1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program Tester Core
3  * ----------------------------------------
4  *
5  * Copyright 2016 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief ASTC Utilities.
22  *//*--------------------------------------------------------------------*/
23 
24 #include "tcuAstcUtil.hpp"
25 #include "deFloat16.h"
26 #include "deRandom.hpp"
27 #include "deMeta.hpp"
28 
29 #include <algorithm>
30 
31 namespace tcu
32 {
33 namespace astc
34 {
35 
36 using std::vector;
37 
38 namespace
39 {
40 
41 // Common utilities
42 
43 enum
44 {
45 	MAX_BLOCK_WIDTH		= 12,
46 	MAX_BLOCK_HEIGHT	= 12
47 };
48 
getBit(deUint32 src,int ndx)49 inline deUint32 getBit (deUint32 src, int ndx)
50 {
51 	DE_ASSERT(de::inBounds(ndx, 0, 32));
52 	return (src >> ndx) & 1;
53 }
54 
getBits(deUint32 src,int low,int high)55 inline deUint32 getBits (deUint32 src, int low, int high)
56 {
57 	const int numBits = (high-low) + 1;
58 
59 	DE_ASSERT(de::inRange(numBits, 1, 32));
60 
61 	if (numBits < 32)
62 		return (deUint32)((src >> low) & ((1u<<numBits)-1));
63 	else
64 		return (deUint32)((src >> low) & 0xFFFFFFFFu);
65 }
66 
isBitSet(deUint32 src,int ndx)67 inline bool isBitSet (deUint32 src, int ndx)
68 {
69 	return getBit(src, ndx) != 0;
70 }
71 
reverseBits(deUint32 src,int numBits)72 inline deUint32 reverseBits (deUint32 src, int numBits)
73 {
74 	DE_ASSERT(de::inRange(numBits, 0, 32));
75 	deUint32 result = 0;
76 	for (int i = 0; i < numBits; i++)
77 		result |= ((src >> i) & 1) << (numBits-1-i);
78 	return result;
79 }
80 
bitReplicationScale(deUint32 src,int numSrcBits,int numDstBits)81 inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82 {
83 	DE_ASSERT(numSrcBits <= numDstBits);
84 	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85 	deUint32 dst = 0;
86 	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87 		dst |= shift >= 0 ? src << shift : src >> -shift;
88 	return dst;
89 }
90 
signExtend(deInt32 src,int numSrcBits)91 inline deInt32 signExtend (deInt32 src, int numSrcBits)
92 {
93 	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94 	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95 	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96 }
97 
isFloat16InfOrNan(deFloat16 v)98 inline bool isFloat16InfOrNan (deFloat16 v)
99 {
100 	return getBits(v, 10, 14) == 31;
101 }
102 
103 enum ISEMode
104 {
105 	ISEMODE_TRIT = 0,
106 	ISEMODE_QUINT,
107 	ISEMODE_PLAIN_BIT,
108 
109 	ISEMODE_LAST
110 };
111 
112 struct ISEParams
113 {
114 	ISEMode		mode;
115 	int			numBits;
116 
ISEParamstcu::astc::__anon1989e5c50111::ISEParams117 	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118 };
119 
computeNumRequiredBits(const ISEParams & iseParams,int numValues)120 inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121 {
122 	switch (iseParams.mode)
123 	{
124 		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125 		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126 		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
127 		default:
128 			DE_ASSERT(false);
129 			return -1;
130 	}
131 }
132 
computeMaximumRangeISEParams(int numAvailableBits,int numValuesInSequence)133 ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134 {
135 	int curBitsForTritMode		= 6;
136 	int curBitsForQuintMode		= 5;
137 	int curBitsForPlainBitMode	= 8;
138 
139 	while (true)
140 	{
141 		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142 
143 		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
144 		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
145 		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
146 		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
147 
148 		if (maxRange == tritRange)
149 		{
150 			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152 				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153 			curBitsForTritMode--;
154 		}
155 		else if (maxRange == quintRange)
156 		{
157 			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159 				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160 			curBitsForQuintMode--;
161 		}
162 		else
163 		{
164 			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165 			DE_ASSERT(maxRange == plainBitRange);
166 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167 				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168 			curBitsForPlainBitMode--;
169 		}
170 	}
171 }
172 
computeNumColorEndpointValues(deUint32 endpointMode)173 inline int computeNumColorEndpointValues (deUint32 endpointMode)
174 {
175 	DE_ASSERT(endpointMode < 16);
176 	return (endpointMode/4 + 1) * 2;
177 }
178 
179 // Decompression utilities
180 
181 enum DecompressResult
182 {
183 	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
184 	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
185 
186 	DECOMPRESS_RESULT_LAST
187 };
188 
189 // A helper for getting bits from a 128-bit block.
190 class Block128
191 {
192 private:
193 	typedef deUint64 Word;
194 
195 	enum
196 	{
197 		WORD_BYTES	= sizeof(Word),
198 		WORD_BITS	= 8*WORD_BYTES,
199 		NUM_WORDS	= 128 / WORD_BITS
200 	};
201 
202 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203 
204 public:
Block128(const deUint8 * src)205 	Block128 (const deUint8* src)
206 	{
207 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208 		{
209 			m_words[wordNdx] = 0;
210 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211 				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212 		}
213 	}
214 
getBit(int ndx) const215 	deUint32 getBit (int ndx) const
216 	{
217 		DE_ASSERT(de::inBounds(ndx, 0, 128));
218 		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219 	}
220 
getBits(int low,int high) const221 	deUint32 getBits (int low, int high) const
222 	{
223 		DE_ASSERT(de::inBounds(low, 0, 128));
224 		DE_ASSERT(de::inBounds(high, 0, 128));
225 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
226 
227 		if (high-low+1 == 0)
228 			return 0;
229 
230 		const int word0Ndx = low / WORD_BITS;
231 		const int word1Ndx = high / WORD_BITS;
232 
233 		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234 
235 		if (word0Ndx == word1Ndx)
236 			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237 		else
238 		{
239 			DE_ASSERT(word1Ndx == word0Ndx + 1);
240 
241 			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242 				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243 		}
244 	}
245 
isBitSet(int ndx) const246 	bool isBitSet (int ndx) const
247 	{
248 		DE_ASSERT(de::inBounds(ndx, 0, 128));
249 		return getBit(ndx) != 0;
250 	}
251 
252 private:
253 	Word m_words[NUM_WORDS];
254 };
255 
256 // A helper for sequential access into a Block128.
257 class BitAccessStream
258 {
259 public:
BitAccessStream(const Block128 & src,int startNdxInSrc,int length,bool forward)260 	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261 		: m_src				(src)
262 		, m_startNdxInSrc	(startNdxInSrc)
263 		, m_length			(length)
264 		, m_forward			(forward)
265 		, m_ndx				(0)
266 	{
267 	}
268 
269 	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
getNext(int num)270 	deUint32 getNext (int num)
271 	{
272 		if (num == 0 || m_ndx >= m_length)
273 			return 0;
274 
275 		const int end				= m_ndx + num;
276 		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
277 		const int low				= m_ndx;
278 		const int high				= m_ndx + numBitsFromSrc - 1;
279 
280 		m_ndx += num;
281 
282 		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
283 						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284 	}
285 
286 private:
287 	const Block128&		m_src;
288 	const int			m_startNdxInSrc;
289 	const int			m_length;
290 	const bool			m_forward;
291 
292 	int					m_ndx;
293 };
294 
295 struct ISEDecodedResult
296 {
297 	deUint32 m;
298 	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299 	deUint32 v;
300 };
301 
302 // Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303 struct ASTCBlockMode
304 {
305 	bool		isError;
306 	// \note Following fields only relevant if !isError.
307 	bool		isVoidExtent;
308 	// \note Following fields only relevant if !isVoidExtent.
309 	bool		isDualPlane;
310 	int			weightGridWidth;
311 	int			weightGridHeight;
312 	ISEParams	weightISEParams;
313 
ASTCBlockModetcu::astc::__anon1989e5c50111::ASTCBlockMode314 	ASTCBlockMode (void)
315 		: isError			(true)
316 		, isVoidExtent		(true)
317 		, isDualPlane		(true)
318 		, weightGridWidth	(-1)
319 		, weightGridHeight	(-1)
320 		, weightISEParams	(ISEMODE_LAST, -1)
321 	{
322 	}
323 };
324 
computeNumWeights(const ASTCBlockMode & mode)325 inline int computeNumWeights (const ASTCBlockMode& mode)
326 {
327 	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328 }
329 
330 struct ColorEndpointPair
331 {
332 	UVec4 e0;
333 	UVec4 e1;
334 };
335 
336 struct TexelWeightPair
337 {
338 	deUint32 w[2];
339 };
340 
getASTCBlockMode(deUint32 blockModeData)341 ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342 {
343 	ASTCBlockMode blockMode;
344 	blockMode.isError = true; // \note Set to false later, if not error.
345 
346 	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347 
348 	if (!blockMode.isVoidExtent)
349 	{
350 		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351 			return blockMode; // Invalid ("reserved").
352 
353 		deUint32 r = (deUint32)-1; // \note Set in the following branches.
