1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6 #include <stdint.h>
7
8 #include <vector>
9
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/compiler_specific.h"
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "base/memory/ref_counted.h"
16 #include "base/message_loop/message_loop.h"
17 #include "base/message_loop/message_loop_test.h"
18 #include "base/pending_task.h"
19 #include "base/posix/eintr_wrapper.h"
20 #include "base/run_loop.h"
21 #include "base/single_thread_task_runner.h"
22 #include "base/synchronization/waitable_event.h"
23 #include "base/test/test_simple_task_runner.h"
24 #include "base/threading/platform_thread.h"
25 #include "base/threading/thread.h"
26 #include "base/threading/thread_task_runner_handle.h"
27 #include "build/build_config.h"
28 #include "testing/gtest/include/gtest/gtest.h"
29
30 #if defined(OS_WIN)
31 #include "base/message_loop/message_pump_win.h"
32 #include "base/process/memory.h"
33 #include "base/strings/string16.h"
34 #include "base/win/current_module.h"
35 #include "base/win/scoped_handle.h"
36 #endif
37
38 namespace base {
39
40 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
41 // to avoid chopping this file up with so many #ifdefs.
42
43 namespace {
44
TypeDefaultMessagePumpFactory()45 std::unique_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
46 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
47 }
48
TypeIOMessagePumpFactory()49 std::unique_ptr<MessagePump> TypeIOMessagePumpFactory() {
50 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
51 }
52
TypeUIMessagePumpFactory()53 std::unique_ptr<MessagePump> TypeUIMessagePumpFactory() {
54 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
55 }
56
57 class Foo : public RefCounted<Foo> {
58 public:
Foo()59 Foo() : test_count_(0) {
60 }
61
Test1ConstRef(const std::string & a)62 void Test1ConstRef(const std::string& a) {
63 ++test_count_;
64 result_.append(a);
65 }
66
test_count() const67 int test_count() const { return test_count_; }
result() const68 const std::string& result() const { return result_; }
69
70 private:
71 friend class RefCounted<Foo>;
72
~Foo()73 ~Foo() {}
74
75 int test_count_;
76 std::string result_;
77 };
78
79 #if defined(OS_WIN)
80
81 // This function runs slowly to simulate a large amount of work being done.
SlowFunc(TimeDelta pause,int * quit_counter)82 static void SlowFunc(TimeDelta pause, int* quit_counter) {
83 PlatformThread::Sleep(pause);
84 if (--(*quit_counter) == 0)
85 MessageLoop::current()->QuitWhenIdle();
86 }
87
88 // This function records the time when Run was called in a Time object, which is
89 // useful for building a variety of MessageLoop tests.
RecordRunTimeFunc(Time * run_time,int * quit_counter)90 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
91 *run_time = Time::Now();
92
93 // Cause our Run function to take some time to execute. As a result we can
94 // count on subsequent RecordRunTimeFunc()s running at a future time,
95 // without worry about the resolution of our system clock being an issue.
96 SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
97 }
98
SubPumpFunc()99 void SubPumpFunc() {
100 MessageLoop::current()->SetNestableTasksAllowed(true);
101 MSG msg;
102 while (GetMessage(&msg, NULL, 0, 0)) {
103 TranslateMessage(&msg);
104 DispatchMessage(&msg);
105 }
106 MessageLoop::current()->QuitWhenIdle();
107 }
108
RunTest_PostDelayedTask_SharedTimer_SubPump()109 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
110 MessageLoop loop(MessageLoop::TYPE_UI);
111
112 // Test that the interval of the timer, used to run the next delayed task, is
113 // set to a value corresponding to when the next delayed task should run.
114
115 // By setting num_tasks to 1, we ensure that the first task to run causes the
116 // run loop to exit.
117 int num_tasks = 1;
118 Time run_time;
119
120 loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
121
122 // This very delayed task should never run.
123 loop.PostDelayedTask(
124 FROM_HERE,
125 Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
126 TimeDelta::FromSeconds(1000));
127
128 // This slightly delayed task should run from within SubPumpFunc.
129 loop.PostDelayedTask(
130 FROM_HERE,
131 Bind(&PostQuitMessage, 0),
132 TimeDelta::FromMilliseconds(10));
133
134 Time start_time = Time::Now();
135
136 loop.Run();
137 EXPECT_EQ(1, num_tasks);
138
139 // Ensure that we ran in far less time than the slower timer.
