(c3, c4);
124     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
125     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
126     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
127     const __m128i d3 = _mm_add_epi16(T1, T3);
128     const __m128i d4 = _mm_add_epi16(d1, d2);
129     const __m128i d = _mm_add_epi16(d3, d4);
130 
131     // Second pass.
132     const __m128i tmp0 = _mm_add_epi16(a, d);
133     const __m128i tmp1 = _mm_add_epi16(b, c);
134     const __m128i tmp2 = _mm_sub_epi16(b, c);
135     const __m128i tmp3 = _mm_sub_epi16(a, d);
136     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
137     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
138     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
139     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
140 
141     // Transpose the two 4x4.
142     VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
143                            &T2, &T3);
144   }
145 
146   // Add inverse transform to 'ref' and store.
147   {
148     const __m128i zero = _mm_setzero_si128();
149     // Load the reference(s).
150     __m128i ref0, ref1, ref2, ref3;
151     if (do_two) {
152       // Load eight bytes/pixels per line.
153       ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
154       ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
155       ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
156       ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
157     } else {
158       // Load four bytes/pixels per line.
159       ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
160       ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
161       ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
162       ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
163     }
164     // Convert to 16b.
165     ref0 = _mm_unpacklo_epi8(ref0, zero);
166     ref1 = _mm_unpacklo_epi8(ref1, zero);
167     ref2 = _mm_unpacklo_epi8(ref2, zero);
168     ref3 = _mm_unpacklo_epi8(ref3, zero);
169     // Add the inverse transform(s).
170     ref0 = _mm_add_epi16(ref0, T0);
171     ref1 = _mm_add_epi16(ref1, T1);
172     ref2 = _mm_add_epi16(ref2, T2);
173     ref3 = _mm_add_epi16(ref3, T3);
174     // Unsigned saturate to 8b.
175     ref0 = _mm_packus_epi16(ref0, ref0);
176     ref1 = _mm_packus_epi16(ref1, ref1);
177     ref2 = _mm_packus_epi16(ref2, ref2);
178     ref3 = _mm_packus_epi16(ref3, ref3);
179     // Store the results.
180     if (do_two) {
181       // Store eight bytes/pixels per line.
182       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
183       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
184       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
185       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
186     } else {
187       // Store four bytes/pixels per line.
188       WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
189       WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
190       WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
191       WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
192     }
193   }
194 }
195 
FTransformPass1(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)196 static void FTransformPass1(const __m128i* const in01,
197                             const __m128i* const in23,
198                             __m128i* const out01,
199                             __m128i* const out32) {
200   const __m128i k937 = _mm_set1_epi32(937);
201   const __m128i k1812 = _mm_set1_epi32(1812);
202 
203   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
204   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
205   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
206                                             2217, 5352, 2217, 5352);
207   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
208                                             -5352, 2217, -5352, 2217);
209 
210   // *in01 = 00 01 10 11 02 03 12 13
211   // *in23 = 20 21 30 31 22 23 32 33
212   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
213   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
214   // 00 01 10 11 03 02 13 12
215   // 20 21 30 31 23 22 33 32
216   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
217   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
218   // 00 01 10 11 20 21 30 31
219   // 03 02 13 12 23 22 33 32
220   const __m128i a01 = _mm_add_epi16(s01, s32);
221   const __m128i a32 = _mm_sub_epi16(s01, s32);
222   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
223   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
224 
225   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
226   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
227   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
228   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
229   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
230   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
231   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
232   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
233   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
234   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
235   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
236   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
237   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
238   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
239   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
240 }
241 
FTransformPass2(const __m128i * const v01,const __m128i * const v32,int16_t * out)242 static void FTransformPass2(const __m128i* const v01, const __m128i* const v32,
243                             int16_t* out) {
244   const __m128i zero = _mm_setzero_si128();
245   const __m128i seven = _mm_set1_epi16(7);
246   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
247                                            5352,  2217, 5352,  2217);
248   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
249                                            2217, -5352, 2217, -5352);
250   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
251   const __m128i k51000 = _mm_set1_epi32(51000);
252 
253   // Same operations are done on the (0,3) and (1,2) pairs.
254   // a3 = v0 - v3
255   // a2 = v1 - v2
256   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
257   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
258 
259   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
260   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
261   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
262   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
263   const __m128i d3 = _mm_add_epi32(c3, k51000);
264   const __m128i e1 = _mm_srai_epi32(d1, 16);
265   const __m128i e3 = _mm_srai_epi32(d3, 16);
266   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
267   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
268   const __m128i f1 = _mm_packs_epi32(e1, e1);
269   const __m128i f3 = _mm_packs_epi32(e3, e3);
270   // g1 = f1 + (a3 != 0);
271   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
272   // desired (0, 1), we add one earlier through k12000_plus_one.
273   // -> g1 = f1 + 1 - (a3 == 0)
274   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
275 
276   // a0 = v0 + v3
277   // a1 = v1 + v2
278   const __m128i a01 = _mm_add_epi16(*v01, *v32);
279   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
280   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
281   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
282   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
283   // d0 = (a0 + a1 + 7) >> 4;
284   // d2 = (a0 - a1 + 7) >> 4;
285   const __m128i d0 = _mm_srai_epi16(c0, 4);
286   const __m128i d2 = _mm_srai_epi16(c2, 4);
287 
288   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
289   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
290   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
291   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
292 }
293 
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)294 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
295   const __m128i zero = _mm_setzero_si128();
296   // Load src.
297   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
298   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
299   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
300   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
301   // 00 01 02 03 *
302   // 10 11 12 13 *
303   // 20 21 22 23 *
304   // 30 31 32 33 *
305   // Shuffle.
306   const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
307   const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
308   // 00 01 10 11 02 03 12 13 * * ...
309   // 20 21 30 31 22 22 32 33 * * ...
310 
311   // Load ref.