354 
355 		if (getBits(blockModeData, 0, 1) == 0)
356 		{
357 			const deUint32 r0	= getBit(blockModeData, 4);
358 			const deUint32 r1	= getBit(blockModeData, 2);
359 			const deUint32 r2	= getBit(blockModeData, 3);
360 			const deUint32 i78	= getBits(blockModeData, 7, 8);
361 
362 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363 
364 			if (i78 == 3)
365 			{
366 				const bool i5 = isBitSet(blockModeData, 5);
367 				blockMode.weightGridWidth	= i5 ? 10 : 6;
368 				blockMode.weightGridHeight	= i5 ? 6  : 10;
369 			}
370 			else
371 			{
372 				const deUint32 a = getBits(blockModeData, 5, 6);
373 				switch (i78)
374 				{
375 					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
376 					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
377 					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
378 					default: DE_ASSERT(false);
379 				}
380 			}
381 		}
382 		else
383 		{
384 			const deUint32 r0	= getBit(blockModeData, 4);
385 			const deUint32 r1	= getBit(blockModeData, 0);
386 			const deUint32 r2	= getBit(blockModeData, 1);
387 			const deUint32 i23	= getBits(blockModeData, 2, 3);
388 			const deUint32 a	= getBits(blockModeData, 5, 6);
389 
390 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391 
392 			if (i23 == 3)
393 			{
394 				const deUint32	b	= getBit(blockModeData, 7);
395 				const bool		i8	= isBitSet(blockModeData, 8);
396 				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
397 				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
398 			}
399 			else
400 			{
401 				const deUint32 b = getBits(blockModeData, 7, 8);
402 
403 				switch (i23)
404 				{
405 					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
406 					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
407 					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
408 					default: DE_ASSERT(false);
409 				}
410 			}
411 		}
412 
413 		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414 		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
415 		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
416 
417 		{
418 			ISEMode&	m	= blockMode.weightISEParams.mode;
419 			int&		b	= blockMode.weightISEParams.numBits;
420 			m = ISEMODE_PLAIN_BIT;
421 			b = 0;
422 
423 			if (h)
424 			{
425 				switch (r)
426 				{
427 					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
428 					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
429 					case 4:												b = 4;	break;
430 					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
431 					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
432 					case 7:												b = 5;	break;
433 					default:	DE_ASSERT(false);
434 				}
435 			}
436 			else
437 			{
438 				switch (r)
439 				{
440 					case 2:												b = 1;	break;
441 					case 3:		m = ISEMODE_TRIT;								break;
442 					case 4:												b = 2;	break;
443 					case 5:							m = ISEMODE_QUINT;			break;
444 					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
445 					case 7:												b = 3;	break;
446 					default:	DE_ASSERT(false);
447 				}
448 			}
449 		}
450 	}
451 
452 	blockMode.isError = false;
453 	return blockMode;
454 }
455 
setASTCErrorColorBlock(void * dst,int blockWidth,int blockHeight,bool isSRGB)456 inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457 {
458 	if (isSRGB)
459 	{
460 		deUint8* const dstU = (deUint8*)dst;
461 
462 		for (int i = 0; i < blockWidth*blockHeight; i++)
463 		{
464 			dstU[4*i + 0] = 0xff;
465 			dstU[4*i + 1] = 0;
466 			dstU[4*i + 2] = 0xff;
467 			dstU[4*i + 3] = 0xff;
468 		}
469 	}
470 	else
471 	{
472 		float* const dstF = (float*)dst;
473 
474 		for (int i = 0; i < blockWidth*blockHeight; i++)
475 		{
476 			dstF[4*i + 0] = 1.0f;
477 			dstF[4*i + 1] = 0.0f;
478 			dstF[4*i + 2] = 1.0f;
479 			dstF[4*i + 3] = 1.0f;
480 		}
481 	}
482 }
483 
decodeVoidExtentBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode)484 DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485 {
486 	const deUint32	minSExtent			= blockData.getBits(12, 24);
487 	const deUint32	maxSExtent			= blockData.getBits(25, 37);
488 	const deUint32	minTExtent			= blockData.getBits(38, 50);
489 	const deUint32	maxTExtent			= blockData.getBits(51, 63);
490 	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491 	const bool		isHDRBlock			= blockData.isBitSet(9);
492 
493 	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494 	{
495 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496 		return DECOMPRESS_RESULT_ERROR;
497 	}
498 
499 	const deUint32 rgba[4] =
500 	{
501 		blockData.getBits(64,  79),
502 		blockData.getBits(80,  95),
503 		blockData.getBits(96,  111),
504 		blockData.getBits(112, 127)
505 	};
506 
507 	if (isSRGB)
508 	{
509 		deUint8* const dstU = (deUint8*)dst;
510 		for (int i = 0; i < blockWidth*blockHeight; i++)
511 		for (int c = 0; c < 4; c++)
512 			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513 	}
514 	else
515 	{
516 		float* const dstF = (float*)dst;
517 
518 		if (isHDRBlock)
519 		{
520 			for (int c = 0; c < 4; c++)
521 			{
522 				if (isFloat16InfOrNan((deFloat16)rgba[c]))
523 					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524 			}
525 
526 			for (int i = 0; i < blockWidth*blockHeight; i++)
527 			for (int c = 0; c < 4; c++)
528 				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529 		}
530 		else
531 		{
532 			for (int i = 0; i < blockWidth*blockHeight; i++)
533 			for (int c = 0; c < 4; c++)
534 				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535 		}
536 	}
537 
538 	return DECOMPRESS_RESULT_VALID_BLOCK;
539 }
540 
decodeColorEndpointModes(deUint32 * endpointModesDst,const Block128 & blockData,int numPartitions,int extraCemBitsStart)541 void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542 {
543 	if (numPartitions == 1)
544 		endpointModesDst[0] = blockData.getBits(13, 16);
545 	else
546 	{
547 		const deUint32 highLevelSelector = blockData.getBits(23, 24);
548 
549 		if (highLevelSelector == 0)
550 		{
551 			const deUint32 mode = blockData.getBits(25, 28);
552 			for (int i = 0; i < numPartitions; i++)
553 				endpointModesDst[i] = mode;
554 		}
555 		else
556 		{
557 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558 			{
559 				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560 				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
561 				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
562 				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563 				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564 
565 				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566 			}
567 		}
568 	}
569 }
570 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions)571 int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572 {
573 	int result = 0;
574 	for (int i = 0; i < numPartitions; i++)
575 		result += computeNumColorEndpointValues(endpointModes[i]);
576 	return result;
577 }
578 
decodeISETritBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)579 void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580 {
581 	DE_ASSERT(de::inRange(numValues, 1, 5));
582 
583 	deUint32 m[5];
584 
585 	m[0]			= data.getNext(numBits);
586 	deUint32 T01	= data.getNext(2);
587 	m[1]			= data.getNext(numBits);
588 	deUint32 T23	= data.getNext(2);
589 	m[2]			= data.getNext(numBits);
590 	deUint32 T4		= data.getNext(1);
591 	m[3]			= data.getNext(numBits);
592 	deUint32 T56	= data.getNext(2);
593 	m[4]			= data.getNext(numBits);
594 	deUint32 T7		= data.getNext(1);
595 
596 	switch (numValues)
597 	{
598 		// \note Fall-throughs.
599 		case 1: T23		= 0;
600 		case 2: T4		= 0;
601 		case 3: T56		= 0;
602 		case 4: T7		= 0;
603 		case 5: break;
604 		default:
605 			DE_ASSERT(false);
606 	}
607 
608 	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
609 
610 	static const deUint32 tritsFromT[256][5] =
611 	{
612 		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
613 		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
614 		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
615 		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
616 		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
617 		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
618 		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
619 		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
620 		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
621 		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
622 		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
623 		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
624 		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
625 		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
626 		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
627 		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
628 	};
629 
630 	const deUint32 (& trits)[5] = tritsFromT[T];
631 
632 	for (int i = 0; i < numValues; i++)
633 	{
634 		dst[i].m	= m[i];
635 		dst[i].tq	= trits[i];
636 		dst[i].v	= (trits[i] << numBits) + m[i];
637 	}
638 }
639 
decodeISEQuintBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)640 void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
641 {
642 	DE_ASSERT(de::inRange(numValues, 1, 3));
643 
644 	deUint32 m[3];
645 
646 	m[0]			= data.getNext(numBits);
647 	deUint32 Q012	= data.getNext(3);
648 	m[1]			= data.getNext(numBits);
649 	deUint32 Q34	= data.getNext(2);
650 	m[2]			= data.getNext(numBits);
651 	deUint32 Q56	= data.getNext(2);
652 
653 	switch (numValues)
654 	{
655 		// \note Fall-throughs.
656 		case 1: Q34		= 0;
657 		case 2: Q56		= 0;
658 		case 3: break;
659 		default:
660 			DE_ASSERT(false);
661 	}
662 
663 	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
664 
665 	static const deUint32 quintsFromQ[256][3] =
666 	{
667 		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
668 		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
669 		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
670 		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
671 		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
672 		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
673 		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
674 		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
675 	};
676 
677 	const deUint32 (& quints)[3] = quintsFromQ[Q];
678 
679 	for (int i = 0; i < numValues; i++)
680 	{
681 		dst[i].m	= m[i];
682 		dst[i].tq	= quints[i];
683 		dst[i].v	= (quints[i] << numBits) + m[i];
684 	}
685 }
686 
decodeISEBitBlock(ISEDecodedResult * dst,BitAccessStream & data,int numBits)687 inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
688 {
689 	dst[0].m = data.getNext(numBits);
690 	dst[0].v = dst[0].m;
691 }
692 
decodeISE(ISEDecodedResult * dst,int numValues,BitAccessStream & data,const ISEParams & params)693 void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
694 {
695 	if (params.mode == ISEMODE_TRIT)
696 	{
697 		const int numBlocks = deDivRoundUp32(numValues, 5);
698 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
699 		{
700 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
701 			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
702 		}
703 	}
704 	else if (params.mode == ISEMODE_QUINT)
705 	{
706 		const int numBlocks = deDivRoundUp32(numValues, 3);
707 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
708 		{
709 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
710 			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
711 		}
712 	}
713 	else
714 	{
715 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
716 		for (int i = 0; i < numValues; i++)
717 			decodeISEBitBlock(&dst[i], data, params.numBits);
718 	}
719 }
720 
unquantizeColorEndpoints(deUint32 * dst,const ISEDecodedResult * iseResults,int numEndpoints,const ISEParams & iseParams)721 void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
722 {
723 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
724 	{
725 		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
726 		DE_ASSERT(de::inRange(rangeCase, 0, 10));
727 		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
728 		const deUint32			C		= Ca[rangeCase];
729 
730 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
731 		{
732 			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
733 			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
734 			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
735 			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
736 			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
737 			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
738 
739 			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
740 			const deUint32 B = rangeCase == 0	? 0
741 							 : rangeCase == 1	? 0
742 							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
743 							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
744 							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
745 							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
746 							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
747 							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
748 							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