140 TimeDelta total_time = Time::Now() - start_time;
141 EXPECT_GT(5000, total_time.InMilliseconds());
142
143 // In case both timers somehow run at nearly the same time, sleep a little
144 // and then run all pending to force them both to have run. This is just
145 // encouraging flakiness if there is any.
146 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
147 RunLoop().RunUntilIdle();
148
149 EXPECT_TRUE(run_time.is_null());
150 }
151
152 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
153
154 enum TaskType {
155 MESSAGEBOX,
156 ENDDIALOG,
157 RECURSIVE,
158 TIMEDMESSAGELOOP,
159 QUITMESSAGELOOP,
160 ORDERED,
161 PUMPS,
162 SLEEP,
163 RUNS,
164 };
165
166 // Saves the order in which the tasks executed.
167 struct TaskItem {
TaskItembase::__anon9ed8289d0111::TaskItem168 TaskItem(TaskType t, int c, bool s)
169 : type(t),
170 cookie(c),
171 start(s) {
172 }
173
174 TaskType type;
175 int cookie;
176 bool start;
177
operator ==base::__anon9ed8289d0111::TaskItem178 bool operator == (const TaskItem& other) const {
179 return type == other.type && cookie == other.cookie && start == other.start;
180 }
181 };
182
operator <<(std::ostream & os,TaskType type)183 std::ostream& operator <<(std::ostream& os, TaskType type) {
184 switch (type) {
185 case MESSAGEBOX: os << "MESSAGEBOX"; break;
186 case ENDDIALOG: os << "ENDDIALOG"; break;
187 case RECURSIVE: os << "RECURSIVE"; break;
188 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
189 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
190 case ORDERED: os << "ORDERED"; break;
191 case PUMPS: os << "PUMPS"; break;
192 case SLEEP: os << "SLEEP"; break;
193 default:
194 NOTREACHED();
195 os << "Unknown TaskType";
196 break;
197 }
198 return os;
199 }
200
operator <<(std::ostream & os,const TaskItem & item)201 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
202 if (item.start)
203 return os << item.type << " " << item.cookie << " starts";
204 else
205 return os << item.type << " " << item.cookie << " ends";
206 }
207
208 class TaskList {
209 public:
RecordStart(TaskType type,int cookie)210 void RecordStart(TaskType type, int cookie) {
211 TaskItem item(type, cookie, true);
212 DVLOG(1) << item;
213 task_list_.push_back(item);
214 }
215
RecordEnd(TaskType type,int cookie)216 void RecordEnd(TaskType type, int cookie) {
217 TaskItem item(type, cookie, false);
218 DVLOG(1) << item;
219 task_list_.push_back(item);
220 }
221
Size()222 size_t Size() {
223 return task_list_.size();
224 }
225
Get(int n)226 TaskItem Get(int n) {
227 return task_list_[n];
228 }
229
230 private:
231 std::vector<TaskItem> task_list_;
232 };
233
234 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
235 // common controls (like OpenFile) and StartDoc printing function can cause
236 // implicit message loops.
MessageBoxFunc(TaskList * order,int cookie,bool is_reentrant)237 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
238 order->RecordStart(MESSAGEBOX, cookie);
239 if (is_reentrant)
240 MessageLoop::current()->SetNestableTasksAllowed(true);
241 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
242 order->RecordEnd(MESSAGEBOX, cookie);
243 }
244
245 // Will end the MessageBox.
EndDialogFunc(TaskList * order,int cookie)246 void EndDialogFunc(TaskList* order, int cookie) {
247 order->RecordStart(ENDDIALOG, cookie);
248 HWND window = GetActiveWindow();
249 if (window != NULL) {
250 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
251 // Cheap way to signal that the window wasn't found if RunEnd() isn't
252 // called.