312   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
313   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
314   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
315   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
316   const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
317   const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
318 
319   // Convert both to 16 bit.
320   const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
321   const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
322   const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
323   const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
324 
325   // Compute the difference.
326   const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
327   const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
328   __m128i v01, v32;
329 
330   // First pass
331   FTransformPass1(&row01, &row23, &v01, &v32);
332 
333   // Second pass
334   FTransformPass2(&v01, &v32, out);
335 }
336 
FTransform2(const uint8_t * src,const uint8_t * ref,int16_t * out)337 static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) {
338   const __m128i zero = _mm_setzero_si128();
339 
340   // Load src and convert to 16b.
341   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
342   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
343   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
344   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
345   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
346   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
347   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
348   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
349   // Load ref and convert to 16b.
350   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
351   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
352   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
353   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
354   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
355   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
356   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
357   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
358   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
359   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
360   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
361   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
362   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
363 
364   // Unpack and shuffle
365   // 00 01 02 03   0 0 0 0
366   // 10 11 12 13   0 0 0 0
367   // 20 21 22 23   0 0 0 0
368   // 30 31 32 33   0 0 0 0
369   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
370   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
371   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
372   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
373   __m128i v01l, v32l;
374   __m128i v01h, v32h;
375 
376   // First pass
377   FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l);
378   FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h);
379 
380   // Second pass
381   FTransformPass2(&v01l, &v32l, out + 0);
382   FTransformPass2(&v01h, &v32h, out + 16);
383 }
384 
FTransformWHTRow(const int16_t * const in,__m128i * const out)385 static void FTransformWHTRow(const int16_t* const in, __m128i* const out) {
386   const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
387   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
388   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
389   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
390   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
391   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
392   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
393   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
394   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
395   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
396   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
397   const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
398   *out = _mm_madd_epi16(D, kMult);
399 }
400 
FTransformWHT(const int16_t * in,int16_t * out)401 static void FTransformWHT(const int16_t* in, int16_t* out) {
402   // Input is 12b signed.
403   __m128i row0, row1, row2, row3;
404   // Rows are 14b signed.
405   FTransformWHTRow(in + 0 * 64, &row0);
406   FTransformWHTRow(in + 1 * 64, &row1);
407   FTransformWHTRow(in + 2 * 64, &row2);
408   FTransformWHTRow(in + 3 * 64, &row3);
409 
410   {
411     // The a* are 15b signed.
412     const __m128i a0 = _mm_add_epi32(row0, row2);
413     const __m128i a1 = _mm_add_epi32(row1, row3);
414     const __m128i a2 = _mm_sub_epi32(row1, row3);
415     const __m128i a3 = _mm_sub_epi32(row0, row2);
416     const __m128i a0a3 = _mm_packs_epi32(a0, a3);
417     const __m128i a1a2 = _mm_packs_epi32(a1, a2);
418 
419     // The b* are 16b signed.
420     const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
421     const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
422     const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
423     const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
424 
425     _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
426     _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
427   }
428 }
429 
430 //------------------------------------------------------------------------------
431 // Compute susceptibility based on DCT-coeff histograms:
432 // the higher, the "easier" the macroblock is to compress.
433 
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)434 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
435                              int start_block, int end_block,
436                              VP8Histogram* const histo) {
437   const __m128i zero = _mm_setzero_si128();
438   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
439   int j;
440   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
441   for (j = start_block; j < end_block; ++j) {
442     int16_t out[16];
443     int k;
444 
445     FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
446 
447     // Convert coefficients to bin (within out[]).
448     {
449       // Load.
450       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
451       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
452       const __m128i d0 = _mm_sub_epi16(zero, out0);
453       const __m128i d1 = _mm_sub_epi16(zero, out1);
454       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
455       const __m128i abs1 = _mm_max_epi16(out1, d1);
456       // v = abs(out) >> 3
457       const __m128i v0 = _mm_srai_epi16(abs0, 3);
458       const __m128i v1 = _mm_srai_epi16(abs1, 3);
459       // bin = min(v, MAX_COEFF_THRESH)
460       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
461       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
462       // Store.
463       _mm_storeu_si128((__m128i*)&out[0], bin0);
464       _mm_storeu_si128((__m128i*)&out[8], bin1);
465     }
466 
467     // Convert coefficients to bin.