749 							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
750 							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
751 							 : (deUint32)-1;
752 			DE_ASSERT(B != (deUint32)-1);
753 
754 			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
755 		}
756 	}
757 	else
758 	{
759 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
760 
761 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
762 			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
763 	}
764 }
765 
bitTransferSigned(deInt32 & a,deInt32 & b)766 inline void bitTransferSigned (deInt32& a, deInt32& b)
767 {
768 	b >>= 1;
769 	b |= a & 0x80;
770 	a >>= 1;
771 	a &= 0x3f;
772 	if (isBitSet(a, 5))
773 		a -= 0x40;
774 }
775 
clampedRGBA(const IVec4 & rgba)776 inline UVec4 clampedRGBA (const IVec4& rgba)
777 {
778 	return UVec4(de::clamp(rgba.x(), 0, 0xff),
779 				 de::clamp(rgba.y(), 0, 0xff),
780 				 de::clamp(rgba.z(), 0, 0xff),
781 				 de::clamp(rgba.w(), 0, 0xff));
782 }
783 
blueContract(int r,int g,int b,int a)784 inline IVec4 blueContract (int r, int g, int b, int a)
785 {
786 	return IVec4((r+b)>>1, (g+b)>>1, b, a);
787 }
788 
isColorEndpointModeHDR(deUint32 mode)789 inline bool isColorEndpointModeHDR (deUint32 mode)
790 {
791 	return mode == 2	||
792 		   mode == 3	||
793 		   mode == 7	||
794 		   mode == 11	||
795 		   mode == 14	||
796 		   mode == 15;
797 }
798 
decodeHDREndpointMode7(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3)799 void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
800 {
801 	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
802 	const deUint32 m23		= getBits(v0, 6, 7);
803 	const deUint32 majComp	= m10 != 3	? m10
804 							: m23 != 3	? m23
805 							:			  0;
806 	const deUint32 mode		= m10 != 3	? m23
807 							: m23 != 3	? 4
808 							:			  5;
809 
810 	deInt32			red		= (deInt32)getBits(v0, 0, 5);
811 	deInt32			green	= (deInt32)getBits(v1, 0, 4);
812 	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
813 	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
814 
815 	{
816 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
817 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
818 
819 		const deUint32	x0	= getBit(v1, 6);
820 		const deUint32	x1	= getBit(v1, 5);
821 		const deUint32	x2	= getBit(v2, 6);
822 		const deUint32	x3	= getBit(v2, 5);
823 		const deUint32	x4	= getBit(v3, 7);
824 		const deUint32	x5	= getBit(v3, 6);
825 		const deUint32	x6	= getBit(v3, 5);
826 
827 		deInt32&		R	= red;
828 		deInt32&		G	= green;
829 		deInt32&		B	= blue;
830 		deInt32&		S	= scale;
831 
832 		switch (mode)
833 		{
834 			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
835 			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
836 			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
837 			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
838 			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
839 			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
840 			default:
841 				DE_ASSERT(false);
842 		}
843 
844 #undef ASSIGN_X_BITS
845 #undef SHOR
846 	}
847 
848 	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
849 	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
850 
851 	red		<<= shiftAmounts[mode];
852 	green	<<= shiftAmounts[mode];
853 	blue	<<= shiftAmounts[mode];
854 	scale	<<= shiftAmounts[mode];
855 
856 	if (mode != 5)
857 	{
858 		green	= red - green;
859 		blue	= red - blue;
860 	}
861 
862 	if (majComp == 1)
863 		std::swap(red, green);
864 	else if (majComp == 2)
865 		std::swap(red, blue);
866 
867 	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
868 			   de::clamp(green	- scale,	0, 0xfff),
869 			   de::clamp(blue	- scale,	0, 0xfff),
870 			   0x780);
871 
872 	e1 = UVec4(de::clamp(red,				0, 0xfff),
873 			   de::clamp(green,				0, 0xfff),
874 			   de::clamp(blue,				0, 0xfff),
875 			   0x780);
876 }
877 
decodeHDREndpointMode11(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5)878 void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
879 {
880 	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
881 
882 	if (major == 3)
883 	{
884 		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
885 		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
886 	}
887 	else
888 	{
889 		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
890 
891 		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
892 		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
893 		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
894 		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
895 		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
896 		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
897 
898 		{
899 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
900 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
901 
902 			const deUint32 x0 = getBit(v2, 6);
903 			const deUint32 x1 = getBit(v3, 6);
904 			const deUint32 x2 = getBit(v4, 6);
905 			const deUint32 x3 = getBit(v5, 6);
906 			const deUint32 x4 = getBit(v4, 5);
907 			const deUint32 x5 = getBit(v5, 5);
908 
909 			switch (mode)
910 			{
911 				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
912 				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
913 				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
914 				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
915 				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
916 				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
917 				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
918 				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
919 				default:
920 					DE_ASSERT(false);
921 			}
922 
923 #undef ASSIGN_X_BITS
924 #undef SHOR
925 		}
926 
927 		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
928 		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
929 
930 		d0 = signExtend(d0, numDBits[mode]);
931 		d1 = signExtend(d1, numDBits[mode]);
932 
933 		const int shiftAmount = (mode >> 1) ^ 3;
934 		a	<<= shiftAmount;
935 		c	<<= shiftAmount;
936 		b0	<<= shiftAmount;
937 		b1	<<= shiftAmount;
938 		d0	<<= shiftAmount;
939 		d1	<<= shiftAmount;
940 
941 		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
942 				   de::clamp(a-b0-c-d0,		0, 0xfff),
943 				   de::clamp(a-b1-c-d1,		0, 0xfff),
944 				   0x780);
945 
946 		e1 = UVec4(de::clamp(a,				0, 0xfff),
947 				   de::clamp(a-b0,			0, 0xfff),
948 				   de::clamp(a-b1,			0, 0xfff),
949 				   0x780);
950 
951 		if (major == 1)
952 		{
953 			std::swap(e0.x(), e0.y());
954 			std::swap(e1.x(), e1.y());
955 		}
956 		else if (major == 2)
957 		{
958 			std::swap(e0.x(), e0.z());
959 			std::swap(e1.x(), e1.z());
960 		}
961 	}
962 }
963 
decodeHDREndpointMode15(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5,deUint32 v6In,deUint32 v7In)964 void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
965 {
966 	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
967 
968 	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
969 	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
970 	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
971 
972 	if (mode == 3)
973 	{
974 		e0.w() = v6 << 5;
975 		e1.w() = v7 << 5;
976 	}
977 	else
978 	{
979 		v6 |= (v7 << (mode+1)) & 0x780;
980 		v7 &= (0x3f >> mode);
981 		v7 ^= 0x20 >> mode;
982 		v7 -= 0x20 >> mode;
983 		v6 <<= 4-mode;
984 		v7 <<= 4-mode;
985 
986 		v7 += v6;
987 		v7 = de::clamp(v7, 0, 0xfff);
988 		e0.w() = v6;
989 		e1.w() = v7;
990 	}
991 }
992 
decodeColorEndpoints(ColorEndpointPair * dst,const deUint32 * unquantizedEndpoints,const deUint32 * endpointModes,int numPartitions)993 void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
994 {
995 	int unquantizedNdx = 0;
996 
997 	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
998 	{
999 		const deUint32		endpointMode	= endpointModes[partitionNdx];
1000 		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1001 		UVec4&				e0				= dst[partitionNdx].e0;
1002 		UVec4&				e1				= dst[partitionNdx].e1;
1003 
1004 		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1005 
1006 		switch (endpointMode)
1007 		{
1008 			case 0:
1009 				e0 = UVec4(v[0], v[0], v[0], 0xff);
1010 				e1 = UVec4(v[1], v[1], v[1], 0xff);
1011 				break;
1012 
1013 			case 1:
1014 			{
1015 				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1016 				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1017 				e0 = UVec4(L0, L0, L0, 0xff);
1018 				e1 = UVec4(L1, L1, L1, 0xff);
1019 				break;
1020 			}
1021 
1022 			case 2:
1023 			{
1024 				const deUint32 v1Gr		= v[1] >= v[0];
1025 				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1026 				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1027 
1028 				e0 = UVec4(y0, y0, y0, 0x780);
1029 				e1 = UVec4(y1, y1, y1, 0x780);
1030 				break;
1031 			}
1032 
1033 			case 3:
1034 			{
1035 				const bool		m	= isBitSet(v[0], 7);
1036 				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1037 										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1038 				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1039 										: getBits(v[1], 0, 3) << 1;
1040 				const deUint32	y1	= de::min(0xfffu, y0+d);
1041 
1042 				e0 = UVec4(y0, y0, y0, 0x780);
1043 				e1 = UVec4(y1, y1, y1, 0x780);
1044 				break;
1045 			}
1046 
1047 			case 4:
1048 				e0 = UVec4(v[0], v[0], v[0], v[2]);
1049 				e1 = UVec4(v[1], v[1], v[1], v[3]);
1050 				break;
1051 
1052 			case 5:
1053 			{
1054 				deInt32 v0 = (deInt32)v[0];
1055 				deInt32 v1 = (deInt32)v[1];
1056 				deInt32 v2 = (deInt32)v[2];
1057 				deInt32 v3 = (deInt32)v[3];
1058 				bitTransferSigned(v1, v0);
1059 				bitTransferSigned(v3, v2);
1060 
1061 				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
1062 				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
1063 				break;
1064 			}
1065 
1066 			case 6:
1067 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
1068 				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
1069 				break;
1070 
1071 			case 7:
1072 				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1073 				break;
1074 
1075 			case 8:
1076 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1077 				{
1078 					e0 = UVec4(v[0], v[2], v[4], 0xff);
1079 					e1 = UVec4(v[1], v[3], v[5], 0xff);
1080 				}
1081 				else
1082 				{
1083 					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1084 					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1085 				}
1086 				break;
1087 
1088 			case 9:
1089 			{
1090 				deInt32 v0 = (deInt32)v[0];
1091 				deInt32 v1 = (deInt32)v[1];
1092 				deInt32 v2 = (deInt32)v[2];
1093 				deInt32 v3 = (deInt32)v[3];
1094 				deInt32 v4 = (deInt32)v[4];
1095 				deInt32 v5 = (deInt32)v[5];
1096 				bitTransferSigned(v1, v0);
1097 				bitTransferSigned(v3, v2);
1098 				bitTransferSigned(v5, v4);
1099 
1100 				if (v1+v3+v5 >= 0)
1101 				{
1102 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
1103 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
1104 				}
1105 				else
1106 				{
1107 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
1108 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
1109 				}
1110 				break;
1111 			}
1112 
1113 			case 10:
1114 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
1115 				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
1116 				break;
1117 
1118 			case 11:
1119 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1120 				break;
1121 
1122 			case 12:
1123 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1124 				{
1125 					e0 = UVec4(v[0], v[2], v[4], v[6]);
1126 					e1 = UVec4(v[1], v[3], v[5], v[7]);
1127 				}
1128 				else
1129 				{
1130 					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1131 					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1132 				}
1133 				break;
1134 
1135 			case 13:
1136 			{
1137 				deInt32 v0 = (deInt32)v[0];
1138 				deInt32 v1 = (deInt32)v[1];
1139 				deInt32 v2 = (deInt32)v[2];
1140 				deInt32 v3 = (deInt32)v[3];
1141 				deInt32 v4 = (deInt32)v[4];
1142 				deInt32 v5 = (deInt32)v[5];
1143 				deInt32 v6 = (deInt32)v[6];
1144 				deInt32 v7 = (deInt32)v[7];
1145 				bitTransferSigned(v1, v0);
1146 				bitTransferSigned(v3, v2);
1147 				bitTransferSigned(v5, v4);
1148 				bitTransferSigned(v7, v6);
1149 
1150 				if (v1+v3+v5 >= 0)
1151 				{
1152 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
1153 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1154 				}
1155 				else
1156 				{
1157 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1158 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
1159 				}
1160 
1161 				break;
1162 			}
1163 
1164 			case 14:
1165 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1166 				e0.w() = v[6];
1167 				e1.w() = v[7];
1168 				break;
1169 
1170 			case 15:
1171 				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1172 				break;
1173 
1174 			default:
1175 				DE_ASSERT(false);
1176 		}
1177 	}
1178 }
1179 
computeColorEndpoints(ColorEndpointPair * dst,const Block128 & blockData,const deUint32 * endpointModes,int numPartitions,int numColorEndpointValues,const ISEParams & iseParams,int numBitsAvailable)1180 void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1181 {