253 order->RecordEnd(ENDDIALOG, cookie);
254 }
255 }
256
RecursiveFunc(TaskList * order,int cookie,int depth,bool is_reentrant)257 void RecursiveFunc(TaskList* order, int cookie, int depth,
258 bool is_reentrant) {
259 order->RecordStart(RECURSIVE, cookie);
260 if (depth > 0) {
261 if (is_reentrant)
262 MessageLoop::current()->SetNestableTasksAllowed(true);
263 MessageLoop::current()->PostTask(
264 FROM_HERE,
265 Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
266 }
267 order->RecordEnd(RECURSIVE, cookie);
268 }
269
QuitFunc(TaskList * order,int cookie)270 void QuitFunc(TaskList* order, int cookie) {
271 order->RecordStart(QUITMESSAGELOOP, cookie);
272 MessageLoop::current()->QuitWhenIdle();
273 order->RecordEnd(QUITMESSAGELOOP, cookie);
274 }
275
RecursiveFuncWin(MessageLoop * target,HANDLE event,bool expect_window,TaskList * order,bool is_reentrant)276 void RecursiveFuncWin(MessageLoop* target,
277 HANDLE event,
278 bool expect_window,
279 TaskList* order,
280 bool is_reentrant) {
281 target->PostTask(FROM_HERE,
282 Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
283 target->PostTask(FROM_HERE,
284 Bind(&MessageBoxFunc, order, 2, is_reentrant));
285 target->PostTask(FROM_HERE,
286 Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
287 // The trick here is that for recursive task processing, this task will be
288 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
289 // without a chance.
290 // For non-recursive task processing, this will be executed _after_ the
291 // MessageBox will have been dismissed by the code below, where
292 // expect_window_ is true.
293 target->PostTask(FROM_HERE,
294 Bind(&EndDialogFunc, order, 4));
295 target->PostTask(FROM_HERE,
296 Bind(&QuitFunc, order, 5));
297
298 // Enforce that every tasks are sent before starting to run the main thread
299 // message loop.
300 ASSERT_TRUE(SetEvent(event));
301
302 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
303 // you will never realize one MessageBox was shown.
304 for (; expect_window;) {
305 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
306 if (window) {
307 // Dismiss it.
308 for (;;) {
309 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
310 if (button != NULL) {
311 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
312 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
313 break;
314 }
315 }
316 break;
317 }
318 }
319 }
320
321 // TODO(darin): These tests need to be ported since they test critical
322 // message loop functionality.
323
324 // A side effect of this test is the generation a beep. Sorry.
RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type)325 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
326 MessageLoop loop(message_loop_type);
327
328 Thread worker("RecursiveDenial2_worker");
329 Thread::Options options;
330 options.message_loop_type = message_loop_type;
331 ASSERT_EQ(true, worker.StartWithOptions(options));
332 TaskList order;
333 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
334 worker.message_loop()->PostTask(FROM_HERE,
335 Bind(&RecursiveFuncWin,
336 MessageLoop::current(),
337 event.Get(),
338 true,
339 &order,
340 false));
341 // Let the other thread execute.
342 WaitForSingleObject(event.Get(), INFINITE);
343 MessageLoop::current()->Run();
344
345 ASSERT_EQ(17u, order.Size());
346 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
347 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
348 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
349 EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
350 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
351 EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
352 // When EndDialogFunc is processed, the window is already dismissed, hence no
353 // "end" entry.
354 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
355 EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
356 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
357 EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
358 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
359 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
360 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
361 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
362 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
363 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
364 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
365 }
366
367 // A side effect of this test is the generation a beep. Sorry. This test also
368 // needs to process windows messages on the current thread.
RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type)369 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
370 MessageLoop loop(message_loop_type);
371
372 Thread worker("RecursiveSupport2_worker");
373 Thread::Options options;
374 options.message_loop_type = message_loop_type;
375 ASSERT_EQ(true, worker.StartWithOptions(options));
376 TaskList order;
377 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
378 worker.message_loop()->PostTask(FROM_HERE,
379 Bind(&RecursiveFuncWin,
380 MessageLoop::current(),
381 event.Get(),
382 false,
383 &order,
384 true));
385 // Let the other thread execute.
386 WaitForSingleObject(event.Get(), INFINITE);
387 MessageLoop::current()->Run();
388
389 ASSERT_EQ(18u, order.Size());
390 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
391 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
392 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
393 // Note that this executes in the MessageBox modal loop.