468     for (k = 0; k < 16; ++k) {
469       ++distribution[out[k]];
470     }
471   }
472   VP8SetHistogramData(distribution, histo);
473 }
474 
475 //------------------------------------------------------------------------------
476 // Intra predictions
477 
478 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)479 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
480   int j;
481   const __m128i values = _mm_set1_epi8(v);
482   for (j = 0; j < 8; ++j) {
483     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
484   }
485 }
486 
Put16(uint8_t v,uint8_t * dst)487 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
488   int j;
489   const __m128i values = _mm_set1_epi8(v);
490   for (j = 0; j < 16; ++j) {
491     _mm_store_si128((__m128i*)(dst + j * BPS), values);
492   }
493 }
494 
Fill(uint8_t * dst,int value,int size)495 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
496   if (size == 4) {
497     int j;
498     for (j = 0; j < 4; ++j) {
499       memset(dst + j * BPS, value, 4);
500     }
501   } else if (size == 8) {
502     Put8x8uv(value, dst);
503   } else {
504     Put16(value, dst);
505   }
506 }
507 
VE8uv(uint8_t * dst,const uint8_t * top)508 static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) {
509   int j;
510   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
511   for (j = 0; j < 8; ++j) {
512     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
513   }
514 }
515 
VE16(uint8_t * dst,const uint8_t * top)516 static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) {
517   const __m128i top_values = _mm_load_si128((const __m128i*)top);
518   int j;
519   for (j = 0; j < 16; ++j) {
520     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
521   }
522 }
523 
VerticalPred(uint8_t * dst,const uint8_t * top,int size)524 static WEBP_INLINE void VerticalPred(uint8_t* dst,
525                                      const uint8_t* top, int size) {
526   if (top != NULL) {
527     if (size == 8) {
528       VE8uv(dst, top);
529     } else {
530       VE16(dst, top);
531     }
532   } else {
533     Fill(dst, 127, size);
534   }
535 }
536 
HE8uv(uint8_t * dst,const uint8_t * left)537 static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) {
538   int j;
539   for (j = 0; j < 8; ++j) {
540     const __m128i values = _mm_set1_epi8(left[j]);
541     _mm_storel_epi64((__m128i*)dst, values);
542     dst += BPS;
543   }
544 }
545 
HE16(uint8_t * dst,const uint8_t * left)546 static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) {
547   int j;
548   for (j = 0; j < 16; ++j) {
549     const __m128i values = _mm_set1_epi8(left[j]);
550     _mm_store_si128((__m128i*)dst, values);
551     dst += BPS;
552   }
553 }
554 
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)555 static WEBP_INLINE void HorizontalPred(uint8_t* dst,
556                                        const uint8_t* left, int size) {
557   if (left != NULL) {
558     if (size == 8) {
559       HE8uv(dst, left);
560     } else {
561       HE16(dst, left);
562     }
563   } else {
564     Fill(dst, 129, size);
565   }
566 }
567 
TM(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)568 static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left,
569                            const uint8_t* top, int size) {
570   const __m128i zero = _mm_setzero_si128();
571   int y;
572   if (size == 8) {
573     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
574     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
575     for (y = 0; y < 8; ++y, dst += BPS) {
576       const int val = left[y] - left[-1];
577       const __m128i base = _mm_set1_epi16(val);
578       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
579       _mm_storel_epi64((__m128i*)dst, out);
580     }
581   } else {
582     const __m128i top_values = _mm_load_si128((const __m128i*)top);
583     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
584     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
585     for (y = 0; y < 16; ++y, dst += BPS) {
586       const int val = left[y] - left[-1];
587       const __m128i base = _mm_set1_epi16(val);
588       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
589       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
590       const __m128i out = _mm_packus_epi16(out_0, out_1);
591       _mm_store_si128((__m128i*)dst, out);
592     }
593   }
594 }
595 
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)596 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
597                                    const uint8_t* top, int size) {
598   if (left != NULL) {
599     if (top != NULL) {
600       TM(dst, left, top, size);
601     } else {
602       HorizontalPred(dst, left, size);
603     }
604   } else {
605     // true motion without left samples (hence: with default 129 value)
606     // is equivalent to VE prediction where you just copy the top samples.
607     // Note that if top samples are not available, the default value is
608     // then 129, and not 127 as in the VerticalPred case.
609     if (top != NULL) {
610       VerticalPred(dst, top, size);
611     } else {
612       Fill(dst, 129, size);
613     }
614   }
615 }
616 
DC8uv(uint8_t * dst,const uint8_t * left,const uint8_t * top)617 static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left,
618                               const uint8_t* top) {
619   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
620   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
621   const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
622   const int DC = VP8HorizontalAdd8b(&combined) + 8;
623   Put8x8uv(DC >> 4, dst);
624 }
625 
DC8uvNoLeft(uint8_t * dst,const uint8_t * top)626 static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) {
627   const __m128i zero = _mm_setzero_si128();
628   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
629   const __m128i sum = _mm_sad_epu8(top_values, zero);
630   const int DC = _mm_cvtsi128_si32(sum) + 4;
631   Put8x8uv(DC >> 3, dst);
632 }
633 
DC8uvNoTop(uint8_t * dst,const uint8_t * left)634 static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) {
635   // 'left' is contiguous so we can reuse the top summation.
636   DC8uvNoLeft(dst, left);
637 }
638 
DC8uvNoTopLeft(uint8_t * dst)639 static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) {
640   Put8x8uv(0x80, dst);
641 }
642 
DC8uvMode(uint8_t * dst,const uint8_t * left,const uint8_t * top)643 static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left,
644                                   const uint8_t* top) {
645   if (top != NULL) {
646     if (left != NULL) {  // top and left present
647       DC8uv(dst, left, top);
648     } else {  // top, but no left
649       DC8uvNoLeft(dst, top);
650     }
651   } else if (left != NULL) {  // left but no top
652     DC8uvNoTop(dst, left);
653   } else {  // no top, no left, nothing.
654     DC8uvNoTopLeft(dst);
655   }
656 }
657 
DC16(uint8_t * dst,const uint8_t * left,const uint8_t * top)658 static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left,
659                              const uint8_t* top) {
660   const __m128i top_row = _mm_load_si128((const __m128i*)top);
661   const __m128i left_row = _mm_load_si128((const __m128i*)left);
662   const int DC =
663       VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
664   Put16(DC >> 5, dst);
665 }
666 
DC16NoLeft(uint8_t * dst,const uint8_t * top)667 static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) {
668   const __m128i top_row = _mm_load_si128((const __m128i*)top);
669   const int DC = VP8HorizontalAdd8b(&top_row) + 8;
670   Put16(DC >> 4, dst);
671 }
672 
DC16NoTop(uint8_t * dst,const uint8_t * left)673 static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) {
674   // 'left' is contiguous so we can reuse the top summation.
675   DC16NoLeft(dst, left);
676 }
677 
DC16NoTopLeft(uint8_t * dst)678 static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) {
679   Put16(0x80, dst);
680 }
681 
DC16Mode(uint8_t * dst,const uint8_t * left,const uint8_t * top)682 static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left,
683                                  const uint8_t* top) {
684   if (top != NULL) {
685     if (left != NULL) {  // top and left present
686       DC16(dst, left, top);
687     } else {  // top, but no left
688       DC16NoLeft(dst, top);
689     }
690   } else if (left != NULL) {  // left but no top
691     DC16NoTop(dst, left);
692   } else {  // no top, no left, nothing.