1182 	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1183 	ISEDecodedResult	colorEndpointData[18];
1184 
1185 	{
1186 		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1187 		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1188 	}
1189 
1190 	{
1191 		deUint32 unquantizedEndpoints[18];
1192 		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1193 		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1194 	}
1195 }
1196 
unquantizeWeights(deUint32 dst[64],const ISEDecodedResult * weightGrid,const ASTCBlockMode & blockMode)1197 void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1198 {
1199 	const int			numWeights	= computeNumWeights(blockMode);
1200 	const ISEParams&	iseParams	= blockMode.weightISEParams;
1201 
1202 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1203 	{
1204 		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1205 
1206 		if (rangeCase == 0 || rangeCase == 1)
1207 		{
1208 			static const deUint32 map0[3]	= { 0, 32, 63 };
1209 			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
1210 			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
1211 			for (int i = 0; i < numWeights; i++)
1212 			{
1213 				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1214 				dst[i] = map[weightGrid[i].v];
1215 			}
1216 		}
1217 		else
1218 		{
1219 			DE_ASSERT(rangeCase <= 6);
1220 			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
1221 			const deUint32			C		= Ca[rangeCase-2];
1222 
1223 			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1224 			{
1225 				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1226 				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1227 				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1228 
1229 				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1230 				const deUint32 B = rangeCase == 2 ? 0
1231 								 : rangeCase == 3 ? 0
1232 								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
1233 								 : rangeCase == 5 ? (b << 6) |								(b << 1)
1234 								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
1235 								 : (deUint32)-1;
1236 
1237 				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1238 			}
1239 		}
1240 	}
1241 	else
1242 	{
1243 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1244 
1245 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1246 			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1247 	}
1248 
1249 	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1250 		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1251 
1252 	// Initialize nonexistent weights to poison values
1253 	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1254 		dst[weightNdx] = ~0u;
1255 
1256 }
1257 
interpolateWeights(TexelWeightPair * dst,const deUint32 (& unquantizedWeights)[64],int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1258 void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1259 {
1260 	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
1261 	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
1262 	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
1263 
1264 	DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
1265 
1266 	for (int texelY = 0; texelY < blockHeight; texelY++)
1267 	{
1268 		for (int texelX = 0; texelX < blockWidth; texelX++)
1269 		{
1270 			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1271 			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1272 			const deUint32 jX	= gX >> 4;
1273 			const deUint32 jY	= gY >> 4;
1274 			const deUint32 fX	= gX & 0xf;
1275 			const deUint32 fY	= gY & 0xf;
1276 
1277 			const deUint32 w11	= (fX*fY + 8) >> 4;
1278 			const deUint32 w10	= fY - w11;
1279 			const deUint32 w01	= fX - w11;
1280 			const deUint32 w00	= 16 - fX - fY + w11;
1281 
1282 			const deUint32 i00	= jY*blockMode.weightGridWidth + jX;
1283 			const deUint32 i01	= i00 + 1;
1284 			const deUint32 i10	= i00 + blockMode.weightGridWidth;
1285 			const deUint32 i11	= i00 + blockMode.weightGridWidth + 1;
1286 
1287 			// These addresses can be out of bounds, but respective weights will be 0 then.
1288 			DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1289 			DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1290 			DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1291 			DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1292 
1293 			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1294 			{
1295 				// & 0x3f clamps address to bounds of unquantizedWeights
1296 				const deUint32 p00	= unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1297 				const deUint32 p01	= unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1298 				const deUint32 p10	= unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1299 				const deUint32 p11	= unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1300 
1301 				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1302 			}
1303 		}
1304 	}
1305 }
1306 
computeTexelWeights(TexelWeightPair * dst,const Block128 & blockData,int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1307 void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1308 {
1309 	ISEDecodedResult weightGrid[64];
1310 
1311 	{
1312 		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1313 		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1314 	}
1315 
1316 	{
1317 		deUint32 unquantizedWeights[64];
1318 		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1319 		interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1320 	}
1321 }
1322 
hash52(deUint32 v)1323 inline deUint32 hash52 (deUint32 v)
1324 {
1325 	deUint32 p = v;
1326 	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
1327 	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
1328 	p ^= p <<  6;	p ^= p >> 17;
1329 	return p;
1330 }
1331 
computeTexelPartition(deUint32 seedIn,deUint32 xIn,deUint32 yIn,deUint32 zIn,int numPartitions,bool smallBlock)1332 int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1333 {
1334 	DE_ASSERT(zIn == 0);
1335 	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
1336 	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
1337 	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
1338 	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
1339 	const deUint32	rnum	= hash52(seed);
1340 	deUint8			seed1	= (deUint8)( rnum							& 0xf);
1341 	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
1342 	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
1343 	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
1344 	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
1345 	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
1346 	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
1347 	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
1348 	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
1349 	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
1350 	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
1351 	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
1352 
1353 	seed1  = (deUint8)(seed1  * seed1 );
1354 	seed2  = (deUint8)(seed2  * seed2 );
1355 	seed3  = (deUint8)(seed3  * seed3 );
1356 	seed4  = (deUint8)(seed4  * seed4 );
1357 	seed5  = (deUint8)(seed5  * seed5 );
1358 	seed6  = (deUint8)(seed6  * seed6 );
1359 	seed7  = (deUint8)(seed7  * seed7 );
1360 	seed8  = (deUint8)(seed8  * seed8 );
1361 	seed9  = (deUint8)(seed9  * seed9 );
1362 	seed10 = (deUint8)(seed10 * seed10);
1363 	seed11 = (deUint8)(seed11 * seed11);
1364 	seed12 = (deUint8)(seed12 * seed12);
1365 
1366 	const int shA = (seed & 2) != 0		? 4		: 5;
1367 	const int shB = numPartitions == 3	? 6		: 5;
1368 	const int sh1 = (seed & 1) != 0		? shA	: shB;
1369 	const int sh2 = (seed & 1) != 0		? shB	: shA;
1370 	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
1371 
1372 	seed1  = (deUint8)(seed1  >> sh1);
1373 	seed2  = (deUint8)(seed2  >> sh2);
1374 	seed3  = (deUint8)(seed3  >> sh1);
1375 	seed4  = (deUint8)(seed4  >> sh2);
1376 	seed5  = (deUint8)(seed5  >> sh1);
1377 	seed6  = (deUint8)(seed6  >> sh2);
1378 	seed7  = (deUint8)(seed7  >> sh1);
1379 	seed8  = (deUint8)(seed8  >> sh2);
1380 	seed9  = (deUint8)(seed9  >> sh3);
1381 	seed10 = (deUint8)(seed10 >> sh3);
1382 	seed11 = (deUint8)(seed11 >> sh3);
1383 	seed12 = (deUint8)(seed12 >> sh3);
1384 
1385 	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1386 	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1387 	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
1388 	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
1389 
1390 	return a >= b && a >= c && a >= d	? 0
1391 		 : b >= c && b >= d				? 1
1392 		 : c >= d						? 2
1393 		 :								  3;
1394 }
1395 
setTexelColors(void * dst,ColorEndpointPair * colorEndpoints,TexelWeightPair * texelWeights,int ccs,deUint32 partitionIndexSeed,int numPartitions,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode,const deUint32 * colorEndpointModes)1396 DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1397 								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1398 {
1399 	const bool			smallBlock	= blockWidth*blockHeight < 31;
1400 	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
1401 	bool				isHDREndpoint[4];
1402 
1403 	for (int i = 0; i < numPartitions; i++)
1404 		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1405 
1406 	for (int texelY = 0; texelY < blockHeight; texelY++)
1407 	for (int texelX = 0; texelX < blockWidth; texelX++)
1408 	{
1409 		const int				texelNdx			= texelY*blockWidth + texelX;
1410 		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1411 		DE_ASSERT(colorEndpointNdx < numPartitions);
1412 		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
1413 		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
1414 		const TexelWeightPair&	weight				= texelWeights[texelNdx];
1415 
1416 		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1417 		{
1418 			if (isSRGB)
1419 			{
1420 				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1421 				((deUint8*)dst)[texelNdx*4 + 1] = 0;
1422 				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1423 				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1424 			}
1425 			else
1426 			{
1427 				((float*)dst)[texelNdx*4 + 0] = 1.0f;
1428 				((float*)dst)[texelNdx*4 + 1] = 0;
1429 				((float*)dst)[texelNdx*4 + 2] = 1.0f;
1430 				((float*)dst)[texelNdx*4 + 3] = 1.0f;
1431 			}
1432 
1433 			result = DECOMPRESS_RESULT_ERROR;
1434 		}
1435 		else
1436 		{
1437 			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1438 			{
1439 				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1440 				{
1441 					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1442 					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1443 					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
1444 					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
1445 
1446 					if (isSRGB)
1447 						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1448 					else
1449 						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1450 				}
1451 				else
1452 				{
1453 					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1454 					const deUint32		c0	= e0[channelNdx] << 4;
1455 					const deUint32		c1	= e1[channelNdx] << 4;
1456 					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
1457 					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
1458 					const deUint32		e	= getBits(c, 11, 15);
1459 					const deUint32		m	= getBits(c, 0, 10);
1460 					const deUint32		mt	= m < 512		? 3*m
1461 											: m >= 1536		? 5*m - 2048
1462 											:				  4*m - 512;
1463 					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
1464 
1465 					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1466 				}
1467 			}
1468 		}
1469 	}
1470 
1471 	return result;
1472 }
1473 
decompressBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDR)1474 DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1475 {
1476 	DE_ASSERT(isLDR || !isSRGB);
1477 
1478 	// Decode block mode.
1479 
1480 	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1481 
1482 	// Check for block mode errors.
1483 
1484 	if (blockMode.isError)
1485 	{
1486 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1487 		return DECOMPRESS_RESULT_ERROR;
1488 	}
1489 
1490 	// Separate path for void-extent.
1491 
1492 	if (blockMode.isVoidExtent)
1493 		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1494 
1495 	// Compute weight grid values.
1496 
1497 	const int numWeights			= computeNumWeights(blockMode);
1498 	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1499 	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
1500 
1501 	// Check for errors in weight grid, partition and dual-plane parameters.
1502 
1503 	if (numWeights > 64								||
1504 		numWeightDataBits > 96						||
1505 		numWeightDataBits < 24						||
1506 		blockMode.weightGridWidth > blockWidth		||
1507 		blockMode.weightGridHeight > blockHeight	||
1508 		(numPartitions == 4 && blockMode.isDualPlane))
1509 	{
1510 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1511 		return DECOMPRESS_RESULT_ERROR;
1512 	}
1513 
1514 	// Compute number of bits available for color endpoint data.