394 EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
395 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
396 EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
397 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
398 EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
399 /* The order can subtly change here. The reason is that when RecursiveFunc(1)
400 is called in the main thread, if it is faster than getting to the
401 PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
402 execution can change. We don't care anyway that the order isn't correct.
403 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
404 EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
405 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
406 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
407 */
408 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
409 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
410 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
411 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
412 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
413 EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
414 }
415
416 #endif // defined(OS_WIN)
417
PostNTasksThenQuit(int posts_remaining)418 void PostNTasksThenQuit(int posts_remaining) {
419 if (posts_remaining > 1) {
420 MessageLoop::current()->task_runner()->PostTask(
421 FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1));
422 } else {
423 MessageLoop::current()->QuitWhenIdle();
424 }
425 }
426
427 #if defined(OS_WIN)
428
429 class TestIOHandler : public MessageLoopForIO::IOHandler {
430 public:
431 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
432
433 void OnIOCompleted(MessageLoopForIO::IOContext* context,
434 DWORD bytes_transfered,
435 DWORD error) override;
436
437 void Init();
438 void WaitForIO();
context()439 OVERLAPPED* context() { return &context_.overlapped; }
size()440 DWORD size() { return sizeof(buffer_); }
441
442 private:
443 char buffer_[48];
444 MessageLoopForIO::IOContext context_;
445 HANDLE signal_;
446 win::ScopedHandle file_;
447 bool wait_;
448 };
449
TestIOHandler(const wchar_t * name,HANDLE signal,bool wait)450 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
451 : signal_(signal), wait_(wait) {
452 memset(buffer_, 0, sizeof(buffer_));
453
454 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
455 FILE_FLAG_OVERLAPPED, NULL));
456 EXPECT_TRUE(file_.IsValid());
457 }
458
Init()459 void TestIOHandler::Init() {
460 MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
461
462 DWORD read;
463 EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
464 EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
465 if (wait_)
466 WaitForIO();
467 }
468
OnIOCompleted(MessageLoopForIO::IOContext * context,DWORD bytes_transfered,DWORD error)469 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
470 DWORD bytes_transfered, DWORD error) {
471 ASSERT_TRUE(context == &context_);
472 ASSERT_TRUE(SetEvent(signal_));
473 }
474
WaitForIO()475 void TestIOHandler::WaitForIO() {
476 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
477 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
478 }
479
RunTest_IOHandler()480 void RunTest_IOHandler() {
481 win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
482 ASSERT_TRUE(callback_called.IsValid());
483
484 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
485 win::ScopedHandle server(
486 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
487 ASSERT_TRUE(server.IsValid());
488
489 Thread thread("IOHandler test");
490 Thread::Options options;
491 options.message_loop_type = MessageLoop::TYPE_IO;
492 ASSERT_TRUE(thread.StartWithOptions(options));
493
494 MessageLoop* thread_loop = thread.message_loop();
495 ASSERT_TRUE(NULL != thread_loop);
496
497 TestIOHandler handler(kPipeName, callback_called.Get(), false);
498 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
499 Unretained(&handler)));
500 // Make sure the thread runs and sleeps for lack of work.
501 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
502
503 const char buffer[] = "Hello there!";
504 DWORD written;
505 EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
506
507 DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
508 EXPECT_EQ(WAIT_OBJECT_0, result);
509
510 thread.Stop();
511 }
512
RunTest_WaitForIO()513 void RunTest_WaitForIO() {
514 win::ScopedHandle callback1_called(
515 CreateEvent(NULL, TRUE, FALSE, NULL));
516 win::ScopedHandle callback2_called(
517 CreateEvent(NULL, TRUE, FALSE, NULL));
518 ASSERT_TRUE(callback1_called.IsValid());
519 ASSERT_TRUE(callback2_called.IsValid());
520
521 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
522 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
523 win::ScopedHandle server1(
524 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
525 win::ScopedHandle server2(
526 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
527 ASSERT_TRUE(server1.IsValid());
528 ASSERT_TRUE(server2.IsValid());
529
530 Thread thread("IOHandler test");
531 Thread::Options options;
532 options.message_loop_type = MessageLoop::TYPE_IO;
533 ASSERT_TRUE(thread.StartWithOptions(options));
534
535 MessageLoop* thread_loop = thread.message_loop();
536 ASSERT_TRUE(NULL != thread_loop);
537
538 TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
539 TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
540 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
541 Unretained(&handler1)));
542 // TODO(ajwong): Do we really need such long Sleeps in this function?