693     DC16NoTopLeft(dst);
694   }
695 }
696 
697 //------------------------------------------------------------------------------
698 // 4x4 predictions
699 
700 #define DST(x, y) dst[(x) + (y) * BPS]
701 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
702 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
703 
704 // We use the following 8b-arithmetic tricks:
705 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
706 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
707 // and:
708 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
709 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
710 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
711 
VE4(uint8_t * dst,const uint8_t * top)712 static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) {  // vertical
713   const __m128i one = _mm_set1_epi8(1);
714   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
715   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
716   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
717   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
718   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
719   const __m128i b = _mm_subs_epu8(a, lsb);
720   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
721   const uint32_t vals = _mm_cvtsi128_si32(avg);
722   int i;
723   for (i = 0; i < 4; ++i) {
724     WebPUint32ToMem(dst + i * BPS, vals);
725   }
726 }
727 
HE4(uint8_t * dst,const uint8_t * top)728 static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) {  // horizontal
729   const int X = top[-1];
730   const int I = top[-2];
731   const int J = top[-3];
732   const int K = top[-4];
733   const int L = top[-5];
734   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
735   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
736   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
737   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
738 }
739 
DC4(uint8_t * dst,const uint8_t * top)740 static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) {
741   uint32_t dc = 4;
742   int i;
743   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
744   Fill(dst, dc >> 3, 4);
745 }
746 
LD4(uint8_t * dst,const uint8_t * top)747 static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) {  // Down-Left
748   const __m128i one = _mm_set1_epi8(1);
749   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
750   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
751   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
752   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
753   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
754   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
755   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
756   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
757   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
758   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
759   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
760   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
761 }
762 
VR4(uint8_t * dst,const uint8_t * top)763 static WEBP_INLINE void VR4(uint8_t* dst,
764                             const uint8_t* top) {  // Vertical-Right
765   const __m128i one = _mm_set1_epi8(1);
766   const int I = top[-2];
767   const int J = top[-3];
768   const int K = top[-4];
769   const int X = top[-1];
770   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
771   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
772   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
773   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
774   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
775   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
776   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
777   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
778   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
779   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
780   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
781   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
782   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
783 
784   // these two are hard to implement in SSE2, so we keep the C-version:
785   DST(0, 2) = AVG3(J, I, X);
786   DST(0, 3) = AVG3(K, J, I);
787 }
788 
VL4(uint8_t * dst,const uint8_t * top)789 static WEBP_INLINE void VL4(uint8_t* dst,
790                             const uint8_t* top) {  // Vertical-Left
791   const __m128i one = _mm_set1_epi8(1);
792   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
793   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
794   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
795   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
796   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
797   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
798   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
799   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
800   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
801   const __m128i abbc = _mm_or_si128(ab, bc);
802   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
803   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
804   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
805   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
806   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
807   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
808   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
809 
810   // these two are hard to get and irregular
811   DST(3, 2) = (extra_out >> 0) & 0xff;
812   DST(3, 3) = (extra_out >> 8) & 0xff;
813 }
814 
RD4(uint8_t * dst,const uint8_t * top)815 static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) {  // Down-right
816   const __m128i one = _mm_set1_epi8(1);
817   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
818   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
819   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
820   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
821   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
822   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
823   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
824   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
825   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
826   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
827   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
828   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
829 }
830 
HU4(uint8_t * dst,const uint8_t * top)831 static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) {
832   const int I = top[-2];
833   const int J = top[-3];
834   const int K = top[-4];
835   const int L = top[-5];
836   DST(0, 0) =             AVG2(I, J);
837   DST(2, 0) = DST(0, 1) = AVG2(J, K);
838   DST(2, 1) = DST(0, 2) = AVG2(K, L);
839   DST(1, 0) =             AVG3(I, J, K);
840   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
841   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
842   DST(3, 2) = DST(2, 2) =
843   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
844 }
845 
HD4(uint8_t * dst,const uint8_t * top)846 static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) {
847   const int X = top[-1];
848   const int I = top[-2];
849   const int J = top[-3];
850   const int K = top[-4];