1515 
1516 	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
1517 	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1518 											  (blockMode.isDualPlane ? 2 : 0);
1519 	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
1520 	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
1521 																		: numPartitions == 4	? 7
1522 																		: numPartitions == 3	? 4
1523 																		: numPartitions == 2	? 1
1524 																		: 0);
1525 	// Decode color endpoint modes.
1526 
1527 	deUint32 colorEndpointModes[4];
1528 	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1529 
1530 	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1531 
1532 	// Check for errors in color endpoint value count.
1533 
1534 	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1535 	{
1536 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1537 		return DECOMPRESS_RESULT_ERROR;
1538 	}
1539 
1540 	// Compute color endpoints.
1541 
1542 	ColorEndpointPair colorEndpoints[4];
1543 	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1544 						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1545 
1546 	// Compute texel weights.
1547 
1548 	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1549 	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1550 
1551 	// Set texel colors.
1552 
1553 	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1554 	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1555 
1556 	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1557 }
1558 
decompress(const PixelBufferAccess & dst,const deUint8 * data,bool isSRGB,bool isLDR)1559 void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1560 {
1561 	DE_ASSERT(isLDR || !isSRGB);
1562 
1563 	const int blockWidth = dst.getWidth();
1564 	const int blockHeight = dst.getHeight();
1565 
1566 	union
1567 	{
1568 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1569 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1570 	} decompressedBuffer;
1571 
1572 	const Block128 blockData(data);
1573 	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1574 					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1575 
1576 	if (isSRGB)
1577 	{
1578 		for (int i = 0; i < blockHeight; i++)
1579 		for (int j = 0; j < blockWidth; j++)
1580 		{
1581 			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1582 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1583 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1584 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1585 		}
1586 	}
1587 	else
1588 	{
1589 		for (int i = 0; i < blockHeight; i++)
1590 		for (int j = 0; j < blockWidth; j++)
1591 		{
1592 			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1593 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1594 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1595 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1596 		}
1597 	}
1598 }
1599 
1600 // Helper class for setting bits in a 128-bit block.
1601 class AssignBlock128
1602 {
1603 private:
1604 	typedef deUint64 Word;
1605 
1606 	enum
1607 	{
1608 		WORD_BYTES	= sizeof(Word),
1609 		WORD_BITS	= 8*WORD_BYTES,
1610 		NUM_WORDS	= 128 / WORD_BITS
1611 	};
1612 
1613 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1614 
1615 public:
AssignBlock128(void)1616 	AssignBlock128 (void)
1617 	{
1618 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1619 			m_words[wordNdx] = 0;
1620 	}
1621 
setBit(int ndx,deUint32 val)1622 	void setBit (int ndx, deUint32 val)
1623 	{
1624 		DE_ASSERT(de::inBounds(ndx, 0, 128));
1625 		DE_ASSERT((val & 1) == val);
1626 		const int wordNdx	= ndx / WORD_BITS;
1627 		const int bitNdx	= ndx % WORD_BITS;
1628 		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1629 	}
1630 
setBits(int low,int high,deUint32 bits)1631 	void setBits (int low, int high, deUint32 bits)
1632 	{
1633 		DE_ASSERT(de::inBounds(low, 0, 128));
1634 		DE_ASSERT(de::inBounds(high, 0, 128));
1635 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1636 		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1637 
1638 		if (high-low+1 == 0)
1639 			return;
1640 
1641 		const int word0Ndx		= low / WORD_BITS;
1642 		const int word1Ndx		= high / WORD_BITS;
1643 		const int lowNdxInW0	= low % WORD_BITS;
1644 
1645 		if (word0Ndx == word1Ndx)
1646 			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1647 		else
1648 		{
1649 			DE_ASSERT(word1Ndx == word0Ndx + 1);
1650 
1651 			const int	highNdxInW1			= high % WORD_BITS;
1652 			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
1653 			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
1654 
1655 			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
1656 			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1657 		}
1658 	}
1659 
assignToMemory(deUint8 * dst) const1660 	void assignToMemory (deUint8* dst) const
1661 	{
1662 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1663 		{
1664 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1665 				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1666 		}
1667 	}
1668 
pushBytesToVector(vector<deUint8> & dst) const1669 	void pushBytesToVector (vector<deUint8>& dst) const
1670 	{
1671 		const int assignStartIndex = (int)dst.size();
1672 		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1673 		assignToMemory(&dst[assignStartIndex]);
1674 	}
1675 
1676 private:
1677 	Word m_words[NUM_WORDS];
1678 };
1679 
1680 // A helper for sequential access into a AssignBlock128.
1681 class BitAssignAccessStream
1682 {
1683 public:
BitAssignAccessStream(AssignBlock128 & dst,int startNdxInSrc,int length,bool forward)1684 	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1685 		: m_dst				(dst)
1686 		, m_startNdxInSrc	(startNdxInSrc)
1687 		, m_length			(length)
1688 		, m_forward			(forward)
1689 		, m_ndx				(0)
1690 	{
1691 	}
1692 
1693 	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
setNext(int num,deUint32 bits)1694 	void setNext (int num, deUint32 bits)
1695 	{
1696 		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1697 
1698 		if (num == 0 || m_ndx >= m_length)
1699 			return;
1700 
1701 		const int		end				= m_ndx + num;
1702 		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
1703 		const int		low				= m_ndx;
1704 		const int		high			= m_ndx + numBitsToDst - 1;
1705 		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
1706 
1707 		m_ndx += num;
1708 
1709 		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
1710 						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1711 	}
1712 
1713 private:
1714 	AssignBlock128&		m_dst;
1715 	const int			m_startNdxInSrc;
1716 	const int			m_length;
1717 	const bool			m_forward;
1718 
1719 	int					m_ndx;
1720 };
1721 
1722 struct VoidExtentParams
1723 {
1724 	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1725 	bool		isHDR;
1726 	deUint16	r;
1727 	deUint16	g;
1728 	deUint16	b;
1729 	deUint16	a;
1730 	// \note Currently extent coordinates are all set to all-ones.
1731 
VoidExtentParamstcu::astc::__anon1989e5c50111::VoidExtentParams1732 	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1733 };
1734 
generateVoidExtentBlock(const VoidExtentParams & params)1735 static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1736 {
1737 	AssignBlock128 block;
1738 
1739 	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1740 	block.setBit(9, params.isHDR);
1741 	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1742 
1743 	// Extent coordinates - currently all-ones.
1744 	block.setBits(12, 24, 0x1fff);
1745 	block.setBits(25, 37, 0x1fff);
1746 	block.setBits(38, 50, 0x1fff);
1747 	block.setBits(51, 63, 0x1fff);
1748 
1749 	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1750 								!isFloat16InfOrNan(params.g) &&
1751 								!isFloat16InfOrNan(params.b) &&
1752 								!isFloat16InfOrNan(params.a)));
1753 
1754 	block.setBits(64,  79,  params.r);
1755 	block.setBits(80,  95,  params.g);
1756 	block.setBits(96,  111, params.b);
1757 	block.setBits(112, 127, params.a);
1758 
1759 	return block;
1760 }
1761 
1762 // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1763 // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1764 // so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1765 // to the same set of decoded values.
1766 struct ISEInput
1767 {
1768 	struct Block
1769 	{
1770 		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1771 		deUint32 bitValues[5];
1772 	};
1773 
1774 	bool isGivenInBlockForm;
1775 	union
1776 	{
1777 		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
1778 		deUint32	plain[64];
1779 		Block		block[64];
1780 	} value;
1781 
ISEInputtcu::astc::__anon1989e5c50111::ISEInput1782 	ISEInput (void)
1783 		: isGivenInBlockForm (false)
1784 	{
1785 	}
1786 };
1787 
computeISERangeMax(const ISEParams & iseParams)1788 static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1789 {
1790 	switch (iseParams.mode)
1791 	{
1792 		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
1793 		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
1794 		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
1795 		default:
1796 			DE_ASSERT(false);
1797 			return -1;
1798 	}
1799 }
1800 
1801 struct NormalBlockParams
1802 {
1803 	int					weightGridWidth;
1804 	int					weightGridHeight;
1805 	ISEParams			weightISEParams;
1806 	bool				isDualPlane;
1807 	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
1808 	int					numPartitions;
1809 	deUint32			colorEndpointModes[4];
1810 	// \note Below members are irrelevant if numPartitions == 1.
1811 	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1812 	deUint32			partitionSeed;
1813 
NormalBlockParamstcu::astc::__anon1989e5c50111::NormalBlockParams1814 	NormalBlockParams (void)
1815 		: weightGridWidth			(-1)
1816 		, weightGridHeight			(-1)
1817 		, weightISEParams			(ISEMODE_LAST, -1)
1818 		, isDualPlane				(true)
1819 		, ccs						((deUint32)-1)
1820 		, numPartitions				(-1)
1821 		, isMultiPartSingleCemMode	(false)
1822 		, partitionSeed				((deUint32)-1)
1823 	{
1824 		colorEndpointModes[0] = 0;
1825 		colorEndpointModes[1] = 0;
1826 		colorEndpointModes[2] = 0;
1827 		colorEndpointModes[3] = 0;
1828 	}
1829 };
1830 
1831 struct NormalBlockISEInputs
1832 {
1833 	ISEInput weight;
1834 	ISEInput endpoint;
1835 
NormalBlockISEInputstcu::astc::__anon1989e5c50111::NormalBlockISEInputs1836 	NormalBlockISEInputs (void)
1837 		: weight	()
1838 		, endpoint	()
1839 	{
1840 	}
1841 };
1842 
computeNumWeights(const NormalBlockParams & params)1843 static inline int computeNumWeights (const NormalBlockParams& params)
1844 {
1845 	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1846 }
1847 
computeNumBitsForColorEndpoints(const NormalBlockParams & params)1848 static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1849 {
1850 	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1851 	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1852 									  (params.isDualPlane ? 2 : 0);
1853 
1854 	return 128 - numWeightBits - numConfigDataBits;
1855 }
1856 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions,bool isMultiPartSingleCemMode)1857 static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1858 {
1859 	if (isMultiPartSingleCemMode)
1860 		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1861 	else
1862 	{
1863 		int result = 0;
1864 		for (int i = 0; i < numPartitions; i++)
1865 			result += computeNumColorEndpointValues(endpointModes[i]);
1866 		return result;
1867 	}
1868 }
1869 
isValidBlockParams(const NormalBlockParams & params,int blockWidth,int blockHeight)1870 static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1871 {
1872 	const int numWeights				= computeNumWeights(params);
1873 	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
1874 	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1875 	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
1876 
1877 	return numWeights <= 64										&&
1878 		   de::inRange(numWeightBits, 24, 96)					&&
1879 		   params.weightGridWidth <= blockWidth					&&
1880 		   params.weightGridHeight <= blockHeight				&&
1881 		   !(params.numPartitions == 4 && params.isDualPlane)	&&
1882 		   numColorEndpointValues <= 18							&&
1883 		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1884 }
1885 
1886 // Write bits 0 to 10 of an ASTC block.
writeBlockMode(AssignBlock128 & dst,const NormalBlockParams & blockParams)1887 static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1888 {
1889 	const deUint32	d = blockParams.isDualPlane != 0;
1890 	// r and h initialized in switch below.