543 // Make sure the thread runs and sleeps for lack of work.
544 TimeDelta delay = TimeDelta::FromMilliseconds(100);
545 PlatformThread::Sleep(delay);
546 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
547 Unretained(&handler2)));
548 PlatformThread::Sleep(delay);
549
550 // At this time handler1 is waiting to be called, and the thread is waiting
551 // on the Init method of handler2, filtering only handler2 callbacks.
552
553 const char buffer[] = "Hello there!";
554 DWORD written;
555 EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
556 PlatformThread::Sleep(2 * delay);
557 EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
558 WaitForSingleObject(callback1_called.Get(), 0))
559 << "handler1 has not been called";
560
561 EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
562
563 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
564 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
565 EXPECT_EQ(WAIT_OBJECT_0, result);
566
567 thread.Stop();
568 }
569
570 #endif // defined(OS_WIN)
571
572 } // namespace
573
574 //-----------------------------------------------------------------------------
575 // Each test is run against each type of MessageLoop. That way we are sure
576 // that message loops work properly in all configurations. Of course, in some
577 // cases, a unit test may only be for a particular type of loop.
578
579 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
580 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
581 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
582
583 #if defined(OS_WIN)
584 // Additional set of tests for GPU version of UI message loop.
585 RUN_MESSAGE_LOOP_TESTS(GPU, &MessagePumpForGpu::CreateMessagePumpForGpu);
586
TEST(MessageLoopTest,PostDelayedTask_SharedTimer_SubPump)587 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
588 RunTest_PostDelayedTask_SharedTimer_SubPump();
589 }
590
591 // This test occasionally hangs. See http://crbug.com/44567.
TEST(MessageLoopTest,DISABLED_RecursiveDenial2)592 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
593 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
594 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
595 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
596 }
597
TEST(MessageLoopTest,RecursiveSupport2)598 TEST(MessageLoopTest, RecursiveSupport2) {
599 // This test requires a UI loop.
600 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
601 }
602 #endif // defined(OS_WIN)
603
604 class DummyTaskObserver : public MessageLoop::TaskObserver {
605 public:
DummyTaskObserver(int num_tasks)606 explicit DummyTaskObserver(int num_tasks)
607 : num_tasks_started_(0),
608 num_tasks_processed_(0),
609 num_tasks_(num_tasks) {}
610
~DummyTaskObserver()611 ~DummyTaskObserver() override {}
612
WillProcessTask(const PendingTask & pending_task)613 void WillProcessTask(const PendingTask& pending_task) override {
614 num_tasks_started_++;
615 EXPECT_LE(num_tasks_started_, num_tasks_);
616 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
617 }
618
DidProcessTask(const PendingTask & pending_task)619 void DidProcessTask(const PendingTask& pending_task) override {
620 num_tasks_processed_++;
621 EXPECT_LE(num_tasks_started_, num_tasks_);
622 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
623 }
624
num_tasks_started() const625 int num_tasks_started() const { return num_tasks_started_; }
num_tasks_processed() const626 int num_tasks_processed() const { return num_tasks_processed_; }
627
628 private:
629 int num_tasks_started_;
630 int num_tasks_processed_;
631 const int num_tasks_;
632
633 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
634 };
635
TEST(MessageLoopTest,TaskObserver)636 TEST(MessageLoopTest, TaskObserver) {
637 const int kNumPosts = 6;
638 DummyTaskObserver observer(kNumPosts);
639
640 MessageLoop loop;
641 loop.AddTaskObserver(&observer);
642 loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
643 RunLoop().Run();
644 loop.RemoveTaskObserver(&observer);
645
646 EXPECT_EQ(kNumPosts, observer.num_tasks_started());
647 EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
648 }
649
650 #if defined(OS_WIN)
TEST(MessageLoopTest,IOHandler)651 TEST(MessageLoopTest, IOHandler) {
652 RunTest_IOHandler();
653 }
654
TEST(MessageLoopTest,WaitForIO)655 TEST(MessageLoopTest, WaitForIO) {
656 RunTest_WaitForIO();
657 }
658
TEST(MessageLoopTest,HighResolutionTimer)659 TEST(MessageLoopTest, HighResolutionTimer) {
660 MessageLoop loop;
661 Time::EnableHighResolutionTimer(true);
662
663 const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
664 const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
665
666 EXPECT_FALSE(loop.HasHighResolutionTasks());
667 // Post a fast task to enable the high resolution timers.