851   const int L = top[-5];
852   const int A = top[0];
853   const int B = top[1];
854   const int C = top[2];
855 
856   DST(0, 0) = DST(2, 1) = AVG2(I, X);
857   DST(0, 1) = DST(2, 2) = AVG2(J, I);
858   DST(0, 2) = DST(2, 3) = AVG2(K, J);
859   DST(0, 3)             = AVG2(L, K);
860 
861   DST(3, 0)             = AVG3(A, B, C);
862   DST(2, 0)             = AVG3(X, A, B);
863   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
864   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
865   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
866   DST(1, 3)             = AVG3(L, K, J);
867 }
868 
TM4(uint8_t * dst,const uint8_t * top)869 static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) {
870   const __m128i zero = _mm_setzero_si128();
871   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
872   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
873   int y;
874   for (y = 0; y < 4; ++y, dst += BPS) {
875     const int val = top[-2 - y] - top[-1];
876     const __m128i base = _mm_set1_epi16(val);
877     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
878     WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
879   }
880 }
881 
882 #undef DST
883 #undef AVG3
884 #undef AVG2
885 
886 //------------------------------------------------------------------------------
887 // luma 4x4 prediction
888 
889 // Left samples are top[-5 .. -2], top_left is top[-1], top are
890 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)891 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
892   DC4(I4DC4 + dst, top);
893   TM4(I4TM4 + dst, top);
894   VE4(I4VE4 + dst, top);
895   HE4(I4HE4 + dst, top);
896   RD4(I4RD4 + dst, top);
897   VR4(I4VR4 + dst, top);
898   LD4(I4LD4 + dst, top);
899   VL4(I4VL4 + dst, top);
900   HD4(I4HD4 + dst, top);
901   HU4(I4HU4 + dst, top);
902 }
903 
904 //------------------------------------------------------------------------------
905 // Chroma 8x8 prediction (paragraph 12.2)
906 
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)907 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
908                              const uint8_t* top) {
909   // U block
910   DC8uvMode(C8DC8 + dst, left, top);
911   VerticalPred(C8VE8 + dst, top, 8);
912   HorizontalPred(C8HE8 + dst, left, 8);
913   TrueMotion(C8TM8 + dst, left, top, 8);
914   // V block
915   dst += 8;
916   if (top != NULL) top += 8;
917   if (left != NULL) left += 16;
918   DC8uvMode(C8DC8 + dst, left, top);
919   VerticalPred(C8VE8 + dst, top, 8);
920   HorizontalPred(C8HE8 + dst, left, 8);
921   TrueMotion(C8TM8 + dst, left, top, 8);
922 }
923 
924 //------------------------------------------------------------------------------
925 // luma 16x16 prediction (paragraph 12.3)
926 
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)927 static void Intra16Preds(uint8_t* dst,
928                          const uint8_t* left, const uint8_t* top) {
929   DC16Mode(I16DC16 + dst, left, top);
930   VerticalPred(I16VE16 + dst, top, 16);
931   HorizontalPred(I16HE16 + dst, left, 16);
932   TrueMotion(I16TM16 + dst, left, top, 16);
933 }
934 
935 //------------------------------------------------------------------------------
936 // Metric
937 
SubtractAndAccumulate(const __m128i a,const __m128i b,__m128i * const sum)938 static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b,
939                                               __m128i* const sum) {
940   // take abs(a-b) in 8b
941   const __m128i a_b = _mm_subs_epu8(a, b);
942   const __m128i b_a = _mm_subs_epu8(b, a);
943   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
944   // zero-extend to 16b
945   const __m128i zero = _mm_setzero_si128();
946   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
947   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
948   // multiply with self
949   const __m128i sum1 = _mm_madd_epi16(C0, C0);
950   const __m128i sum2 = _mm_madd_epi16(C1, C1);
951   *sum = _mm_add_epi32(sum1, sum2);
952 }
953 
SSE_16xN(const uint8_t * a,const uint8_t * b,int num_pairs)954 static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b,
955                                 int num_pairs) {
956   __m128i sum = _mm_setzero_si128();
957   int32_t tmp[4];
958   int i;
959 
960   for (i = 0; i < num_pairs; ++i) {
961     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
962     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
963     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
964     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
965     __m128i sum1, sum2;
966     SubtractAndAccumulate(a0, b0, &sum1);
967     SubtractAndAccumulate(a1, b1, &sum2);
968     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
969     a += 2 * BPS;
970     b += 2 * BPS;
971   }
972   _mm_storeu_si128((__m128i*)tmp, sum);
973   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
974 }
975 
SSE16x16(const uint8_t * a,const uint8_t * b)976 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
977   return SSE_16xN(a, b, 8);
978 }
979 
SSE16x8(const uint8_t * a,const uint8_t * b)980 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
981   return SSE_16xN(a, b, 4);
982 }
983 
984 #define LOAD_8x16b(ptr) \
985   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
986 
SSE8x8(const uint8_t * a,const uint8_t * b)987 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
988   const __m128i zero = _mm_setzero_si128();
989   int num_pairs = 4;
990   __m128i sum = zero;
991   int32_t tmp[4];
992   while (num_pairs-- > 0) {
993     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
994     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
995     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
996     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
997     // subtract
998     const __m128i c0 = _mm_subs_epi16(a0, b0);
999     const __m128i c1 = _mm_subs_epi16(a1, b1);
1000     // multiply/accumulate with self
1001     const __m128i d0 = _mm_madd_epi16(c0, c0);
1002     const __m128i d1 = _mm_madd_epi16(c1, c1);
1003     // collect
1004     const __m128i sum01 = _mm_add_epi32(d0, d1);
1005     sum = _mm_add_epi32(sum, sum01);
1006     a += 2 * BPS;
1007     b += 2 * BPS;
1008   }
1009   _mm_storeu_si128((__m128i*)tmp, sum);
1010   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1011 }
1012 #undef LOAD_8x16b
1013 
SSE4x4(const uint8_t * a,const uint8_t * b)1014 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
1015   const __m128i zero = _mm_setzero_si128();
1016 
1017   // Load values. Note that we read 8 pixels instead of 4,
1018   // but the a/b buffers are over-allocated to that effect.
1019   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1020   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1021   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1022   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1023   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1024   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1025   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1026   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1027   // Combine pair of lines.
1028   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1029   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1030   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1031   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1032   // Convert to 16b.