1891 	deUint32		r;
1892 	deUint32		h;
1893 	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1894 	deUint32		a = (deUint32)-1;
1895 	deUint32		b = (deUint32)-1;
1896 	int				blockModeLayoutNdx;
1897 
1898 	// Find the values of r and h (ISE range).
1899 	switch (computeISERangeMax(blockParams.weightISEParams))
1900 	{
1901 		case 1:		r = 2; h = 0;	break;
1902 		case 2:		r = 3; h = 0;	break;
1903 		case 3:		r = 4; h = 0;	break;
1904 		case 4:		r = 5; h = 0;	break;
1905 		case 5:		r = 6; h = 0;	break;
1906 		case 7:		r = 7; h = 0;	break;
1907 
1908 		case 9:		r = 2; h = 1;	break;
1909 		case 11:	r = 3; h = 1;	break;
1910 		case 15:	r = 4; h = 1;	break;
1911 		case 19:	r = 5; h = 1;	break;
1912 		case 23:	r = 6; h = 1;	break;
1913 		case 31:	r = 7; h = 1;	break;
1914 
1915 		default:
1916 			DE_ASSERT(false);
1917 			r = (deUint32)-1;
1918 			h = (deUint32)-1;
1919 	}
1920 
1921 	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1922 
1923 	{
1924 		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1925 
1926 		static const struct BlockModeLayout
1927 		{
1928 			int							aNumBits;
1929 			int							bNumBits;
1930 			BlockModeLayoutABVariable	gridWidthVariableTerm;
1931 			int							gridWidthConstantTerm;
1932 			BlockModeLayoutABVariable	gridHeightVariableTerm;
1933 			int							gridHeightConstantTerm;
1934 		} blockModeLayouts[] =
1935 		{
1936 			{ 2, 2,   B,  4,   A,  2},
1937 			{ 2, 2,   B,  8,   A,  2},
1938 			{ 2, 2,   A,  2,   B,  8},
1939 			{ 2, 1,   A,  2,   B,  6},
1940 			{ 2, 1,   B,  2,   A,  2},
1941 			{ 2, 0,   Z, 12,   A,  2},
1942 			{ 2, 0,   A,  2,   Z, 12},
1943 			{ 0, 0,   Z,  6,   Z, 10},
1944 			{ 0, 0,   Z, 10,   Z,  6},
1945 			{ 2, 2,   A,  6,   B,  6}
1946 		};
1947 
1948 		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1949 		{
1950 			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
1951 			const int				aMax					= (1 << layout.aNumBits) - 1;
1952 			const int				bMax					= (1 << layout.bNumBits) - 1;
1953 			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
1954 			const int				widthMin				= layout.gridWidthConstantTerm;
1955 			const int				heightMin				= layout.gridHeightConstantTerm;
1956 			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
1957 			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1958 
1959 			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1960 
1961 			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1962 				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1963 			{
1964 				deUint32	dummy			= 0;
1965 				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : dummy;
1966 				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
1967 
1968 				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
1969 				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1970 
1971 				break;
1972 			}
1973 		}
1974 	}
1975 
1976 	// Set block mode bits.
1977 
1978 	const deUint32 a0 = getBit(a, 0);
1979 	const deUint32 a1 = getBit(a, 1);
1980 	const deUint32 b0 = getBit(b, 0);
1981 	const deUint32 b1 = getBit(b, 1);
1982 	const deUint32 r0 = getBit(r, 0);
1983 	const deUint32 r1 = getBit(r, 1);
1984 	const deUint32 r2 = getBit(r, 2);
1985 
1986 #define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1987 #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
1988 
1989 	switch (blockModeLayoutNdx)
1990 	{
1991 		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
1992 		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
1993 		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
1994 		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1995 		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
1996 		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
1997 		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
1998 		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
1999 		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
2000 		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
2001 		default:
2002 			DE_ASSERT(false);
2003 	}
2004 
2005 #undef ASSIGN_BITS
2006 #undef SB
2007 }
2008 
2009 // Write color endpoint mode data of an ASTC block.
writeColorEndpointModes(AssignBlock128 & dst,const deUint32 * colorEndpointModes,bool isMultiPartSingleCemMode,int numPartitions,int extraCemBitsStart)2010 static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
2011 {
2012 	if (numPartitions == 1)
2013 		dst.setBits(13, 16, colorEndpointModes[0]);
2014 	else
2015 	{
2016 		if (isMultiPartSingleCemMode)
2017 		{
2018 			dst.setBits(23, 24, 0);
2019 			dst.setBits(25, 28, colorEndpointModes[0]);
2020 		}
2021 		else
2022 		{
2023 			DE_ASSERT(numPartitions > 0);
2024 			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2025 			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2026 			const deUint32 minCemClass			= minCem/4;
2027 			const deUint32 maxCemClass			= maxCem/4;
2028 			DE_ASSERT(maxCemClass - minCemClass <= 1);
2029 			DE_UNREF(minCemClass); // \note For non-debug builds.
2030 			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
2031 
2032 			dst.setBits(23, 24, highLevelSelector);
2033 
2034 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2035 			{
2036 				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2037 				const deUint32 m			= colorEndpointModes[partNdx] % 4;
2038 				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
2039 				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
2040 				dst.setBit(25 + partNdx, c);
2041 				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2042 				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2043 			}
2044 		}
2045 	}
2046 }
2047 
encodeISETritBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2048 static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2049 {
2050 	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2051 	static const deUint32 tritBlockTValue[3][3][3][3][3] =
2052 	{
2053 		{
2054 			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2055 			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2056 			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2057 		},
2058 		{
2059 			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2060 			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2061 			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2062 		},
2063 		{
2064 			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2065 			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2066 			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2067 		}
2068 	};
2069 
2070 	DE_ASSERT(de::inRange(numValues, 1, 5));
2071 
2072 	deUint32 tritParts[5];
2073 	deUint32 bitParts[5];
2074 
2075 	for (int i = 0; i < 5; i++)
2076 	{
2077 		if (i < numValues)
2078 		{
2079 			if (fromExplicitInputBlock)
2080 			{
2081 				bitParts[i]		= blockInput.bitValues[i];
2082 				tritParts[i]	= -1; // \note Won't be used, but silences warning.
2083 			}
2084 			else
2085 			{
2086 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2087 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2088 				tritParts[i]	= nonBlockInput[i] >> numBits;
2089 			}
2090 		}
2091 		else
2092 		{
2093 			bitParts[i]		= 0;
2094 			tritParts[i]	= 0;
2095 		}
2096 	}
2097 
2098 	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2099 																					  [tritParts[1]]
2100 																					  [tritParts[2]]
2101 																					  [tritParts[3]]
2102 																					  [tritParts[4]];
2103 
2104 	dst.setNext(numBits,	bitParts[0]);
2105 	dst.setNext(2,			getBits(T, 0, 1));
2106 	dst.setNext(numBits,	bitParts[1]);
2107 	dst.setNext(2,			getBits(T, 2, 3));
2108 	dst.setNext(numBits,	bitParts[2]);
2109 	dst.setNext(1,			getBit(T, 4));
2110 	dst.setNext(numBits,	bitParts[3]);
2111 	dst.setNext(2,			getBits(T, 5, 6));
2112 	dst.setNext(numBits,	bitParts[4]);
2113 	dst.setNext(1,			getBit(T, 7));
2114 }
2115 
encodeISEQuintBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2116 static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2117 {
2118 	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2119 	static const deUint32 quintBlockQValue[5][5][5] =
2120 	{
2121 		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2122 		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2123 		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2124 		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2125 		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2126 	};
2127 
2128 	DE_ASSERT(de::inRange(numValues, 1, 3));
2129 
2130 	deUint32 quintParts[3];
2131 	deUint32 bitParts[3];
2132 
2133 	for (int i = 0; i < 3; i++)
2134 	{
2135 		if (i < numValues)
2136 		{
2137 			if (fromExplicitInputBlock)
2138 			{
2139 				bitParts[i]		= blockInput.bitValues[i];
2140 				quintParts[i]	= -1; // \note Won't be used, but silences warning.
2141 			}
2142 			else
2143 			{
2144 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2145 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2146 				quintParts[i]	= nonBlockInput[i] >> numBits;
2147 			}
2148 		}
2149 		else
2150 		{
2151 			bitParts[i]		= 0;
2152 			quintParts[i]	= 0;
2153 		}
2154 	}
2155 
2156 	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2157 																					   [quintParts[1]]
2158 																					   [quintParts[2]];
2159 
2160 	dst.setNext(numBits,	bitParts[0]);
2161 	dst.setNext(3,			getBits(Q, 0, 2));
2162 	dst.setNext(numBits,	bitParts[1]);
2163 	dst.setNext(2,			getBits(Q, 3, 4));
2164 	dst.setNext(numBits,	bitParts[2]);
2165 	dst.setNext(2,			getBits(Q, 5, 6));
2166 }
2167 
encodeISEBitBlock(BitAssignAccessStream & dst,int numBits,deUint32 value)2168 static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2169 {
2170 	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2171 	dst.setNext(numBits, value);
2172 }
2173 
encodeISE(BitAssignAccessStream & dst,const ISEParams & params,const ISEInput & input,int numValues)2174 static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2175 {
2176 	if (params.mode == ISEMODE_TRIT)
2177 	{
2178 		const int numBlocks = deDivRoundUp32(numValues, 5);
2179 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2180 		{
2181 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2182 			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2183 							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2184 							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
2185 							   numValuesInBlock);
2186 		}
2187 	}
2188 	else if (params.mode == ISEMODE_QUINT)
2189 	{
2190 		const int numBlocks = deDivRoundUp32(numValues, 3);
2191 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2192 		{
2193 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2194 			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2195 								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2196 								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
2197 								numValuesInBlock);
2198 		}
2199 	}
2200 	else
2201 	{
2202 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2203 		for (int i = 0; i < numValues; i++)
2204 			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2205 	}
2206 }
2207 
writeWeightData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numWeights)2208 static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2209 {
2210 	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
2211 	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
2212 	encodeISE(access, iseParams, input, numWeights);
2213 }
2214 
writeColorEndpointData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numEndpoints,int numBitsForColorEndpoints,int colorEndpointDataStartNdx)2215 static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2216 {
2217 	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2218 	encodeISE(access, iseParams, input, numEndpoints);
2219 }
2220 
generateNormalBlock(const NormalBlockParams & blockParams,int blockWidth,int blockHeight,const NormalBlockISEInputs & iseInputs)2221 static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2222 {
2223 	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2224 	DE_UNREF(blockWidth);	// \note For non-debug builds.