668 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
669 kFastTimer);
670 EXPECT_TRUE(loop.HasHighResolutionTasks());
671 loop.Run();
672 EXPECT_FALSE(loop.HasHighResolutionTasks());
673 EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
674 // Check that a slow task does not trigger the high resolution logic.
675 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
676 kSlowTimer);
677 EXPECT_FALSE(loop.HasHighResolutionTasks());
678 loop.Run();
679 EXPECT_FALSE(loop.HasHighResolutionTasks());
680 Time::EnableHighResolutionTimer(false);
681 }
682
683 #endif // defined(OS_WIN)
684
685 #if defined(OS_POSIX) && !defined(OS_NACL)
686
687 namespace {
688
689 class QuitDelegate : public MessageLoopForIO::Watcher {
690 public:
OnFileCanWriteWithoutBlocking(int fd)691 void OnFileCanWriteWithoutBlocking(int fd) override {
692 MessageLoop::current()->QuitWhenIdle();
693 }
OnFileCanReadWithoutBlocking(int fd)694 void OnFileCanReadWithoutBlocking(int fd) override {
695 MessageLoop::current()->QuitWhenIdle();
696 }
697 };
698
TEST(MessageLoopTest,FileDescriptorWatcherOutlivesMessageLoop)699 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
700 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
701 // This could happen when people use the Singleton pattern or atexit.
702
703 // Create a file descriptor. Doesn't need to be readable or writable,
704 // as we don't need to actually get any notifications.
705 // pipe() is just the easiest way to do it.
706 int pipefds[2];
707 int err = pipe(pipefds);
708 ASSERT_EQ(0, err);
709 int fd = pipefds[1];
710 {
711 // Arrange for controller to live longer than message loop.
712 MessageLoopForIO::FileDescriptorWatcher controller;
713 {
714 MessageLoopForIO message_loop;
715
716 QuitDelegate delegate;
717 message_loop.WatchFileDescriptor(fd,
718 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
719 // and don't run the message loop, just destroy it.
720 }
721 }
722 if (IGNORE_EINTR(close(pipefds[0])) < 0)
723 PLOG(ERROR) << "close";
724 if (IGNORE_EINTR(close(pipefds[1])) < 0)
725 PLOG(ERROR) << "close";
726 }
727
TEST(MessageLoopTest,FileDescriptorWatcherDoubleStop)728 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
729 // Verify that it's ok to call StopWatchingFileDescriptor().
730 // (Errors only showed up in valgrind.)
731 int pipefds[2];
732 int err = pipe(pipefds);
733 ASSERT_EQ(0, err);
734 int fd = pipefds[1];
735 {
736 // Arrange for message loop to live longer than controller.
737 MessageLoopForIO message_loop;
738 {
739 MessageLoopForIO::FileDescriptorWatcher controller;
740
741 QuitDelegate delegate;
742 message_loop.WatchFileDescriptor(fd,
743 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
744 controller.StopWatchingFileDescriptor();
745 }
746 }
747 if (IGNORE_EINTR(close(pipefds[0])) < 0)
748 PLOG(ERROR) << "close";
749 if (IGNORE_EINTR(close(pipefds[1])) < 0)
750 PLOG(ERROR) << "close";
751 }
752
753 } // namespace
754
755 #endif // defined(OS_POSIX) && !defined(OS_NACL)
756
757 namespace {
758 // Inject a test point for recording the destructor calls for Closure objects
759 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
760 // hook the actual destruction, which is not a common operation.
761 class DestructionObserverProbe :
762 public RefCounted<DestructionObserverProbe> {
763 public:
DestructionObserverProbe(bool * task_destroyed,bool * destruction_observer_called)764 DestructionObserverProbe(bool* task_destroyed,
765 bool* destruction_observer_called)
766 : task_destroyed_(task_destroyed),
767 destruction_observer_called_(destruction_observer_called) {
768 }
Run()769 virtual void Run() {
770 // This task should never run.