1033   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1034   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1035   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1036   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1037   // subtract, square and accumulate
1038   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1039   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1040   const __m128i e0 = _mm_madd_epi16(d0, d0);
1041   const __m128i e1 = _mm_madd_epi16(d1, d1);
1042   const __m128i sum = _mm_add_epi32(e0, e1);
1043 
1044   int32_t tmp[4];
1045   _mm_storeu_si128((__m128i*)tmp, sum);
1046   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1047 }
1048 
1049 //------------------------------------------------------------------------------
1050 
Mean16x4(const uint8_t * ref,uint32_t dc[4])1051 static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) {
1052   const __m128i mask = _mm_set1_epi16(0x00ff);
1053   const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1054   const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1055   const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1056   const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1057   const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1058   const __m128i b1 = _mm_srli_epi16(a1, 8);
1059   const __m128i b2 = _mm_srli_epi16(a2, 8);
1060   const __m128i b3 = _mm_srli_epi16(a3, 8);
1061   const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1062   const __m128i c1 = _mm_and_si128(a1, mask);
1063   const __m128i c2 = _mm_and_si128(a2, mask);
1064   const __m128i c3 = _mm_and_si128(a3, mask);
1065   const __m128i d0 = _mm_add_epi32(b0, c0);
1066   const __m128i d1 = _mm_add_epi32(b1, c1);
1067   const __m128i d2 = _mm_add_epi32(b2, c2);
1068   const __m128i d3 = _mm_add_epi32(b3, c3);
1069   const __m128i e0 = _mm_add_epi32(d0, d1);
1070   const __m128i e1 = _mm_add_epi32(d2, d3);
1071   const __m128i f0 = _mm_add_epi32(e0, e1);
1072   uint16_t tmp[8];
1073   _mm_storeu_si128((__m128i*)tmp, f0);
1074   dc[0] = tmp[0] + tmp[1];
1075   dc[1] = tmp[2] + tmp[3];
1076   dc[2] = tmp[4] + tmp[5];
1077   dc[3] = tmp[6] + tmp[7];
1078 }
1079 
1080 //------------------------------------------------------------------------------
1081 // Texture distortion
1082 //
1083 // We try to match the spectral content (weighted) between source and
1084 // reconstructed samples.
1085 
1086 // Hadamard transform
1087 // Returns the weighted sum of the absolute value of transformed coefficients.
1088 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1089 static int TTransform(const uint8_t* inA, const uint8_t* inB,
1090                       const uint16_t* const w) {
1091   int32_t sum[4];
1092   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1093   const __m128i zero = _mm_setzero_si128();
1094 
1095   // Load and combine inputs.
1096   {
1097     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1098     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1099     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1100     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1101     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1102     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1103     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1104     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1105 
1106     // Combine inA and inB (we'll do two transforms in parallel).
1107     const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1108     const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1109     const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1110     const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1111     tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1112     tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1113     tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1114     tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1115     // a00 a01 a02 a03   b00 b01 b02 b03
1116     // a10 a11 a12 a13   b10 b11 b12 b13
1117     // a20 a21 a22 a23   b20 b21 b22 b23
1118     // a30 a31 a32 a33   b30 b31 b32 b33
1119   }
1120 
1121   // Vertical pass first to avoid a transpose (vertical and horizontal passes
1122   // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1123   {
1124     // Calculate a and b (two 4x4 at once).
1125     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1126     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1127     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1128     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1129     const __m128i b0 = _mm_add_epi16(a0, a1);
1130     const __m128i b1 = _mm_add_epi16(a3, a2);
1131     const __m128i b2 = _mm_sub_epi16(a3, a2);
1132     const __m128i b3 = _mm_sub_epi16(a0, a1);
1133     // a00 a01 a02 a03   b00 b01 b02 b03
1134     // a10 a11 a12 a13   b10 b11 b12 b13
1135     // a20 a21 a22 a23   b20 b21 b22 b23
1136     // a30 a31 a32 a33   b30 b31 b32 b33
1137 
1138     // Transpose the two 4x4.
1139     VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1140   }
1141 
1142   // Horizontal pass and difference of weighted sums.
1143   {
1144     // Load all inputs.
1145     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1146     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1147 
1148     // Calculate a and b (two 4x4 at once).
1149     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1150     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1151     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1152     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1153     const __m128i b0 = _mm_add_epi16(a0, a1);
1154     const __m128i b1 = _mm_add_epi16(a3, a2);
1155     const __m128i b2 = _mm_sub_epi16(a3, a2);
1156     const __m128i b3 = _mm_sub_epi16(a0, a1);
1157 
1158     // Separate the transforms of inA and inB.
1159     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1160     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1161     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1162     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1163 
1164     {
1165       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1166       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1167       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1168       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1169       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1170       A_b2 = _mm_max_epi16(A_b2, d1);
1171       B_b0 = _mm_max_epi16(B_b0, d2);
1172       B_b2 = _mm_max_epi16(B_b2, d3);
1173     }
1174 
1175     // weighted sums
1176     A_b0 = _mm_madd_epi16(A_b0, w_0);
1177     A_b2 = _mm_madd_epi16(A_b2, w_8);
1178     B_b0 = _mm_madd_epi16(B_b0, w_0);
1179     B_b2 = _mm_madd_epi16(B_b2, w_8);
1180     A_b0 = _mm_add_epi32(A_b0, A_b2);
1181     B_b0 = _mm_add_epi32(B_b0, B_b2);
1182 
1183     // difference of weighted sums
1184     A_b0 = _mm_sub_epi32(A_b0, B_b0);
1185     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1186   }
1187   return sum[0] + sum[1] + sum[2] + sum[3];
1188 }
1189 
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1190 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
1191                     const uint16_t* const w) {
1192   const int diff_sum = TTransform(a, b, w);
1193   return abs(diff_sum) >> 5;
1194 }
1195 
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1196 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
1197                       const uint16_t* const w) {
1198   int D = 0;
1199   int x, y;
1200   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1201     for (x = 0; x < 16; x += 4) {
1202       D += Disto4x4(a + x + y, b + x + y, w);
1203     }
1204   }
1205   return D;
1206 }
1207 
1208 //------------------------------------------------------------------------------
1209 // Quantization
1210 //
1211 
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1212 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
1213                                        const uint16_t* const sharpen,
1214                                        const VP8Matrix* const mtx) {
1215   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1216   const __m128i zero = _mm_setzero_si128();
1217   __m128i coeff0, coeff8;
1218   __m128i out0, out8;
1219   __m128i packed_out;
1220 
1221   // Load all inputs.