2225 	DE_UNREF(blockHeight);	// \note For non-debug builds.
2226 
2227 	AssignBlock128	block;
2228 	const int		numWeights		= computeNumWeights(blockParams);
2229 	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2230 
2231 	writeBlockMode(block, blockParams);
2232 
2233 	block.setBits(11, 12, blockParams.numPartitions - 1);
2234 	if (blockParams.numPartitions > 1)
2235 		block.setBits(13, 22, blockParams.partitionSeed);
2236 
2237 	{
2238 		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
2239 															: blockParams.numPartitions == 4											? 7
2240 															: blockParams.numPartitions == 3											? 4
2241 															: blockParams.numPartitions == 2											? 1
2242 															: 0);
2243 
2244 		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2245 
2246 		if (blockParams.isDualPlane)
2247 			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2248 	}
2249 
2250 	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2251 
2252 	{
2253 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2254 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2255 		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
2256 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2257 
2258 		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2259 	}
2260 
2261 	return block;
2262 }
2263 
2264 // Generate default ISE inputs for weight and endpoint data - gradient-ish values.
generateDefaultISEInputs(const NormalBlockParams & blockParams)2265 static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2266 {
2267 	NormalBlockISEInputs result;
2268 
2269 	{
2270 		result.weight.isGivenInBlockForm = false;
2271 
2272 		const int numWeights		= computeNumWeights(blockParams);
2273 		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2274 
2275 		if (blockParams.isDualPlane)
2276 		{
2277 			for (int i = 0; i < numWeights; i += 2)
2278 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2279 
2280 			for (int i = 1; i < numWeights; i += 2)
2281 				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2282 		}
2283 		else
2284 		{
2285 			for (int i = 0; i < numWeights; i++)
2286 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2287 		}
2288 	}
2289 
2290 	{
2291 		result.endpoint.isGivenInBlockForm = false;
2292 
2293 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2294 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2295 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2296 		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
2297 
2298 		for (int i = 0; i < numColorEndpointValues; i++)
2299 			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2300 	}
2301 
2302 	return result;
2303 }
2304 
2305 static const ISEParams s_weightISEParamsCandidates[] =
2306 {
2307 	ISEParams(ISEMODE_PLAIN_BIT,	1),
2308 	ISEParams(ISEMODE_TRIT,			0),
2309 	ISEParams(ISEMODE_PLAIN_BIT,	2),
2310 	ISEParams(ISEMODE_QUINT,		0),
2311 	ISEParams(ISEMODE_TRIT,			1),
2312 	ISEParams(ISEMODE_PLAIN_BIT,	3),
2313 	ISEParams(ISEMODE_QUINT,		1),
2314 	ISEParams(ISEMODE_TRIT,			2),
2315 	ISEParams(ISEMODE_PLAIN_BIT,	4),
2316 	ISEParams(ISEMODE_QUINT,		2),
2317 	ISEParams(ISEMODE_TRIT,			3),
2318 	ISEParams(ISEMODE_PLAIN_BIT,	5)
2319 };
2320 
generateRandomBlock(deUint8 * dst,const IVec3 & blockSize,de::Random & rnd)2321 void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2322 {
2323 	DE_ASSERT(blockSize.z() == 1);
2324 
2325 	if (rnd.getFloat() < 0.1f)
2326 	{
2327 		// Void extent block.
2328 		const bool		isVoidExtentHDR		= rnd.getBool();
2329 		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2330 		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2331 		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2332 		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2333 		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2334 	}
2335 	else
2336 	{
2337 		// Not void extent block.
2338 
2339 		// Generate block params.
2340 
2341 		NormalBlockParams blockParams;
2342 
2343 		do
2344 		{
2345 			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
2346 			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
2347 			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2348 			blockParams.numPartitions				= rnd.getInt(1, 4);
2349 			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
2350 			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
2351 			blockParams.ccs							= rnd.getInt(0, 3);
2352 			blockParams.partitionSeed				= rnd.getInt(0, 1023);
2353 
2354 			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2355 
2356 			{
2357 				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
2358 									: blockParams.colorEndpointModes[0] == 0	? 1
2359 									: blockParams.colorEndpointModes[0] == 15	? -1
2360 									: rnd.getBool()								? 1 : -1;
2361 
2362 				for (int i = 1; i < blockParams.numPartitions; i++)
2363 					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2364 			}
2365 		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2366 
2367 		// Generate ISE inputs for both weight and endpoint data.
2368 
2369 		NormalBlockISEInputs iseInputs;
2370 
2371 		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2372 		{
2373 			const bool			setWeights	= weightOrEndpoints == 0;
2374 			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
2375 												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2376 			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2377 			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
2378 
2379 			iseInput.isGivenInBlockForm = rnd.getBool();
2380 
2381 			if (iseInput.isGivenInBlockForm)
2382 			{
2383 				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
2384 												: iseParams.mode == ISEMODE_QUINT	? 3
2385 												:									  1;
2386 				const int iseBitMax				= (1 << iseParams.numBits) - 1;
2387 				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
2388 
2389 				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2390 				{
2391 					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2392 					for (int i = 0; i < numValuesPerISEBlock; i++)
2393 						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2394 				}
2395 			}
2396 			else
2397 			{
2398 				const int rangeMax = computeISERangeMax(iseParams);
2399 
2400 				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2401 					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2402 			}
2403 		}
2404 
2405 		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2406 	}
2407 }
2408 
2409 } // anonymous
2410 
2411 // Generate block data for a given BlockTestType and format.
generateBlockCaseTestData(vector<deUint8> & dst,CompressedTexFormat format,BlockTestType testType)2412 void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2413 {
2414 	DE_ASSERT(isAstcFormat(format));
2415 	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2416 
2417 	const IVec3 blockSize = getBlockPixelSize(format);
2418 	DE_ASSERT(blockSize.z() == 1);
2419 
2420 	switch (testType)
2421 	{
2422 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2423 		// Generate a gradient-like set of LDR void-extent blocks.
2424 		{
2425 			const int			numBlocks	= 1<<13;
2426 			const deUint32		numValues	= 1<<16;
2427 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2428 
2429 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2430 			{
2431 				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
2432 				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
2433 				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
2434 				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
2435 				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
2436 				AssignBlock128 block;
2437 
2438 				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2439 			}
2440 
2441 			break;
2442 		}
2443 
2444 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2445 		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2446 		{
2447 			const float		minValue	= -65504.0f;
2448 			const float		maxValue	= +65504.0f;
2449 			const int		numBlocks	= 1<<13;
2450 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2451 
2452 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2453 			{
2454 				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
2455 				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
2456 				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
2457 				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
2458 				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2459 				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2460 				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2461 				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2462 
2463 				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2464 			}
2465 
2466 			break;
2467 		}
2468 
2469 		case BLOCK_TEST_TYPE_WEIGHT_GRID:
2470 		// Generate different combinations of plane count, weight ISE params, and grid size.
2471 		{
2472 			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
2473 			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2474 			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
2475 			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
2476 			{
2477 				NormalBlockParams		blockParams;
2478 				NormalBlockISEInputs	iseInputs;
2479 
2480 				blockParams.weightGridWidth			= weightGridWidth;
2481 				blockParams.weightGridHeight		= weightGridHeight;
2482 				blockParams.isDualPlane				= isDualPlane != 0;
2483 				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
2484 				blockParams.ccs						= 0;
2485 				blockParams.numPartitions			= 1;
2486 				blockParams.colorEndpointModes[0]	= 0;
2487 
2488 				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2489 					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2490 			}
2491 
2492 			break;
2493 		}
2494 
2495 		case BLOCK_TEST_TYPE_WEIGHT_ISE:
2496 		// For each weight ISE param set, generate blocks that cover:
2497 		// - each single value of the ISE's range, at each position inside an ISE block
2498 		// - for trit and quint ISEs, each single T or Q value of an ISE block
2499 		{
2500 			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2501 			{
2502 				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2503 				NormalBlockParams	blockParams;
2504 
2505 				blockParams.weightGridWidth			= 4;
2506 				blockParams.weightGridHeight		= 4;
2507 				blockParams.weightISEParams			= iseParams;
2508 				blockParams.numPartitions			= 1;
2509 				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2510 				blockParams.ccs						= 0;
2511 				blockParams.colorEndpointModes[0]	= 0;
2512 
2513 				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2514 				{
2515 					blockParams.weightGridWidth--;
2516 					blockParams.weightGridHeight--;
2517 				}
2518 
2519 				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2520 				const int numWeights			= computeNumWeights(blockParams);
2521 
2522 				{
2523 					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
2524 					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
2525 					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2526 					iseInputs.weight.isGivenInBlockForm = false;
2527 
2528 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2529 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2530 					{
2531 						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2532 							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2533 
2534 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2535 					}
2536 				}
2537 
2538 				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2539 				{
2540 					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2541 					iseInputs.weight.isGivenInBlockForm = true;
2542 
2543 					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2544 					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
2545 					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2546 
2547 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2548 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2549 					{
2550 						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2551 						{
2552 							for (int i = 0; i < numValuesInISEBlock; i++)
2553 								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2554 							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2555 						}
2556 
2557 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2558 					}
2559 				}
2560 			}
2561 
2562 			break;
2563 		}
2564 
2565 		case BLOCK_TEST_TYPE_CEMS:
2566 		// For each plane count & partition count combination, generate all color endpoint mode combinations.
2567 		{
2568 			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
2569 			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
2570 			{
2571 				// Multi-partition, single-CEM mode.
2572 				if (numPartitions > 1)
2573 				{
2574 					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2575 					{
2576 						NormalBlockParams blockParams;
2577 						blockParams.weightGridWidth				= 4;
2578 						blockParams.weightGridHeight			= 4;
2579 						blockParams.isDualPlane					= isDualPlane != 0;
2580 						blockParams.ccs							= 0;
2581 						blockParams.numPartitions				= numPartitions;
2582 						blockParams.isMultiPartSingleCemMode	= true;
2583 						blockParams.colorEndpointModes[0]		= singleCem;
2584 						blockParams.partitionSeed				= 634;
2585 
2586 						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2587 						{
2588 							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2589 							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2590 							{
2591 								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2592 								break;
2593 							}
2594 						}
2595 					}
2596 				}
2597 
2598 				// Separate-CEM mode.