771 ADD_FAILURE();
772 }
773 private:
774 friend class RefCounted<DestructionObserverProbe>;
775
~DestructionObserverProbe()776 virtual ~DestructionObserverProbe() {
777 EXPECT_FALSE(*destruction_observer_called_);
778 *task_destroyed_ = true;
779 }
780
781 bool* task_destroyed_;
782 bool* destruction_observer_called_;
783 };
784
785 class MLDestructionObserver : public MessageLoop::DestructionObserver {
786 public:
MLDestructionObserver(bool * task_destroyed,bool * destruction_observer_called)787 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
788 : task_destroyed_(task_destroyed),
789 destruction_observer_called_(destruction_observer_called),
790 task_destroyed_before_message_loop_(false) {
791 }
WillDestroyCurrentMessageLoop()792 void WillDestroyCurrentMessageLoop() override {
793 task_destroyed_before_message_loop_ = *task_destroyed_;
794 *destruction_observer_called_ = true;
795 }
task_destroyed_before_message_loop() const796 bool task_destroyed_before_message_loop() const {
797 return task_destroyed_before_message_loop_;
798 }
799 private:
800 bool* task_destroyed_;
801 bool* destruction_observer_called_;
802 bool task_destroyed_before_message_loop_;
803 };
804
805 } // namespace
806
TEST(MessageLoopTest,DestructionObserverTest)807 TEST(MessageLoopTest, DestructionObserverTest) {
808 // Verify that the destruction observer gets called at the very end (after
809 // all the pending tasks have been destroyed).
810 MessageLoop* loop = new MessageLoop;
811 const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
812
813 bool task_destroyed = false;
814 bool destruction_observer_called = false;
815
816 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
817 loop->AddDestructionObserver(&observer);
818 loop->task_runner()->PostDelayedTask(
819 FROM_HERE, Bind(&DestructionObserverProbe::Run,
820 new DestructionObserverProbe(
821 &task_destroyed, &destruction_observer_called)),
822 kDelay);
823 delete loop;
824 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
825 // The task should have been destroyed when we deleted the loop.
826 EXPECT_TRUE(task_destroyed);
827 EXPECT_TRUE(destruction_observer_called);
828 }
829
830
831 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
832 // posts tasks on that message loop.
TEST(MessageLoopTest,ThreadMainTaskRunner)833 TEST(MessageLoopTest, ThreadMainTaskRunner) {
834 MessageLoop loop;
835
836 scoped_refptr<Foo> foo(new Foo());
837 std::string a("a");
838 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
839 &Foo::Test1ConstRef, foo.get(), a));
840
841 // Post quit task;
842 MessageLoop::current()->task_runner()->PostTask(
843 FROM_HERE,
844 Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
845
846 // Now kick things off
847 RunLoop().Run();
848
849 EXPECT_EQ(foo->test_count(), 1);
850 EXPECT_EQ(foo->result(), "a");
851 }
852
TEST(MessageLoopTest,IsType)853 TEST(MessageLoopTest, IsType) {
854 MessageLoop loop(MessageLoop::TYPE_UI);
855 EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
856 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
857 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
858 }
859
860 #if defined(OS_WIN)
EmptyFunction()861 void EmptyFunction() {}
862
PostMultipleTasks()863 void PostMultipleTasks() {
864 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
865 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
866 }
867
868 static const int kSignalMsg = WM_USER + 2;
869
PostWindowsMessage(HWND message_hwnd)870 void PostWindowsMessage(HWND message_hwnd) {
871 PostMessage(message_hwnd, kSignalMsg, 0, 2);
872 }
873
EndTest(bool * did_run,HWND hwnd)874 void EndTest(bool* did_run, HWND hwnd) {
875 *did_run = true;
876 PostMessage(hwnd, WM_CLOSE, 0, 0);
877 }
878
879 int kMyMessageFilterCode = 0x5002;
880
TestWndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)881 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
882 WPARAM wparam, LPARAM lparam) {
883 if (message == WM_CLOSE)
884 EXPECT_TRUE(DestroyWindow(hwnd));
885 if (message != kSignalMsg)
886 return DefWindowProc(hwnd, message, wparam, lparam);
887
888 switch (lparam) {
889 case 1:
890 // First, we post a task that will post multiple no-op tasks to make sure
891 // that the pump's incoming task queue does not become empty during the
892 // test.