1222   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1223   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1224   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1225   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1226   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1227   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1228 
1229   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1230   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1231   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1232 
1233   // coeff = abs(in) = (in ^ sign) - sign
1234   coeff0 = _mm_xor_si128(in0, sign0);
1235   coeff8 = _mm_xor_si128(in8, sign8);
1236   coeff0 = _mm_sub_epi16(coeff0, sign0);
1237   coeff8 = _mm_sub_epi16(coeff8, sign8);
1238 
1239   // coeff = abs(in) + sharpen
1240   if (sharpen != NULL) {
1241     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1242     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1243     coeff0 = _mm_add_epi16(coeff0, sharpen0);
1244     coeff8 = _mm_add_epi16(coeff8, sharpen8);
1245   }
1246 
1247   // out = (coeff * iQ + B) >> QFIX
1248   {
1249     // doing calculations with 32b precision (QFIX=17)
1250     // out = (coeff * iQ)
1251     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1252     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1253     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1254     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1255     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1256     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1257     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1258     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1259     // out = (coeff * iQ + B)
1260     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1261     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1262     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1263     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1264     out_00 = _mm_add_epi32(out_00, bias_00);
1265     out_04 = _mm_add_epi32(out_04, bias_04);
1266     out_08 = _mm_add_epi32(out_08, bias_08);
1267     out_12 = _mm_add_epi32(out_12, bias_12);
1268     // out = QUANTDIV(coeff, iQ, B, QFIX)
1269     out_00 = _mm_srai_epi32(out_00, QFIX);
1270     out_04 = _mm_srai_epi32(out_04, QFIX);
1271     out_08 = _mm_srai_epi32(out_08, QFIX);
1272     out_12 = _mm_srai_epi32(out_12, QFIX);
1273 
1274     // pack result as 16b
1275     out0 = _mm_packs_epi32(out_00, out_04);
1276     out8 = _mm_packs_epi32(out_08, out_12);
1277 
1278     // if (coeff > 2047) coeff = 2047
1279     out0 = _mm_min_epi16(out0, max_coeff_2047);
1280     out8 = _mm_min_epi16(out8, max_coeff_2047);
1281   }
1282 
1283   // get sign back (if (sign[j]) out_n = -out_n)
1284   out0 = _mm_xor_si128(out0, sign0);
1285   out8 = _mm_xor_si128(out8, sign8);
1286   out0 = _mm_sub_epi16(out0, sign0);
1287   out8 = _mm_sub_epi16(out8, sign8);
1288 
1289   // in = out * Q
1290   in0 = _mm_mullo_epi16(out0, q0);
1291   in8 = _mm_mullo_epi16(out8, q8);
1292 
1293   _mm_storeu_si128((__m128i*)&in[0], in0);
1294   _mm_storeu_si128((__m128i*)&in[8], in8);
1295 
1296   // zigzag the output before storing it.
1297   //
1298   // The zigzag pattern can almost be reproduced with a small sequence of
1299   // shuffles. After it, we only need to swap the 7th (ending up in third
1300   // position instead of twelfth) and 8th values.
1301   {
1302     __m128i outZ0, outZ8;
1303     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1304     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1305     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1306     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1307     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1308     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1309     _mm_storeu_si128((__m128i*)&out[0], outZ0);
1310     _mm_storeu_si128((__m128i*)&out[8], outZ8);
1311     packed_out = _mm_packs_epi16(outZ0, outZ8);
1312   }
1313   {
1314     const int16_t outZ_12 = out[12];
1315     const int16_t outZ_3 = out[3];
1316     out[3] = outZ_12;
1317     out[12] = outZ_3;
1318   }
1319 
1320   // detect if all 'out' values are zeroes or not
1321   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1322 }
1323 
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1324 static int QuantizeBlock(int16_t in[16], int16_t out[16],
1325                          const VP8Matrix* const mtx) {
1326   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
1327 }
1328 
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1329 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
1330                             const VP8Matrix* const mtx) {
1331   return DoQuantizeBlock(in, out, NULL, mtx);
1332 }
1333 
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1334 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
1335                            const VP8Matrix* const mtx) {
1336   int nz;
1337   const uint16_t* const sharpen = &mtx->sharpen_[0];
1338   nz  = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1339   nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1340   return nz;
1341 }
1342 
1343 //------------------------------------------------------------------------------
1344 // Entry point
1345 
1346 extern void VP8EncDspInitSSE2(void);
1347 
VP8EncDspInitSSE2(void)1348 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1349   VP8CollectHistogram = CollectHistogram;
1350   VP8EncPredLuma16 = Intra16Preds;
1351   VP8EncPredChroma8 = IntraChromaPreds;
1352   VP8EncPredLuma4 = Intra4Preds;