2599 				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2600 				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2601 				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2602 				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2603 				{
2604 					NormalBlockParams blockParams;
2605 					blockParams.weightGridWidth				= 4;
2606 					blockParams.weightGridHeight			= 4;
2607 					blockParams.isDualPlane					= isDualPlane != 0;
2608 					blockParams.ccs							= 0;
2609 					blockParams.numPartitions				= numPartitions;
2610 					blockParams.isMultiPartSingleCemMode	= false;
2611 					blockParams.colorEndpointModes[0]		= cem0;
2612 					blockParams.colorEndpointModes[1]		= cem1;
2613 					blockParams.colorEndpointModes[2]		= cem2;
2614 					blockParams.colorEndpointModes[3]		= cem3;
2615 					blockParams.partitionSeed				= 634;
2616 
2617 					{
2618 						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2619 						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2620 						const deUint32 minCemClass	= minCem/4;
2621 						const deUint32 maxCemClass	= maxCem/4;
2622 
2623 						if (maxCemClass - minCemClass > 1)
2624 							continue;
2625 					}
2626 
2627 					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2628 					{
2629 						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2630 						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2631 						{
2632 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2633 							break;
2634 						}
2635 					}
2636 				}
2637 			}
2638 
2639 			break;
2640 		}
2641 
2642 		case BLOCK_TEST_TYPE_PARTITION_SEED:
2643 		// Test all partition seeds ("partition pattern indices").
2644 		{
2645 			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
2646 			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
2647 			{
2648 				NormalBlockParams blockParams;
2649 				blockParams.weightGridWidth				= 4;
2650 				blockParams.weightGridHeight			= 4;
2651 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2652 				blockParams.isDualPlane					= false;
2653 				blockParams.numPartitions				= numPartitions;
2654 				blockParams.isMultiPartSingleCemMode	= true;
2655 				blockParams.colorEndpointModes[0]		= 0;
2656 				blockParams.partitionSeed				= partitionSeed;
2657 
2658 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2659 			}
2660 
2661 			break;
2662 		}
2663 
2664 		// \note Fall-through.
2665 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2666 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2667 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2668 		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2669 		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
2670 		{
2671 			for (deUint32 cem = 0; cem < 16; cem++)
2672 			{
2673 				const bool isHDRCem = cem == 2		||
2674 									  cem == 3		||
2675 									  cem == 7		||
2676 									  cem == 11		||
2677 									  cem == 14		||
2678 									  cem == 15;
2679 
2680 				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
2681 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
2682 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
2683 					continue;
2684 
2685 				NormalBlockParams blockParams;
2686 				blockParams.weightGridWidth			= 3;
2687 				blockParams.weightGridHeight		= 4;
2688 				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
2689 				blockParams.isDualPlane				= false;
2690 				blockParams.numPartitions			= 1;
2691 				blockParams.colorEndpointModes[0]	= cem;
2692 
2693 				{
2694 					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
2695 					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
2696 					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2697 					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
2698 
2699 					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2700 					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2701 					{
2702 						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2703 						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
2704 
2705 						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2706 						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2707 						{
2708 							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2709 							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2710 
2711 							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2712 							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2713 
2714 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2715 						}
2716 					}
2717 				}
2718 			}
2719 
2720 			break;
2721 		}
2722 
2723 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2724 		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2725 		{
2726 			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2727 
2728 			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2729 			{
2730 				bool validCaseGenerated = false;
2731 
2732 				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
2733 				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
2734 				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
2735 				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
2736 				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
2737 				{
2738 					NormalBlockParams blockParams;
2739 					blockParams.weightGridWidth				= weightGridWidth;
2740 					blockParams.weightGridHeight			= weightGridHeight;
2741 					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
2742 					blockParams.isDualPlane					= isDual != 0;
2743 					blockParams.ccs							= 0;
2744 					blockParams.numPartitions				= numPartitions;
2745 					blockParams.isMultiPartSingleCemMode	= true;
2746 					blockParams.colorEndpointModes[0]		= 12;
2747 					blockParams.partitionSeed				= 634;
2748 
2749 					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2750 					{
2751 						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2752 																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2753 
2754 						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2755 						{
2756 							validCaseGenerated = true;
2757 
2758 							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2759 							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2760 
2761 							{
2762 								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
2763 								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2764 								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
2765 								iseInputs.endpoint.isGivenInBlockForm = false;
2766 
2767 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2768 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2769 								{
2770 									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2771 										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2772 
2773 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2774 								}
2775 							}
2776 
2777 							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2778 							{
2779 								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2780 								iseInputs.endpoint.isGivenInBlockForm = true;
2781 
2782 								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2783 								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2784 								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2785 
2786 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2787 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2788 								{
2789 									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2790 									{
2791 										for (int i = 0; i < numValuesInISEBlock; i++)
2792 											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2793 										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2794 									}
2795 
2796 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2797 								}
2798 							}
2799 						}
2800 					}
2801 				}
2802 
2803 				DE_ASSERT(validCaseGenerated);
2804 			}
2805 
2806 			break;
2807 		}
2808 
2809 		case BLOCK_TEST_TYPE_CCS:
2810 		// For all partition counts, test all values of the CCS (color component selector).
2811 		{
2812 			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
2813 			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
2814 			{
2815 				NormalBlockParams blockParams;
2816 				blockParams.weightGridWidth				= 3;
2817 				blockParams.weightGridHeight			= 3;
2818 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2819 				blockParams.isDualPlane					= true;
2820 				blockParams.ccs							= ccs;
2821 				blockParams.numPartitions				= numPartitions;
2822 				blockParams.isMultiPartSingleCemMode	= true;
2823 				blockParams.colorEndpointModes[0]		= 8;
2824 				blockParams.partitionSeed				= 634;
2825 
2826 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2827 			}
2828 
2829 			break;
2830 		}
2831 
2832 		case BLOCK_TEST_TYPE_RANDOM:
2833 		// Generate a number of random (including invalid) blocks.
2834 		{
2835 			const int		numBlocks	= 16384;
2836 			const deUint32	seed		= 1;
2837 
2838 			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2839 
2840 			generateRandomBlocks(&dst[0], numBlocks, format, seed);
2841 
2842 			break;
2843 		}
2844 
2845 		default:
2846 			DE_ASSERT(false);
2847 	}
2848 }
2849 
generateRandomBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,deUint32 seed)2850 void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2851 {
2852 	const IVec3		blockSize			= getBlockPixelSize(format);
2853 	de::Random		rnd					(seed);
2854 	size_t			numBlocksGenerated	= 0;
2855 
2856 	DE_ASSERT(isAstcFormat(format));
2857 	DE_ASSERT(blockSize.z() == 1);
2858 
2859 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2860 	{
2861 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2862 
2863 		generateRandomBlock(curBlockPtr, blockSize, rnd);
2864 	}
2865 }
2866 
generateRandomValidBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,TexDecompressionParams::AstcMode mode,deUint32 seed)2867 void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2868 {
2869 	const IVec3		blockSize			= getBlockPixelSize(format);
2870 	de::Random		rnd					(seed);
2871 	size_t			numBlocksGenerated	= 0;
2872 
2873 	DE_ASSERT(isAstcFormat(format));
2874 	DE_ASSERT(blockSize.z() == 1);
2875 
2876 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2877 	{
2878 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2879 
2880 		do
2881 		{
2882 			generateRandomBlock(curBlockPtr, blockSize, rnd);
2883 		} while (!isValidBlock(curBlockPtr, format, mode));
2884 	}
2885 }
2886 
2887 // Generate a number of trivial dummy blocks to fill unneeded space in a texture.
generateDummyVoidExtentBlocks(deUint8 * dst,size_t numBlocks)2888 void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2889 {
2890 	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2891 	for (size_t ndx = 0; ndx < numBlocks; ndx++)
2892 		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2893 }
2894 
generateDummyNormalBlocks(deUint8 * dst,size_t numBlocks,int blockWidth,int blockHeight)2895 void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2896 {
2897 	NormalBlockParams blockParams;
2898 
2899 	blockParams.weightGridWidth			= 3;
2900 	blockParams.weightGridHeight		= 3;
2901 	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
2902 	blockParams.isDualPlane				= false;
2903 	blockParams.numPartitions			= 1;
2904 	blockParams.colorEndpointModes[0]	= 8;
2905 
2906 	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2907 	iseInputs.weight.isGivenInBlockForm = false;
2908 
2909 	const int numWeights		= computeNumWeights(blockParams);
2910 	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2911 
2912 	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2913 	{
2914 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2915 			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2916 
2917 		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2918 	}
2919 }
2920 
isValidBlock(const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2921 bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2922 {
2923 	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
2924 	const bool				isSRGB			= isAstcSRGBFormat(format);
2925 	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2926 
2927 	// sRGB is not supported in HDR mode
2928 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
2929 
2930 	union
2931 	{
2932 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2933 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2934 	} tmpBuffer;
2935 	const Block128			blockData		(data);
2936 	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2937 															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2938 
2939 	return result == DECOMPRESS_RESULT_VALID_BLOCK;
2940 }
2941 
decompress(const PixelBufferAccess & dst,const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2942 void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2943 {
2944 	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
2945 
2946 #if defined(DE_DEBUG)
2947 	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
2948 
2949 	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
2950 			  dst.getHeight()	== blockPixelSize.y() &&
2951 			  dst.getDepth()	== blockPixelSize.z());
2952 	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2953 #endif
2954 
2955 	// sRGB is not supported in HDR mode
2956 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
2957 
2958 	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2959 }
2960 
getBlockTestTypeName(BlockTestType testType)2961 const char* getBlockTestTypeName (BlockTestType testType)
2962 {
2963 	switch (testType)
2964 	{
2965 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
2966 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
2967 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
2968 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
2969 		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
2970 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
2971 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
2972 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
2973 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
2974 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
2975 		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
2976 		case BLOCK_TEST_TYPE_RANDOM:					return "random";
2977 		default:
2978 			DE_ASSERT(false);
2979 			return DE_NULL;
2980 	}
2981 }
2982 
getBlockTestTypeDescription(BlockTestType testType)2983 const char* getBlockTestTypeDescription (BlockTestType testType)
2984 {
2985 	switch (testType)
2986 	{
2987 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
2988 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
2989 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
2990 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
2991 		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
2992 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
2993 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
2994 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
2995 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
2996 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
2997 		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
2998 		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
2999 		default:
3000 			DE_ASSERT(false);
3001 			return DE_NULL;
3002 	}
3003 }
3004 
isBlockTestTypeHDROnly(BlockTestType testType)3005 bool isBlockTestTypeHDROnly (BlockTestType testType)
3006 {
3007 	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
3008 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
3009 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
3010 }
3011 
getBlockTestTypeColorScale(BlockTestType testType)3012 Vec4 getBlockTestTypeColorScale (BlockTestType testType)
3013 {
3014 	switch (testType)
3015 	{
3016 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
3017 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
3018 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
3019 		default:													return Vec4(1.0f);
3020 	}
3021 }
3022 
getBlockTestTypeColorBias(BlockTestType testType)3023 Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3024 {
3025 	switch (testType)
3026 	{
3027 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
3028 		default:											return Vec4(0.0f);
3029 	}
3030 }
3031 
3032 } // astc
3033 } // tcu
3034