893 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
894 // Next, we post a task that posts a windows message to trigger the second
895 // stage of the test.
896 MessageLoop::current()->PostTask(FROM_HERE,
897 base::Bind(&PostWindowsMessage, hwnd));
898 break;
899 case 2:
900 // Since we're about to enter a modal loop, tell the message loop that we
901 // intend to nest tasks.
902 MessageLoop::current()->SetNestableTasksAllowed(true);
903 bool did_run = false;
904 MessageLoop::current()->PostTask(FROM_HERE,
905 base::Bind(&EndTest, &did_run, hwnd));
906 // Run a nested windows-style message loop and verify that our task runs. If
907 // it doesn't, then we'll loop here until the test times out.
908 MSG msg;
909 while (GetMessage(&msg, 0, 0, 0)) {
910 if (!CallMsgFilter(&msg, kMyMessageFilterCode))
911 DispatchMessage(&msg);
912 // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
913 // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
914 // WM_QUIT messages even when running inside a modal loop.
915 if (msg.message == WM_CLOSE)
916 break;
917 }
918 EXPECT_TRUE(did_run);
919 MessageLoop::current()->QuitWhenIdle();
920 break;
921 }
922 return 0;
923 }
924
TEST(MessageLoopTest,AlwaysHaveUserMessageWhenNesting)925 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
926 MessageLoop loop(MessageLoop::TYPE_UI);
927 HINSTANCE instance = CURRENT_MODULE();
928 WNDCLASSEX wc = {0};
929 wc.cbSize = sizeof(wc);
930 wc.lpfnWndProc = TestWndProcThunk;
931 wc.hInstance = instance;
932 wc.lpszClassName = L"MessageLoopTest_HWND";
933 ATOM atom = RegisterClassEx(&wc);
934 ASSERT_TRUE(atom);
935
936 HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
937 HWND_MESSAGE, 0, instance, 0);
938 ASSERT_TRUE(message_hwnd) << GetLastError();
939
940 ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
941
942 loop.Run();
943
944 ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
945 }
946 #endif // defined(OS_WIN)
947
TEST(MessageLoopTest,SetTaskRunner)948 TEST(MessageLoopTest, SetTaskRunner) {
949 MessageLoop loop;
950 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
951
952 loop.SetTaskRunner(new_runner);
953 EXPECT_EQ(new_runner, loop.task_runner());
954 EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
955 }
956
TEST(MessageLoopTest,OriginalRunnerWorks)957 TEST(MessageLoopTest, OriginalRunnerWorks) {
958 MessageLoop loop;
959 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
960 scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
961 loop.SetTaskRunner(new_runner);
962
963 scoped_refptr<Foo> foo(new Foo());
964 original_runner->PostTask(FROM_HERE,
965 Bind(&Foo::Test1ConstRef, foo.get(), "a"));
966 RunLoop().RunUntilIdle();
967 EXPECT_EQ(1, foo->test_count());
968 }
969
TEST(MessageLoopTest,DeleteUnboundLoop)970 TEST(MessageLoopTest, DeleteUnboundLoop) {
971 // It should be possible to delete an unbound message loop on a thread which
972 // already has another active loop. This happens when thread creation fails.
973 MessageLoop loop;
974 std::unique_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
975 MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
976 unbound_loop.reset();
977 EXPECT_EQ(&loop, MessageLoop::current());
978 EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
979 }
980
TEST(MessageLoopTest,ThreadName)981 TEST(MessageLoopTest, ThreadName) {
982 {
983 std::string kThreadName("foo");
984 MessageLoop loop;
985 PlatformThread::SetName(kThreadName);
986 EXPECT_EQ(kThreadName, loop.GetThreadName());
987 }
988
989 {
990 std::string kThreadName("bar");
991 base::Thread thread(kThreadName);
992 ASSERT_TRUE(thread.StartAndWaitForTesting());
993 EXPECT_EQ(kThreadName, thread.message_loop()->GetThreadName());
994 }
995 }
996
997 } // namespace base
998