1353   VP8EncQuantizeBlock = QuantizeBlock;
1354   VP8EncQuantize2Blocks = Quantize2Blocks;
1355   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
1356   VP8ITransform = ITransform;
1357   VP8FTransform = FTransform;
1358   VP8FTransform2 = FTransform2;
1359   VP8FTransformWHT = FTransformWHT;
1360   VP8SSE16x16 = SSE16x16;
1361   VP8SSE16x8 = SSE16x8;
1362   VP8SSE8x8 = SSE8x8;
1363   VP8SSE4x4 = SSE4x4;
1364   VP8TDisto4x4 = Disto4x4;
1365   VP8TDisto16x16 = Disto16x16;
1366   VP8Mean16x4 = Mean16x4;
1367 }
1368 
1369 //------------------------------------------------------------------------------
1370 // SSIM / PSNR entry point (TODO(skal): move to its own file later)
1371 
AccumulateSSE_SSE2(const uint8_t * src1,const uint8_t * src2,int len)1372 static uint32_t AccumulateSSE_SSE2(const uint8_t* src1,
1373                                    const uint8_t* src2, int len) {
1374   int i = 0;
1375   uint32_t sse2 = 0;
1376   if (len >= 16) {
1377     const int limit = len - 32;
1378     int32_t tmp[4];
1379     __m128i sum1;
1380     __m128i sum = _mm_setzero_si128();
1381     __m128i a0 = _mm_loadu_si128((const __m128i*)&src1[i]);
1382     __m128i b0 = _mm_loadu_si128((const __m128i*)&src2[i]);
1383     i += 16;
1384     while (i <= limit) {
1385       const __m128i a1 = _mm_loadu_si128((const __m128i*)&src1[i]);
1386       const __m128i b1 = _mm_loadu_si128((const __m128i*)&src2[i]);
1387       __m128i sum2;
1388       i += 16;
1389       SubtractAndAccumulate(a0, b0, &sum1);
1390       sum = _mm_add_epi32(sum, sum1);
1391       a0 = _mm_loadu_si128((const __m128i*)&src1[i]);
1392       b0 = _mm_loadu_si128((const __m128i*)&src2[i]);
1393       i += 16;
1394       SubtractAndAccumulate(a1, b1, &sum2);
1395       sum = _mm_add_epi32(sum, sum2);
1396     }
1397     SubtractAndAccumulate(a0, b0, &sum1);
1398     sum = _mm_add_epi32(sum, sum1);
1399     _mm_storeu_si128((__m128i*)tmp, sum);
1400     sse2 += (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1401   }
1402 
1403   for (; i < len; ++i) {
1404     const int32_t diff = src1[i] - src2[i];
1405     sse2 += diff * diff;
1406   }
1407   return sse2;
1408 }
1409 
HorizontalAdd16b(const __m128i * const m)1410 static uint32_t HorizontalAdd16b(const __m128i* const m) {
1411   uint16_t tmp[8];
1412   const __m128i a = _mm_srli_si128(*m, 8);
1413   const __m128i b = _mm_add_epi16(*m, a);
1414   _mm_storeu_si128((__m128i*)tmp, b);
1415   return (uint32_t)tmp[3] + tmp[2] + tmp[1] + tmp[0];
1416 }
1417 
HorizontalAdd32b(const __m128i * const m)1418 static uint32_t HorizontalAdd32b(const __m128i* const m) {
1419   const __m128i a = _mm_srli_si128(*m, 8);
1420   const __m128i b = _mm_add_epi32(*m, a);
1421   const __m128i c = _mm_add_epi32(b, _mm_srli_si128(b, 4));
1422   return (uint32_t)_mm_cvtsi128_si32(c);
1423 }
1424 
1425 static const uint16_t kWeight[] = { 1, 2, 3, 4, 3, 2, 1, 0 };
1426 
1427 #define ACCUMULATE_ROW(WEIGHT) do {                         \
1428   /* compute row weight (Wx * Wy) */                        \
1429   const __m128i Wy = _mm_set1_epi16((WEIGHT));              \
1430   const __m128i W = _mm_mullo_epi16(Wx, Wy);                \
1431   /* process 8 bytes at a time (7 bytes, actually) */       \
1432   const __m128i a0 = _mm_loadl_epi64((const __m128i*)src1); \
1433   const __m128i b0 = _mm_loadl_epi64((const __m128i*)src2); \
1434   /* convert to 16b and multiply by weight */               \
1435   const __m128i a1 = _mm_unpacklo_epi8(a0, zero);           \
1436   const __m128i b1 = _mm_unpacklo_epi8(b0, zero);           \
1437   const __m128i wa1 = _mm_mullo_epi16(a1, W);               \
1438   const __m128i wb1 = _mm_mullo_epi16(b1, W);               \
1439   /* accumulate */                                          \
1440   xm  = _mm_add_epi16(xm, wa1);                             \
1441   ym  = _mm_add_epi16(ym, wb1);                             \
1442   xxm = _mm_add_epi32(xxm, _mm_madd_epi16(a1, wa1));        \
1443   xym = _mm_add_epi32(xym, _mm_madd_epi16(a1, wb1));        \
1444   yym = _mm_add_epi32(yym, _mm_madd_epi16(b1, wb1));        \
1445   src1 += stride1;                                          \
1446   src2 += stride2;                                          \
1447 } while (0)
1448 
SSIMGet_SSE2(const uint8_t * src1,int stride1,const uint8_t * src2,int stride2)1449 static double SSIMGet_SSE2(const uint8_t* src1, int stride1,
1450                            const uint8_t* src2, int stride2) {
1451   VP8DistoStats stats;
1452   const __m128i zero = _mm_setzero_si128();
1453   __m128i xm = zero, ym = zero;                // 16b accums
1454   __m128i xxm = zero, yym = zero, xym = zero;  // 32b accum
1455   const __m128i Wx = _mm_loadu_si128((const __m128i*)kWeight);
1456   assert(2 * VP8_SSIM_KERNEL + 1 == 7);
1457   ACCUMULATE_ROW(1);
1458   ACCUMULATE_ROW(2);
1459   ACCUMULATE_ROW(3);
1460   ACCUMULATE_ROW(4);
1461   ACCUMULATE_ROW(3);
1462   ACCUMULATE_ROW(2);
1463   ACCUMULATE_ROW(1);
1464   stats.xm  = HorizontalAdd16b(&xm);
1465   stats.ym  = HorizontalAdd16b(&ym);
1466   stats.xxm = HorizontalAdd32b(&xxm);
1467   stats.xym = HorizontalAdd32b(&xym);
1468   stats.yym = HorizontalAdd32b(&yym);
1469   return VP8SSIMFromStats(&stats);
1470 }
1471 
1472 extern void VP8SSIMDspInitSSE2(void);
1473 
VP8SSIMDspInitSSE2(void)1474 WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInitSSE2(void) {
1475   VP8AccumulateSSE = AccumulateSSE_SSE2;
1476   VP8SSIMGet = SSIMGet_SSE2;
1477 }
1478 
1479 #else  // !WEBP_USE_SSE2
1480 
1481 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1482 WEBP_DSP_INIT_STUB(VP8SSIMDspInitSSE2)
1483 
1484 #endif  // WEBP_USE_SSE2
1485